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Abstract

Sea surface temperature (SST) is an essential clineavariable, that is directly used in climate
monitoring. Although satellite measurements can offr continuous global coverage, obtaining a long-
term homogeneous satellite-derived SST dataset saltle for climate studies based on a single
instrument is still a challenge. In this work, we asess a homogeneous SST dataset derived from
reprocessed Infrared Atmospheric Sounding Interferaneter (IASI) level-1 (L1C) radiance data. The
SST is computed using Planck’s Law and simple atm@eric corrections. We assess the dataset using
the ERAS reanalysis and the Eumetsat-released IASével-2 SST product. Over the entire period, the
reprocessed IASI SST shows a mean global differenaeith ERAS close to zero, a mean absolute bias
under 0.5 °C, with a standard deviation of differewe around 0.3 °C and a correlation coefficient over
0.99. In addition, the reprocessed dataset showss#éable bias and standard deviation, which is an
advantage for climate studies. The inter-annual vaability and trends were compared with other SST
datasets: ERAS5, Hadley Centre's SST (HadISST) and ®@AA’s Optimal Interpolation SST Analysis
(OISSTv2). We found that the reprocessed SST datasis able to capture the patterns of inter-annual
variability well, showing the same areas of high iter-annual variability (>1.5 °C), including over the
tropical Pacific in January corresponding to the EINifio Southern Oscillation. Although the period
studied is relatively short, we demonstrate that te IAS| dataset reproduces the same trend patterns
found in the other datasets (i.e.: cooling trend irthe North Atlantic, warming trend over the
Mediterranean).

Plain Language Summary

Sea surface temperature, SST is an essential variebfor monitoring climate, as defined by the Global
Climate Observing System (GCOS%. Satellite measurements can offer global continuauSST
measurements, but their stability over the time neds to be assured. In this work we present a new
dataset derived from the Infrared Atmospheric Soundng Interferometer, IASI (flying aboard the Metop
satellites) , and compare it with other available dtasets. This comparison shows that our dataset
produces similar means, variability and trends as ther datasets, with the advantage that it is derive
with a single algorithm from a single well-calibraked instrument. This assures there are no substantia
changes to the instrument characteristics over timéhat might result in artificial trends.

1 Introduction

Sea surface temperature (SST) is an Essential ClinmaVariable (ECV) as defined by the Global
Climate Observing System (GCOS), that is used dirdky in the monitoring of climate trends and
variability, or as boundary conditions in climate models (e.g.: Robinson et al., 2012). The implicath®
of SST data in climate analysis and modeling has k@& studied extensively (e.g.: Hurrell and Trenberth
1999; Rayneret al., 2009).

SST is relatively easy to observe, and has a londg®ervational history (well documented in
Bottomley etal. (1990); Barton (1995); Emery et al(2001); Minnett et al. (2019)). Data records of ST
started with in situ measurement by moving sailingvessels and ships, and later with satellite-tracked

1https:// gcos.wmo.int/en/essential-climate -variabldsst
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and satellite-reporting moored and drifting buoys.These measurements, taken from a few tens of
centimeters of waterto up to 5 m below the sea sfiace, are known as the sub-skin SST. From the mid-
1970s, SSTs started also being computed from infrad satellite data. Satellite radiances are converte
into skin SST, which corresponds to the SST measuteat about 10um below the surface of the sea
(Emery et al., 2001). This is the temperature of th molecular boundary between air and sea, where the
transfer of heat, momentum and gases (such as CPoccurs. Sub-skin and skin SSTs are different.
Emery etal. (2001) have determined their mean diéfrences to be around 0.3 °C and instantaneous
differences to vary as a function of air-sea heatldixes and the wind speed at the surface. These
differences can range from negligible (at nighttimeunder windy conditions, when there is low
insolation and high vertical mixing) to several degees (when there is high insolation and sustainedWw
wind speeds) (Merchant, 2013). Donlon et al. (2002ave found skin SST to be around 0.17 °C cooler
than sub-skin SST when free of diurnal warming effets, and at wind-speeds greater than 6m/s.
Although the skin effect is a different physical efiect from the diurnal variation, when diurnal variations
are large, the skin effect can be confused (espetiawhen there is low wind speed and higher
insolation). Satellite and in situ measurements areomplementary to each other and are often blendeih
one dataset (e.g.: National Oceanic and Atmospheri@dministration (NOAA) Optimum Interpolation
Sea Surface temperature (OISST)), where the sub-skiskin SST differences are taken into account.
Infrared satellites always measure skin SST, howevesome products are adjusted to report a sub-skin
SST, dependant on the users. Monitoring of the SSderived from satellites is promoted by the Group
for High Resolution Sea Surface Temperature (GHRSS)IZ, which provides a framework for SST data
sharing, best practices for data processing.

Satellite measurements offer a global horizontal cverage, and a continuous synoptic temporal
coverage, which allows fora more uniform coveragé¢han in situ measurements (Lee and Gentemann,
2018). As such, satellite measurements resolve famds that are not captured by in situ measurements,
such as large-scale signals and teleconnectionsge. El Nifio/Southemn Oscillation, ENSO), and smal
scale features such as fronts and eddies. In additn, they also cover areas of difficult access, suas the
high latitude oceans, where in situ measurements arscarce. Because of these advantages, operational
satellite-derived SSTs are used to suppornt weathdorecasting and near real-time oceanography.
Satellite SST retrievals are available from a varity of polar-orbiting and geostationary platforms
carrying microwave and infrared sensors (Robinsonad Donlon, 2003). These include the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) onboad the geostationary Meteosat Second
Generation (e.g.: Robinson et al., 2012), the Advaed Very High Resolution Radiometer (AVHRR)
sensors onboard the different NOAA polar orbiting datforms (e.g.: Casey et al., 2007) and more
recently on the suite of Metop satellites (e.g.: LBorgne et al., 2007; Marsouin et al., 2015), the
Moderate Resolution Imaging Spectroradiometer (MODS) on board of the Terra and Aqua satellites
(Minnett et al., 2002), the Atmospheric InfraRed Sander (AIRS, Aumann et al., 2003), aboard the
Aqua satellite, and from the Infrared Atmospheric Sounding Interferometer (IASI) on board the three
Metop satellites since 2007, 2012 and 2018 (Siméaatial., 1997; August et al., 2012; O'Carroll et al
2012). More recently, SST is also measured by thee8 and Land Surface Temperature Radiometer
(SLSTR) as part of the European Sentinel Mission, &ntinel-3 (Donlon et al., 2012). As part of the

2Www.ghrsst.org
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European Space Agency Climate Change InitiativeSietace Temperature project (ESA SST CCI), a
consistent re-analysis of daily 0.05°x0.05° resoluSSTs from 1981 to 2016 has been produced using
observations from both the AVHRR and Along Track®ung Radiometer (ATSR) and a data
assimilation method where there were no measureni@atod et al., 2019; Merchant et al., 2019).

IASI onboard Metop has a polar orbit that coveesehtire Earth’s surface twice a day, in the
morning and evening. The instrument was designeddmerical weather prediction and atmospheric
composition monitoring (Collard et al., 2009; Claul et al., 2009; Hilton et al., 2012), but withn@o
than thirteen years of readily available data te daith the prospect of having a similar instrutmen
until 2040 with the IASI-NG mission, IASI can albe used in climate research. Although interest in
exploiting spectrally resolved data to study clienaariability has been previously highlighted
(Clerbaux et al., 2003; Brindley et al., 2015; 3nat al., 2015), and the need to construct a cérdata
record is becoming increasingly evident, relativétie has been done so far to generate consistent
records for climate variables with IASI (i.e.: dexd with a single algorithm from a single well-
calibrated instrument, with no substantial charigale instrument characteristics over time). lteor
to be adequate for use in climate applications, &3& must be not only accurate, but also congisten
over time (i.e.: homogeneous). Since IASI is a rgn “sentinel” mission that is planned for flyiag
least 18 years, with the 3 instruments built atddwme time and flying in constellation, continuatyd
stability of IASI-derived data are ensured. In falite to its stability, IASI is used as the refeen
instrument in the Global Space-based Inter-Calitma®ystem (GSICS) (Hewison et al., 2013). Finally,
long-term continuation of the program is also gatgad, as the new generation of Infrared
Atmospheric Sounding Interferometers (IASI-NG) (®kux and Crevoisier, 2013; Crevoisier et al.,
2014), will be launched on three successive Metdpcond Generation satellites within the 2023-2040
timeframe.

Although there is an operational IASI SST produaikable from EUMETSAT (L2Pcore) that
is complemented by the EUMETSAT OSI SAF IASI SS@durct (GHRSST L2P), the goal of this
study is to obtain a long-term IASI (only)-derivB&T data set and assess if it is suitable for thma
studies (trend estimation and inter-annual vaiiigai particular). This dataset, as compared teot
datasets will have the advantage of being glolsabfgosed to geostationary satellites), homogeneous
and uniform (uses one instrument); an essentiéfdor climate data records. For this, we usawpe
method of SST retrieval, based on Planck’s lawatntbspheric corrections, from reprocessed
homogeneous IASI radiances that can produce astensiSST record for the period available to date
(and which can be expanded easily in the futura@® data becomes available). The reprocessed IASI
dataset and the retrieval methods are both descimthe next section (Section 2). The results are
presented in Section 3, where we intercompare atasét with other SST datasets and show inter-
annual variability and trends in SST for the stpdyiod of 2008 to 2019. The results are discussed i
Section 4, where conclusions on the suitabilitpuf dataset for climate applications ispresented.
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2 Data sets and SST retrieval method

2.1 IASI data and channel selection

In this work, we use IASI/Metop-A radiances (also alled L1C data) that have been recently
reprocessed by EUMETSAT (European Organisation fothe Exploitation of Meteorological Satellites),
ensuring data homogeneity (changes in processingdee of the main sources of inhomogeneity (Kar et
al., 1993)). Note that skin temperature is a produ@vailable within the IASI L2 EUMETSAT portfolio,
but, to date, a consistent record is not availablegs the backward reprocessing with the latest versin of
the Eumetsat algornithm has not been performed yet.

The 1ASI instrument (Cleraux et al., 2009) measure radiances in the themal infrared spectral
range between 645 and 2760 c'ﬂn:orresponding to 8461 spectral channels, every G.2m-1, with an
instrument response function of 0.5 cm-half-width at half maximum after apodization. More than 1.2
million radiance spectra per day are provided by eeh IASI instrument, with a footprint on the ground of
12 km diameter pixel (at nadir) over a swath widthof about 2,200 km. IASI-A (used in this work)
revisits all points on the Earth’s surface twice alay at around 9:30 and 21:30 local time. Metop-A
satellite is now exploited on a 'difting” orit fr om June 2017 onwards, in order to extend its useful
lifetime from 2019 to 2022 (EUMETSAT, 2016). Locdime at ascending node will be slowly
decreasing from the nominal mission value of 21:3@ June 2017 to 19:30 in 2021.

To find the most informative channels to retiieve sa surface temperature from the 8461 1ASI
channels, a simple method, based on the Jacobiarishaghtness temperature, is used. This method
simulates a set of spectra representative of IASI@asurements (i.e.: season, location, atmospheric
composition), and statistically analyses their Jadmans, which measures the sensitivity of the IASI
measurements with respect to the surface temperaey at each wavenumber. Clear sky spectra are used
in order to access information at the surface.

Spectra were simulated using the RTTOV (Radiative fansfer for TOVS; Saunders et al., 2018)
code (version 12.1), using meteorological parameseirom ECMWF and chemical parameters from the
Copemicus Atmosphere Monitoring Service (CAMS; hips://atmosphere.copemicus.eu/) (Tables Sla
and S1b, in the Supplement). The spectral emissiyibver the sea is calculated directly in RTTOV,
based on the IREMIS model (Saunders et al., 2017)ieh is parameterized in terms of zenith angle,
surface wind speed and skin temperature. The RTTOWode is run on two days: a day in boreal winter
(01/01/2017) and summer (01/07/2017); at 9am and®gapproximately around the crossing time of
IASI), for a +/- 7° longitude band centered on theero longitude, gridded to a 1°x1° resolution. This
amounts to a total of ~légeophysical scenes to analyze. After selecting tienulations over the sea,
we calculated the average surface temperature Jadah spectrum obtained from these spectra. In this
Jacobian spectrum, we first select two spectral bals associated to the highest signal-to-noise ratithie
[800-1000] crﬁlspectral band and the [1060-1260] cthband. Then the channels with maximum values
(i.e., the values the closest to a low frequencywvatope function representing the upper limit of the
average Jacobian spectrum) were selected in theseotbands. In order to limit the number of selected
channels to about 100, the channels are first filked to the 0.5% closest to the upper limit functionin the
[800-1000] crﬁlspectral band, and 2%in the [1060-1260] crhband. A second filtering is applied by
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splitting the spectral band into ten sub-bands of @-15 cmitand determines the channels with the highest
spectral correlation with the channel the closestat the Jacobian upper limit function. In the end 129
channels were selected. These selected channels sl®wn in the Supplement, in Figure S1 as black
crosses superposed on a typical IASI spectrum, anttie actual values are presented in Table S2 in the
Supplement.

2.2 Emissivity over the sea

At each of the selected channels, the temperaturd, can be computed for each cloud free scene
(cloud coverunder 10 %, using the L1c IASI cloud fag derived from synchronized AVHRR,
measurements at each IASI| spatial foot print) as éunction of the radiance by using the inverse of
Planck’s function (eq. 1):
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In order to study large-scale trends and variabiliy in SST across oceans, we averaged the IASI
observational record on a monthly 1° x 1° grid. Gien that IAS| day and night measurements are taken
at around 9:30 AM and PM, local time, we choose ithis work to average both observations for easier
comparison with the other datasets. According to Rbinson (2004) and Merchant (2013), these trends
and variability occur on time scales of months to gars, and on spatial scales of 500-5000 km, in the
case of inter-annual variability. Therefore, they ae captured by these spatial and temporal resolutins
(while simultaneously keeping our analysis computadnally efficient).

Figure 1. (a) Monthly mean emissivity for January D17 averaged overa 1°x1° grid; (b)
Corresponding monthly mean SST over the ocean regived from IASI| radiances averaged overa 1°x1°
grid.

2.3 Water vapor attenuation and correction

The SST data was first compared with ERA5 (Hersbaclet al., 2020). ERAS is a state-of-the-art
reanalyisis, with a stability over time that a product like the L2 from EUMETSAT could not provide (as
we will show in the next section). Although ERA5 mw have issues in certain regions, such as tropical
East Africa (Ssenyunzi et al., 2020), it has globdl-hourly coverage, at a 0.25° resolution, which mas
it appropriate and convenient to interpolate to thetime and location of the satellite observation. In
ERAS the surface temperature overthe ocean is conmuped from an analysis by the Operational Sea
Surface Temperature and Ice Analysis (OSTIA, McLare et al., 2016). Their SST analysis blends
satellite and in situ observation with the resultip SST representing the foundation SST fields (i.e.
measured a few meters deep; which can be assumedths same as sub-skin at night, when SST is free
from diurnal variability). Since the ocean skin tenperature is measured at about 1Qum thickness,
parameterizations of different near surface oceanféects (i.e.: cool skin effect due to turbulent andong
wave radiative heat loss to the atmosphere; warm jer effect due to low winds and solar radiation; ad
salinity effects on the saturation of specific hundity at the surface) are included in the code to
determine the skin temperature over the ocean (ECMW, 2016; Hirahara, et al., 2016). Using ERAS5,
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we calculated the mean difference between skin amlb-skin SST and the results show that the skin
SST is generally cooler than sub-skin SST by 0 to.D °C (not shown here).

This comparison shows an overall negative bias wittASI-derived SST (Figures 2-a and 2-b),
which is highest over the tropics. Over the tropicghe pattern of the bias is close to the structuref mean
integrated water vapor (IWV, i.e. total column wate vaporin mm), shown in Figures 2-c and 2-d. There
is a high correlation between the bias and IWV, wit the regions of maximum bias corresponding to the
areas where the water vapor is also highest. In ththermal infrared, the water vapor continuum
contaminates the whole spectral domain. Although wattempted to choose the best channels for SST
retrieval, the prevalence of emitting/absorbing wagr vapor at all channels is responsible for a sigia
attenuation that produces an overall negative biasn the SST estimates that needs to be corrected.

(b) IASI-ERAS | SST (°C) | Jul 2017

" S

50 [*2

(d) ERA5 | IWV (mm) | Jul 2017

-150 -100 -50 0 50 100 150

Figure 2. (a) Difference between IASI-derived SSTrad ERA5 SST for January 2017; (b) Same
as (a) but forJuly 2017; (¢) Monthly mean IWV forJanuary 2017; (d) Same as (c) but for July 2017.
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Corrections of the water vapor attenuation haven leeg¢ensively discussed in previous studies,
and several atmospheric correctors have been Hsau. split window retrieval methods (McClain et
al., 1985; Walton et al., 1998), and adaptatiomsguadditional channels in the near infrared, to-no
linear estimators (Minnett, 1990; Emery et al.,49Rilpatrick et al., 2001; Li et al., 2001; Barton
2011) to approaches involving radiative transfedeiling (Merchant and Le Borgne, 2004) and
optimal estimation (Merchant et al., 2008).

In this work, the goal was to use an easy and guiethod that could be applied to the monthly
mean data. In order to remove the IWV contributiwa,started by computing the SST bias as a
function of IWV from ERA5 and performing a quadcdiit on the data for each month and year (as this
relationship varies throughout the year and tasadeextent from year to year). An example of tlas b
fit is given in Figures 3-a and 3-b for January 2@hd July 2017. In this paper, results for Janaad/
July will be shown, in order to illustrate the maxim seasonal range. This bias due to IWV is then
removed from our previous estimation of SST andésalting SST fields are shown in Figures 3-c and
3-d. They show an increase in the temperaturenmpesison with the previous estimate, especially in
the tropics. When we compared the corrected SST thv first guess SST, similar differences as the
difference between first guess SST and ERA5 waraddgnot shown). The uncertainty in the corrected
SST depends on the IWV, 88 STPIWV was computed. For a range of IWV values froimo @0
kg/m2, the uncertainty is between around 0.05 a#8 K.
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Figure 3. (a) SST bias fit as a function of IWV fordanuary 2017; (b) Same as (a) but for July
2017; (c) Corrected IASI-derived monthly mean SSTdr January 2017; (d) Same as (c) but for July
2017.

The signal attenuation of the infrared radiation enitted by the sea surface due to water vapor is
known to be the largest error source in the conveisn of SST from infrared satellite data. Other error
sources are the presence of clouds (which we attettp minimize by choosing only cloud-free scenes),
other radiatively active gases (e.g.: carbon dioxig, nitrous oxide, methane; which we limit by carefly
selecting the best channels) and aerosols (absoriginemitting radiance, and may also scatter it). The
concentration of aerosols is more variable and theradiative properties less well understood than fo
water vapor and other gases. The impact of aerosolsn SST computations can range from insignificant
(in clean air conditions) to highly significant (in for instance, dust storms). Although the impact
aerosols will not be corrected in our dataset, it Wl be considered when interpreting the results,
especially in regions prone to the effect of dust@rms, such as the Persian Gulf and off the coastfo
West Africa.
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Once this method of retrieving SST from IASI radiamlata was established, it was applied to
the entire period of available reprocessed IASaA{2008-2019). In addition, at higher latitudes, ou
dataset covers areas that contain sea ice (ee@s arhere SST is negative in Figures 3-c and Sidye
our method does not account for this (the emigsvithe ice is different from the emissivity okth
ocean), we removed these areas from our datageg, ERAS5 monthly mean sea ice concentration
fields. The resulting dataset was compared firgh ®RAS5 and IASI L2 (provided by EUMETSAT)
skin temperature over the ocean (skin SST, butdfertb referred to as SST for simplicity) data for
validation, and second with two independent and-d@tumented SST climatological datasets to
assess its suitability for climate studies.

3 Results

3.1 Assessment of IASI-derived SST dataset

For the validation of our IASI-derived skin SST alsd#t (henceforth referred to as IASI SST), we
compared mean discrepancies and standard devatdiacrepancies between our dataset and the skin
temperature over the sea product from ERAS (asritbestin the previous section, and referred to
henceforth as ERA5 SST) and IASI L2 skin SST frodMETSAT (referred to as L2 SST). Note that
our SST dataset was not directly compared withreefee in situ data such as drifting buoys, asishis
sub-skin SST data. On the other hand, reanalysidekperature data is available at relatively high
spatial and temporal resolution. For climate agpians, an important quality to consider is stapili
(i.e.: constancy) in these discrepancies statigtigs: GCOS, 2006), moreso than accuracy at a
particular instant, and the variability structuats global scale.

The EUMETSAT L2 SST product (IASI Level 2 PPF (RPuodProcessing Facility)) is the skin
temperature product over the sea derived priméoiy IASI for cloud-free scenes. For cloudy scenes,
it uses the Advanced Microwave Sounding Unit (AMSahd the Microwave Humidity Sounder
(MHS), which are synchronized with IASI's scann{ftdJMETSAT, 2017a; 2017b). This SST product
is also available for all cloud cover unlike outateet, and is therefore more complete. However, the
processing used to derive the skin temperatureWased over time, and as a result this dataset has
discontinuities (Bouillon et al., 2020), which wide shown in this section.
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Figure 4. Mean SST differences between IASI and ER5 (a, b), IASI and EUMETSAT L2
data (c, d), and EUMETSAT L2 and ERAS5 (e, f) for Jmuary 2008 and 2017.
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Figure 5. Same as Figure 4 but for July.

Figures 4 and 5 show the mean temperature differeress between IASI SST, L2 SST and ERAS
SST for2008 and 2017, for January (Figure 4) anduwly (Figure 5). In January, the differences between
the IASI SST and ERA5 SST are generally under 1 °Cwith a positive difference over the Equator and
south of 50 °S and a generally negative differencelsewhere. There seems to be a much larger bias in
the tropics in 2017 compared to 2008, and an inveisn of the bias around the gulf stream. These caneb
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due to a couple of reasons: on the one hand, theofgoints in some regions along the Equator in
2008 due to the cloud cover we are using (2008eszsclear sky measurements, with gridpoints with
no measurements); on the other hand, it may beadilie IWV correction. These points may fall
further from the curve fit between IWV and SST, anay therefore be over/undercorrected in some
years. In July, positive differences are higheuamh50 °N. The pattern and order of magnitude ef th
biases are approximately the same for 2008 and.2017

The differences between IASI SST and L2 SST pradact of the same order of magnitude as
the differences between IASI SST and ERA5 SST &nuav a similar spatial pattern) for both months
in 2017 when the L2 SST retrieval is most up tedBiowever, for 2008, the differences reach higher
values (up to 5 degrees): there is a general wamii IASI SST for July 2008, and a warm bias over
the tropical and higher latitudes in January 200tre is a clear decrease in the differences betwee
IASI SST and L2 SST data from 2008 to 2017, whgchansistent with the clear decrease in the bias
between L2 SST and ERA5 SST from 2008 to 2017.

Figures 4 and 5 show that the L2 SST data is insterg in time, which is explored hereafter.
This discontinuity in the L2 SST data would impéideuse in climate studies, and hence the advantage
of the IASI SST dataset computed in this work.datf several changes in the L2 SST data processing
have been reported, which have impacted the S$haiss. These changes include changes in the
clouds (e.g.: cloud detection algorithms), spatablution (i.e.: inclusion of both even and od&IA
pixels starting in March 2010), retrieval and pisiag algorithms (Van Damme et al., 2017).

We extend our analysis over the entire 2008-201@®geand plot the impact of the L2 SST
product updates, with respect to the reference EB35b dataset. Figure 6 shows the evolution over
time of the globally averaged SST bias and standavehtion for the IASI SST and L2 SST, with
respect to ERAS5 SST.

According to Figure 6, while the bias and standidation remain approximately constant in
the IASI/ERAS comparison, it clearly varies interaaially in the L2/ ERA5S comparison. With time, and
in particular after 2015, the L2 SST product valapproach those of ERA5 and there is a clear
decrease in the bias and standard deviation, ¢ensiwith changes in the data processing.

The bias in the IASI SST dataset is approximatel @or both January and July, with absolute
biases close to 0.5 °C throughout the entire pgebdck Table S3 for the actual values). For the L2
SST data there is an overall decreasing trendtim lhas and absolute bias, with increases and
decreases through the years. For instance, tharsteep decrease in the absolute bias from 1i% °C
January 2008 to 0.8 °C in January 2009 that mighehbeen due to major changes in cloud coverage,
surface temperature and temperature profiles repdor April 2008 (Van Damme et al., 2017). The
bias continued to decrease from 2009 to 2010 dacsutemperature is only provided for the cloucfre
observations. From 2010 to 2011 there is an inergathe bias. During 2010, the number of cloud:-fre
observations was increased and later temperatioernation started being provided for cloudy pixels.
From 2011 to 2012 the bias decreases again witimpp@vement of cloud screening for temperature
retrievals in October 2011. In September 2014 gtieea major update in the processing algorithrh wit
the arrival of a new IASI L2 processor, which iidwed by a slight decrease in the bias. In January
2016, there is a peak in the bias following upd&tdbe surface temperature algorithm in September
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2015. By July 2016 the bias has decreased due toportant improvements in the temperature retrieval
algorithms from May 2016 onwards.

Figure 6. (a) Evolution of the bias (IASI-ERA5 andEUMETSAT L2-ERAS) and its standard
deviation (in shaded color) in SST overtime for Jauary; and (b) for July; (c) Absolute bias of
differences with standard deviation (in shaded colg for January; and (d) for July.

The standard deviation of the differences betweerhe IASI SST and ERA5 SST remains
approximately constant throughout the period at stuly, at around 0.6-0.8 °C in both January and July,
while the differences in standard deviation of bothdatasets is approximately 0.2 °C. This shows the
variability in both datasets is approximately the ame. Forthe L2 SST dataset, the standard deviationf
the difference with ERA5 shows an overall decreasevertime. For January, the standard deviation of
the difference goes from about 2 °C in 2008 to legkan 0.5 °C in 2017. For July, it drops from aboutl
°C in 2008 to less than 0.5 °C in 2017. There ards® increases at some years: January 2011, 2014 dan
2016, and July 2011 and 2013 that are consistenttiisome of the changes in the L2 SST data
highlighted before. The difference in standard dewation between L2 SST and ERA5 SST is negative
throughout the entire period, and decreases overnie. This means the variability in SST was
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underestimated in the L2 data, especially unty 2014 (and January 2015). Although it is not shown
there are also differences between the bias andata deviation time series at different latituaedbs.
The absolute bias is higher for the 30-60 °N ldttiand, especially in July, and the standard

deviations are also higher for this latitude band.
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Figure 7. Scatterplots of the correlation between g@irings of the three datasets: IASI,
EUMETSAT L2 and ERAS. The correlation is chosen atll months of January and July of 2008-2019
(12 months), separately to highlight the seasonalaviation.
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Figure 7 shows the correlation between pairinghefthree datasets. The correlation is chosen
at all months of January and July of 2008-2019n(tidths) separately to highlight seasonal variation.
Although the correlation between all three SST sitais high, with correlation coefficients clogelt
(over 0.99), there is a bigger dispersion in theSIST over the entire period in Figure 7, especialty
January. This corresponds to the higher differeficel\S| and ERAS5 vs. L2) discussed above for the
beginning of the period, and further highlights tfeed for a consistent data record.

Table S3 in the Supplement shows a summary ofethdts presented above, averaged over the
entire period. It reiterates that our IASI-deridataset has a low bias and standard deviationighd h
correlation, when compared with ERA5 SST and L2 SSiice the IASI SST bias due to water vapor
is corrected using the IWV in ERAS5, the global mééas is close to zero. Although our dataset
depends on ERAS for wind fields and water vaporexion (constant over one month), it is essentiall
driven by IASI radiances. The retrieval, even ifadbed using reanalysis, does not reproduce the
reanalysis, as the temporal and spatial variatwestill driven by the satellite observations.

3.2 Comparison with other independent SST datasets

To assess the quality of our dataset for the stdidsriability and trends we also compare our
dataset with independent SST measurements. Thes’@AA’s Optimal Interpolation SST (Reynolds
et al., 2002) and Hadley Centre’s Global SST (Raghal., 2003), that have been extensively used in
climate studies. Our SST dataset is cloud-freerdier to check the impact of the data gaps (inespac
and time) on our data, the IASI SST monthly meald§ were also compared in this section with the
full (i.e.: not matched) ERA5 SST dataset in teohstandard deviation and trends.

The Hadley Centre Global Sea Ice and Sea Surfaopd@mture (HadISST version 1.1) is a
combination of monthly globally complete fields X1°) of SST and sea ice concentration that is
available from 1871 to the present. The HadISSE usduced space optimal interpolation applied to
SSTs from the Marine Data Bank (mainly ship tracks) adjusted satellite-derived SST data from
1982 onwards (monthly SST from NOAA's operationdH#RR instruments). SST for grid cells
partially covered by sea ice are estimated frorissitzal relationships between SST and sea ice
concentrations (Rayner et al., 2003).

The NOAA Optimal Interpolation SST analysis, versib(OISSTv2) is a global gridded
(1°x1°) dataset, computed from a combination obademperature observations from satellite
(AVHRR) and in situ platforms, such as ships andylsumoored and drifting). Because the input data
are irregularly distributed in space, they aret filaced on a regular grid, before statistical rodth
(i.e.: optimum interpolation) are applied to fitl missing values. The methodology used to creae th
dataset includes a bias adjustment step of th#itgatiata to in situ data prior to interpolation
(Reynolds et al., 2002).

These datasets are combinations of different obens and observation types (e.g.: satellite
and in situ) that vary over time, as different data become available. Our data is based on infama
from one instrument only, and therefore will notfsusuch changes and will produce homogeneous
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data more easily. This makes it a good dataset farther more complex datasets to be compared against,
provided that it can estimate the trends and variallity correctly. However, it needs to be taken into
account that while our SST dataset is skin SST, HA8ST and OISSTv2 are sub-skin SST datasets.

3.2.1 SST inter-annual variability

Figure 8 shows the standard deviation in January SBfrom 2008 to 2019, for IASI|, ERAS5,
OISSTv2 and HadISST and Figure 9 shows the same, bfor July. Note that we use the full (not IASI-
matched) ERAS5 SST dataset in order to assess the pact of cloud cover, and spatio-temporal
interpolation on our data and to keep a similar conparison method for the other two datasets.

Figure 8. Monthly mean standard deviation in SST fo January 2008-2019, for IASI, ERA5, OISSTv2
and HadISST.

For both months, itis clear that in general, the AS| SST dataset has a higher variability
globally, while the HadISST has generally a lowerariability. The larger noise in some areas for the
IASI SST dataset (especially in July in the northem hemisphere) could be due a sampling issue.
Because in the IAS| dataset only clear pixels areetected, the gaps in the data due to cloud cover git
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create an artificial higher variability. The regions where the variability in IAS1is higher than for the
other datasets (especially in the Northern Hemisphe, in the Northem Pacific ocean) do coincide with
the regions where total cloud coveris close to 1/00% (not shown).

Figure 9. Same as Figure 10, but for July.

For January, there is a clear high variability translated with a standard deviation that exceeds 1.5
°C in the tropical Pacific region in all datasetsdue to the ENSO, which is most intense during the
months from Decemberto February. The ENSO is theteongest internal climate mode at the inter-
annual timescale, and consists of SST excursions time central and eastern equatorial Pacific (Latifand
Keenlyside, 2009). We investigate SST/ENSO relatiship further in Figure 10.

There are also otherregions of high variability that are present in all four datasets (although less
intense forthe HadlSST). Forinstance, in the nohern Pacific the standard deviation in SST exceeds
°C in IASland ERA5 and OISSTv2. This is due to thenterannual changes in the surface transport and
path of the Kuroshio Extension System (Qiu, 2000)According to Qiu (2000), SST in this region is
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colder (warmer) when the surface transport is weake(stronger) and southerly (northerly). Ocean
dynamics also play a central role in the inter-annal variability of SST over the Gulf Stream extensim
(Wills et al., 2016) in the norther Atlantic, whichis mostintense in the IAS| and ERA5 datasets. O#r
regions where the SST inter-annual variability exceds 1 °C are the South Pacific, off the coast of Véé
Africa, in the southem Atlantic and off the east ®ast of South America, and in the Southermn Ocean
from the tip of South Africa eastward into the Indian Ocean (in IAS| and ERAS). The latteris also
observed in July.

Figure 10. (a) Anomalies in IASI SST data for Janugy 2011, in relation to the January
climatology for 2008-2019; (b) Same as (a) but fd&2016 SST anomaly; (¢) and (d) Same as (a) and (b)
but for ERA5 SST.

For July, there are also regions of higher variabilty common to all four datasets such as the
intense variability observed in the northern Pacifc and northern Atlantic (particularly high in the | ASI

This article is protected by copyright. All rights reserved.



data). Standard deviation is also high (over 1.pifi@ll datasets along the equatorial Pacific and
coastal Peru, which is related to equatorial aras@b upwelling, respectively. According to Deseale
(2010), in the tropics nonseasonal variabilityighler where there is a local minimum in the longrte
mean SST due to coastal and equatorial upwellitngmcolder water rises from the deeper ocean to the
surface).

To highlight the effect of ENSO on SST, we showvrigure 10 the difference in the January
SST anomalies between years of strong El Nifio anlliba. During La Nifia events, there is a negative
anomaly in the SST in the tropical Pacific, whierte is a strong positive anomaly during the ElaNifi
This difference is well captured by our IASI data@ep), which shows very similar SST anomaly
structures to ERAS albeit slightly noisier, probatle to lower number of points in our clear-sky
dataset.

3.2.2 SST trends

In order to assess the trends over the past decati®r the series of datasets used in this work,
we show in Figure 11 the trends in SST for thequkbetween 2008 to 2019. The stippling over the
trend fields denotes the statistically significaends. The trends were computed using the Theil Se
method (Theil, 1950 and Sen, 1968), a non-paracngtatistic that computes the median slope of all
pairwise combinations of points. The statisticghgficance of the trends was assessed using theMan
Kendall test (Mann, 1945, Kendall, 1948), at a 18ignificance level.

In general, there is good consistency betweendhedatasets, which show similar warming
and cooling trend patterns. In all datasets, weasa cooling trend in the subpolar Atlantic Ocean
and a warming trend in the Gulf Stream region. €htesnd patterns are consistent with the results
found by other studies and presented in the Intengunental Panel on Climate Change (IPCC, 2013)
reports and is part of a long-term trend that reenHlinked with a weakening of the Atlantic meritabd
overturning circulation (AMOC) (e.g.: Dima and Loamn, 2010 and Caesar et al., 2018). The AMOC
is a system of ocean currents in the North Atlaratid it is suspected that its weakening is linkét a
freshwater anomaly in the northern Atlantic. Thi®@maly has been linked to irregular sea-ice export
from the Arctic Ocean (Belkin et al., 1998, Dicksetral., 1988), increasing river discharge into the
Arctic Ocean (Peterson et al., 2002) and meltwatericeberg discharge from the Greenland Ice Sheet
(Rahmstorf et al., 2015).

For all datsets, there is also a significant wagrmend over the tropical Pacific and off the west
coast of North America. This positive trend is pEra tripole structure in the SST trends over the
eastern portion of the Pacific Ocean, which alstuithes a positive trend at around 50 °S and a ivegat
trend in between. This structure is present inlalasets, and is related to the ENSO. The stroh§ 20
El Nifio event, towards the end of our study peraadised a strong warming that increased the SST
trend for the tropical Pacific region. This candeen in Figure S2, in the Supplement, which shbes t
evolution of the multivariate ENSO index over tregipd at study (top), with the corresponding SST
averaged over the latitude/longitude intervals wHeENSO has the most influence. It is clear from thi
figure that positive (negative) ENSO indexes cqroesl to a warmer (colder) SST. Furthermore, the
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occurrence of a strong La Nifia event (negative inde at the beginning of the time period, and a strog
El Nifio event (positive index) at the end promptedn intense positive SST trend in the region for tts
period.

This is consistent with Latif and Keenlyside (2009)which found that long-term trends in the
Equatorial Pacific SST during the 1950-2006 periodhow a warming trend with a pattern that is “El
Nifio-like”. However, other studies also suggest tlidrend patterns over this region are sensitive tahe
period at study (e.g.: Cane etal. (1997) found ad_Nifia pattern for the 1900-1991 period) and the
historical dataset used (Vecchi et al., 2008). Morbroadly, long-term trends over the Pacific, Indianand
Atlantic Oceans have all been found to be influenatby ENSO (Compo and Sardeshmukh, 2010).
Compo and Sardeshmukh (2010) have also shown itpossible to separate the trends in terms of
ENSO-related and —unrelated trends, but this is owtide the scope of this paper. Here, the goal is nmy
to show that the IASI-derived dataset is able to rproduce these trends accurately (i.e.: show the sam
trend patterns as the other datasets).

(b) ERA5 | SST Trends (°Clyr) | 2008-2019 os
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Figure 11. (a) Linear trends in IASI SST for 2008a@ 2019. The stippling over the trend fields
denotes the statistically significant trends at 10%ignificant level. (b) Same as (a) but for ERAS SIS
(c) Same as (@) but for OISSTv2; (d) Same as (a)thor HadISST.

There is also a note-worthy waming trend over théMediteranean Sea that is consistent with the
warming trends found for this region during the pas decades in satellite and field data, as well as i
model simulations (e.g.: Vargas-Yanez et al., 200Rykjaer, 2009; Macias et al., 2013; Pisano et. al.
2020). Marullo et al. (2011) first noted the influace of Atlantic Multidecadal Oscillation (AMO) over
the Mediterranean Sea, then Macias et al. (2013)sa evaluated the contribution of the anthropogenic
induced waming during the last phase of AMO. Othessignificant trends found for this period include a
negative trend at around 50 °S in all four datasetthat are not as intense/ significant in the HadIS®
dataset. Over the Southem Ocean, this dataset isdwn to have issues resulting from sparse data inpu
due to the scarcity of in situ measurements in theegion (Rayner at al., 2003).

In general, there is good agreement between our daiet and the other SST datasets in terms of
inter-annual variability and trends for the 2008-2019 period. Although the period at study is relativéy
short, making it difficult to take physical interpretations and to compare with previous studies thdiave
covered longer tem trends, we can conclude thaty igeneral, our dataset is able to show many of the
same variability and trend structures as the othemore complex datasets, and capture important natuta
phenomena such as the ENSO well. Since our datageebased on a single instrument and consistent
processing, it can be useful as a consistent recafitemperature measurement.

4 Conclusions and perspectives

In this work we presented a reliable way of retieing skin temperatures over the sea based on a
single instrument, IASI. Temperatures were derivedrom the IASI satellite radiances data, based on
Planck’s law and simple atmospheric comections. Tis method was applied to recently reprocessed IASI
L1C data, in order to produce a homogeneous SST datecord. This dataset was first validated using
ERAS and the EUMETSAT IASI L2 data and we provide lasic discrepancy statistics (mean
differences, standard deviation and conelation cdéicients). High conelation coefficients were found
between the three datasets. The bias and standardwdation in our IASI data were found to be stable
over the 2008-2019 period, whereas for the IASI L3ST, there has been a noticeable improvement over
time when compared to ERAS. Overall, for the entirgperiod, our IASI SST discrepancies with respect
to ERA5 SST show a mean global bias close to zezomean absolute bias around 0.5 °C, with a
standard deviation of difference of around 0.7 °Ciad a corelation coefficient of over 0.99. Stabily in
the IASI SST is demonstrated, which is essential folimate-related studies.

Next, inter-annual varnability and trends were comgared for four SST datasets: IASI and ERAS,
in addition to HadISTT and OISSTv2. It was found thet our dataset is able to capture the pattems of
variability and trends well. Despite being noisierthe IASI SST is able to capture the same areas bigh
inter-annual variability (i.e.: over 1.5 °C), including over the tropical Pacific in January comespoiling
to the ENSO. Although the period covered by our sty is not long enough to draw physical
conclusions on the SST trends, similar trend pattes were found in the four datasets. In fact, althogh
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the most intense significant trends were found inhe tropical Pacific due to the strong 2015/2016 El
Nifio, some significant trends that are part of weHdocumented longer-term trends were also capturedyb
our dataset. Forinstance, the cooling trends in th North Atlantic that are related to a slow-down inthe
thermohaline circulation; and the warming over theMediterranean that is a combination of natural
oscillation (AMO) and anthropogenic climate change.

In general, we have shown that the IAS| SST datasetescribed in this paper is suitable for
climate studies, as it produces results comparabl® more sophisticated SST datasets, although some
limitations need to be keptin mind. On the one had, our dataset is a skin SST dataset, which is
different from the sub-skin SST by up to around 0.3°C, depending on the region (the skin effectis
estimated to be 0.17 °C at night-time for wind-spegs over 6m/s, according to e.g. Donlon et al, 2002
and Horrocks et al, 2003.). On the other hand, itd a clear-sky dataset that only includes data under
(near) cloud-free conditions. Improvements to the lgorithm are possible, such as looking into removig
the impact of the viewing angle and the lower tropsphere temperature gradients. In addition, the
method described here does not correct for aeros@lontamination, and does not include areas with sea
ice. Still, as itis based on a single instrumengur dataset can remain stable overtime, ensurinthat as
more data becomes available, it can be used to, farstance, monitor SST trends and detect El Nifio
events.
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