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This article is dedicated to the use theMICROSCOPEmission’s data to test chameleon theory of gravity.
We take advantage of the technical sessions aimed to characterize the electrostatic stiffness of MICRO-
SCOPE’s instrument intrinsic to its capacitive measurement system. Any discrepancy between the expected
and measured stiffness may result from unaccounted-for contributors, i.e., extra forces. This work considers
the case of chameleon gravity as a possible contributor. It was previously shown that, in situations similar to
these measurement sessions, a chameleon fifth force appears and acts as a stiffness for small displacements.
The magnitude of this new component of the stiffness is computed over the chameleon’s parameter space.
It allows us to derive constraints by excluding any force inconsistent with the MICROSCOPE data.
As expected—since MICROSCOPE was not designed for the purpose of such an analysis—these new
bounds are not competitive with state-of-the-art constraints, but they could be improved by a better
estimation of all effects at play in these sessions. Hence, our work illustrates this novel technique as a new
way of constraining fifth forces.

DOI: 10.1103/PhysRevD.103.064070

I. INTRODUCTION

This article follows up from a series of articles [1–3]
aiming to test modified gravity theories with data from the
MICROSCOPEmission. This mission provided the tightest
constraint to date on the weak equivalence principle (WEP)
[4,5]. Its instrument is based on a couple of accelerometers
measuring the differential acceleration of two cylindrical
test masses of different compositions. It contains four test
masses: two cylinders of different composition in the SUEP
(equivalence principle test sensor unit) sensor unit that is
used to perform the WEP test and two cylinders of the same
composition in the SUREF (reference sensor unit) sensor
unit used as a reference. In Ref. [6], we directly used the
WEP test results to improve the current constraints on the
existence of unscreened scalar fifth forces, a massive
Yukawa fifth force, and a light dilaton field [7].
In Ref. [8], we proposed a new way of testing such

theories by using sessions dedicated to measuring the

electrostatic stiffness inherent to the capacitive measure-
ment system of MICROSCOPE. An electrostatic destabi-
lizing force appears when a test mass is displaced from its
rest position: It is linearly dependent on this displacement
in the limit where it is small. We call stiffness its associated
linear factor. It has been measured by applying a sinusoidal
displacement of each test mass separately with an ampli-
tude of 5 μm. The result of this series of tests has been
compared to electrostatic models, and a discrepancy has
been pinpointed [9]. In Ref. [8], we modeled the total
stiffness and studied all possible sources of forces to
explain this discrepancy. They consist of mainly (i) the
satellite Newtonian self-gravity and (ii) the stiffness of a
7-μm-thick gold wire used to control the electrical potential
of the test masses that acts as a spring. We found that the
contribution of the former is subdominant. After determin-
ing the parameters of the latter to evaluate its contribution
to the stiffness, we found an unexplained residual compo-
nent that depends on the electrical configuration, hinting
at patch field effects. We nonetheless considered the
possibility that this discrepancy may originate from modi-
fied gravity fifth forces sourced by the satellite and
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experimental apparatus. We have already been able to set
constraints on a Yukawa-like interaction by excluding
any parameters of the interaction that lead to a stiffness
larger than the discrepancy [8]. As expected, since
MICROSCOPE was not originally designed for such a
test—leading to a loose estimation of the gold-wire stiff-
ness, for instance—the constraints are not competitive with
state-of-the-art constraints, but it opens a possible novel
way of testing fifth force and demonstrates that its effect
has to be modeled in detail at each step of the experiment.
This article aims to extend this analysis to the chameleon

gravity model [10,11]. Unlike the Yukawa model, this
scalar field enjoys a screening mechanism that makes its
fifth force more sensitive to the matter environment and
more subtle to compute. We use the numerical methods
developed in Refs. [1,2] to compute the chameleon profile
associated with a geometry of nested cylinders. In these
articles, we studied the case of discentering one of the
cylinders and showed that it should experience a chame-
leonic force acting as a stiffness for small displacements. Its
magnitude depends on the geometrical parameters of the
cylinders and on the parameters of the chameleon theory.
This study was performed for only two nested cylinders.
Here, we extend this method to compute the field and the
force associated with the geometry of the MICROSCOPE
instrument with the proper geometrical parameters. Each
sensor unit is composed of eight cylinders: two cylindrical
test mass cylinders, each of which is surrounded by two
electrode cylinders, and two ferrule cylinders encompass-
ing all six cylinders [5]. The end of these ferrules are closed
by two “lids” that we do not consider in this study.
This article is organized as follows. In Sec. II, we detail

the methods used to compute the chameleon stiffness and,
more particularly, the necessity of different approximations
for the different regimes of the chameleon gravity. In
Sec. III, we present the constraints obtained by combining
the results of these computations and the analysis of
the MICROSCOPE stiffness measurement sessions from
Ref. [8]. To finish, in Sec. IV, we discuss our results and the
limits of this new approach.

II. CHAMELEON STIFFNESS

A. Methods

We use three different methods to compute the chame-
leon stiffness depending on the regimes of the chameleon
field. These regimes occur for the MICROSCOPE geom-
etry for different zones of the chameleon parameter space
[1]. The chameleon field is parameterized by three param-
eters: its coupling constant to matter β and the energy scale
Λ and index n of its inverse-power law potential. We can
distinguish three main regimes: the screened regime in
which a test mass and the two electrode cylinders surround-
ing it can be considered as an isolated system due to the fact
that the electrode cylinders screen the field; a deeply

screened regime in which the screening of the test mass
is too deep to compute the profile associated with three
cylinders, and instead we need to consider it as two separate
pairs of screened cylinders; and an unscreened regime in
which the field penetrates all cylinders so that all of them
must be taken into account when computing the field
profile. Let us detail the computation techniques used in
each regime.

1. Screened regime

This regime appears when the Compton wavelengths of
the field in the cylinders are of the order of a 20th of their
thickness. It can be addressed by using the semianalytic 2D
model we developed in Ref. [2]. This method was initially
applied to two cylinders. Here, we modify it to include a
third one. We impose the boundary conditions in the two
external cylinders in such a way that the field must reach the
minimum of the potentials associated with their densities.
We displace the central test mass cylinder and solve the
field’s multipole from which we compute the force.

2. Deeply screened regime

This regime occurs when the Compton wavelengths are
smaller than a 20th of the cylinder’s thickness. In this
regime, the screening of the test mass makes it impossible
to use the previous method, as the value of the field reached
deep in the test mass is so close to the value that minimizes
its potential that it is smaller than the typical numerical
precision of a computer. We instead use a 1D method and
consider the three cylinders as two distinct pairs of screened
parallel walls. To mimic two opposite sides of the cylinders,
we consider two such systems. This 1D approximation is
justified by the fact that we showed, in Ref. [2], that the
chameleonic force computed in these planar and cylindrical
configurations leads to the same order of magnitude for the
acceleration experienced by a test mass. We thus postulate,
for these analogous situations, that the test masses’ accel-
erations verify a2D ¼ αa1D, where α is a geometrical factor
that is expected to be of the order of unity.
From this equality, by using Newton’s law, one can

obtain a relation between the surface force Fs;1D experi-
enced by the two walls in a planar configuration and the
force per unit length F1;2D experienced by a cylinder in the
corresponding 2D configuration. The ratio of masses leads
to the ratio of the wall thicknesses and the transverse
section area of the cylinder in the relation

F1;2D ≈ α
π½ðdþ eÞ2 − d2�

2e
Fs;1D; ð1Þ

where d and e are, respectively, the internal radius and the
thickness of the test mass cylinder. The value of α is
discussed in Fig. 1 and below.
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3. Unscreened regime

This regime takes place when the Compton wavelengths
of the field in the cylinders are larger than their thicknesses.
In this case, the boundary conditions must be set at some
distance much larger than the Compton wavelength asso-
ciated with the density outside the cylinders. In this regime,
this Compton wavelength is likely to be so large that one
must perform large steps in terms of the numerical
resolution in this zone, hence losing accuracy on the result.
To overcome this issue, we again addressed this regime
with a 1D resolution. In a 1D problem, as discussed in
Ref. [1], the chameleon equation can indeed be integrated
once in the region external to the cylinders and obtains, at
the boundary of the external cylinder, a condition ϕ0½ϕðxbÞ�
giving the field derivative as a function of the field value,
which ensures that the boundary conditions are respected
far from it. We can use this condition to perform a
dichotomy method to adjust the initial condition of our
numerical method. We proceed in the same way as the case
of asymmetrical parallel walls in Ref. [2], with the differ-
ence that, instead of using for the dichotomy method the
verification that the boundary conditions are respected at
some large distance from the cylinders, we check that the
aforementioned condition is verified at the boundary of
the outer cylinder. These two conditions are equivalent,
but the latter allows us to bypass solving the field in the
external region.
Similarly to the previous regime, in this 1D resolution, to

mimic two opposite radial directions of an eight-nested-
cylinder configuration, we consider a set of 16 parallel
walls. In this 1D configuration, a test mass is represented by
two of these walls. We again use Eq. (1) to compute the
corresponding 2D force. Note that, due to the symmetry
breaking by the shifting of the walls, the initial conditions

cannot be set at the center of the 16 walls but instead at a
slightly shifted location that we determine similarly as
in Ref. [2].
To evaluate α in Eq. (1), we compare the forces

computed in 1D and 2D. This requires us to extend the
method used in the screened regime to the other regimes. To
overcome the problem encountered in these regimes, we
considered an unrealistic configuration of three cylinders
of the same density with an external vacuum much denser
than the vacuum of space. This allows us to avoid the
numerical resolution issue encountered in the unscreened
regime. Even if unrealistic, it allows us to quantify the
geometrical factor between planar and cylindrical geom-
etries that we expect to be independent of the densities.
As depicted in Fig. 1, the numerical comparison strongly

hints at α ¼ 1=2, a value reached in most of the screening
range but that appears to be smaller for unscreened
situations. We interpret this latter behavior as the 2D
method reaching its limits, and we instead expect α ¼ 1=2
also this regime. This is justified by the longer Compton
wavelength in this regime that leads the field’s gradient to
vary slowly within the cylinder. By approximating this
gradient by the one obtained in planar situations, one
directly obtains Eq. (1) with α ¼ 1=2.1 Hence, we choose to
generalize this result to all regimes in our present study.

B. Results

First, we check numerically that the force is linear for
small displacements. As shown in Ref. [2], this is expected
to be the case even though the theory is nonlinear. Figure 2
depicts the behavior of FðδÞ in the range δ ¼ 1…10 μm
relevant for our study. Besides, we know that by symmetry
Fð0Þ ¼ 0. Hence, it confirms that in this range of displace-
ments it is safe to model the chameleon fifth force by a
stiffness kchameleonðΛ; βÞ (measured in N:m−1) so that

F ¼ kchameleonðΛ; βÞ × δþOðδ2Þ: ð2Þ

Even though one can witness a small deviation of this linear
relation for δ ∼ 10 μm for the largest values of Λ, these
results comfort us in the linearity assumption in the range of
displacements compatible with theMICROSCOPE data we
are using and the parameter space we consider.
Then, we present the numerical results in Fig. 3. We

computed the chameleonic stiffness kchameleonðΛ; βÞ expe-
rienced by a test mass when displaced radially by 1 μm.
This figure shows the result for SUEP-IS2, the external test
mass of SUEP. We spanned the parameter space ðβ;ΛÞ for

FIG. 1. Result of the comparison of the acceleration experi-
enced by a test mass in planar and cylindrical configurations in
different regimes of screening quantified by e

2λc
, where e is the

thickness of the cylinder and λc the Compton wavelength of the
field associated with it.

1The origin of this value comes from the fact that, while for
planar situations all parts of a wall are subjected to a force, for
cylindrical configurations, only the parts of the cylinder that are
closer to the axis of displacement contribute to the acceleration.
This is due to the projection of the force that is mainly radially
directed and to the effective radial displacement of the cylinder
that varies with the cylindrical angle.
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n ¼ 1, and we denote each computation by a point with a
color code that labels which of the three methods was used.
To obtain the continuous evolution of the stiffness with

ðβ;ΛÞ, we performed a linear interpolation of the simu-
lation points in log scale. We show, with the black solid
line, the contour line at which the obtained chameleonic
stiffness equals the 2 σ uncertainty on the discrepancy
ΔkMIC on the stiffness measured in the MICROSCOPE
sessions as presented in Ref. [8]. This latter article presents
two distinct estimations over two perpendicular radial axes
of the cylinder; the chameleonic stiffness being expected to
be the same over these axes, we choose to average these
two estimations and quadratically average the error bars.

III. CONSTRAINTS ON THE CHAMELEON’S
PARAMETERS

The results shown in Fig. 3 mean that above the black
line the chameleonic stiffness is too large to explain the
observed stiffness residual in MICROSCOPE. This stiff-
ness could be compatible with these measurements, if a
stabilizing stiffness of the same magnitude were to exist.
Nevertheless, standard physics combined with our under-
standing of the instrument does not provide any such
contribution. Hence, we interpret these results as excluding
the existence of a chameleon field for these parameters.
Below the black line, the chameleonic stiffness is within the
error bars of the observed discrepancy so that we cannot
exclude its existence.
Note that we have not been able to span the whole

parameter space. Our methods are unable to determine the
stiffness for large β and Λ. We expect this to be caused by
the fact that the field magnitude becomes so large that our
numerical precision fails at describing the gradient in the
test mass. Thus, the force vanishes. Nevertheless, we can
guess the behavior of the stiffness in these unexplored
regions. For very large Λ, the field tends to be completely
unscreened such that we expect it to converge toward a flat
field, providing a lower force. For very large β, on the
contrary, the field tends to be more screened. At some
point, we expect the field to be able to reach the minimum
of its potential in the intercylinder vacuum gaps, such that
the cylinders would not interact through the scalar field
anymore. In this case, the field is equivalent to the field of
an infinitely thick cylinder and gap. Given the intercylinder
gaps of 600 μm for MICROSCOPE, we expect this to
happen for β ≳ 1019. We thus expect the MICROSCOPE
constraint to have a rectangular shape.
We applied the same procedure to the other three test

masses. The result are summarized in Fig. 4. It shows the
2 σ constraints from each test mass: The internal mass
of each sensor unit is called IS1 and the external IS2. We
compare the MICROSCOPE constraints to the current
constrains summarized in Refs. [12,13]. They overlap
the constraints from atom interferometry [14,15], torsion
balances [16,17], and Casimir effect experiments [18,19].
Nevertheless, they are not competitive with current con-
straints. This is not surprising, since MICROSCOPE was
not designed for this test.

FIG. 3. Evolution with the parameters β and Λ of the chame-
leonic stiffness kchameleon of the external test mass of the sensor
unit SUEP from the MICROSCOPE mission for n ¼ 1. Its
magnitude is shown by the background colors. This function
is obtained by linearly interpolating the data points. These points
are the result of the three numerical methods discussed in the
main text that are here distinguished by different points of colors.
This is represented in log scale for β, λ, and kchameleon. The
uniform dark-blue region corresponds to parameters for which we
are unable to compute the stiffness. The black line is the contour
line at which the stiffness is equal to the measured 2 σ uncertainty
on the discrepancy ΔkMIC in the MICROSCOPE experiment.

FIG. 2. Scaling of the chameleon fifth force as a function of the
displacement in the range δ ¼ 1…10 μm for different sets of
parameters (Λ; βÞ assuming n ¼ 1. The force is expressed in
newtons. Λ are chosen in the range 10−1–3 × 102 eV and β in the
range 6–107. This shows that logF ¼ log kchameleonðΛ; βÞ þ log δ
is a good approximation to the behavior of the force at small
displacements. We use a log-log plot for convenience, but it is
easily checked that the slope is unity so that linearity is
confirmed.
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IV. DISCUSSION

The best constraints are obtained from the internal test
masses—IS1. This is explained by a better estimation—by
one order of magnitude—of the gold-wire stiffness [8]
leading to a lower residual stiffness. The competitivity of
the internal masses is nonetheless depleted by the shortness
of these test masses relative to the external ones [5]. We
observe that the constraints from the internal test masses are
very similar; their slight difference is caused only by a
slightly different residual stiffness. They indeed experience
the same chameleonic stiffness, which is consistent with the
fact that they have the same geometrical parameters and are
of the same composition. This tells us that the effect on the
inner masses from the external test mass—of different
compositions for the two sensor units—is negligible even
in the unscreened regime—the upper part of the constraint.
Comparing the chameleonic forces of the external test

masses—that have the same geometrical parameters but
different densities—is interesting for the phenomenology
of a WEP violation. This requires one to normalize them by
their masses. Doing so reveals that they each experience, in
these discentered configurations, a different acceleration in
both screened and unscreened regimes. This confirms the

ability of the chameleon field to provide an apparent WEP-
violation signal as the only result of the different densities
of test masses through their different screening factors [11].
This has no direct repercussion on MICROSCOPE’s WEP
test as (i) it is performed in a situation where coaxiality of
all cylinders is well controlled [5] and (ii) it is performed
on a couple of test masses—IS1 and IS2—belonging to
the same sensor unit for which the different geometrical
parameters could also be the source of a differential
acceleration. This dependence of the force on the test
masses’ densities nonetheless hints at an apparent chame-
leonic WEP violation to appear in MICROSCOPE’s WEP
test. Note that the common wisdom about a chameleon
inducing apparent WEP violation in screened regimes
[10,11] is not applicable to MICROSCOPE’s test of the
WEP, since, in this case, the satellite itself screens Earth’s
chameleon field [1], preventing any WEP violation signal
at the frequency aimed by MICROSCOPE. Instead, we
expect such a signal to appear in a lightly screened regime
where Earth’s chameleon profile can penetrate the instru-
ment. Of course, in such a regime the density dependence
of the force would be depleted, but the signal it induces
might still be detectable if the precision of the experiment is
high enough. Estimating this effect is beyond the scope of
this article.
We obtained these new constraints from numerical

simulations of the chameleon profiles in the nested-cylinder
geometry of theMICROSCOPE experiment. Some approx-
imations must be discussed. First, when evaluating the
chameleonic stiffness, we used the profiles of infinitely
extended cylinders. In MICROSCOPE, the cylinders being
finite, we expect edge effects to appear that would require
3D simulations to quantify and that are beyond the scope of
this study. Nevertheless, we expect these effects to decrease
the computed stiffness. We indeed predict the field to
behave as follows. On the one hand, far from the ends of a
cylinder, the transverse profile should be close to the one of
infinite cylinders. On the other hand, at its ends, it should
be influenced by the two cylindrical “lids” that close the
ends of the electrode cylinders. We expect the presence of
this matter to affect the chameleon profile in such a way
that it is flattened in comparison to the profile of infinite
cylinders. This flattening would reduce the gradients in the
test mass at its ends, leading our computed stiffness to be
overestimated. This would induce our constraints to be
slightly decreased.
Another assumption is that we computed the profile for a

static configuration, while the stiffness measurement ses-
sions involve a periodic motion of the test mass. The
validity of this quasistatic assumption depends on the
relaxation time of the field in response to a change in
the matter distribution. We expect this assumption to stay
valid as long as the movements are slow compared to the
relaxation speed of the field. In analogy with gravitational
waves [30] and consistently with the discussion from

FIG. 4. Constraints on the chameleon model for n ¼ 1 from the
MICROSCOPE experiment using stiffness measurement ses-
sions: The region excluded at 2 σ is above the four lines described
in the legend. They correspond to the different test masses: IS1
(respectively, IS2) denotes the internal (respectively, external) test
masses of the SUREF and SUEP sensor units. Their constraints
are compared to the current constraints from other experiments
denoted with the colored regions as presented in Refs. [12,13].
They come from atomic interferometry (purple [14,15,20]), the
Eöt-Wash group’s torsion balance experiments (green [16,17]),
Casimir effect measurements (yellow [18,19]), astrophysics tests
(blue [21–23]) and lensing (pink [24]), precision atomic tests
(orange [25,26]), microsphere (blue line [27]), and neutron
interferometry (blue and red points [28,29]). The horizontal
dotted line denotes the energy scale of dark energy.
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Ref. [31], we expect this speed to be close to the speed of
light for light fields and lower for massive fields. This
assumption could, thus, be questionable for chameleon
parameters providing the heaviest fields such as in the
deeply screened regime. Nevertheless, this regime is not
accessible to our methods.
Finally, we idealized the MICROSCOPE geometry by

not taking into account the influence of MICROSCOPE’s
satellite but only the effect of the instrument. This is
debatable in the regime where the field is unscreened. The
complex geometry of the satellite could introduce peculiar
effects on the chameleonic force. Nonetheless, given the
null effect on the internal test mass of the external ones and
the low factor of 100 between the mass of the cylinders and
of the satellite, we expect the influence of mass distribution
closest to the test masses, i.e., the electrode cylinders, to be
dominant. This has, for instance, been demonstrated for a
Yukawa fifth force in Ref. [8].
In conclusion, this work extends the search for new

methods to test chameleon models in the laboratory [3]
or in space [32,33]. Here, we took advantage of
MICROSCOPE’s instrumental characterization measure-
ments to draw constraints on the chameleon field. An
unexplained discrepancy between the measured and
expected electrostatic stiffness might hint at a nonzero
chameleonic force. The constraints we obtained are not
competitive with state-of-the-art constraints. This is not
a surprise. MICROSCOPE was not designed for testing
short-ranged modified gravity theories. The main

limitations of this test come from modeling uncertainties
of the theoretical electrostatic stiffness and from the poor
knowledge of the gold-wire characteristics. A better esti-
mation of these physical parameters would reduce the error
bars on the stiffness discrepancy. An alternative, under
study for a next mission [34], is to suppress this gold wire
as done in Laser Interferometer Space Antenna Pathfinder
[35]. Besides, patch field effects may be the most likely
phenomenon to explain the observed discrepancy on the
measurement of the stiffness [8]. Estimating these effects
would deplete this discrepancy and, thus, improve the
sensitivity of the test. While awaiting these developments,
the constraints we have provided are conservative.
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[1] M. Pernot-Borràs, J. Bergé, P. Brax, and J.-P. Uzan, General
study of chameleon fifth force in gravity space experiments,
Phys. Rev. D 100, 084006 (2019).
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MARTIN PERNOT-BORRÀS et al. PHYS. REV. D 103, 064070 (2021)

064070-6

https://doi.org/10.1103/PhysRevD.100.084006
https://doi.org/10.1103/PhysRevD.101.124056
https://doi.org/10.1103/PhysRevD.102.044059
https://doi.org/10.1103/PhysRevD.102.044059
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1088/1361-6382/ab4707
https://doi.org/10.1088/1361-6382/ab4707
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevD.82.084033
https://doi.org/10.1103/PhysRevD.82.084033
https://arXiv.org/abs/2102.00022
https://arXiv.org/abs/2102.11087
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1007/s41114-018-0011-x
https://doi.org/10.1142/S0218271818480097
https://doi.org/10.1142/S0218271818480097
https://doi.org/10.1126/science.aaa8883


[15] M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B.
Elder, J. Khoury, and H. Mller, Testing sub-gravitational
forces on atoms from a miniature in-vacuum source mass,
Nat. Phys. 13, 938 (2017).

[16] A. Upadhye, Dark energy fifth forces in torsion pendulum
experiments, Phys. Rev. D 86, 102003 (2012).

[17] D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach,
B. R. Heckel, C. D. Hoyle, and H. E. Swanson, Tests of the
Gravitational Inverse-Square Law below the Dark-Energy
Length Scale, Phys. Rev. Lett. 98, 021101 (2007).

[18] P. Brax, C. van de Bruck, A.-C. Davis, D. F. Mota, and D.
Shaw, Detecting chameleons through Casimir force mea-
surements, Phys. Rev. D 76, 124034 (2007).

[19] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya,
D. E. Krause, and V. M. Mostepanenko, Tests of new
physics from precise measurements of the casimir pressure
between two gold-coated plates, Phys. Rev. D 75, 077101
(2007).

[20] D. O. Sabulsky, I. Dutta, E. A. Hinds, B. Elder, C. Burrage,
and E. J. Copeland, Experiment to Detect Dark Energy
Forces Using Atom Interferometry, Phys. Rev. Lett. 123,
061102 (2019).

[21] B. Jain, V. Vikram, and J. Sakstein, Astrophysical tests of
modified gravity: Constraints from distance indicators in the
nearby universe, Astrophys. J. 779, 39 (2013).
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