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Key Points: 

� First IASI algorithm focused on sea surface temperature (SST) suitable for climate studies 

� The IASI-derived SST dataset is compared with other available datasets 

� Climate variability and trends are shown and compared to other datasets 
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A bstract 

Sea surface temperature (SST) is an essential climate variable, that is directly used in climate 
monitoring. A lthough satellite measurements can offer continuous global coverage, obtaining a long-
term homogeneous satellite-derived SST dataset suitable for climate studies based on a single 
instrument is still a challenge. In this w ork, w e assess a homogeneous SST dataset derived from 
reprocessed Infrared A tmospheric Sounding Interferometer (IA S I) level-1 (L1C) radiance data. The 
SST is computed using Planck’s Law  and simple atmospheric corrections. W e assess the dataset using 
the ERA 5 reanalysis and the Eumetsat-released IA S I level-2 SST product. Over the entire period, the 
reprocessed IA S I SST show s a mean global difference w ith ERA 5 close to zero, a mean absolute bias 
under 0.5 °C, w ith a standard deviation of difference around 0.3 °C and a correlation coefficient over 
0.99. In addition, the reprocessed dataset show s a stable bias and standard deviation, w hich is an 
advantage for climate studies. The inter-annual variability and trends w ere compared w ith other SST 
datasets: ERA 5, Hadley Centre's SST (HadISST) and NOA A ’s Optimal Interpolation SST A nalysis 
(OISSTv2). W e found that the reprocessed SST dataset is able to capture the patterns of inter-annual 
variability w ell, show ing the same areas of high inter-annual variability (>1.5 °C), including over the 
tropical Pacific in January corresponding to the El N iño Southern Oscillation. A lthough the period 
studied is relatively short, w e demonstrate that the IA S I dataset reproduces the same trend patterns 
found in the other datasets (i.e.: cooling trend in the N orth A tlantic, w arming trend over the 
Mediterranean). 

P la in  L anguage Sum m ary 

Sea surface temperature, SST is an essential variable for monitoring climate, as defined by the Global 
Climate Observing S ystem (GCOS)1. Satellite measurements can o ffer global continuous SST 
measurements, but their stability over the time needs to be assured. In this w ork w e present a new  
dataset derived from the Infrared A tmospheric Sounding Interferometer, IA S I (flying aboard the M etop 
satellites) , and compare it w ith other available datasets. This comparison show s that our dataset 
produces similar means, variability and trends as other datasets, w ith the advantage that it is derived 
w ith a single algorithm from a single w ell-calibrated instrument. This assures there are no substantial 
changes to the instrument characteristics over time that might result in artif icial trends. 

1 In troduction  

Sea surface temperature (SST) is an Essential Climate V ariable (ECV ) as defined by the Global 
Climate Observing S ystem (GCOS), that is used directly in the monitoring of climate trends and 
variability, or as boundary conditions in climate models (e.g.: Robinson et al., 2012). The implications 
of SST data in climate analysis and modeling has been studied extensively (e.g.: Hurrell and Trenberth, 
1999; Rayner et al., 2009). 

SST is relatively easy to observe, and has a long observational history (w ell documented in 
Bottomley et al. (1990); Barton (1995); Emery et al. (2001); M innett et al. (2019)). D ata records of SST 
started w ith in situ measurement by moving sailing vessels and ships, and later w ith satellite-tracked 

                                                           
1 https:/ / gcos.wmo.int/ en/ essential-climate-variables/ sst 
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and satellite-reporting moored and drifting buoys. These measurements, taken from a few  tens o f 
centimeters of w ater to up to 5 m below  the sea surface, are know n as the sub-skin SST. From the mid-
1970s, SSTs started also being computed from infrared satellite data. Satellite radiances are converted 
into skin SST, w hich corresponds to the SST measured at about 10 μm below  the surface of the sea 
(Emery et al., 2001). This is the temperature o f the molecular boundary betw een air and sea, w here the 
transfer o f heat, momentum and gases (such as CO2) occurs. Sub-skin and skin SSTs are different. 
Emery et al. (2001) have determined their mean differences to be around 0.3 °C and instantaneous 
differences to vary as a function of air-sea heat fluxes and the w ind speed at the surface. These 
differences can range from negligible (at nighttime, under w indy conditions, w hen there is low  
insolation and high vertical mix ing) to several degrees (w hen there is high insolation and sustained low  
w ind speeds) (M erchant, 2013). D onlon et al. (2002) have found skin SST to be around 0.17 °C cooler 
than sub-skin SST w hen free o f diurnal w arming effects, and at w ind-speeds greater than 6m/s. 
A lthough the skin effect is a different physical effect from the diurnal variation, w hen diurnal varia tions 
are large, the skin effect can be confused (especially w hen there is low  w ind speed and higher 
insolation). Satellite and in situ measurements are complementary to each o ther and are often blended in 
one dataset (e.g.: N ational Oceanic and A tmospheric A dministration (N OA A ) Optimum Interpolation 
Sea Surface temperature (OISST)), w here the sub-skin/skin SST differences are taken into account. 
Infrared satellites alw ays measure skin SST, how ever, some products are adjusted to report a sub-skin 
SST, dependant on the users. Monitoring o f the SST derived from satellites is promoted by the Group 
for High Resolution Sea Surface Temperature (GHRSST)2, w hich provides a framew ork for SST data 
sharing, best practices for data processing. 

Satellite measurements o ffer a global horizontal coverage, and a continuous synoptic temporal 
coverage, w hich allow s for a more uniform coverage than in situ measurements (Lee and Gentemann, 
2018). A s such, satellite measurements resolve features that are not captured by in situ measurements, 
such as large-scale signals and teleconnections (e.g.:  El N iño/Southern Oscillation, EN SO), and small-
scale features such as fronts and eddies. In addition, they also cover areas o f difficult access, such as the 
high latitude oceans, w here in situ measurements are scarce. B ecause of these advantages, operational 
satellite-derived SSTs are used to support w eather forecasting and near real-time oceanography. 
Satellite SST retrievals are available from a variety of polar-orbiting and geostationary platforms 
carrying microw ave and infrared sensors (Robinson and D onlon, 2003). These include the Spinning 
Enhanced V isible and Infrared Imager (SEV IRI) onboard the geostationary Meteosat Second 
Generation (e.g.: Robinson et al., 2012), the A dvanced V ery High Resolution Radiometer (A V HRR) 
sensors onboard the different N OA A  polar orbiting platforms (e.g.: Casey et al., 2007) and more 
recently on the suite of Metop satellites (e.g.: Le Borgne et al., 2007; Marsouin et al., 2015), the 
Moderate Resolution Imaging Spectroradiometer (MOD IS) on board o f the Terra and A qua satellites 
(M innett et al., 2002), the A tmospheric InfraRed Sounder (A IRS, A umann et al., 2003), aboard the 
A qua satellite, and from the Infrared A tmospheric Sounding Interferometer (IA S I) on board the three 
Metop satellites since 2007, 2012 and 2018 (S iméoni et al., 1997; A ugust et al., 2012; O’Carroll et al., 
2012). More recently, SST is also measured by the Sea and Land Surface Temperature Radiometer 
(SLSTR) as part of the European Sentinel M ission, Sentinel-3 (D onlon et al., 2012). A s part of the 
                                                           
2 www.ghrsst.org 
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European Space Agency Climate Change Initiative Sea Surface Temperature project (ESA SST CCI), a 
consistent re-analysis of daily 0.05°×0.05° resolution SSTs from 1981 to 2016 has been produced using 
observations from both the AVHRR and Along Track Scanning Radiometer (ATSR) and a data 
assimilation method where there were no measurements (Good et al., 2019; Merchant et al., 2019).  

IASI onboard Metop has a polar orbit that covers the entire Earth’s surface twice a day, in the 
morning and evening. The instrument was designed for numerical weather prediction and atmospheric 
composition monitoring (Collard et al., 2009; Clerbaux et al., 2009; Hilton et al., 2012), but with more 
than thirteen years of readily available data to date, with the prospect of having a similar instrument 
until 2040 with the IASI-NG mission, IASI can also be used in climate research. Although interest in 
exploiting spectrally resolved data to study climate variability has been previously highlighted 
(Clerbaux et al., 2003; Brindley et al., 2015; Smith et al., 2015), and the need to construct a climate data 
record is becoming increasingly evident, relatively little has been done so far to generate consistent 
records for climate variables with IASI (i.e.: derived with a single algorithm from a single well-
calibrated instrument, with no substantial changes to the instrument characteristics over time). In order 
to be adequate for use in climate applications, SST data must be not only accurate, but also consistent 
over time (i.e.: homogeneous). Since IASI is a long-term “sentinel” mission that is planned for flying at 
least 18 years, with the 3 instruments built at the same time and flying in constellation, continuity and 
stability of IASI-derived data are ensured. In fact, due to its stability, IASI is used as the reference 
instrument in the Global Space-based Inter-Calibration System (GSICS) (Hewison et al., 2013). Finally, 
long-term continuation of the program is also guaranteed, as the new generation of Infrared 
Atmospheric Sounding Interferometers (IASI-NG) (Clerbaux and Crevoisier, 2013; Crevoisier et al., 
2014), will be launched on three successive Metop - Second Generation satellites within the 2023-2040 
timeframe. 

Although there is an operational IASI SST product available from EUMETSAT (L2Pcore) that 
is complemented by the EUMETSAT OSI SAF IASI SST product (GHRSST L2P), the goal of this 
study is to obtain a long-term IASI (only)-derived SST data set and assess if it is suitable for climate 
studies (trend estimation and inter-annual variability in particular). This dataset, as compared to other 
datasets will have the advantage of being global (as opposed to geostationary satellites), homogeneous 
and uniform (uses one instrument); an essential factor for climate data records. For this, we use a simple 
method of SST retrieval, based on Planck’s law and atmospheric corrections, from reprocessed 
homogeneous IASI radiances that can produce a consistent SST record for the period available to date 
(and which can be expanded easily in the future as more data becomes available). The reprocessed IASI 
dataset and the retrieval methods are both described in the next section (Section 2). The results are 
presented in Section 3, where we intercompare our dataset with other SST datasets and show inter-
annual variability and trends in SST for the study period of 2008 to 2019. The results are discussed in 
Section 4, where conclusions on the suitability of our dataset for climate applications ispresented. 
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2 Data sets and SST retrieval method 

2.1 IASI data and channel selection 

In this work, we use IASI/Metop-A radiances (also called L1C data) that have been recently 
reprocessed by EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites), 
ensuring data homogeneity (changes in processing is one of the main sources of inhomogeneity (Karl et 
al., 1993)). Note that skin temperature is a product available within the IASI L2 EUMETSAT portfolio, 
but, to date, a consistent record is not available, as the backward reprocessing with the latest version of 
the Eumetsat algorithm has not been performed yet.  

The IASI instrument (Clerbaux et al., 2009) measures radiances in the thermal infrared spectral 
range between 645 and 2760 cm-1 corresponding to 8461 spectral channels, every 0.25 cm−1, with an 
instrument response function of 0.5 cm−1 half-width at half maximum after apodization. More than 1.2 
million radiance spectra per day are provided by each IASI instrument, with a footprint on the ground of 
12 km diameter pixel (at nadir) over a swath width of about 2,200 km. IASI-A (used in this work) 
revisits all points on the Earth’s surface twice a day at around 9:30 and 21:30 local time. Metop-A 
satellite is now exploited on a "drifting" orbit fr om June 2017 onwards, in order to extend its useful 
lifetime from 2019 to 2022 (EUMETSAT, 2016).  Local time at ascending node will be slowly 
decreasing from the nominal mission value of 21:30 in June 2017 to 19:30 in 2021. 

To find the most informative channels to retrieve sea surface temperature from the 8461 IASI 
channels, a simple method, based on the Jacobians of brightness temperature, is used. This method 
simulates a set of spectra representative of IASI measurements (i.e.: season, location, atmospheric 
composition), and statistically analyses their Jacobians, which measures the sensitivity of the IASI 
measurements with respect to the surface temperature, at each wavenumber. Clear sky spectra are used 
in order to access information at the surface. 

Spectra were simulated using the RTTOV (Radiative Transfer for TOVS; Saunders et al., 2018) 
code (version 12.1), using meteorological parameters from ECMWF and chemical parameters from the 
Copernicus Atmosphere Monitoring Service (CAMS; https://atmosphere.copernicus.eu/) (Tables S1a 
and S1b, in the Supplement). The spectral emissivity over the sea is calculated directly in RTTOV, 
based on the IREMIS model (Saunders et al., 2017) which is parameterized in terms of zenith angle, 
surface wind speed and skin temperature. The RTTOV code is run on two days: a day in boreal winter 
(01/01/2017) and summer (01/07/2017); at 9am and 9pm (approximately around the crossing time of 
IASI), for a +/- 7° longitude band centered on the zero longitude, gridded to a 1°x1° resolution. This 
amounts to a total of ~104 geophysical scenes to analyze. After selecting the simulations over the sea, 
we calculated the average surface temperature Jacobian spectrum obtained from these spectra. In this 
Jacobian spectrum, we first select two spectral bands associated to the highest signal-to-noise ratio: the 
[800-1000] cm-1 spectral band and the [1060-1260] cm-1 band. Then the channels with maximum values 
(i.e., the values the closest to a low frequency envelope function representing the upper limit of the 
average Jacobian spectrum) were selected in these two bands. In order to limit the number of selected 
channels to about 100, the channels are first filtered to the 0.5% closest to the upper limit function in the 
[800-1000] cm-1 spectral band, and 2% in the [1060-1260] cm-1 band. A second filtering is applied by 
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splitting the spectral band into ten sub-bands of 10-15 cm-1 and determines the channels w ith the highest 
spectral correlation w ith the channel the closest to the Jacobian upper limit function. In the end 129 
channels w ere selected. These selected channels are show n in the Supplement, in Figure S1 as black 
crosses superposed on a typical IA S I spectrum, and the actual values are presented in Table S2 in the 
Supplement. 

2.2 Emissiv ity over the sea 

A t each of the selected channels, the temperature, T, can be computed for each cloud free scene 
(cloud cover under 10 %, using the L1c IA S I cloud flag derived from synchronized A V HRR, 
measurements at each IA S I spatial foot print) as a function of the radiance by using the inverse of 
Planck’s function (eq. 1): 
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In order to study large-scale trends and variability in SST across oceans, w e averaged the IA S I 
observational record on a monthly 1° x  1° grid. Given that IA S I day and night measurements are taken 
at around 9:30 A M and PM, local time, w e choose in this w ork to average both observations for easier 
comparison w ith the other datasets. A ccording to Robinson (2004) and Merchant (2013), these trends 
and variability occur on time scales of months to years, and on spatial scales of 500-5000 km, in the 
case of inter-annual variability. Therefore, they are captured by these spatial and temporal resolutions 
(w hile simultaneously keeping our analysis computationally efficient).  

 

F igure 1. (a) Monthly mean emissiv ity for January 2017 averaged over a 1°x1° grid; (b ) 
Corresponding monthly mean SST over the ocean retrieved from IA S I radiances averaged over a 1°x1° 
grid. 

2.3 W ater vapor attenuation and correction 

The SST data w as first compared w ith ERA 5 (Hersbach et al., 2020). ERA 5 is a state-of-the-art 
reanalyisis, w ith a stability over time that a product like the L2 from EU METSA T could not provide (as 
w e w ill show  in the next section). A lthough ERA 5 may have issues in certain regions, such as tropical 
East A frica (Ssenyunzi et al., 2020), it has global 1-hourly coverage, at a 0.25° resolution, w hich makes 
it appropriate and convenient to interpolate to the time and location of the satellite observation. In 
ERA 5 the surface temperature over the ocean is computed from an analysis by the Operational Sea 
Surface Temperature and Ice A nalysis (OSTIA , M cLaren et al., 2016). Their SST analysis blends 
satellite and in situ observation w ith the resulting SST representing the foundation SST fields (i.e. 
measured a few  meters deep; w hich can be assumed as the same as sub-skin at night, w hen SST is free 
from diurnal variability). S ince the ocean skin temperature is measured at about 10 μm thickness, 
parameterizations of different near surface ocean effects (i.e.: cool skin effect due to turbulent and long 
w ave radiative heat loss to the atmosphere; w arm layer effect due to low  w inds and solar radiation; and 
salinity effects on the saturation of specific humidity at the surface) are included in the code to 
determine the skin temperature over the ocean (ECMWF, 2016; Hirahara, et al., 2016). U sing ERA 5, 
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w e calculated the mean difference betw een skin and sub-skin SST and the results show  that the skin 
SST is generally cooler than sub-skin SST by 0 to 0.2 °C (not show n here). 

This comparison show s an overall negative bias w ith IA S I-derived SST (Figures 2-a and 2-b), 
w hich is highest over the tropics. Over the tropics the pattern of the bias is close to the structure o f mean 
integrated w ater vapor (IW V , i.e. total column w ater vapor in mm), show n in Figures 2-c and 2-d. There 
is a high correlation betw een the bias and IW V , w ith the regions of max imum bias corresponding to the 
areas w here the w ater vapor is also highest. In the thermal infrared, the w ater vapor continuum 
contaminates the w hole spectral domain. A lthough w e attempted to choose the best channels for SST 
retrieval, the prevalence of emitting/absorbing w ater vapor at all channels is responsible for a signal 
attenuation that produces an overall negative bias in the SST estimates that needs to be corrected.  

 

F igure 2. (a) D ifference betw een IA S I-derived SST and ERA 5 SST for January 2017; (b ) Same 
as (a) but for July 2017; (c) Monthly mean IW V  for January 2017; (d ) Same as (c) but for July 2017. 
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Corrections of the water vapor attenuation have been extensively discussed in previous studies, 
and several atmospheric correctors have been used. From split window retrieval methods (McClain et 
al., 1985; Walton et al., 1998), and adaptations using additional channels in the near infrared, to non-
linear estimators (Minnett, 1990; Emery et al., 1994; Kilpatrick et al., 2001; Li et al., 2001; Barton, 
2011) to approaches involving radiative transfer modelling (Merchant and Le Borgne, 2004) and 
optimal estimation (Merchant et al., 2008).  

In this work, the goal was to use an easy and quick method that could be applied to the monthly 
mean data. In order to remove the IWV contribution, we started by computing the SST bias as a 
function of IWV from ERA5 and performing a quadratic fit on the data for each month and year (as this 
relationship varies throughout the year and to a lesser extent from year to year). An example of the bias 
fit is given in Figures 3-a and 3-b for January 2017 and July 2017. In this paper, results for January and 
July will be shown, in order to illustrate the maximum seasonal range. This bias due to IWV is then 
removed from our previous estimation of SST and the resulting SST fields are shown in Figures 3-c and 
3-d. They show an increase in the temperature in comparison with the previous estimate, especially in 
the tropics. When we compared the corrected SST with the first guess SST, similar differences as the 
difference between first guess SST and ERA5 were found (not shown). The uncertainty in the corrected 
SST depends on the IWV, so ∂SST/∂IWV was computed. For a range of IWV values from 0 to 60 
kg/m2, the uncertainty is between around 0.05 and 0.45 K.  
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F igure 3. (a) SST bias fit as a function of IW V  for January 2017; (b ) Same as (a) but for July 
2017; (c) Corrected IA S I-derived monthly mean SST for January 2017; (d ) Same as (c) but for July 
2017. 

 

The signal attenuation of the infrared radiation emitted by the sea surface due to w ater vapor is 
know n to be the largest error source in the conversion of SST from infrared satellite data. Other error 
sources are the presence of clouds (w hich w e attempt to minimize by choosing only cloud-free scenes), 
other radiatively active gases (e.g.: carbon diox ide, nitrous ox ide, methane; w hich w e limit by carefully 
selecting the best channels) and aerosols (absorbing, emitting radiance, and may also scatter it). The 
concentration of aerosols is more variable and their radiative properties less w ell understood than for 
w ater vapor and other gases. The impact of aeroso ls on SST computations can range from insignificant 
(in clean air conditions) to highly significant (in, for instance, dust storms). A lthough the impact of 
aerosols w ill not be corrected in our dataset, it will be considered w hen interpreting the results, 
especially in regions prone to the effect of dust storms, such as the Persian Gulf and off the coast of 
W est A frica. 
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Once this method of retrieving SST from IASI radiance data was established, it was applied to 
the entire period of available reprocessed IASI data (2008-2019). In addition, at higher latitudes, our 
dataset covers areas that contain sea ice (e.g.: areas where SST is negative in Figures 3-c and 3-d). Since 
our method does not account for this (the emissivity of the ice is different from the emissivity of the 
ocean), we removed these areas from our dataset, using ERA5 monthly mean sea ice concentration 
fields. The resulting dataset was compared first with ERA5 and IASI L2 (provided by EUMETSAT) 
skin temperature over the ocean (skin SST, but henceforth referred to as SST for simplicity) data for 
validation, and second with two independent and well-documented SST climatological datasets to 
assess its suitability for climate studies. 

3 Results 

3.1 Assessment of IASI-derived SST dataset 

For the validation of our IASI-derived skin SST dataset (henceforth referred to as IASI SST), we 
compared mean discrepancies and standard deviation of discrepancies between our dataset and the skin 
temperature over the sea product from ERA5 (as described in the previous section, and referred to 
henceforth as ERA5 SST) and IASI L2 skin SST from EUMETSAT (referred to as L2 SST). Note that 
our SST dataset was not directly compared with reference in situ data such as drifting buoys, as this is 
sub-skin SST data. On the other hand, reanalysis skin temperature data is available at relatively high 
spatial and temporal resolution. For climate applications, an important quality to consider is stability 
(i.e.: constancy) in these discrepancies statistics (e.g.: GCOS, 2006), moreso than accuracy at a 
particular instant, and the variability structures at a global scale. 

The EUMETSAT L2 SST product (IASI Level 2 PPF (Product Processing Facility)) is the skin 
temperature product over the sea derived primarily from IASI for cloud-free scenes. For cloudy scenes, 
it uses the Advanced Microwave Sounding Unit (AMSU), and the Microwave Humidity Sounder 
(MHS), which are synchronized with IASI’s scanning (EUMETSAT, 2017a; 2017b). This SST product 
is also available for all cloud cover unlike our dataset, and is therefore more complete. However, the 
processing used to derive the skin temperature has evolved over time, and as a result this dataset has 
discontinuities (Bouillon et al., 2020), which will be shown in this section. 
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F igure 4.  M ean SST differences betw een IA S I and ERA 5 (a, b ), IA S I and EU METSA T L2 
data (c, d ), and EU METSA T L2 and ERA 5 (e, f) for January 2008 and 2017. 
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F igure 5. Same as  F igure 4 but for July. 

Figures 4 and 5 show  the mean temperature differences betw een IA S I SST, L2 SST and ERA 5 
SST for 2008 and 2017, for January (Figure 4) and July (Figure 5). In January, the differences betw een 
the IA S I SST and ERA 5 SST are generally under 1 °C, w ith a positive difference over the Equator and 
south of 50 °S and a generally negative difference elsew here. There seems to be a much larger bias in 
the tropics in 2017 compared to 2008, and an inversion of the bias around the gulf stream. These can be 
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due to a couple of reasons: on the one hand, the lack of points in some regions along the Equator in 
2008 due to the cloud cover we are using  (2008 has less clear sky measurements, with gridpoints with 
no measurements); on the other hand, it may be due to the IWV correction. These points may fall 
further from the curve fit between IWV and SST, and may therefore be over/undercorrected in some 
years. In July, positive differences are higher around 50 °N. The pattern and order of magnitude of the 
biases are approximately the same for 2008 and 2017.  

The differences between IASI SST and L2 SST products are of the same order of magnitude as 
the differences between IASI SST and ERA5 SST (and show a similar spatial pattern) for both months 
in 2017 when the L2 SST retrieval is most up to date. However, for 2008, the differences reach higher 
values (up to 5 degrees): there is a general warm bias in IASI SST for July 2008, and a warm bias over 
the tropical and higher latitudes in January 2008. There is a clear decrease in the differences between 
IASI SST and L2 SST data from 2008 to 2017, which is consistent with the clear decrease in the bias 
between L2 SST and ERA5 SST from 2008 to 2017. 

Figures 4 and 5 show that the L2 SST data is inconsistent in time, which is explored hereafter. 
This discontinuity in the L2 SST data would impede its use in climate studies, and hence the advantage 
of the IASI SST dataset computed in this work. In fact, several changes in the L2 SST data processing 
have been reported, which have impacted the SST estimates. These changes include changes in the 
clouds (e.g.: cloud detection algorithms), spatial resolution (i.e.: inclusion of both even and odd IASI 
pixels starting in March 2010), retrieval and processing algorithms (Van Damme et al., 2017). 

We extend our analysis over the entire 2008-2019 period and plot the impact of the L2 SST 
product updates, with respect to the reference ERA5 SST dataset. Figure 6 shows the evolution over 
time of the globally averaged SST bias and standard deviation for the IASI SST and L2 SST, with 
respect to ERA5 SST. 

According to Figure 6, while the bias and standard deviation remain approximately constant in 
the IASI/ERA5 comparison, it clearly varies inter-annually in the L2/ERA5 comparison. With time, and 
in particular after 2015, the L2 SST product values approach those of ERA5 and there is a clear 
decrease in the bias and standard deviation, consistent with changes in the data processing. 

The bias in the IASI SST dataset is approximately 0 °C for both January and July, with absolute 
biases close to 0.5 °C throughout the entire period (check Table S3 for the actual values). For the L2 
SST data there is an overall decreasing trend in both bias and absolute bias, with increases and 
decreases through the years. For instance, there is a steep decrease in the absolute bias from 1.5 °C in 
January 2008 to 0.8 °C in January 2009 that might have been due to major changes in cloud coverage, 
surface temperature and temperature profiles reported for April 2008 (Van Damme et al., 2017). The 
bias continued to decrease from 2009 to 2010 as surface temperature is only provided for the cloud-free 
observations. From 2010 to 2011 there is an increase in the bias. During 2010, the number of cloud-free 
observations was increased and later temperature information started being provided for cloudy pixels. 
From 2011 to 2012 the bias decreases again with the improvement of cloud screening for temperature 
retrievals in October 2011. In September 2014, there is a major update in the processing algorithm with 
the arrival of a new IASI L2 processor, which is followed by a slight decrease in the bias. In January 
2016, there is a peak in the bias following updates to the surface temperature algorithm in September 
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2015. B y July 2016 the bias has decreased due to important improvements in the temperature retrieval 
algorithms from May 2016 onw ards. 

 

F igure 6. (a) Evolution of the bias (IA S I-ERA 5 and EU METSA T L2-ERA 5) and its standard 
deviation (in shaded color) in SST over time for January; and (b)  fo r July; (c)  A bsolute bias of 
differences w ith standard deviation (in shaded color) for January; and (d) for July. 

The standard deviation of the differences betw een the IA S I SST and ERA 5 SST remains 
approx imately constant throughout the period at study, at around 0.6-0.8 °C in both January and July, 
w hile the differences in standard deviation of both datasets is approx imately 0.2 °C. This show s the 
variability in both datasets is approx imately the same. For the L2 SST dataset, the standard deviation of 
the difference w ith ERA 5 show s an overall decrease over time. For January, the standard deviation of 
the difference goes from about 2 °C in 2008 to less than 0.5 °C in 2017. For July, it drops from about 1 
°C in 2008 to less than 0.5 °C in 2017. There are also increases at some years: January 2011, 2014, and 
2016, and July 2011 and 2013 that are consistent w ith some of the changes in the L2 SST data 
highlighted before. The difference in standard deviation betw een L2 SST and ERA 5 SST is negative 
throughout the entire period, and decreases over time. This means the variability in SST w as 
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underestimated in the L2 data, especially until July 2014 (and January 2015). Although it is not shown, 
there are also differences between the bias and standard deviation time series at different latitude bands. 
The absolute bias is higher for the 30-60 °N latitude band, especially in July, and the standard 
deviations are also higher for this latitude band.   
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F igure 7. Scatterplots of the correlation betw een pairings of the three datasets: IA S I, 
EU METSA T L2 and ERA 5. The correlation is chosen at all months of January and July of 2008-2019 
(12 months), separately to highlight the seasonal variation. 
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Figure 7 shows the correlation between pairings of the three datasets. The correlation is chosen 
at all months of January and July of 2008-2019 (12 months) separately to highlight seasonal variation. 
Although the correlation between all three SST datasets is high, with correlation coefficients close to 1 
(over 0.99), there is a bigger dispersion in the L2 SST over the entire period in Figure 7, especially for 
January. This corresponds to the higher differences (in IASI and ERA5 vs. L2) discussed above for the 
beginning of the period, and further highlights the need for a consistent data record. 

Table S3 in the Supplement shows a summary of the results presented above, averaged over the 
entire period. It reiterates that our IASI-derived dataset has a low bias and standard deviation and high 
correlation, when compared with ERA5 SST and L2 STT. Since the IASI SST bias due to water vapor 
is corrected using the IWV in ERA5, the global mean bias is close to zero. Although our dataset 
depends on ERA5 for wind fields and water vapor correction (constant over one month), it is essentially 
driven by IASI radiances. The retrieval, even if obtained using reanalysis, does not reproduce the 
reanalysis, as the temporal and spatial variations are still driven by the satellite observations. 

3.2 Comparison with other independent SST datasets 

To assess the quality of our dataset for the study of variability and trends we also compare our 
dataset with independent SST measurements. These are: NOAA’s Optimal Interpolation SST (Reynolds 
et al., 2002) and Hadley Centre’s Global SST (Rayner et al., 2003), that have been extensively used in 
climate studies. Our SST dataset is cloud-free. In order to check the impact of the data gaps (in space 
and time) on our data, the IASI SST monthly mean fields were also compared in this section with the 
full (i.e.: not matched) ERA5 SST dataset in terms of standard deviation and trends. 

The Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST version 1.1) is a 
combination of monthly globally complete fields (1°x1°) of SST and sea ice concentration that is 
available from 1871 to the present. The HadISST uses reduced space optimal interpolation applied to 
SSTs from the Marine Data Bank (mainly ship tracks) and adjusted satellite-derived SST data from 
1982 onwards (monthly SST from NOAA’s operational AVHRR instruments). SST for grid cells 
partially covered by sea ice are estimated from statistical relationships between SST and sea ice 
concentrations (Rayner et al., 2003). 

The NOAA Optimal Interpolation SST analysis, version 2 (OISSTv2) is a global gridded 
(1°x1°) dataset, computed from a combination of ocean temperature observations from satellite 
(AVHRR) and in situ platforms, such as ships and buoys (moored and drifting). Because the input data 
are irregularly distributed in space, they are first placed on a regular grid, before statistical methods 
(i.e.: optimum interpolation) are applied to fill in missing values. The methodology used to create this 
dataset includes a bias adjustment step of the satellite data to in situ data prior to interpolation 
(Reynolds et al., 2002). 

These datasets are combinations of different observations and observation types (e.g.: satellite 
and in situ) that vary over time, as different datasets become available. Our data is based on information 
from one instrument only, and therefore will not suffer such changes and will produce homogeneous 
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data more easily. This makes it a good dataset for other more complex datasets to be compared against, 
provided that it can estimate the trends and variability correctly. How ever, it needs to be taken into 
account that w hile our SST dataset is skin SST, HadISST and OISSTv2 are sub-skin SST datasets.  

3.2.1 SST inter-annual variability 

Figure 8 show s the standard deviation in January SST from 2008 to 2019, for IA S I, ERA 5, 
OISSTv2 and HadISST and Figure 9 show s the same, but for July. N ote that w e use the full (not IA S I-
matched) ERA 5 SST dataset in order to assess the impact of cloud cover, and spatio-temporal 
interpolation on our data and to keep a similar comparison method for the other tw o datasets.  

 

F igure 8. Monthly mean standard deviation in SST for January 2008-2019, for IA S I, ERA 5, OISSTv2 
and HadISST. 

For both months, it is clear that in general, the IA S I SST dataset has a higher variability 
globally, w hile the HadISST has generally a low er variability. The larger noise in some areas for the 
IA S I SST dataset (especially in July in the northern hemisphere) could be due a sampling issue.  
Because in the IA S I dataset only clear pixels are selected, the gaps in the data due to cloud cover might 
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create an artificial higher variability. The regions w here the variability in IA S I is higher than for the 
other datasets (especially in the N orthern Hemisphere, in the N orthern Pacific ocean) do coincide w ith 
the regions w here total cloud cover is close to 1/ 100% (not show n). 

 

F igure 9. Same as Figure 10, but for July. 

For January, there is a clear high variability translated w ith a standard deviation that exceeds 1.5 
°C in the tropical Pacific region in all datasets, due to the EN SO, w hich is most intense during the 
months from D ecember to February. The EN SO is the strongest internal climate mode at the inter-
annual timescale, and consists of SST excursions in the central and eastern equatorial Pacific (Latif and 
Keenlyside, 2009). W e investigate SST/EN SO relationship further in Figure 10.  

There are also other regions of high variability that are present in all four datasets (although less 
intense for the HadISST). For instance, in the northern Pacific the standard deviation in SST exceeds 1 
°C in IA S I and ERA 5 and OISSTv2. This is due to the interannual changes in the surface transport and 
path of the Kuroshio Extension System (Qiu, 2000). A ccording to Qiu (2000), SST in this region is 
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colder (w armer) w hen the surface transport is w eaker (stronger) and southerly (northerly). Ocean 
dynamics also play a central ro le in the inter-annual variability o f SST over the Gulf S tream extension 
(W ills et al., 2016) in the norther A tlantic, w hich is most intense in the IA S I and ERA 5 datasets. Other 
regions w here the SST inter-annual variability exceeds 1 °C are the South Pacific, off the coast of W est 
A frica, in the southern A tlantic and off the east coast of South A merica, and in the Southern Ocean 
from the tip of South A frica eastw ard into the Indian Ocean (in IA S I and ERA 5). The latter is also 
observed in July.  

 

F igure 10. (a) A nomalies in IA S I SST data for January 2011, in relation to  the January 
climatology for 2008-2019;  (b ) Same as (a) but for 2016 SST anomaly; (c) and (d) Same as (a) and (b) 
but for ERA 5 SST. 

 

For July, there are also regions of higher variability common to all four datasets such as the 
intense variability observed in the northern Pacific and northern A tlantic (particularly high in the I A S I 
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data). Standard deviation is also high (over 1.5 °C) in all datasets along the equatorial Pacific and 
coastal Peru, which is related to equatorial and coastal upwelling, respectively. According to Deser et al. 
(2010), in the tropics nonseasonal variability is higher where there is a local minimum in the long-term 
mean SST due to coastal and equatorial upwelling (when colder water rises from the deeper ocean to the 
surface).  

To highlight the effect of ENSO on SST, we show in Figure 10 the difference in the January 
SST anomalies between years of strong El Niño and La Niña. During La Niña events, there is a negative 
anomaly in the SST in the tropical Pacific, while there is a strong positive anomaly during the El Niño. 
This difference is well captured by our IASI dataset (top), which shows very similar SST anomaly 
structures to ERA5 albeit slightly noisier, probably due to lower number of points in our clear-sky 
dataset. 

 

3.2.2 SST trends 

In order to assess the trends over the past decade and for the series of datasets used in this work, 
we show in Figure 11 the trends in SST for the period between 2008 to 2019. The stippling over the 
trend fields denotes the statistically significant trends. The trends were computed using the Theil Sen 
method (Theil, 1950 and Sen, 1968), a non-parametric statistic that computes the median slope of all 
pairwise combinations of points. The statistical significance of the trends was assessed using the Mann-
Kendall test (Mann, 1945, Kendall, 1948), at a 10 % significance level. 

In general, there is good consistency between the four datasets, which show similar warming 
and cooling trend patterns. In all datasets, we observe a cooling trend in the subpolar Atlantic Ocean 
and a warming trend in the Gulf Stream region. These trend patterns are consistent with the results 
found by other studies and presented in the Intergovernmental Panel on Climate Change (IPCC, 2013) 
reports and is part of a long-term trend that has been linked with a weakening of the Atlantic meridional 
overturning circulation (AMOC) (e.g.: Dima and Lohmann, 2010 and Caesar et al., 2018). The AMOC 
is a system of ocean currents in the North Atlantic, and it is suspected that its weakening is linked with a 
freshwater anomaly in the northern Atlantic. This anomaly has been linked to irregular sea-ice export 
from the Arctic Ocean (Belkin et al., 1998, Dickson et al., 1988), increasing river discharge into the 
Arctic Ocean (Peterson et al., 2002) and meltwater and iceberg discharge from the Greenland Ice Sheet 
(Rahmstorf et al., 2015). 

For all datsets, there is also a significant warming trend over the tropical Pacific and off the west 
coast of North America. This positive trend is part of a tripole structure in the SST trends over the 
eastern portion of the Pacific Ocean, which also includes a positive trend at around 50 °S and a negative 
trend in between. This structure is present in all datasets, and is related to the ENSO. The strong 2016 
El Niño event, towards the end of our study period, caused a strong warming that increased the SST 
trend for the tropical Pacific region. This can be seen in Figure S2, in the Supplement, which shows the 
evolution of the multivariate ENSO index over the period at study (top), with the corresponding SST 
averaged over the latitude/longitude intervals where ENSO has the most influence. It is clear from this 
figure that positive (negative) ENSO indexes correspond to a warmer (colder) SST. Furthermore, the 
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occurrence of a strong La N iña event (negative index) at the beginning of the time period, and a strong 
El N iño event (positive index) at the end prompted an intense positive SST trend in the region for this 
period.  

This is consistent w ith Latif and Keenlyside (2009), w hich found that long-term trends in the 
Equatorial Pacific SST during the 1950-2006 period show  a w arming trend w ith a pattern that is “El 
N iño-like”. How ever, other studies also suggest that trend patterns over this region are sensitive to the 
period at study (e.g.: Cane et al. (1997) found a La N iña pattern for the 1900-1991 period) and the 
historical dataset used (V ecchi et al., 2008). More broadly, long-term trends over the Pacific, Indian and 
A tlantic Oceans have all been found to be influenced by EN SO (Compo and Sardeshmukh, 2010). 
Compo and Sardeshmukh (2010) have also show n it is possible to separate the trends in terms of 
EN SO-related and –unrelated trends, but this is outside the scope of this paper. Here, the goal is mainly 
to show  that the IA S I-derived dataset is able to reproduce these trends accurately (i.e.: show  the same 
trend patterns as the other datasets). 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Figure 11. (a) Linear trends in IASI SST for 2008 to 2019. The stippling over the trend fields 
denotes the statistically significant trends at 10% significant level. (b) Same as (a) but for ERA5 SST; 
(c) Same as (a) but for OISSTv2; (d) Same as (a) but for HadISST. 

There is also a note-worthy warming trend over the Mediterranean Sea that is consistent with the 
warming trends found for this region during the past decades in satellite and field data, as well as in 
model simulations (e.g.: Vargas-Yanez et al., 2008; Nykjaer, 2009; Macias et al., 2013; Pisano et. al., 
2020). Marullo et al. (2011) first noted the influence of Atlantic Multidecadal Oscillation (AMO) over 
the Mediterranean Sea, then Macias et al. (2013) also evaluated the contribution of the anthropogenic 
induced warming during the last phase of AMO. Other significant trends found for this period include a 
negative trend at around 50 °S in all four datasets that are not as intense/ significant in the HadISST 
dataset. Over the Southern Ocean, this dataset is known to have issues resulting from sparse data input, 
due to the scarcity of in situ measurements in the region (Rayner at al., 2003). 

In general, there is good agreement between our dataset and the other SST datasets in terms of 
inter-annual variability and trends for the 2008-2019 period. Although the period at study is relatively 
short, making it difficult to take physical interpretations and to compare with previous studies that have 
covered longer term trends, we can conclude that, in general, our dataset is able to show many of the 
same variability and trend structures as the other more complex datasets, and capture important natural 
phenomena such as the ENSO well.  Since our dataset is based on a single instrument and consistent 
processing, it can be useful as a consistent record of temperature measurement.  

 

4 Conclusions and perspectives 

In this work we presented a reliable way of retrieving skin temperatures over the sea based on a 
single instrument, IASI. Temperatures were derived from the IASI satellite radiances data, based on 
Planck’s law and simple atmospheric corrections. This method was applied to recently reprocessed IASI 
L1C data, in order to produce a homogeneous SST data record. This dataset was first validated using 
ERA5 and the EUMETSAT IASI L2 data and we provide basic discrepancy statistics (mean 
differences, standard deviation and correlation coefficients). High correlation coefficients were found 
between the three datasets. The bias and standard deviation in our IASI data were found to be stable 
over the 2008-2019 period, whereas for the IASI L2 SST, there has been a noticeable improvement over 
time when compared to ERA5. Overall, for the entire period, our IASI SST discrepancies with respect 
to ERA5 SST show a mean global bias close to zero, a mean absolute bias around 0.5 °C, with a 
standard deviation of difference of around 0.7 °C and a correlation coefficient of over 0.99.  Stability in 
the IASI SST is demonstrated, which is essential for climate-related studies.  

Next, inter-annual variability and trends were compared for four SST datasets: IASI and ERA5, 
in addition to HadISTT and OISSTv2. It was found that our dataset is able to capture the patterns of 
variability and trends well. Despite being noisier, the IASI SST is able to capture the same areas of high 
inter-annual variability (i.e.: over 1.5 °C), including over the tropical Pacific in January corresponding 
to the ENSO. Although the period covered by our study is not long enough to draw physical 
conclusions on the SST trends, similar trend patterns were found in the four datasets. In fact, although 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

the most intense significant trends w ere found in the tropical Pacific due to  the strong 2015/2016 El 
N iño, some significant trends that are part of w ell-documented longer-term trends w ere also captured by 
our dataset. For instance, the cooling trends in the N orth A tlantic that are related to a slow -dow n in the 
thermohaline circulation; and the w arming over the Mediterranean that is a combination of natural 
oscillation (A MO) and anthropogenic climate change.  

In general, w e have show n that the IA S I SST dataset described in this paper is suitable for 
climate studies, as it produces results comparable to more sophisticated SST datasets, although some 
limitations need to be kept in mind. On the one hand, our dataset is a skin SST dataset, w hich is 
different from the sub-skin SST by up to around 0 .3 °C, depending on the region (the skin effect is 
estimated to be 0.17 °C at night-time for w ind-speeds over 6m/s, according to e.g. D onlon et al, 2002 
and Horrocks et al, 2003.). On the other hand, it is a clear-sky dataset that only includes data under 
(near) cloud-free conditions. Improvements to the algorithm are possible, such as looking into removing 
the impact of the v iew ing angle and the low er troposphere temperature gradients. In addition, the 
method described here does not correct for aeroso l contamination, and does not include areas w ith sea 
ice.  S till, as it is based on a single instrument, our dataset can remain stable over time, ensuring that as 
more data becomes available, it can be used to, fo r instance, monitor SST trends and detect El N iño 
events. 
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