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Abstract: Climate change is largely determined by the radiation budget imbalance at the Top Of the
Atmosphere (TOA), which is generated by the increasing concentrations of greenhouse gases (GHGs).
As a result, the Earth Energy Imbalance (EEI) is considered as an Essential Climate Variable (ECV)
that has to be monitored continuously from space. However, accurate TOA radiation measurements
remain very challenging. Ideally, EEI monitoring should be performed with a constellation of
satellites in order to resolve as much as possible spatio-temporal fluctuations in EEI which contain
important information on the underlying mechanisms driving climate change. The monitoring of
EEI and its components (incoming solar, reflected solar, and terrestrial infrared fluxes) is the main
objective of the UVSQ-SAT pathfinder nanosatellite, the first of its kind in the construction of a future
constellation. UVSQ-SAT does not have an active determination system of its orientation with respect
to the Sun and the Earth (i.e., the so-called attitude), a prerequisite in the calculation of EEI from the
satellite radiation measurements. We present a new effective method to determine the UVSQ-SAT’s
in-orbit attitude using its housekeeping and scientific sensors measurements and a well-established
deep learning algorithm. One of the goals is to estimate the satellite attitude with a sufficient accuracy
for retrieving the radiative fluxes (incoming solar, reflected solar, terrestrial infrared) on each face of
the satellite with an uncertainty of less than ±5 Wm−2 (1σ). This new method can be extended to any
other satellites with no active attitude determination or control system. To test the accuracy of the
method, a ground-based calibration experiment with different attitudes is performed using the Sun
as the radiative flux reference. Based on the deep learning estimation of the satellite ground-based
attitude, the uncertainty on the solar flux retrieval is about ±16 Wm−2 (1σ). The quality of the
retrieval is mainly limited by test conditions and the number of data samples used in training the
deep learning system during the ground-based calibration. The expected increase in the number of
training data samples will drastically decrease the uncertainty in the retrieved radiative fluxes. A
very similar algorithm will be implemented and used in-orbit for UVSQ-SAT.

Keywords: climate; earth energy imbalance; satellite; remote sensors; deep learning method

1. Introduction

UltraViolet & infrared Sensors at high Quantum efficiency on-board a small SATel-
lite (UVSQ-SAT) is a pioneering space-based mission to demonstrate technologies for
broadband measurements of Earth Radiation Budget (ERB) [1]. The mission is part of the
International Satellite Program in Research and Education (INSPIRE). The motivation of
the UVSQ-SAT mission (INSPIRE-05) is to implement miniaturized disruptive technologies
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for remote sensing with compact sensors that could be used in the future for a multi-point
satellite constellation for observing Essential Climate Variables (ECV), namely shortwave
and longwave radiative fluxes at the Top Of the Atmosphere (TOA) and UV solar spectral
irradiance [2,3]. As a result of the increasing levels of infrared (IR) radiation-trapping
greenhouse gases (GHGs), the global energy budget is not balanced with the excess energy
accumulating in the Earth system. As a response, global mean surface temperatures in-
crease in order to enhance the outgoing terrestrial IR radiation and thus restore the Earth
energy balance. Measuring the absolute value of the Earth’s Energy Imbalance (EEI) and
its variability over time appears to be a very difficult challenge. Indeed, EEI is a measure of
the energy accumulation rate and hence of the warming trend of the Earth system. EEI is
derived from the simultaneous measurements of its different components: incoming solar,
reflected solar, and terrestrial infrared radiative fluxes. Ideally, EEI monitoring should
be performed with a constellation of satellites in order to resolve as much as possible
spatio-temporal fluctuations in EEI which are indicative of the underlying mechanisms
driving climate change at global and regional scales. The relevant scientific goal is to be able
to detect any EEI long-term trend with a target accuracy of 1/10 of the expected signal of
0.5–1.0 Wm−2 in the global mean during a decade [4–6]. These EEI scientific objectives are
extremely relevant and have not been achieved so far. At the present stage, the UVSQ-SAT
CubeSat is a demonstrator, expecting future developments and improvements that would
then really allow for making use of CubeSat technology for these scientific purposes. The
expected performances for UVSQ-SAT are to measure the EEI with a stability per year
of ±5 Wm−2 at 1σ [1]. The UVSQ-SAT EEI expected performances depend on the error
budget of several parameters. The in-orbit attitude determination of the satellite is one of
these parameters, which represents a random error. Thus, the accurate determination of
the UVSQ-SAT CubeSat in-orbit attitude is essential and implies an EEI determination that
should be less than ±5 Wm−2 at 1σ.

To measure the EEI at the TOA, the UVSQ-SAT satellite has Earth Radiative Sensors
(ERS) on each face of the CubeSat. The main goal of the UVSQ-SAT mission is to measure
with accuracy the incoming solar radiation (Total Solar Irradiance (TSI)) and the Earth
outgoing radiation (EOR = TOA Outgoing Longwave Radiation (OLR) + Shortwave Radia-
tion (OSR)). There are two different strategies to measure and recover all Earth radiative
fluxes (solar, albedo, infrared) from UVSQ-SAT sensors. The first one is to compute an
average flux on the six different faces of the CubeSat as explained in details by [1]. How-
ever, this method implies identical responsivity and the same bidirectional reflectance
distribution function (BRDF) for all sensors of all faces of the CubeSat. The second strategy
is to compute the radiative fluxes (solar, albedo, infrared) for each face of the spacecraft.
This method implies a good knowledge of the UVSQ-SAT’s in-orbit attitude. However,
the UVSQ-SAT CubeSat does not have an attitude control system due to its compact design.
Indeed, no instrument is integrated on-board the UVSQ-SAT CubeSat to determine its
attitude (i.e., orientation in the reference frame) explicitly. For this reason, a new method
based on a deep learning algorithm was developed to determine accurately the UVSQ-SAT
in-orbit attitude using its on-board housekeeping and scientific sensors’ measurements.
The method is first tested here against ground-based calibration data. The method will
also be tested further in orbit. Ultimately, this approach for attitude determination could
be applicable to all future small satellites with radiative and optical scientific sensors on
several faces on the spacecraft but without the need for specific active on-board attitude
determination equipments.

Different approaches can be implemented to determine the in-orbit attitude of a
satellite. Satellite attitude determination and control system (ADCS) include sensors used to
determine attitude and attitude rate, such as Sun sensors, horizon sensors, magnetometers,
gyros and star trackers while actuators (magnetorquers, reaction wheels, thrusters) are
designed to change the spacecraft’s attitude. All of these sensors are more or less accurate
and all are different, as described in [7]. Sun sensors are used to provide an estimate of the
solar location in the spacecraft body frame, which can be used to estimate satellite attitude
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(accuracy less than 1◦). Horizon sensors can be simple infrared horizon crossing indicators
or more advanced thermopile sensors to detect the temperature differences between the
poles and the equator (accuracy less than 1◦). Magnetometers provide a measurement
of the local magnetic field used to provide both estimates of attitude and also orbital
position. Star tracker can provide an accurate, standalone estimate of the spacecraft’s
attitude by comparing a digital image captured with a CCD or CMOS sensor to an onboard
star catalog. For three-axis-stabilized spacecraft missions using star trackers, the pointing
accuracy can vary from 0.001◦ to approximately 0.7◦ at 1σ. For spin-stabilized spacecraft
missions, the pointing accuracy vary from 0.2◦ to 1◦ at 1σ. These values correspond to the
optimum conditions of use. In practice, many factors affect this accuracy, such as stray
light and magnetic interference. Other spacecrafts use photocells or camera to detect stars
or Earth [8] for attitude determination. Earth detection using real time image recognition
in deep learning has been described to determine the attitude of a satellite in [9]. On the
UVSQ-SAT satellite, no devices are present to perform image recognition to detect the
Earth’s location. To determine the UVSQ-SAT’s in-orbit attitude, we will use housekeeping
(temperatures sensors and solar photodiodes (400–1100 nm)) and scientific sensors (Earth
Radiative sensors—thermopiles) measurements.

The main goal of this manuscript is to develop a new concept based on deep learning
method to obtain the UVSQ-SAT in-orbit attitude to retrieve the different components of the
EEI for each face of the spacecraft. To validate the method before launch, a ground-based
calibration was carried out in Guyancourt (France) in October 2020. The Sun was used
as radiative flux reference. The amount of calibration data acquired was limited due to
the tight schedule and associated constraints (such as delay in integrations, bad weather
conditions during the test period, delivery date to the launcher). One of the initial objectives
was to validate new miniaturized technologies in orbit at technology readiness level of 9
(system proven in operational environment) in a short time frame program. An objective of
UVSQ-SAT is to be able to learn from this first mission about the development of a future
satellites constellation.

Section 2 gives a description of the deep learning method to retrieve the attitude of the
UVSQ-SAT satellite and presents the ground-based validation process. This method allows
for retrieving the attitude of a small spacecraft without any dedicated instrument to do so.
This technique does not require to add a specific instrument. This is favorable as a small
satellite tends to reduce the space needed along with the complexity of integrating one
more instrument. Moreover, it will lower the data rate to provide. Deep learning algorithms
are often used for remote sensing applications [10]. Neural networks are implemented
using satellite data for detect farms or to classify lands as in [11–14]. This technique appears
to be really convenient in the remote sensing field.

Section 3 presents the results and performance of the algorithm for the validation process.
Finally, Section 4 provides discussion and perspectives for in-orbit applications.

2. Method to Retrieve Terrestrial Net Radiation for Satellite That Does Not Have
Active ADCS

The main goal of the UVSQ-SAT pathfinder mission is to determine the Terrestrial
Net Radiation using remote sensors. The UVSQ-SAT CubeSat described in [1] has several
sensors on its six different faces:

• 12 ERS sensors are part of the UVSQ-SAT satellite (2 per face). Six ERS sensors aims to
measure radiation between 0.2 and 100µm using Carbon NanoTubes coatings (absorp-
tivity close to 1). Six other ERS sensors aim to measure radiation wavelength between
0.2 and 3µm with 0.06 absorptivity and between 3 and 100µm with 0.84 absorptivity
using optical solar reflector coatings. ERS measurements represent indicators to detect
Earth and the Sun positions.

• Three ultraviolet sensors (UVS) are part of the UVSQ-SAT scientific payload. They
focus on the 200–1100 nm wavelength range.
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• Six photodiodes (LED) are located on the spacecraft and measure solar and outgoing
shortwave radiations in the 400–1100 nm wavelength range.

• Temperature sensors (solar cells) are also located on each satellite panel.
• Teach’ Wear (TW) is a new three axis accelerometer/gyroscope/compass. The TW

module on-board UVSQ-SAT has an instrumentation that will be very helpful to
determine the reference position during the training phase such as: a three-axis
accelerometer, a three-axis gyrometer, and a three-axis magnetometer.

In the case of a satellite such as UVSQ-SAT that does not have an active attitude
determination and control system, it is necessary to develop a typical method to retrieve
terrestrial net radiation.

2.1. General Method Description to Determine the Terrestrial Net Radiation

Figure 1 presents the general method to determine the terrestrial net radiation from
the UVSQ-SAT satellite. The main goal is to obtain the incoming solar radiation (TSI),
the Outgoing Longwave Radiation (OLR), and the Outgoing Shortwave Radiation (OSR)
from the satellite measurements.

Figure 1. General method to determine the terrestrial net radiation from UVSQ-SAT remote sensors.

First of all, UVSQ-SAT scientific and housekeeping raw data are processed relatively
to their transfer function to obtain scientific values without satellite attitude correction.
In parallel, orbital parameters are retrieved to get the satellite’s orbital position. The latter
provides reference locations of the Sun and the Earth according to the satellite’s frame of
reference using an algorithm developed by the National Renewable Energy Laboratory
(NREL) in [15]. Thereby, scientific data and orbital parameters are used as inputs for our
deep learning algorithm. The deep learning method helps us to compute the satellite’s
attitude to then recover the different fluxes. The retrieved flux such as the outgoing
longwave radiation, the outgoing shortwave radiation and the solar radiation are processed
relatively to known solar radiation from other space-based instruments or solar models.
Finally, thanks to the three previous quantities, it is possible to compute the terrestrial net
radiation and to check whether we verify the scientific requirements presented in [1].
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2.2. Method Based on a Deep Learning Approach to Determine Satellite Attitude

The method involves the development of a new deep learning approach to determine
the UVSQ-SAT’s in-orbit attitude using its housekeeping and scientific sensors’ measure-
ments [16]. This method is based on a multilayer perceptron (MLP), a class of feedforward
artificial neural network (ANN) that is commonly used in simple regression problems.
A multilayer perceptron strives to remember patterns in sequential data. It requires a large
number of parameters to process multidimensional data.

The UVSQ-SAT satellite does not have an active attitude determination and control
system. It does not have the ability to point toward the nadir or the Sun with an on-board
automatic process using actuators. Section 1 shows that the computation of the radiative
fluxes (solar, albedo, infrared) for each face of the spacecraft implies a good knowledge
of the UVSQ-SAT’s in-orbit attitude. Therefore, an attitude determination algorithm is
required for that purpose and will be detailed below as well as its ground-based validation.
The deep learning algorithm regroups a five hidden fully connected layers neural network
detailed in Section 2.2.2. In this following method, we will exploit the symmetrical aspect
of the CubeSat and the sensors distribution on the six different faces.

This approach is based on an empirical method to determine the satellite’s attitude
as the algorithm will be trained using experimental observations retrieved by the differ-
ent sensors.

2.2.1. Training of the Deep Learning Neural Network

The first step to validate the deep learning method is to train the neural network.
The training has to be done with ground-based calibration and in-flight calibration (once
in orbit). Regarding the ground-based calibration, it can be done using the Physikalisch-
Technische Bundesanstalt (PTB, Braunschweig in Germany) standard blackbody (BB 3200 pg)
developed for temperatures up to 3200 K. This solution has the advantage of having a stable
and known source, and allows easy positioning of the satellite. Due to the COVID-19 sanitary
crisis and the associated travel restrictions, we were unable to use this facility. Therefore, we
have used the Sun as a reference source for this purpose.

Figure 2 presents the different phases of the ground-based validation using the Sun as
a reference source. First of all, to be able to run the way described in Section 2.1, the deep
learning algorithm needs training. It will be implemented via supervised learning. To train
the algorithm, it is important to exhaustively specify the experimental model as well as the
inputs and outputs.

For this phase, the objective of the algorithm is to determine the azimuth of the Sun
according to the satellite’s frame of reference at any time thanks to the measurements made
by the satellite. We must train the algorithm as close as possible to in-orbit conditions.
Therefore, managing to expose the satellite straight to the Sun with different orientations
seemed to be the best option. The satellite was placed under a protection glass, on a mobile
support, in an open area (Guyancourt, France). The support allowed us to modify the
orientation of the satellite according to the position of the Sun. Since the final goal of
the attitude determination is to measure the flux, we benefited from a reference instru-
ment that performed flux measurement in parallel. This instrument was an SMP 6 model
pyranometer from Kipp and Zonen, and was placed on another support which remained
stationary throughout the experiment. The idea being to be able to compare the flux of the
pyranometer to the flux measured by the satellite sensors corrected by its attitude.

The Satellite Inertial Measurements Unit (IMU) in the Teach’ Wear module contains a
magnetometer, an accelerometer and a gyrometer. Therefore, knowing the Sun’s location
at each time along with the information retrieved from the Satellite IMU, it is relatively
practical to obtain the Sun’s position in the satellite’s frame of reference determining the
rotational components as follows:
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The satellite’s acceleration vector is defined as ~aSat, BSat represents the basis related to
the satellite’s frame of reference, and BTW is the basis related to the Teach’ Wear, inertial
unit’s frame of reference, defined in Equations (1) and (2):

∀(x, y, z) as,

x
y
z


Sat

=

−x
y
−z


TW

therefore, ~asat =

ax
ay
az


Sat

=

−ax
ay
−az


TW

(1)

~k =

ax
ay
az


Sat

× 1
‖ ~asat‖

~i =

mx
my
mz


Sat

× 1
‖~m‖ ∧

~k ~j =~k ∧~i (2)

where BSat represents the basis related to the satellite’s frame of reference, BTW is the
basis related to the Teach’ Wear, ~aSat is the satellite’s acceleration vector, ax, ay, and az are
the three components of ~aSat in BSat and are measured by the accelerometer, mx, my, and
mz are the three components of the magnetic North ~m in BSat and are measured by the
magnetometer, and~i,~j,~k forms the new basis.

Figure 2. Ground-based calibration implemented to train and validate the satellite attitude determi-
nation algorithm.

The satellite’s reference frame is moving in the terrestrial reference frame, but the latter
can be recovered using the Inertial Unit (IU) reference frame in Figure 3. The accelerometer
recovers the gravity vector which defines one direction. The magnetometer retrieves
the magnetic North, which, projected on the plane for which the normal is the gravity
vector, defines another direction. The last direction is directly computed to create an
orthonormal basis. This new basis is created from the intrinsic satellite basis and described
in Equation (3):

~i =

Ix
Iy
Iz


Sat

~j =

Jx
Jy
Jz


Sat

~k =

Kx
Ky
Kz


Sat

(3)
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where Ix, Iy, and Iz are the three components of ~i in BSat, Jx, Jy, and Jz are the three
components of~j in BSat, and Kx, Ky, and Kz are the three components of~k in BSat.

Figure 3. Representation of the reference basis in the satellite frame of reference.

Therefore, it is straightforward to draw the rotation matrix related to each of those
basis and consequently to find the angular position of the CubeSat during training in
Equation (4):

RBsat−→Bre f erence =

 Ix Iy Iz
Jx Jy Jz
Kx Ky Kz

 (4)

The solar position is given thanks to reference data or algorithms and its azimuth and
elevation can then be converted thanks to the previous rotation matrix so that they appear
in the satellite frame of reference.

The output of the trained algorithm should be the relative azimuth previously computed;
it corresponds to the azimuth of the Sun in the satellite’s frame of reference. In the training
phase, the error between this output and the computed reference position will be quantified
using a loss function. This function is detailed in Section 2.2.3. The output is then used to
retrieve the solar flux and quantitatively validated thanks to the reference pyranometer.

As a summary, training/test/validation datasets are all the inputs (solar elevation in
the satellite reference frame along with the normalized signals from the ERS sensors and
the photodiodes) and reference outputs (cosine and sine of the solar azimuth in the satellite
reference frame) of the UVSQ-SAT MLP neural network. We have chosen to randomly
distribute these previous samples in the three different datasets so that about 70% of the
samples will be in the training set, 15% in the validation set, and 15% in the test set.

The inputs are generated from the sensors. Outputs are generated from calculations.
The azimuth was first generated in the terrestrial reference frame thanks to a NREL algo-
rithm and was then transformed to the satellite reference frame, previously defined thanks
to the on-board accelerometer and magnetometer.

2.2.2. Neural Network Architecture of the Deep Learning Method

The diagram in Figure 4 describes the neural network architecture implemented and
how it is trained and validated during the experiments. The architecture is an MLP neural
network, which is a computational model with 587 neurons. Multilayer Perceptrons are
the classical type of neural network. They are suitable for regression prediction problems
where a real-valued quantity is predicted given a set of inputs. The hyper-parameters
(number of layers, learning rate, layer width, activation function, . . . ) of the UVSQ-SAT
MLP neural network were empirically determined based on output accuracies and rates of
convergence of the loss function.

The inputs are detailed in the following explanation. It is here the ideal case, and for
an optimum the output predicted should be the solar position that is computed following
the procedure mentioned in Section 2.2.1.
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Figure 4. Neural Network architecture with fully connected layers, as well as the inputs and outputs.

For each layer represented in Figure 4, the functions that are applied to the inputs of
the related layers structure the Net Function and are defined in Equations (5) and (6):

yi,j = g(σi,j) = g

(
nj−1

∑
i=1

ωi,j−1yi,j−1 + ω0,j−1

)
(5)

yi,j = Fi,j(y1,j−1..., ynj−1,j−1) (6)

where yi,j are the outputs and yi,0 = xi are the inputs of the node (i,j), ∀i ∈ [1, n0] and
∀j ∈ [1, l], l is the total number of layers, σi,j is the cache output before going through the
activation function, nj is the number of neurons at layer j, g is the activation function, ωi,j
are the weights, and ω0,j are called the biases.

For the UVSQ-SAT’s training, due to its efficiency and the ability to get more accurate
outputs in Table 1, we choose to use the rectified linear unit (ReLU) activation function
defined in Equation (7):

g(z) =
{

0 for z < 0
z for z ≥ 0

(7)

For a reference case, we switch to different activation functions in order to empirically
determine the best one in terms of mean-squared-error on the results desired. The other
parameters were constants. The number of iterations of reference was fixed to be 300 maxi-
mum. A comparison is represented in Table 1 for two trainings (different Kaiming uniform
initialization of the weights). The Sigmoid activation function allows for computing the relative
azimuth with the worst accuracy as the convergence of the neural network is much slower
and would entail a much higher computation time (approximately 10,000 iterations).

Table 1. Averaged results obtained for each activation function comparing their mean squared error
between the predicted and desired azimuth as well as the number of iterations to reach the optimum.

Activation Function Mean Squared Error Iteration

RELU 55.6 282
ELU 61.8 284
Tanh 61.1 288

Sigmoid 6259.5 240
Leaky RELU 59.2 260

The exact architecture of the MLP neural network used for the determination of
attitude is such that the algorithm combines:

• 5 Hidden fully connected layers
• 25 Inputs
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• 2 Outputs
• Learning rate of 10−5, determined empirically
• Layers dimensions (width): 25/48/128/256/128/2

We compared the alternative structures in terms of accuracy and convergence rate.
Other activation functions (ELU, Tanh, Sigmoid, Leaky RELU) or value of the learning rate
(optimal for 10−5) would worsen the performance of the MLP neural network. Reducing
the number of layers in the MLP neural network would decrease the accuracy of the system
but increasing the number of layers would leave the accuracy unchanged with a longer
computation time.

The instruments of interest to locate the Sun in the satellite’s frame of reference are
the six panel photodiodes focusing in the 400–1100 nm wavelength range and the six ERS
sensors focusing on the 0.2–100µm wavelength range.

The function takes signals from the ERS sensors (thermopiles) and photodiodes (LED)
as inputs and the orientation angle as output (Figure 4). The 25 inputs for the neural
network are four ERS sensors with Carbon NanoTubes signals from the four lateral sides
of the CubeSat, at three different following times, making 12 inputs, along with the four
photodiodes’ signals from the four lateral sides at the same three different times. The last
input is the elevation of the Sun at the spacecraft coordinates. The idea was not to consider
the upper and lower faces of the CubeSat as to be able to generalize the trained function
to new conditions. Specifically, we assumed that the bottom not considered for training
would respond very differently in orbit. It is also known that this side never sees the
Sun during the training phase, so its detection seems impossible. As the desired output
is an angle, a straightforward way to avoid discontinuities is to use two trigonometric
functions cosine and sine of the output angle as two desired outputs to then easily compute
the related angle using atan2 function. Then, the orientation of the satellite in terms of
cosine and sine in time will not have discontinuities and will be continuous. During the
experiment, no abrupt change of orientation has taken place, as no abrupt changes will
occur in orbit according to the sampling frequency chosen for the satellite’s measurements.
The orientation at different following times is correlated. Therefore, taking different values
of the signals before and, after the instant we consider, seems logical. It is the equivalent of
a second-order central in finite differences’ components. One more input is the elevation of
the Sun, even though the dynamics of this parameter during the experiment is very small
compared to that of the other inputs, the elevation that will be known at this stage as an
input can influence the output in this three-dimensional problem.

2.2.3. Loss Function for Training the Deep Learning Neural Network

The loss function, also called cost function, characterizes the error between the pre-
dicted output and the targeted value of reference. In our case, as the deviation increases,
we will have continuously worse results derived from the output. Therefore, as the pre-
dicted output is getting further from the reference value, the quantified error should be
higher. In particular, we would rather have a small but regular error rather than very large
errors a little less frequently since this would completely affect the precision of the flux
measurement. Common loss functions are being investigated in [17].

Therefore, two bilateral loss functions that can be clearly defined are: Mean Squared
Error (MSE) and Mean Absolute Error (MAE), which are defined in Equations (8) and (9):

MSE(y, yp) =
∑n

i=1(yi − yp
i )

2

n
(8)

MAE(y, yp) =
∑n

i=1 |yi − yp
i |

n
(9)

where y = [y1, ..yn] are the targeted values, yp = [yp
1 , ..yp

n] are the predicted values, and n is
the total number of data points.



Remote Sens. 2021, 13, 1185 10 of 17

The MSE function will give more weight to the outliers than the MAE function that
will be more robust to those. If anomalies should be detected and taken into account, MSE
is the function to use, but, if outliers are present in the training set and not in the test set,
MAE should be chosen. Therefore, the most suitable function in our case is the MSE.

2.2.4. Performance and Uncertainties

Learning is based on optimization of the net function as mentioned above to obtain
the most accurate output, close to the reference data. The samples are split into three sets.
It is important that those sets are totally decorrelated. The first one is the train set that is
used to optimize the net function. Another one is the validation set that is used to check
the performance of the algorithm at each iteration over the train set. This is important as
it is a great indication to whether the function is able to generalize to other samples of
data in the validation set. It is critical as the net function’s parameters chosen are based
on the iteration that minimizes the loss for the validation set. The last dataset is the test
set for which the performance of the net function is evaluated. Figure 5 shows the loss
evaluated at each iteration during the training for both of the train and validation set. It
is clear that, at first, both of the computed losses decrease with the number of iterations.
However, at some point, the loss value for the validation set starts increasing. We have
reached a point where the neural network is over-fitting the data from the train set and is
unable to generalize to a new dataset. The net function retained is chosen at the iteration,
where the validation set loss reaches a minimum to avoid this over-fitting situation.

Here, the optimum for the validation set loss is reached at epoch 126 as the loss will
increase after that epoch; this means that the algorithm is getting worse at generalizing
to new samples. The performance of the function based on the last set is detailed in the
following section.

0 50 100 150 200 250
Epoch

10−2

10−1

Lo
ss

Train
Validation

Figure 5. Loss functions for the validation set and the train set at each iteration (Epoch) during training.

3. Results

This section presents the results of the method to determine the UVSQ-SAT’s attitude
using its housekeeping and scientific sensors’ measurements.

Section 2.2.2 presents the architecture chosen along with the hyper-parameters selected.
The number of hidden layers, the learning rate, the activation function, the inputs, and
the format of the outputs were meticulously studied and set for this issue. Those choices
were made to optimize the deep learning algorithm for the training phase and the test
phase. This architecture has been validated and constitutes a first result of our application
to be replicated. To evaluate the ability of the algorithm to generalize to another set of
samples, the net function optimized previously is applied to the test set with unseen data
to compute the relative azimuth.

To validate the new method based on a deep learning approach to determine UVSQ-
SAT in-orbit satellite attitude, a ground-based calibration experiment was carried out in
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October 2020 in Guyancourt (France), using the Sun as the radiative flux reference. In
Figure 6, we compare the predicted azimuth of the Sun and the real ones that are used
as a reference to assess the ability of this method to determine the on-ground orientation
of the satellite. The root-mean-square deviation (RMSD) quantifies the error between the
prediction and the real value. The first bisector is plotted as the ideal result from a perfect
algorithm for which predicted azimuth would be equal to real azimuth characterizing the
orientation of the CubeSat.
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Figure 6. Predicted azimuth of the Sun versus real azimuth of reference in degrees based on the test
set done in October 2020 and the optimized neural network. The continuous blue curve represents
the ideal case when the observed values perfectly fit the predicted values.

The correlation coefficient indicates a strong linear relationship between those angles
which confirm the ability of the algorithm to learn and generalize. The root-mean-square
deviation is evaluated at 7.1◦ at 1σ using the previous function. It characterizes the error we
would find on the precession angle of the satellite. Overall, the orientation itself is useful
in that case to determine the nature of the flux observed at a given time and reconstruct
the observed flux. In this case, we precisely know the actual configuration and we focus
on the solar flux. In Figure 7, we evaluate the error induced on the calculation of the
flux that is evaluated as a function of the recovered orientation. To do so, we present a
comparison of the flux with correction of the attitude with the predicted azimuth, the real
azimuth and the reference flux retrieved by the pyranometer. Then, to validate the method
(MLP network to determine the attitude of orbiting satellites for spacecraft without active
ADCS), measurements made by UVSQ-SAT instruments and corrected by the attitude of the
satellite are compared with those measured by a pyranometer (independent measurements
taken on the ground).

We want to measure the solar flux; this computation can only be applied here as
conditions will differ in-orbit, but the main idea stays similar. As we retrieved the predicted
attitude from the deep learning method with the accuracy mentioned above, we are able to
determine which sides of the CubeSat are facing the Sun and which ones are not. In order to
remove noise and reflections from the environment, we removed at each time the average
ambient flux that is detected by the sides that are not directly facing the Sun. Then, we
select the measurements from the sensors that are facing the Sun with a minimal angle of
about 60 degrees (in a 120 degrees field of view). The measurements are then corrected
using the dot product between the Sun’s direction and the normal vector relatively to each
of the faces of the CubeSat facing the Sun (see Equations (10) and (11)). This parameter
is directly linked to the attitude of the satellite recovered previously. By doing this, we
discriminated the faces that were hidden from the Sun similarly to in-orbit conditions
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when sensors will face the Earth and would measure the albedo while others will directly
measure incoming solar flux.
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Figure 7. Comparison of the different solar flux computations for the test conducted on 26 October
2020. (A) pyranometer flux corrected of the Sun’s elevation; (B) photodiodes’s flux corrected of the
reference attitude; (C) photodiodes’s normalized flux corrected of the predicted attitude.

At each time of the experiment, we have:

FSun =
fk

~s · ~nk
=

fk
ωk

(10)

where FSun is the incoming solar flux, fk is the flux on face k of the satellite for the selected
field of view, 0, otherwise, k is the index of the faces,~s is the the Sun position vector, ~nk is
the normal vector to the face k ∈ [1, 6], ωk is the dot product between~s and ~nk. The idea is
to compute the average using the dot products as weights for the flux computed on each
face facing the Sun such as:

FSun =
1

∑6
1

1
ωk

6

∑
1

fk
ωk

(11)

The results obtained to compute the solar flux using the predicted attitude of the
satellite are closer to the flux measured by the pyranometer than to blindly compute an
average from the six different faces of the CubeSat. The configuration of the experiment
requires good weather conditions. The ideal case is to have a sunny day without cloud.
During the UVSQ-SAT ground-based calibration using the Sun as reference, the solar
irradiance had to be at least 200 Wm−2. The solar irradiance measurement was carried
out by a dedicated pyranometer (SMP 6 model from Kipp & Zonen) calibrated according
to international standards. The SMP 6 measures solar irradiance on a planar surface, and
it is designed to measure the solar radiation flux density (Wm−2) from the hemisphere
in the 280 to 3000 nm spectral range. The directional response of the pyranometer has a
deviation of less than 10 Wm−2 from a direct beam of 1000 Wm−2 up to a zenith angle of
80◦. Observing at the zenith, the deviation is negligible. For the UVSQ-SAT measurements,
the flux of each sensor on each face of the satellite has been corrected of the attitude
(direction of the line of sight of the Sun). The angular flux correction of each face of the
satellite is based on Equation (10).

In Figures 7 and 8, we compare the flux computed with predicted and reference
orientation as well as the flux retrieved from the pyranometer. To quantify the error of
our prediction, we compute the RMSD between the flux computed with the azimuth of
reference and the flux computed thanks to the predicted azimuth. The RMSD of the residue
of the ratio of the compared flux quantifies the normalized error between those fluxes. We
find 0.1261 between the pyranometer flux and the predicted flux from the photodiodes.
However, it appears that most of that error already exists between the reference flux and
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the pyranometer flux as the RMSD between those two fluxes, which is equal to 0.1255.
First of all, we compute what we call the reference flux. It is defined by the solar flux
that we would compute from the satellite’s photodiodes with Equation (11), if we would
know the real orientation of the satellite at each time. This would happen if the algorithm
would perfectly predict the satellite attitude at each time. For the pyranometer flux, we
retrieve the data from the SMP 6 calibrated pyranometer. The instrument was located
next to the satellite in order to get as close as possible to the observation conditions of the
satellite. The pyranometer data are interpolated to suit the satellite time scale. We can
then compare the different values found with the two different methods applying the root
mean square deviation. For the photodiodes, we retrieve an RMSD of 0.0219 between the
reference and predicted attitude corrected flux from the photodiodes. Here, we compared
the previously computed reference flux and the flux obtained with the same computation
method but considering predicted orientation instead of the real one. In the context of
the experiment, one cannot claim to compare the two instruments in absolute terms, since
the measurements are made under different conditions and having different instrument
specifications. However, we can compare the flux obtained using the reference/targeted
orientation of the CubeSat and the flux retrieved determining the attitude using the deep
learning algorithm. The root-mean-square deviation between the flux corrected with the
predicted attitude and the flux corrected with the known attitude is equal to 16 Wm−2 or
about 2 % in terms of RMSD of the residue.
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Figure 8. Ratio of the flux for the pyranometer and the corrected flux thanks to the reference and
predicted attitude. (A) ratio between the reference flux and the predicted flux; (B) ratio between pyra-
nometer flux and the predicted flux; (C) ratio between the pyranometer flux and the reference flux.

4. Discussion and Perspectives

UVSQ-SAT is the first in a future satellite constellation, as a demonstrator to measure
incoming and outgoing radiation at the TOA using miniaturized sensors on its six faces.
To retrieve the required flux to compute the terrestrial net radiation, it is necessary to
discriminate the flux measured from some of the sensors to select only solar flux or
terrestrial radiation in the longwave or in the shortwave. It is also relevant to correct the
different flux knowing the angle between the source of the flux and the instrument. To do
so, the orientation of the satellite must be known at each time. However, small satellites
such as UVSQ-SAT do not have an active ADCS, mainly due to limitations of mass, volume,
and power. Therefore, another method using available sensors can be adopted to have a
good knowledge of the satellite attitude. The UVSQ-SAT attitude determination algorithm
using deep learning methods allowed for retrieving the orientation of the satellite on-
ground thanks to its sensors on its sides. The algorithm was accurate at ±7.1◦ at 1σ. It
helped select and measure the desired flux with an accuracy of 16 Wm−2.

However, there are several limitations that need to be taken into account for the next
step and to apply the method to in-orbit attitude determination. As the amount of samples
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available to train the algorithm was not optimal during the ground test, the accuracy of the
algorithm was limited due to over-fitting issues. Thousands of different samples including
different orientations on the three-axis would have been better to train the neural network.
During the experiment that aimed to retrieve signals to train the algorithm, the satellite
was initially enclosed in a transparent box at ambient temperature and pressure. Therefore,
temperature measurements on each side of the CubeSat could not be relevant for the
study. Indeed, the convective heat transfer effects taking place during the experiment
will be non-existent in-orbit. The responses of the temperature sensors will therefore be
different in-orbit. The average temperature kept increasing with time as the enclosure
got warmer and warmer. Thus, these are unusable for training on the ground. In orbit,
using the temperature sensors will be really relevant and helpful for the determination of
the attitude. It will improve the accuracy of the algorithm. Moreover, the UVSQ-SAT is
equipped with three narrow field of view (NFOV) UVS sensors that will be pertinent for
the Sun’s detection.

To take the differences between in-orbit and on-ground conditions into considera-
tion, in-orbit training will be required to retrieve accurate predictions from the algorithm.
The idea is to implement adaptation domains to benefit from the on-ground training and
to adapt to targeted in-orbit responses. To retrieve the complete attitude of the satellite,
we showed a way to compute the precession angle knowing the nutation and spin angles
that define the plane characterized by its nadir normal vector. This plane was considered
as a reference as the algorithm was trained on-ground but in-orbit; this will need to be
implemented. Therefore, the first step of that method will be to train the neural network
using an Attitude and Heading Reference System (AHRS) to determine the Earth’s position
and therefore the previous plane.

Other main limitations of the ground calibration were the inefficiency of the ERS
sensors (between 3 and 100µm) due to diffuse ambient temperature, and the fact that we
could only search the Sun on a small excursion. This means that we were unable to rotate
the satellite in the plane normal to Earth and slightly tilted it, but we could not flip the
satellite upside down, and we therefore only trained it in one hemisphere. Furthermore,
even if this ground study allowed for verifying the feasibility of our method, we only had
one very bright source to find in the sky, while in flight we also have the Earth reflecting
the Sun. This is why we are going to do a flight training in accordance with the method
presented in Section 2 (and now demonstrated) and with the following solution, where
one of the first steps will be to calibrate the magnetometer in-orbit.

Thanks to the Teach’ Wear magnetometer data, we know the three components of
the magnetic field for each measurement, whose positions are calculated with the orbital
parameters. Then, the International Geomagnetic Reference Field (IGRF-13) model gives
the expected magnetic field, which allows for calibrating the UVSQ-SAT TW magnetome-
ter. Then, a resulting map will be obtained and will illustrate the correct calibration of
the system. While the mean of the field will be good, the instantaneous signal on each
component will be noisy. This is why we will use a Kalman filter to reduce the noise such
as explained in [18]. Since we will have the magnetic field vector in two reference frames,
we will calculate the change of reference matrix in order to roughly orientate the satel-
lite. We will then manually improve the accuracy of the attitude of the satellite by using
the other sensors (photodiodes (LED), temperatures (solar cells), ERS sensors), in order
to get data for learning steps. Some methods that will be implemented in-orbit can be
described here. The objective to improve the algorithm is to determine the Earth’s location
in the satellite’s frame of reference thanks to the ERS sensors (second type described in
Section 2) measuring the radiation in the 3–100µm wavelengths range. We will compute
the barycenter of the coordinates of the center of the faces assigned with the coefficients
corresponding to those fluxes. The recovered vector will indicate the direction where the
infrared flux is the highest, which means the Earth’s direction. A method that will be
used in some orientations of the satellite to refine the detection of the Sun will be based
on the use of the UVS sensors. They have a very narrow field of view allowing for having
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a better accuracy on the location of the Sun in the satellite’s reference frame. The orbital
parameters and the National Renewable Energy Laboratory method described in [15] allow
for retrieving the azimuth and the elevation of the Sun at each time based on the satellite’s
location. Therefore, we will obtain the orientation of the satellite. This method will only be
used to train the algorithm but cannot be always relevant in the case of eclipses. We will
perform in-orbit training thanks to the previous computed output and the signals from the
different sensors. First, measurements were recovered from the satellite since 24 January
2021. UVSQ-SAT solar cells temperature, photodiodes flux (LED), and the magnetic in-orbit
variations are shown in Figures 9–11. This temperature and flux are proof of the satellite’s
good health and will be used as inputs for the neural network. The magnetic field will help
us with the training phase as described previously. These inputs will be used to estimate
the UVSQ-SAT attitude in orbit. This analysis will be the subject of another manuscript.
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Figure 9. Solar cells temperature for all UVSQ-SAT faces. Measurements start from 7 February 2021
at 12:00 AM (UTC). The orbital period is about 95.18 mn. UVSQ-SAT spins during the orbit.
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Figure 10. Uncalibrated LED flux (photodiodes in the 400–1100 nm wavelength range) for all faces of
the UVSQ-SAT CubeSat. Measurements (TSI + OSR) start from 7 February 2021 at 12:00 AM (UTC).



Remote Sens. 2021, 13, 1185 16 of 17

12 AM 01 AM 02 AM 03 AM 04 AM 05 AM 06 AM
Time (UTC)

−40

−20

0

20

40

60

T
W

-M
ag

ne
tic

fie
ld

[µ
T

]

X
Y
Z

Figure 11. Magnetic field components on the x-axis, y-axis, and z-axis.

5. Conclusions

The UVSQ-SAT space-based mission (technological demonstrator) aims to implement
miniaturized and disruptive technologies for remote sensing with compact sensors. It is
a first step towards a future satellite constellation mainly to measure the terrestrial net
radiation. Terrestrial net radiation can be obtained with radiometers on all faces of the
satellites that measure solar flux and fluxes of short-wave and long-wave radiation.
In this manuscript, we presented a new method based on a deep learning approach to
retrieve terrestrial net radiation from satellites without attitude and orbital control system.
Knowledge of the satellite attitude allows for applying the appropriate corrections to the
incident flux measurements (solar (TSI), albedo (OSR), infrared (OLR)) on all faces of the
spacecraft. Thus, the attitude determination is crucial for the computation of the fluxes.
Therefore, we performed a ground-based calibration to validate and check the performance
of the developed method that seems to be efficient. It was able to provide convenient
results on the satellite attitude determination and its resulting fluxes.

We plan to improve its accuracy by increasing the number of training samples as
well as by performing training under in-orbit conditions. More specific training will allow
compliance with the mission specifications for measuring the EEI. This method represents
a new way to determine the attitude of satellites and the terrestrial net radiation retrieval
for the case of a constellation of small satellites.

UVSQ-SAT was successfully launched on 24 January 2021 into a Sun-synchronous
orbit (at 535 km) thanks to a Falcon 9 rocket (Space X). During the commissioning phase,
an in-orbit calibration will be done to consolidate the method described in this manuscript.
The main goal will be to minimize the uncertainty on the knowledge of the UVSQ-SAT
CubeSat attitude.

Based on the deep learning method applied to space-based attitude determination of
the satellite with a great number of data samples, the uncertainty on the outgoing longwave
radiation and shortwave radiation determination should be less than ±5 Wm−2 (1σ).
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