A spectra classification methodology of infrared hyperspectral images to reach near real-time SO2 emission flux estimation of Mount Etna plume
Charlotte Segonne, Nathalie Huret, Sébastien Payan, Mathieu Gouhier

To cite this version:

HAL Id: insu-03183348
https://insu.hal.science/insu-03183348
Submitted on 1 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A spectra classification methodology of infrared hyperspectral images to reach near real-time SO2 emission flux estimation of Mount Etna plume

Charlotte Segonne 1, Nathalie Huret 1, Sébastien Payan 2, Mathieu Gouhier 3

1 LaMP, OPGC, Université Clermont Auvergne, Clermont Ferrand, France
2 LATMOS, Sorbonne Université, Paris, France
3 LMV, OPGC, Université Clermont Auvergne, Clermont Ferrand, France
Study context

IMAGETNA Campaign 21-26 June 2015 at Mount Etna during quiescent state of activity

In collaboration with:
- LPC2E (Orléans, FR)
- LATMOS (Paris, FR)
- INGV (Italie)
- ONERA (Palaiseau, FR)
- LOA (Lille, FR)

Plume direction (SE)

Etna observatory (Altitude 2847m)

Deployment of the HyperCam LWIR (Telops Co.) → Hyperspectral Imager in TIR
- [7.7 – 11.8] μm (i.e. [850 – 1300] cm⁻¹)
- Max spectral resolution 0.5 cm⁻¹
- 320 x 256 pixels ; FOV: 6.4 × 5.1°

3D images
Objectives

Emission fluxes of \(\text{SO}_2 \)

Optimal retrieval

\(\text{SO}_2 \) Slant column densities (ppm.m)
Optimal retrieval of slant column densities

Radiative transfer model + Minimization algorithm (Levenberg-Marquardt type) → LARA (LATMOS Atmospheric Retrieval Algorithm)1

- Sensitivity tests of the parameters
- Line of sight divided in 43 layers
- Pressure, Temperature, Vertical profile (radiosounding)
- Chemical species: H$_2$O, CO$_2$, CH$_4$, O$_3$, CO, N$_2$O, SO$_2$
- Plume characteristics: Altitude, Thickness, Temperature ($T_{\text{ambient}} - T_{\text{plume}}$)
- Parameterization validated → Robust model

1 Payan et al. 1998, 2010

vEGU 2021 – #15239 – PICO session ITS3.6/GMPV2 – 28 April 2021
Results – Pixel-by-pixel retrieval

SO₂ Slant column densities ppm.m (26/06/2015 – 08:27 UTC)

- Retrieval of 1 image = 7 days of calculation on Ciclad (IPSL computers) for SO₂ micro-window
- Very good quality of retrieval with reduced $\chi^2 \leq 5$

Dataset from IMAGETNA campaign:
- 6 200 images
- 116 millions of pixels

Published in: Huret et al. - Remote Sensing 2019, 11, 1175
doi:10.3390/rs11101175

Development of a methodology for fast and massive retrieval of the images

110 years of calculation!
Images massive retrieval: creation of a neural network

Training dataset
5 images = 102400 pixels

Neural network
2 layers = 2 spectral information

\[SO_2 = f(I_{O_3}, I_{SO_2}) \]

Library containing 195 classes

➢ Training dataset:
 • 5 images with SO\(_2\) SCD retrieved pixel-by-pixel

➢ Tested dataset:
 • ~ 900 images from sequences with similar geometry and weather conditions.

\begin{itemize}
 \item Band 1: 1000-1100 cm\(^{-1}\)
 \item Band 2: 1100-1200 cm\(^{-1}\)
\end{itemize}
Massive retrieval: results

- Tested dataset pixels classified and images of SO₂ SCD retrieved using the library.
- ~15% of missing classes in the library (pixels in blue) mostly in dense plume part.

Dataset to analyze

Spectral bands info extraction (for each pixel of each image)

\[
I_{O_3} + I_{SO_2} \rightarrow SO_2 \text{ SCD} = f(I_{O_3}, I_{SO_2})
\]

Examples of retrieved images:

- 1 image processed in ~40 seconds!
For more information

Contact

@ charlotte.segonne@uca.fr