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1. Introduction
Sea surface temperature (SST) is an essential climate variable (ECV) as defined by the global climate observ-
ing system (GCOS), that is used directly in the monitoring of climate trends and variability, or as boundary 
conditions in climate models (e.g., Robinson et al., 2012). The implications of SST data in climate analysis 
and modeling has been studied extensively (e.g., Hurrell & Trenberth, 1999; Rayner, Kaplan, et al., 2009).

SST is relatively easy to observe, and has a long observational history (well documented in Barton 1995; Bot-
tomley et al., 1990; Emery, Castro, et al., 2001; Minnett, Alvera-Azcárate, et al., 2019). Data records of SST 
started with in situ measurement by moving sailing vessels and ships, and later with satellite-tracked and 
satellite-reporting moored and drifting buoys. These measurements, taken from a few tens of centimeters of 
water to up to 5 m below the sea surface, are known as the sub-skin SST. From the mid1970s, SSTs started 
also being computed from infrared satellite data. Satellite radiances are converted into skin SST, which cor-
responds to the SST measured at about 10 μm below the surface of the sea (Emery, Castro, et al., 2001). This 

Abstract Sea surface temperature (SST) is an essential climate variable, that is directly used in 
climate monitoring. Although satellite measurements can offer continuous global coverage, obtaining 
a long-term homogeneous satellite-derived SST data set suitable for climate studies based on a single 
instrument is still a challenge. In this work, we assess a homogeneous SST data set derived from 
reprocessed Infrared Atmospheric Sounding Interferometer (IASI) level-1 (L1C) radiance data. The SST is 
computed using Planck's Law and simple atmospheric corrections. We assess the data set using the ERA5 
reanalysis and the EUMETSAT-released IASI level-2 SST product. Over the entire period, the reprocessed 
IASI SST shows a mean global difference with ERA5 close to zero, a mean absolute bias under 0.5°C, 
with a SD of difference around 0.3°C and a correlation coefficient over 0.99. In addition, the reprocessed 
data set shows a stable bias and SD, which is an advantage for climate studies. The interannual variability 
and trends were compared with other SST data sets: ERA5, Hadley Centre's SST (HadISST), and NOAA's 
Optimal Interpolation SST Analysis (OISSTv2). We found that the reprocessed SST data set is able to 
capture the patterns of interannual variability well, showing the same areas of high interannual variability 
(>1.5°C), including over the tropical Pacific in January corresponding to the El Niño Southern Oscillation. 
Although the period studied is relatively short, we demonstrate that the IASI data set reproduces the same 
trend patterns found in the other data sets (i.e., cooling trend in the North Atlantic, warming trend over 
the Mediterranean).

Plain Language Summary Sea surface temperature (SST) is an essential variable for 
monitoring climate, as defined by the Global Climate Observing System (GCOS; https://gcos.wmo.int/en/
essential-climate-variables/sst). Satellite measurements can offer global continuous SST measurements, 
but their stability over the time needs to be assured. In this work, we present a new data set derived from 
the Infrared Atmospheric Sounding Interferometer, IASI (flying aboard the Metop satellites), and compare 
it with other available data sets. This comparison shows that our data set produces similar means, 
variability and trends as other data sets, with the advantage that it is derived with a single algorithm 
from a single well-calibrated instrument. This assures there are no substantial changes to the instrument 
characteristics over time that might result in artificial trends.
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is the temperature of the molecular boundary between air and sea, where the transfer of heat, momentum, 
and gases (such as CO2) occurs. Sub-skin and skin SSTs are different. Emery, Castro, et al. (2001) have deter-
mined their mean differences to be around 0.3°C and instantaneous differences to vary as a function of air-
sea heat fluxes and the wind speed at the surface. These differences can range from negligible (at nighttime, 
under windy conditions, when there is low insolation and high vertical mixing) to several degrees (when 
there is high insolation and sustained low wind speeds) (Merchant, 2013). Donlon, Minnett, et al. (2002) 
have found skin SST to be around 0.17°C cooler than sub-skin SST when free of diurnal warming effects, 
and at wind-speeds greater than 6 m/s. Although the skin effect is a different physical effect from the diur-
nal variation, when diurnal variations are large, the skin effect can be confused (especially when there is 
low wind speed and higher insolation). Satellite and in situ measurements are complementary to each other 
and are often blended in one data set (e.g., National Oceanic and Atmospheric Administration [NOAA] Op-
timum Interpolation Sea Surface temperature [OISST]), where the sub-skin/skin SST differences are taken 
into account. Infrared satellites always measure skin SST, however, some products are adjusted to report 
a sub-skin SST, dependent on the users. Monitoring of the SST derived from satellites is promoted by the 
group for high resolution sea surface temperature (GHRSST; www.ghrsst.org), which provides a framework 
for SST data sharing, best practices for data processing.

Satellite measurements offer a global horizontal coverage, and a continuous synoptic temporal coverage, 
which allows for a more uniform coverage than in situ measurements (Lee & Gentemann, 2018). As such, 
satellite measurements resolve features that are not captured by in situ measurements, such as large-scale 
signals and teleconnections (e.g., El Niño/Southern Oscillation [ENSO]), and small-scale features such as 
fronts and eddies. In addition, they also cover areas of difficult access, such as the high latitude oceans, 
where in situ measurements are scarce. Because of these advantages, operational satellite-derived SSTs are 
used to support weather forecasting and near real-time oceanography. Satellite SST retrievals are availa-
ble from a variety of polar-orbiting and geostationary platforms carrying microwave and infrared sensors 
(Robinson & Donlon, 2003). These include the Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
onboard the geostationary Meteosat Second Generation (e.g., Robinson et al., 2012), the Advanced Very 
High Resolution Radiometer (AVHRR) sensors onboard the different NOAA polar orbiting platforms (e.g., 
Casey et al., 2010) and more recently on the suite of Metop satellites (e.g., Le Borgne et al., 2007; Marsouin 
et al., 2015), the Moderate Resolution Imaging Spectroradiometer (MODIS) on board of the Terra and Aqua 
satellites (Minnett, Evans, et al., 2002), the Atmospheric InfraRed Sounder (AIRS, Aumann et al., 2003), 
aboard the Aqua satellite, and from the Infrared Atmospheric Sounding Interferometer (IASI) on board 
the three Metop satellites since 2007, 2012, and 2018 (August et al., 2012; O'Carroll et al., 2012; Siméo-
ni et al., 1997). More recently, SST is also measured by the sea and land surface temperature radiometer 
(SLSTR) as part of the European Sentinel Mission, Sentinel-3 (Donlon, Berruti, et  al.,  2012). As part of 
the European Space Agency Climate Change Initiative Sea Surface Temperature project (ESA SST CCI), 
a consistent re-analysis of daily 0.05° × 0.05° resolution SSTs from 1981 to 2016 has been produced using 
observations from both the AVHRR and along track scanning radiometer (ATSR) and a data assimilation 
method where there were no measurements (Good et al., 2019; Merchant, Embury, et al., 2019).

IASI onboard Metop has a polar orbit that covers the entire Earth's surface twice a day, in the morning 
and evening. The instrument was designed for numerical weather prediction and atmospheric composition 
monitoring (Clerbaux, Boynard, et al., 2009; Collard et al., 2009; Hilton et al., 2012), but with more than 
13 years of readily available data to date, with the prospect of having a similar instrument until 2040 with 
the IASI-NG mission, IASI can also be used in climate research. Although interest in exploiting spectrally 
resolved data to study climate variability has been previously highlighted (Brindley et al., 2015; Clerbaux, 
Hadji-Lazaro, et al., 2003; Smith et al., 2015), and the need to construct a climate data record is becoming 
increasingly evident, relatively little has been done so far to generate consistent records for climate variables 
with IASI (i.e., derived with a single algorithm from a single well-calibrated instrument, with no substantial 
changes to the instrument characteristics over time). In order to be adequate for use in climate applications, 
SST data must be not only accurate, but also consistent over time (i.e., homogeneous). Since IASI is a long-
term “sentinel” mission that is planned for flying at least 18 years, with the three instruments built at the 
same time and flying in constellation, continuity and stability of IASI-derived data are ensured. In fact, 
due to its stability, IASI is used as the reference instrument in the Global Space-based Inter-Calibration 
System (GSICS) (Hewison et al., 2013). Finally, long-term continuation of the program is also guaranteed, 
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as the new generation of Infrared Atmospheric Sounding Interferometers (IASI-NG) (Clerbaux & Crevoisi-
er, 2013; Crevoisier et al., 2014), will be launched on three successive Metop—Second Generation satellites 
within the 2023–2040 timeframe.

Although there is an operational IASI SST product available from EUMETSAT (L2Pcore) that is comple-
mented by the EUMETSAT OSI SAF IASI SST product (GHRSST L2P), the goal of this study is to obtain 
a long-term IASI (only)-derived SST data set and assess if it is suitable for climate studies (trend estima-
tion and interannual variability in particular). This data set, as compared to other data sets will have the 
advantage of being global (as opposed to geostationary satellites), homogeneous, and uniform (uses one 
instrument); an essential factor for climate data records. For this, we use a simple method of SST retrieval, 
based on Planck's law and atmospheric corrections, from reprocessed homogeneous IASI radiances that can 
produce a consistent SST record for the period available to date (and which can be expanded easily in the 
future as more data becomes available). The reprocessed IASI data set and the retrieval methods are both 
described in the next section (Section 2). The results are presented in Section 3, where we intercompare our 
data set with other SST data sets and show interannual variability and trends in SST for the study period of 
2008–2019. The results are discussed in Section 4, where conclusions on the suitability of our data set for 
climate applications is presented.

2. Data Sets and SST Retrieval Method
2.1. IASI Data and Channel Selection

In this work, we use IASI/Metop-A radiances (also called L1C data) that have been recently reprocessed by 
EUMETSAT (European Organization for the Exploitation of Meteorological Satellites), ensuring data ho-
mogeneity (changes in processing is one of the main sources of inhomogeneity; Karl et al., 1993). Note that 
skin temperature is a product available within the IASI L2 EUMETSAT portfolio, but, to date, a consistent 
record is not available, as the backward reprocessing with the latest version of the EUMETSAT algorithm 
has not been performed yet.

The IASI instrument (Clerbaux, Boynard, et al., 2009) measures radiances in the thermal infrared spec-
tral range between 645 and 2,760 cm−1 corresponding to 8,461 spectral channels, every 0.25 cm−1, with an 
instrument response function of 0.5 cm−1 half-width at half maximum after apodization. More than 1.2 
million radiance spectra per day are provided by each IASI instrument, with a footprint on the ground of 
12 km diameter pixel (at nadir) over a swath width of about 2,200 km. IASI-A (used in this work) revisits 
all points on the Earth's surface twice a day at around 9:30 and 21:30 local time. Metop-A satellite is now 
exploited on a “drifting” orbit from June 2017 onwards, in order to extend its useful lifetime from 2019 to 
2022 (EUMETSAT, 2018). Local time at ascending node will be slowly decreasing from the nominal mission 
value of 21:30 in June 2017 to 19:30 in 2021.

To find the most informative channels to retrieve sea surface temperature from the 8,461 IASI channels, a 
simple method, based on the Jacobians of brightness temperature, is used. This method simulates a set of 
spectra representative of IASI measurements (i.e., season, location, atmospheric composition), and statis-
tically analyses their Jacobians, which measures the sensitivity of the IASI measurements with respect to 
the surface temperature, at each wavenumber. Clear sky spectra are used in order to access information at 
the surface.

Spectra were simulated using the RTTOV (Radiative Transfer for TOVS; Saunders, Hocking, Turner, 
et al., 2018) code (version 12.1), using meteorological parameters from ECMWF and chemical parameters 
from the Copernicus Atmosphere Monitoring Service (CAMS; https://atmosphere.copernicus.eu/) (Ta-
bles S1a and S1b). The spectral emissivity over the sea is calculated directly in RTTOV, based on the IREMIS 
model (Saunders, Hocking, Rundle, et al., 2017) which is parameterized in terms of zenith angle, surface 
wind speed and skin temperature. The RTTOV code is run on 2 days: a day in boreal winter (January 1, 
2017) and summer (June 1, 2017); at 9 a.m. and 9 p.m. (approximately around the crossing time of IASI), 
for a ±7° longitude band centered on the zero longitude, gridded to a 1° × 1° resolution. This amounts to a 
total of ∼104 geophysical scenes to analyze. After selecting the simulations over the sea, we calculated the 
average surface temperature Jacobian spectrum obtained from these spectra. In this Jacobian spectrum, we 
first select two spectral bands associated to the highest signal-to-noise ratio: the (800–1,000) cm−1 spectral 
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band and the (1,060–1,260) cm−1 band. Then the channels with maximum values (i.e., the values the closest 
to a low frequency envelope function representing the upper limit of the average Jacobian spectrum) were 
selected in these two bands. In order to limit the number of selected channels to about 100, the channels are 
first filtered to the 0.5% closest to the upper limit function in the (800–1,000) cm−1 spectral band, and 2% in 
the (1,060–1,260) cm−1 band. A second filtering is applied by splitting the spectral band into 10 subbands of 
10–15 cm−1 and determines the channels with the highest spectral correlation with the channel the closest 
to the Jacobian upper limit function. In the end, 129 channels were selected. These selected channels are 
shown in Figure S1 as black crosses superposed on a typical IASI spectrum, and the actual values are pre-
sented in Table S2.

2.2. Emissivity Over the Sea

At each of the selected channels, the temperature, T, can be computed for each cloud-free scene (cloud 
cover under 10%, using the L1c IASI cloud flag derived from synchronized AVHRR, measurements at each 
IASI spatial foot print) as a function of the radiance by using the inverse of Planck's function (Equation 1):


 

  
 

2 3

· ·

2· · · ··log 1

h c xT
h c xk
L

 (1)

where x is the wavenumber, L is the radiance, k  =  1.3806e−23  J·K−1, h  =  6.6262e−34  J·s, 
c = 2.9979e + 10 cm·s−1, and ϵ is the emissivity of the surface. Over the sea, in the thermal infrared spectral 
range, the emissivity depends on the wave number, the satellite scan angle, and the roughness of the sea 
surface (e.g., Masuda et al., 1988). For the wavenumbers and scan angles in this study, the emissivity varies 
roughly between 0.98 and 0.99. Past studies have used constant values for the emissivity over the sea (e.g., 
Konda et al., 1994) or have used emissivity models (e.g., Wu & Smith, 1997). In this work, we use a lookup 
table-based method, taken from Nalli et al. (2008). In this method, each interval in wavenumber, satellite 
angle, and wind speed corresponds to a value of surface emissivity. The wind speed in this case was comput-
ed from the European Center for Medium-Range Weather Forecasting (ECMWF) latest reanalysis (ERA5) u 
and v wind components at 10 m, matched spatially and temporally to the IASI observations. ERA5 is a state-
of-the-art reanalysis from ECMWF, which uses advanced models to assimilate vast amounts of satellite and 
in-situ data (Hersbach et al., 2020). ERA5 has an hourly temporal resolution re-gridded to a regular grid 
of 0.25° × 0.25°. This is a simple, straightforward method that provides us with a way to compute surface 
emissivity.

For each IASI observation, we first find the corresponding u and v wind fields from ERA5 and then using 
the lookup table, for each channel, we find the corresponding emissivity. After, the temperature is computed 
at each observation, for each channel, before being averaged in time and space. An example of the monthly 
mean emissivity computed using this method for January 2017, averaged over a 1° × 1° grid is shown in 
Figure 1a. Although emissivity over the ocean exhibits a clear spatial variation, the range of values is limited 
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Figure 1. (a) Monthly mean emissivity for January 2017 averaged over a 1° × 1° grid; (b) corresponding monthly mean SST over the ocean retrieved from IASI 
radiances averaged over a 1° × 1° grid.



Earth and Space Science

to between around 0.984 and 0.992. Figure 1b shows the monthly mean SST for January 2017, with the well-
known pattern of SST with maxima over the tropics and decreasing temperature toward higher latitudes. In 
the temperature retrieval, the biggest source of uncertainty is the emissivity, so the derivative in relation to 
emissivity (∂T/∂є) was computed. For our range of channels and radiances, and considering an emissivity 
of 0.985 (and the constants defined above), the uncertainty is between 0.05 and 0.5 K.

In order to study large-scale trends and variability in SST across oceans, we averaged the IASI observational 
record on a monthly 1° × 1° grid. Given that IASI day and night measurements are taken at around 9:30 a.m. 
and p.m., local time, we choose in this work to average both observations for easier comparison with the 
other data sets. According to Robinson (2004) and Merchant (2013), these trends and variability occur on 
time scales of months to years, and on spatial scales of 500–5,000 km, in the case of interannual variability. 
Therefore, they are captured by these spatial and temporal resolutions (while simultaneously keeping our 
analysis computationally efficient).

2.3. Water Vapor Attenuation and Correction

The SST data was first compared with ERA5 (Hersbach et al., 2020). ERA5 is a state-of-the-art reanalysis, 
with a stability over time that a product like the L2 from EUMETSAT could not provide (as we will show in 
the next section). Although ERA5 may have issues in certain regions, such as tropical East Africa (Ssenyun-
zi et al., 2020), it has global 1-hourly coverage, at a 0.25° resolution, which makes it appropriate and con-
venient to interpolate to the time and location of the satellite observation. In ERA5 the surface temperature 
over the ocean is computed from an analysis by the Operational Sea Surface Temperature and Ice Analysis 
(OSTIA, McLaren et al., 2016). Their SST analysis blends satellite and in situ observation with the resulting 
SST representing the foundation SST fields (i.e., measured a few meters deep; which can be assumed as the 
same as sub-skin at night, when SST is free from diurnal variability). Since the ocean skin temperature is 
measured at about 10 μm thickness, parameterizations of different near surface ocean effects (i.e., cool skin 
effect due to turbulent and long wave radiative heat loss to the atmosphere; warm layer effect due to low 
winds and solar radiation; and salinity effects on the saturation of specific humidity at the surface) are in-
cluded in the code to determine the skin temperature over the ocean (ECMWF, 2016; Hirahara, et al., 2016). 
Using ERA5, we calculated the mean difference between skin and sub-skin SST and the results show that 
the skin SST is generally cooler than sub-skin SST by 0–0.2°C (not shown here).

This comparison shows an overall negative bias with IASI-derived SST (Figures 2a and 2b), which is highest 
over the tropics. Over the tropics the pattern of the bias is close to the structure of mean integrated water 
vapor (IWV, i.e., total column water vapor in mm), shown in Figures 2c and 2d. There is a high correlation 
between the bias and IWV, with the regions of maximum bias corresponding to the areas where the water 
vapor is also highest. In the thermal infrared, the water vapor continuum contaminates the whole spectral 
domain. Although we attempted to choose the best channels for SST retrieval, the prevalence of emitting/
absorbing water vapor at all channels is responsible for a signal attenuation that produces an overall nega-
tive bias in the SST estimates that needs to be corrected.

Corrections of the water vapor attenuation have been extensively discussed in previous studies, and several 
atmospheric correctors have been used. From split window retrieval methods (McClain et al., 1985; Wal-
ton et al., 1998), and adaptations using additional channels in the near infrared, to nonlinear estimators 
(Barton, 2011; Emery, Yu, et al., 1994; Kilpatrick et al., 2001; Li et al., 2001; Minnett, 1990) to approaches 
involving radiative transfer modeling (Merchant & Le Borgne, 2004) and optimal estimation (Merchant, Le 
Borgne, et al., 2008).

In this work, the goal was to use an easy and quick method that could be applied to the monthly mean 
data. In order to remove the IWV contribution, we started by computing the SST bias as a function of IWV 
from ERA5 and performing a quadratic fit on the data for each month and year (as this relationship varies 
throughout the year and to a lesser extent from year to year). An example of the bias fit is given in Figures 3a 
and 3b for January 2017 and July 2017. In this study, results for January and July will be shown, in order to 
illustrate the maximum seasonal range. This bias due to IWV is then removed from our previous estimation 
of SST and the resulting SST fields are shown in Figures 3c and 3d. They show an increase in the tempera-
ture in comparison with the previous estimate, especially in the tropics. When we compared the corrected 
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SST with the first guess SST, similar differences as the difference between first guess SST and ERA5 were 
found (not shown). The uncertainty in the corrected SST depends on the IWV, so ∂SST/∂IWV was comput-
ed. For a range of IWV values from 0 to 60 kg/m2, the uncertainty is between around 0.05 and 0.45 K.

The signal attenuation of the infrared radiation emitted by the sea surface due to water vapor is known to 
be the largest error source in the conversion of SST from infrared satellite data. Other error sources are the 
presence of clouds (which we attempt to minimize by choosing only cloud-free scenes), other radiatively 
active gases (e.g., carbon dioxide, nitrous oxide, methane; which we limit by carefully selecting the best 
channels) and aerosols (absorbing, emitting radiance, and may also scatter it). The concentration of aerosols 
is more variable and their radiative properties less well understood than for water vapor and other gases. 
The impact of aerosols on SST computations can range from insignificant (in clean air conditions) to high-
ly significant (in, for instance, dust storms). Although the impact of aerosols will not be corrected in our 
data set, it will be considered when interpreting the results, especially in regions prone to the effect of dust 
storms, such as the Persian Gulf and off the coast of West Africa.

Once this method of retrieving SST from IASI radiance data was established, it was applied to the entire 
period of available reprocessed IASI data (2008–2019). In addition, at higher latitudes, our data set covers 
areas that contain sea ice (e.g., areas where SST is negative in Figures 3c and 3d). Since our method does not 
account for this (the emissivity of the ice is different from the emissivity of the ocean), we removed these 
areas from our data set, using ERA5 monthly mean sea ice concentration fields. The resulting data set was 
compared first with ERA5 and IASI L2 (provided by EUMETSAT) skin temperature over the ocean (skin 
SST, but henceforth referred to as SST for simplicity) data for validation, and second with two independent 
and well-documented SST climatological data sets to assess its suitability for climate studies.
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Figure 2. (a) Difference between IASI-derived SST and ERA5 SST for January 2017; (b) Same as (a) but for July 2017; (c) Monthly mean IWV for January 2017; 
(d) Same as (c) but for July 2017.
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3. Results
3.1. Assessment of IASI-Derived SST Data Set

For the validation of our IASI-derived skin SST data set (henceforth referred to as IASI SST), we compared 
mean discrepancies and SD of discrepancies between our data set and the skin temperature over the sea 
product from ERA5 (as described in the previous section, and referred to henceforth as ERA5 SST) and IASI 
L2 skin SST from EUMETSAT (referred to as L2 SST). Note that our SST data set was not directly compared 
with reference in situ data such as drifting buoys, as this is sub-skin SST data. On the other hand, reanalysis 
skin temperature data is available at relatively high spatial and temporal resolution. For climate applica-
tions, an important quality to consider is stability (i.e., constancy) in these discrepancies statistics (e.g., 
GCOS, 2006), more so than accuracy at a particular instant, and the variability structures at a global scale.

The EUMETSAT L2 SST product (IASI Level 2 PPF [Product Processing Facility]) is the skin temperature 
product over the sea derived primarily from IASI for cloud-free scenes. For cloudy scenes, it uses the ad-
vanced microwave sounding unit (AMSU), and the microwave humidity sounder (MHS), which are syn-
chronized with IASI's scanning (EUMETSAT, 2017a, 2017b). This SST product is also available for all cloud 
cover unlike our data set, and is therefore more complete. However, the processing used to derive the skin 
temperature has evolved over time, and as a result this data set has discontinuities (Bouillon et al., 2020), 
which will be shown in this section.

Figures 4 and 5 show the mean temperature differences between IASI SST, L2 SST, and ERA5 SST for 2008 
and 2017, for January (Figure 4) and July (Figure 5). In January, the differences between the IASI SST and 
ERA5 SST are generally under 1°C, with a positive difference over the Equator and south of 50°S and a gen-
erally negative difference elsewhere. There seems to be a much larger bias in the tropics in 2017 compared 
to 2008, and an inversion of the bias around the gulf stream. These can be due to a couple of reasons: on the 
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Figure 3. (a) SST bias fit as a function of IWV for January 2017; (b) Same as (a) but for July 2017; (c) Corrected IASI-derived monthly mean SST for January 
2017; (d) Same as (c) but for July 2017.
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one hand, the lack of points in some regions along the Equator in 2008 due to the cloud cover we are using 
(2008 has less clear sky measurements, with gridpoints with no measurements); on the other hand, it may 
be due to the IWV correction. These points may fall further from the curve fit between IWV and SST, and 
may therefore be over/undercorrected in some years. In July, positive differences are higher around 50°N. 
The pattern and order of magnitude of the biases are approximately the same for 2008 and 2017.

The differences between IASI SST and L2 SST products are of the same order of magnitude as the differenc-
es between IASI SST and ERA5 SST (and show a similar spatial pattern) for both months in 2017 when the 
L2 SST retrieval is most up to date. However, for 2008, the differences reach higher values (up to 5°): there is 
a general warm bias in IASI SST for July 2008, and a warm bias over the tropical and higher latitudes in Jan-
uary 2008. There is a clear decrease in the differences between IASI SST and L2 SST data from 2008 to 2017, 
which is consistent with the clear decrease in the bias between L2 SST and ERA5 SST from 2008 to 2017.
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Figure 4. Mean SST differences between IASI and ERA5 (a), (b), IASI and EUMETSAT L2 data (c), (d), and EUMETSAT L2 and ERA5 (e), (f) for January 2008 
and 2017.
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Figures 4 and 5 show that the L2 SST data is inconsistent in time, which is explored hereafter. This discon-
tinuity in the L2 SST data would impede its use in climate studies, and hence the advantage of the IASI SST 
data set computed in this work. In fact, several changes in the L2 SST data processing have been reported, 
which have impacted the SST estimates. These changes include changes in the clouds (e.g., cloud detection 
algorithms), spatial resolution (i.e., inclusion of both even and odd IASI pixels starting in March 2010), 
retrieval and processing algorithms (Van Damme et al., 2017).

We extend our analysis over the entire 2008–2019 period and plot the impact of the L2 SST product updates, 
with respect to the reference ERA5 SST data set. Figure 6 shows the evolution over time of the globally av-
eraged SST bias and SD for the IASI SST and L2 SST, with respect to ERA5 SST.

According to Figure 6, while the bias and SD remain approximately constant in the IASI/ERA5 comparison, 
it clearly varies interannually in the L2/ERA5 comparison. With time, and in particular after 2015, the L2 
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Figure 5. Same as Figure 4 but for July.
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SST product values approach those of ERA5 and there is a clear decrease in the bias and SD, consistent with 
changes in the data processing.

The bias in the IASI SST data set is ∼0°C for both January and July, with absolute biases close to 0.5°C 
throughout the entire period (check Table S3 for the actual values). For the L2 SST data there is an overall 
decreasing trend in both bias and absolute bias, with increases and decreases through the years. For in-
stance, there is a steep decrease in the absolute bias from 1.5°C in January 2008 to 0.8°C in January 2009 that 
might have been due to major changes in cloud coverage, surface temperature, and temperature profiles re-
ported for April 2008 (Van Damme et al., 2017). The bias continued to decrease from 2009 to 2010 as surface 
temperature is only provided for the cloud-free observations. From 2010 to 2011 there is an increase in the 
bias. During 2010, the number of cloud-free observations was increased and later temperature information 
started being provided for cloudy pixels. From 2011 to 2012, the bias decreases again with the improvement 
of cloud screening for temperature retrievals in October 2011. In September 2014, there is a major update 
in the processing algorithm with the arrival of a new IASI L2 processor, which is followed by a slight de-
crease in the bias. In January 2016, there is a peak in the bias following updates to the surface temperature 
algorithm in September 2015. By July 2016, the bias has decreased due to important improvements in the 
temperature retrieval algorithms from May 2016 onwards.

The SD of the differences between the IASI SST and ERA5 SST remains approximately constant throughout 
the period at study, at around 0.6–0.8°C in both January and July, while the differences in SD of both data 
sets is ∼0.2°C. This shows the variability in both data sets is approximately the same. For the L2 SST data 
set, the SD of the difference with ERA5 shows an overall decrease over time. For January, the SD of the dif-
ference goes from about 2°C in 2008 to less than 0.5°C in 2017. For July, it drops from about 1°C in 2008 to 
less than 0.5°C in 2017. There are also increases at some years: January 2011, 2014, and 2016, and July 2011 
and 2013 that are consistent with some of the changes in the L2 SST data highlighted before. The difference 

PARRACHO ET AL.

10.1029/2020EA001427

10 of 20

Figure 6. (a) Evolution of the bias (IASI-ERA5 and EUMETSAT L2-ERA5) and its SD (in shaded color) in SST over 
time for January; and (b) for July; (c) Absolute bias of differences with SD (in shaded color) for January; and (d) for 
July.
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in SD between L2 SST and ERA5 SST is negative throughout the entire period, and decreases over time. 
This means the variability in SST was underestimated in the L2 data, especially until July 2014 (and January 
2015). Although it is not shown, there are also differences between the bias and SD time series at different 
latitude bands. The absolute bias is higher for the 30–60°N latitude band, especially in July, and the SDs are 
also higher for this latitude band.

Figure  7 shows the correlation between pairings of the three data sets. The correlation is chosen at all 
months of January and July of 2008–2019 (12 months) separately to highlight seasonal variation. Although 
the correlation between all three SST data sets is high, with correlation coefficients close to 1 (over 0.99), 

PARRACHO ET AL.

10.1029/2020EA001427

11 of 20

Figure 7. Scatterplots of the correlation between pairings of the three data sets: IASI, EUMETSAT L2, and ERA5. The 
correlation is chosen at all months of January and July of 2008–2019 (12 months), separately to highlight the seasonal 
variation.
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there is a bigger dispersion in the L2 SST over the entire period in Figure 7, especially for January. This 
corresponds to the higher differences (in IASI and ERA5 vs. L2) discussed above for the beginning of the 
period, and further highlights the need for a consistent data record.

Table S3 shows a summary of the results presented above, averaged over the entire period. It reiterates that 
our IASI-derived data set has a low bias and SD and high correlation, when compared with ERA5 SST and 
L2 STT. Since the IASI SST bias due to water vapor is corrected using the IWV in ERA5, the global mean 
bias is close to zero. Although our data set depends on ERA5 for wind fields and water vapor correction 
(constant over 1 month), it is essentially driven by IASI radiances. The retrieval, even if obtained using 
reanalysis, does not reproduce the reanalysis, as the temporal and spatial variations are still driven by the 
satellite observations.

3.2. Comparison with Other Independent SST Data Sets

To assess the quality of our data set for the study of variability and trends we also compare our data set with 
independent SST measurements. These are: NOAA's Optimal Interpolation SST (Reynolds et al., 2002) and 
Hadley Centre's Global SST (Rayner, Parker, et al., 2003), that have been extensively used in climate studies. 
Our SST data set is cloud-free. In order to check the impact of the data gaps (in space and time) on our data, 
the IASI SST monthly mean fields were also compared in this section with the full (i.e., not matched) ERA5 
SST data set in terms of SD and trends.

The Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST version 1.1) is a combination of 
monthly globally complete fields (1° × 1°) of SST and sea ice concentration that is available from 1871 to the 
present. The HadISST uses reduced space optimal interpolation applied to SSTs from the Marine Data Bank 
(mainly ship tracks) and adjusted satellite-derived SST data from 1982 onwards (monthly SST from NOAA's 
operational AVHRR instruments). SST for grid cells partially covered by sea ice is estimated from statistical 
relationships between SST and sea ice concentrations (Rayner, Parker, et al., 2003).

The NOAA Optimal Interpolation SST analysis, version 2 (OISSTv2) is a global gridded (1° × 1°) data set, 
computed from a combination of ocean temperature observations from satellite (AVHRR) and in situ plat-
forms, such as ships and buoys (moored and drifting). Because the input data are irregularly distributed 
in space, they are first placed on a regular grid, before statistical methods (i.e., optimum interpolation) are 
applied to fill in missing values. The methodology used to create this data set includes a bias adjustment step 
of the satellite data to in situ data prior to interpolation (Reynolds et al., 2002).

These data sets are combinations of different observations and observation types (e.g., satellite and in situ) 
that vary over time, as different data sets become available. Our data is based on information from one in-
strument only, and therefore will not suffer such changes and will produce homogeneous data more easily. 
This makes it a good data set for other more complex data sets to be compared against, provided that it can 
estimate the trends and variability correctly. However, it needs to be taken into account that while our SST 
data set is skin SST, HadISST, and OISSTv2 are sub-skin SST data sets.

3.2.1. SST Interannual Variability

Figure  8 shows the SD in January SST from 2008 to 2019, for IASI, ERA5, OISSTv2, and HadISST and 
Figure 9 shows the same, but for July. Note that we use the full (not IASI-matched) ERA5 SST data set in 
order to assess the impact of cloud cover, and spatiotemporal interpolation on our data and to keep a similar 
comparison method for the other two data sets.

For both months, it is clear that in general, the IASI SST data set has a higher variability globally, while the 
HadISST has generally a lower variability. The larger noise in some areas for the IASI SST data set (espe-
cially in July in the northern hemisphere) could be due a sampling issue. Because in the IASI data set only 
clear pixels are selected, the gaps in the data due to cloud cover might create an artificial higher variability. 
The regions where the variability in IASI is higher than for the other data sets (especially in the Northern 
Hemisphere, in the Northern Pacific ocean) do coincide with the regions where total cloud cover is close to 
1/100% (not shown).
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For January, there is a clear high variability translated with a SD that exceeds 1.5°C in the tropical Pacific 
region in all data sets, due to the ENSO, which is most intense during the months from December to Feb-
ruary. The ENSO is the strongest internal climate mode at the interannual timescale, and consists of SST 
excursions in the central and eastern equatorial Pacific (Latif & Keenlyside,  2009). We investigate SST/
ENSO relationship further in Figure 10.

There are also other regions of high variability that are present in all four data sets (although less intense 
for the HadISST). For instance, in the northern Pacific the SD in SST exceeds 1°C in IASI and ERA5 and 
OISSTv2. This is due to the interannual changes in the surface transport and path of the Kuroshio Exten-
sion System (Qiu, 2000). According to Qiu (2000), SST in this region is colder (warmer) when the surface 
transport is weaker (stronger) and southerly (northerly). Ocean dynamics also play a central role in the 
interannual variability of SST over the Gulf Stream extension (Wills et al., 2016) in the northern Atlantic, 
which is most intense in the IASI and ERA5 data sets. Other regions where the SST interannual variability 
exceeds 1°C are the South Pacific, off the coast of West Africa, in the southern Atlantic and off the east coast 
of South America, and in the Southern Ocean from the tip of South Africa eastward into the Indian Ocean 
(in IASI and ERA5). The latter is also observed in July.

For July, there are also regions of higher variability common to all four data sets such as the intense varia-
bility observed in the northern Pacific and northern Atlantic (particularly high in the IASI data). SD is also 
high (over 1.5°C) in all data set. along the equatorial Pacific and coastal Peru, which is related to equatorial 
and coastal upwelling, respectively. According to Deser et al. (2010), in the tropics nonseasonal variability is 
higher where there is a local minimum in the long-term mean SST due to coastal and equatorial upwelling 
(when colder water rises from the deeper ocean to the surface).
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Figure 8. Monthly mean SD in SST for January 2008–2019, for IASI, ERA5, OISSTv2, and HadISST.
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To highlight the effect of ENSO on SST, we show in Figure 10 the difference in the January SST anomalies 
between years of strong El Niño and La Niña. During La Niña events, there is a negative anomaly in the 
SST in the tropical Pacific, while there is a strong positive anomaly during the El Niño. This difference is 
well captured by our IASI data set (top), which shows very similar SST anomaly structures to ERA5 albeit 
slightly noisier, probably due to lower number of points in our clear-sky data set.

3.2.2. SST Trends

In order to assess the trends over the past decade and for the series of data sets used in this work, we show 
in Figure 11 the trends in SST for the period between 2008 and 2019. The stippling over the trend fields de-
notes the statistically significant trends. The trends were computed using the Theil Sen method (Sen, 1968; 
Theil,  1992), a nonparametric statistic that computes the median slope of all pairwise combinations of 
points. The statistical significance of the trends was assessed using the Mann–Kendall test (Kendall, 1948; 
Mann, 1945), at a 10% significance level.

In general, there is good consistency between the four data sets, which show similar warming and cooling 
trend patterns. In all data sets, we observe a cooling trend in the subpolar Atlantic Ocean and a warming 
trend in the Gulf Stream region. These trend patterns are consistent with the results found by other studies 
and presented in the Intergovernmental Panel on Climate Change (IPCC, 2013) reports and is part of a 
long-term trend that has been linked with a weakening of the Atlantic meridional overturning circulation 
(AMOC) (e.g., Caesar et al., 2018; Dima & Lohmann, 2010). The AMOC is a system of ocean currents in the 
North Atlantic, and it is suspected that its weakening is linked with a freshwater anomaly in the northern 
Atlantic. This anomaly has been linked to irregular sea-ice export from the Arctic Ocean (Belkin et al., 1998; 
Dickson et al., 1988), increasing river discharge into the Arctic Ocean (Peterson et al., 2002) and meltwater 
and iceberg discharge from the Greenland Ice Sheet (Rahmstorf et al., 2015).
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Figure 9. Same as Figure 10, but for July.
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For all data sets, there is also a significant warming trend over the tropical Pacific and off the west coast of 
North America. This positive trend is part of a tripole structure in the SST trends over the eastern portion 
of the Pacific Ocean, which also includes a positive trend at around 50°S and a negative trend in between. 
This structure is present in all data sets, and is related to the ENSO. The strong 2016 El Niño event, toward 
the end of our study period, caused a strong warming that increased the SST trend for the tropical Pacific 
region. This can be seen in Figure S2, which shows the evolution of the multivariate ENSO index over 
the period at study (top), with the corresponding SST averaged over the latitude/longitude intervals where 
ENSO has the most influence. It is clear from this figure that positive (negative) ENSO indexes correspond 
to a warmer (colder) SST. Furthermore, the occurrence of a strong La Niña event (negative index) at the 
beginning of the time period, and a strong El Niño event (positive index) at the end prompted an intense 
positive SST trend in the region for this period.

This is consistent with Latif and Keenlyside (2009), which found that long-term trends in the Equatori-
al Pacific SST during the 1950–2006 period show a warming trend with a pattern that is “El Niño-like.” 
However, other studies also suggest that trend patterns over this region are sensitive to the period at study 
(e.g., Cane et al. (1997) found a La Niña pattern for the 1900–1991 period) and the historical data set used 
(Vecchi et al., 2008). More broadly, long-term trends over the Pacific, Indian, and Atlantic Oceans have all 
been found to be influenced by ENSO (Compo & Sardeshmukh, 2010). Compo and Sardeshmukh (2010) 
have also shown it is possible to separate the trends in terms of ENSO-related and -unrelated trends, but this 
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Figure 10. (a) Anomalies in IASI SST data for January 2011, in relation to the January climatology for 2008–2019; (b) Same as (a) but for 2016 SST anomaly; (c) 
and (d) Same as (a) and (b) but for ERA5 SST.
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is outside the scope of this study. Here, the goal is mainly to show that the IASI-derived data set is able to 
reproduce these trends accurately (i.e., show the same trend patterns as the other data sets).

There is also a note-worthy warming trend over the Mediterranean Sea that is consistent with the warming 
trends found for this region during the past decades in satellite and field data, as well as in model sim-
ulations (e.g., Macias et al., 2013; Nykjaer, 2009; Pisano et al., 2020; Vargas-Yanez et al., 2008). Marullo 
et al. (2011) first noted the influence of Atlantic Multidecadal Oscillation (AMO) over the Mediterranean 
Sea, then Macias et al. (2013) also evaluated the contribution of the anthropogenic induced warming during 
the last phase of AMO. Other significant trends found for this period include a negative trend at around 
50°S in all four data sets that are not as intense/significant in the HadISST data set. Over the Southern 
Ocean, this data set is known to have issues resulting from sparse data input, due to the scarcity of in situ 
measurements in the region (Rayner, Parker, et al., 2003).

In general, there is good agreement between our data set and the other SST data sets in terms of interannual 
variability and trends for the 2008–2019 period. Although the period at study is relatively short, making 
it difficult to take physical interpretations and to compare with previous studies that have covered longer 
term trends, we can conclude that, in general, our data set is able to show many of the same variability and 
trend structures as the other more complex data sets, and capture important natural phenomena such as the 
ENSO well. Since our data set is based on a single instrument and consistent processing, it can be useful as 
a consistent record of temperature measurement.
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Figure 11. (a) Linear trends in IASI SST for 2008 to 2019. The stippling over the trend fields denotes the statistically significant trends at 10% significant level. 
(b) Same as (a) but for ERA5 SST; (c) Same as (a) but for OISSTv2; (d) Same as (a) but for HadISST.
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4. Conclusions and Perspectives
In this work, we presented a reliable way of retrieving skin temperatures over the sea based on a single 
instrument, IASI. Temperatures were derived from the IASI satellite radiances data, based on Planck's law 
and simple atmospheric corrections. This method was applied to recently reprocessed IASI L1C data, in 
order to produce a homogeneous SST data record. This data set was first validated using ERA5 and the EU-
METSAT IASI L2 data and we provide basic discrepancy statistics (mean differences, SD, and correlation 
coefficients). High correlation coefficients were found between the three data sets. The bias and SD in our 
IASI data were found to be stable over the 2008–2019 period, whereas for the IASI L2 SST, there has been 
a noticeable improvement over time when compared to ERA5. Overall, for the entire period, our IASI SST 
discrepancies with respect to ERA5 SST show a mean global bias close to zero, a mean absolute bias around 
0.5°C, with a SD of difference of around 0.7°C and a correlation coefficient of over 0.99. Stability in the IASI 
SST is demonstrated, which is essential for climate-related studies.

Next, interannual variability and trends were compared for four SST data sets: IASI and ERA5, in addition 
to HadISTT and OISSTv2. It was found that our data set is able to capture the patterns of variability and 
trends well. Despite being noisier, the IASI SST is able to capture the same areas of high interannual varia-
bility (i.e., over 1.5°C), including over the tropical Pacific in January corresponding to the ENSO. Although 
the period covered by our study is not long enough to draw physical conclusions on the SST trends, similar 
trend patterns were found in the four data sets. In fact, although the most intense significant trends were 
found in the tropical Pacific due to the strong 2015/2016 El Niño, some significant trends that are part of 
well-documented longer-term trends were also captured by our data set. For instance, the cooling trends in 
the North Atlantic that are related to a slow-down in the thermohaline circulation; and the warming over 
the Mediterranean that is a combination of natural oscillation (AMO) and anthropogenic climate change.

In general, we have shown that the IASI SST data set described in this study is suitable for climate studies, 
as it produces results comparable to more sophisticated SST data sets, although some limitations need to be 
kept in mind. On the one hand, our data set is a skin SST data set, which is different from the sub-skin SST 
by up to around 0.3°C, depending on the region (the skin effect is estimated to be 0.17°C at nighttime for 
wind-speeds over 6 m/s, according to Donlon, Minnett, et al. [2002] and Horrocks et al. [2003]). On the oth-
er hand, it is a clear-sky data set that only includes data under (near) cloud-free conditions. Improvements 
to the algorithm are possible, such as looking into removing the impact of the viewing angle and the lower 
troposphere temperature gradients. In addition, the method described here does not correct for aerosol con-
tamination, and does not include areas with sea ice. Still, as it is based on a single instrument, our data set 
can remain stable over time, ensuring that as more data becomes available, it can be used to, for instance, 
monitor SST trends and detect El Niño events.
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