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The velocity circulation, a measure of the rotation of a fluid within a closed path, is a fundamental
observable in classical and quantum flows. It is indeed a Lagrangian invariant in inviscid classical fluids. In
quantum flows, circulation is quantized, taking discrete values that are directly related to the number and
the orientation of thin vortex filaments enclosed by the path. By varying the size of such closed loops, the
circulation provides a measure of the dependence of the flow structure on the considered scale. Here, we
consider the scale dependence of circulation statistics in quantum turbulence, using high-resolution direct
numerical simulations of a generalized Gross-Pitaevskii model. Results are compared to the circulation
statistics obtained from simulations of the incompressible Navier-Stokes equations. When the integration
path is smaller than the mean intervortex distance, the statistics of circulation in quantum turbulence
displays extreme intermittent behavior due to the quantization of circulation, in stark contrast with the
viscous scales of classical flows. In contrast, at larger scales, circulation moments display striking
similarities with the statistics probed in the inertial range of classical turbulence. In particular, we observe
the emergence of the power-law scalings predicted by Kolmogorov’s 1941 theory, as well as intermittency
deviations that closely follow the recently proposed bifractal model for circulation moments in classical
flows. To date, these findings are the most convincing evidence of intermittency in the large scales of
quantum turbulence. Moreover, our results strongly reinforce the resemblance between classical and
quantum turbulence, highlighting the universality of inertial-range dynamics, including intermittency,
across these two a priori very different systems. This work paves the way for an interpretation of inertial-
range dynamics in terms of the polarization and spatial arrangement of vortex filaments.

DOI: 10.1103/PhysRevX.11.011053 Subject Areas: Fluid Dynamics, Nonlinear Dynamics,
Superfluidity

I. INTRODUCTION

The motion of vortices in fluid flows, including rivers,
tornadoes, and the outer atmosphere of planets like Jupiter,
has fascinated observers for centuries. Vortices are a
defining feature of turbulent flows, and their dynamics
and their mutual interaction are the source of very rich
physics. One notable example of such an interaction is the
reconnection between vortex filaments [1], the process by
which a pair of vortices may induce a change of topology
following their mutual collision. In inviscid classical fluids,
Helmholtz’s theorems [2] imply that a vortex tube preserves
its identity over time, thus disallowing reconnections. An
extension of this result is Kelvin’s theorem [3], which states
that the velocity circulation around a closed loop moving
with the flow is conserved in time. The velocity circulation

around a closed loop C enclosing an area A, defined from
the fluid velocity v by

ΓAðC; vÞ ¼
I
C
v · dr; ð1Þ

is directly related to the vorticity flux across the loop via
Stokes’ theorem, and thus to the topology and the dynamics
of vortex filaments. In nonideal classical flows, one effect
of viscous dissipation is to smooth out the interface
between vortices and the surrounding fluid. As a result,
vortex reconnections become possible, and the circulation
is no longer conserved around advected loops.
Superfluids, such as very-low-temperature liquid helium,

have the astonishing property of being free of viscous
dissipation. This property is closely related to Bose-
Einstein condensation and is a clear manifestation of
quantum physics at macroscopic scales. As a result, super-
fluids can be effectively described by a macroscopic wave
function. This description supports the emergence of quan-
tum vortices, topological defects where the wave function
vanishes, which, in three-dimensional space, take the form
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of thin filaments. Moreover, the velocity circulation around
such vortices is quantized in units of the quantum of
circulation κ ¼ h=m, where h is Planck’s constant and m
is the mass of the bosons constituting the superfluid [4].
Despite the absence of viscosity, it is now well known

that vortices in superfluids can reconnect. This possi-
bility was initially suggested by Feynman [5] and was
first verified numerically in the framework of the Gross-
Pitaevskii (GP) model [6]. Quantum vortex reconne-
ctions were later visualized experimentally in liquid helium
[7] as well as in trapped Bose-Einstein condensates [8].
Vortex reconnections are considered to be an essential
mechanism for sustaining the whole turbulent process
[9–11].
Quantum flows are capable of reaching a turbulent state

not unlike high-Reynolds-number classical flows.
Loosely speaking, quantum turbulence is described as a
complex tangle of quantum vortices, as illustrated by the
teal-colored filaments in the flow visualization in Fig. 1
(see details on the numerical simulations later). Such a
turbulent tangle displays rich multiscale physics. At scales
larger than the mean distance between vortices l, the
quantum nature of vortices is less dominant, and fluid
structures, akin to those observed in classical fluids, are
apparent [Fig. 1(a)]. In contrast, at scales smaller than l,
the dynamics of individual quantized filaments becomes
very important. Figure 1(b) displays a zoom of the flow,
where Kelvin waves (waves propagating along vortices)
and vortex reconnections are clearly observed. Because of
this multiscale physics, with discrete vortices at small
scales and a classical-like behavior at large ones, quantum
turbulence can be considered as the skeleton of classical
three-dimensional turbulent flows [4,12]. Such ideas will

be further supported by the results discussed later in
this work.
Classical turbulent flows are characterized by an

inertial range of scales where, according to the celebrated
Kolmogorov’s K41 theory [13], statistics are self-similar
and independent of the energy injection and dissipation
mechanisms. In particular, the variance of the velocity
circulation is expected to follow the power-law scaling
hΓ2

Ai ∼ A4=3 when the loop area A is within the inertial
range. This prediction, based on dimensional grounds, is
equivalent to the two-thirds law for the variance of the
Eulerian velocity increments [14]. The four-thirds scaling
law for the circulation variance has been robustly observed
in classical turbulence experiments [15,16] and numerical
simulations [17–20]. Furthermore, as shown by these
studies, higher-order circulation moments robustly deviate
from K41 scalings. Such deviations result from the inter-
mittency of turbulent flows [14,21], that is, the emergence
of rare events of extreme intensity, associated with the
breakdown of spatial and temporal self-similarity. Very
recently, high-Reynolds-number simulations have shown
that the intermittency of circulation may be described by a
very simple bifractal model [20], which contrasts with the
more complex multifractal description of velocity incre-
ment statistics. This study has renewed interest on the
dynamics of circulation in classical turbulence [22–24].
As in classical flows, K41 statistics and deviations due to

intermittency have indeed been observed in the large
scales of quantum turbulence. In particular, superfluid
helium experiments have shown that finite-temperature
quantum turbulence is intermittent and that the scaling
exponents of velocity increments might slightly differ from
those in classical turbulence [25–28]. In zero-temperature

FIG. 1. Visualization of a quantum turbulent vortex tangle from gGP simulations using 20483 collocation points. (a) Full simulation
box. Quantum vortices are displayed as thin teal-colored filaments and correspond to isosurfaces of a vanishingly small density value.
Density fluctuations around its bulk value are volume-rendered in shades of brown. The size of the box L is expressed in units of the
healing length ξ, which is of the order of the vortex core size. Here, lI is the integral scale of the flow. (b) Zoom of the full box. The mean
intervortex distance l is indicated at the bottom of the figure. (c) Two-dimensional slice of the full box displaying the low-pass filtered
vorticity field. Blue and red dots correspond to vortices of different signs. Also shown are two typical integration loops: a small blue path
surrounding a single vortex, and a larger green path enclosing several vortices.
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superfluids, numerical simulations of the GP model have
shown evidence of a K41 range in the kinetic energy
spectrum [29–31]. Noting that the GP velocity field is
compressible and singular at the vortex positions, the
energy spectrum is often computed using the incompress-
ible part of a regularized velocity field [11]. This decom-
position was used in Ref. [32] to show that, in quantum
turbulence, the intermittency of velocity increments is
enhanced with respect to classical turbulence. Note that
such decomposition is not needed for circulation statistics
since the compressible components of the velocity are, by
definition, potential flows [29], and therefore, their con-
tributions to the circulation vanish when evaluating the
contour integral in Eq. (1). This absence of ambiguity, as
well as its discrete nature, makes the circulation a particu-
larly interesting quantity to study in low-temperature
quantum turbulence.
The paper is organized as follows. In Sec. II, we present

the model used in this work to simulate quantum turbu-
lence, and we discuss the numerical methods to integrate it
and to process data. Section III presents and discusses the
main results concerning the scaling of circulation moments
in quantum turbulence and its intermittency. Finally,
Sec. IV discusses the implications of this work.

II. QUANTUM TURBULENCE SIMULATIONS

We numerically study the scaling properties of velocity
circulation in quantum turbulence. The results are obtained
from a database of high-resolution direct numerical
simulations of a generalized GP (gGP) model, which
describes, in more detail, the phenomenology of superfluid
helium compared to the standard GP equation [31]. The
simulation reported in this work uses 20483 grid points. In
the following, we briefly introduce the gGP model used in
this work. For details, the reader is referred to Ref. [31].
The gGP equation is written

iℏ
∂ψ
∂t ¼−

ℏ
2m

∇2ψ −μð1þ χÞψ

þg

�Z
VIðx− yÞjψðyÞj2d3y

�
ψþgχ

jψ j2ð1þγÞ

nγ0
ψ ;

ð2Þ

where ψ is the condensate wave function describing the
dynamics of a compressible superfluid at zero temperature.
Here, m is the mass of the bosons, μ is the chemical
potential, n0 is the particle density, and g ¼ 4πℏ2as=m is
the coupling constant proportional to the s-wave scattering
length. To model the presence of the roton minimum in
superfluid 4He, the governing equation includes a nonlocal
interaction potential VI that is described in Appendix B.
This model also includes a beyond-mean-field correction
controlled by two dimensionless parameters χ and γ, which

correspond to its amplitude and order, respectively.
This term arises from considering a strong interaction
between bosons [31]. Note that the standard Gross-
Pitaevskii equation is recovered by setting χ ¼ 0 and
VIðx − yÞ ¼ δðx − yÞ, where δ is the Dirac delta.
The connection between Eq. (2) and hydrodynamics is

given by the Madelung transformation, ψ ¼ ffiffiffiffiffiffiffiffiffi
ρ=m

p
eimϕ=ℏ,

which relates ψ to the velocity field v ¼ ∇ϕ. Note that the
phase ϕ is not defined at the locations where the density ρ
vanishes, and hence, the velocity is singular along super-
fluid vortices [11]. When the system is perturbed around
a flat state ψ ¼ ffiffiffiffiffi

n0
p

, the speed of sound is given by

c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gn0(1þ χðγ þ 1Þ)=mp

[31]. Nondispersive effects
are observed at scales below the healing length
ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgn0(1þ χðγ þ 1Þ)p

. This length scale is also
the typical size of the vortex core.
Equation (2) is solved using the Fourier pseudospectral

code FROST in a periodic cube with a fourth-order Runge-
Kutta method for the time integration. In this work, the
simulation box has a size L ¼ 1365ξ, and the initial
condition is generated to follow the Arnold-Bertrami-
Childress (ABC) flow used in Ref. [33]. The initial
velocity wave function is generated as a combination of
two ABC flows at the two largest wave numbers, as
described in Ref. [31]. To reduce the acoustic emission,
the initial condition is prepared using a minimization
process [11]. Besides the integral length scale lI, which is
associated with the largest scales of the initial condition,
and the healing length, proportional to the vortex core
size, in quantum flows, it is possible to define a third
length scale l associated with the mean intervortex
distance. This scale can be estimated as l ¼

ffiffiffiffiffiffiffiffiffiffiffi
L3=L

p
,

where L is the total vortex length of the system.
Numerically, L is estimated using the incompressible
momentum density as in Refs. [11,31].
Evolving the initial setting under the gGP model

[Eq. (2)] leads to the tangle of quantum vortices displayed
in Fig. 1, whose energetic content decays at large times as
vortices reconnect and sound is emitted [34]. Similar to
decaying classical turbulence, this temporal decay is
characterized by an intermediate stage, termed the turbulent
regime, in which the rate of dissipation of incompressible
kinetic energy is maximal and the mean intervortex dis-
tance l is minimal [31]. In the present work, we only
consider this regime, as its large-scale dynamics is most
comparable with fully developed classical turbulence. In
this stage, as discussed in Ref. [31], the incompressible
kinetic energy spectrum of high-resolution gGP simula-
tions presents a clear K41 scaling range, followed by a
Kelvin wave cascade range at small scales. At this time,
the integral scale is measured to be lI ≈ 820ξ, and the
intervortex distance is l ≈ 28ξ, as illustrated in Fig. 1.
Throughout this work, the circulation is computed from

its velocity-based definition in Eq. (1), as opposed to the
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vorticity-based expression resulting from the application of
Stokes’ theorem (see Appendix A). Moreover, only planar
square loops of area A ¼ r2 are considered. Thus, we refer
to the circulation over a loop of area A as ΓA or Γr,
depending on the context. To take advantage of the spectral
accuracy of the solver, the circulation is computed from the
Fourier coefficients of the velocity field, as detailed in
Appendix A. Moreover, to reduce spurious contributions
from loops passing close to vortices, each two-dimensional
slice where circulation is computed is resampled into a finer
grid of resolution 32 7682, using Fourier interpolation.
Values of circulation are then filtered to keep only multiples
of κ. Details on this procedure are given in Appendix A.

III. SCALING OF CIRCULATION IN
QUANTUM TURBULENCE

The quantization of circulation is one of the defining
properties of superfluids. However, despite its relevance,
the behavior of circulation at scales much larger than the
vortex core size ξ (about an Ångström in superfluid 4He) is
currently poorly understood in quantum turbulence.
Figure 1(c) displays a two-dimensional cut of the fluid
where a low-pass filtered vorticity field is displayed.
Vortices are visible as small dots, and their sign is colored
in black and red. Intuitively, one can expect that the
circulation will be allowed to take increasingly higher
values as the area of the integration loop increases. For
sufficiently small loops [such as the small path displayed in
Fig. 1(c)], the probability of enclosing a quantum vortex
(let alone many of them) is small, and the circulation will
most likely take values in f0;�κg. This strongly discrete
distribution of circulation is in stark contrast with the
continuous distribution found in viscous flows. For larger
loops, typically larger than the mean intervortex distance l,
higher circulation values become possible, as more vortices
may intersect the loop area, shown by the large green
path in Fig. 1(c). Even though it remains quantized, the
discreteness of circulation becomes less apparent as the set
of possible values increases. Other effects, such as the
cancellation of circulation contributions from antipolarized
vortices, become important. Indeed, the relative orientation
of quantum vortices is deeply linked to the emergence
of K41 statistics in quantum turbulence [35,36] and is
expected to play a major role in circulation statistics at large
scales. The polarization of vortices is manifest in Fig. 1(c),
where, at large scales, vortices of the same sign have a
tendency to cluster.

A. Circulation at classical and quantum scales

We start by presenting one of the simplest circulation
observables, that is, the variance of the circulation for loops
of different sizes in quantum turbulence. The scaling of
the circulation with the area of the loops is displayed in
Fig. 2. For comparison purposes, we also perform direct

numerical simulations of the Navier-Stokes equations (see
Appendix C). We then compute the scaling of the circu-
lation variance in the steady state at a Taylor-scale
Reynolds number of Reλ ≈ 320. In the quantum flow,
the circulation variance shows clear evidence of two scaling
regimes. First, just like in the inertial range of classical
turbulence, quantum turbulence displays a classical range,
where the hΓ2

Ai ∼ A4=3 scaling predicted by K41 theory is
observed. This range corresponds to integration loops of
linear dimension r such that l ≪ r ≪ lI, where lI is the
integral scale of the flow.
In quantum turbulence, the emergence of K41 statistics

for r ≫ l requires the partial polarization of vortex
filaments [35,36], which effectively form bundles of
corotating vortices [4]. For instance, because of vortex
cancellations, a tangle of randomly oriented vortices would
be associated with hjΓAj2i ∼ A in the classical range [35],
which is different from the K41 estimate hjΓAj2i ∼ A4=3

verified in Fig. 2. On the other side of the spectrum, a fully
polarized tangle (as may be found in quantum flows under
rotation) is associated with the estimate hjΓAj2i ∼ A2.
Therefore, we see that K41 dynamics corresponds to a
precise intermediate state between an isotropic and a fully
polarized tangle.
At small scales, classical and quantum flows display

different power-law scalings. Viscous flows are smooth at
very small scales, and the vorticity field may be considered
a constant within a sufficiently small loop. By isotropy, it
follows that hΓ2

Ai ≈ hjωiAj2i ¼ 1
3
hjωj2iA2 for small A.

Equivalently, such scaling can be obtained by invoking
the smoothness of the velocity field and performing a
Taylor expansion around the center of the loop [20]. This
viscous scaling is indeed observed in Fig. 2 for r ≪ λT.

FIG. 2. Variance of the circulation around square loops of area
A ¼ r2. The blue line shows the gGP simulation (resolution
20483), and the orange line shows the Navier-Stokes simulation
(resolution 10243). The classical variance is rescaled by
Γ2
T ¼ ðλ4T=3Þhjωj2i, with λT the Taylor microscale and ω the

vorticity field.
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Here, λT ¼ vrms=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð∂xvxÞ2i

p
is the Taylor microscale,

below which the dynamics of the flow is affected by
viscosity in classical turbulence (see Ref. [37]). Note that
we have used the Taylor microscale instead of the
Kolmogorov length scale, which, for the present numerical
simulations, is about 30 times smaller. This fact suggests
that, in the correspondence between classical and quantum
turbulence, the intervortex distance l may be compared to
the Taylor microscale.
On the contrary, for quantum turbulence, a less steep

scaling is observed at small scales, which recalls the
singular signature of the quantum vortex filaments. We
will come back to this scaling later. In the following, we
refer to the range ξ ≪ r ≪ l as the quantum range since it
strongly differs from the dissipative range of classical
turbulence. The quantum and the classical ranges are
highlighted by different background colors in Fig. 2. We
have checked that the above results are also observed in
low-resolution simulations of the standard Gross-Pitaevskii
model (data not shown).

B. Circulation statistics and intermittency

In quantum flows, the velocity circulation takes discrete
values (multiples of the quantum of circulation κ), which
contrasts with the continuous space of possible values in
viscous flows. In statistical terms, its probability distribu-
tion is described by a probability mass function (PMF), the
discrete analog of a probability density function (PDF). The
discreteness of the circulation is most noticeable for loop
sizes r smaller than the mean intervortex distance l, where
the probability of a loop enclosing more than one vortex is
vanishingly small, and Γr takes one of a small set of
discrete values. This behavior is verified in Fig. 3(a), where
the probability PrðnÞ of having a circulation Γr ¼ nκ, for
small loop sizes, is shown. As expected, the PMFs are
strongly peaked at Γr ¼ 0 for very small loop sizes,
indicating that it is very unlikely for such a loop to enclose
more than one vortex (vortex cancellation is negligible at
those scales). The PMF becomes wider as r increases, and
more vortices are allowed within an integration loop.
The circulation PMF within the quantum range strongly

differs from the (continuous) PDF of circulation in the
small scales of classical turbulence. In isotropic flows, for a
fixed loop size r in the dissipative range, the circulation
PDF is equivalent to that of a vorticity component. Vorticity
is a highly intermittent quantity in fully developed turbu-
lence, and like other small-scale quantities, it is charac-
terized by a strongly non-Gaussian distribution with long
tails [39]. In that sense, and in regards to circulation,
quantum turbulence presents a much simpler behavior
despite its singular distribution of vorticity. Such a behavior
could be useful for developing theoretical models of
circulation.
For larger loops with r=l > 1, the circulation takes

increasingly larger values, and its discrete nature becomes

less apparent. This behavior is seen in the circulation PMFs
shown in Fig. 3(b), which may be approximated by
continuous distributions. Within the classical range, these
distributions seem to display exponential-like tails (red
dashed lines). These distribution tails are compatible with
those found in the inertial range of classical turbulence,
which may be fitted by stretched exponentials [20] or
modified exponentials [24].
In classical turbulence, it is customary to characterize

velocity intermittency by evaluating the departure of the
moments of velocity increments from K41 self-similarity
theory [14]. For the same purposes, a few studies have also
considered the moments of circulation [15,16,18–20,24]. In
the following, we consider the moments hjΓrjpi in quantum
turbulence resulting from the circulation distributions
discussed in the previous section. The aims are to character-
ize the validity of K41 theory in the classical range, to
provide evidence of possible departures due to intermit-
tency, and to elucidate the statistics of circulation at small
scales resulting from the quantum nature of the flow. This
analysis extends the discussion relative to the circulation
variance (p ¼ 2), which is presented in Fig. 2 in the context
of a comparison with classical flows.
Circulation moments hjΓrjpi are shown in Fig. 4(a) as a

function of the loop size r for different orders p. For each
moment, a clear power-law scaling is identified in each of
these ranges. We define the exponents of the power law as

hjΓrjpi
κp

≈
�
r
l

�
λp
: ð3Þ

(a)

(b)

FIG. 3. PMF of the circulation in quantum turbulence for
(a) loop sizes r=l < 1 and (b) loop sizes r=l ≥ 1. The red dashed
lines are a guide for the eye indicating exponential tails. Note that
all distributions are discrete, as Γr=κ only takes integer values. In
panel (a), bars for Prð0Þ and r=l ≥ 0.3 are hidden behind the
r=l ¼ 0.1 case. See Fig. 6 for details on Prð0Þ.
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To better characterize the exponents, one can compute the
local scaling exponents λpðrÞ ¼ d½loghjΓrjpi�=d½log r�,
which, for pure power laws, are flat. The local scaling
exponents are presented in Fig. 4(b), where two different
plateaux are observed in both ranges for each order p.

1. Quantum range

At first glance, it is striking to note that all moments
collapse in the quantum range, which suggests that circu-
lation is extremely intermittent at these scales as a conse-
quence of the quantumnature of the flow. Indeed, as inferred
from Fig. 3 and discussed in the previous section, a random
loop of characteristic length r ≪ lwill almost never enclose
more than a single vortex filament. By the definition of the
intervortex distancel, at such small scales, the probability of
finding a vortex within a loop is simply βr ¼ r2=l2. From
there, it follows that hjΓrjpi¼ ð0× κÞpð1−βrÞþð1× κÞpβr
since only zero or one vortex might lie inside the loop. This
simple model leads to the prediction

hjΓrjpi
κp

≈
�
r
l

�
2

for r ≪ l; ð4Þ

which is precisely the law observed in Fig. 4 at small scales.
Remarkably, the simulation results capture not only the
predicted scaling exponent λp ¼ 2 [as verified in Fig. 4(b)]
but also the prefactor l−2.
The independence of the circulation scaling exponents

λp on the moment order p translate the extreme intermit-
tency of circulation at quantum scales. This result is a clear
consequence of quantum physics, as it results from the
quantization of circulation and the discrete nature of vortex
filaments. As seen in Fig. 2, it is in stark contrast with the
small-scale physics of viscous flows, characterized by
smooth velocity fields, which lead to very different
circulation statistics scaling as r2p.

2. Classical range

For larger loops of size l ≪ r ≪ lI, circulation
moments in Fig. 4 follow different power laws, with a
scaling exponent λp that increases with the moment order
p. Kolmogorov’s phenomenology gives a prediction for the
scaling of circulation moments in this regime. Assuming
self-similarity across scales, the K41 predictions for the
circulation moments about loops of area A ¼ r2 are of
the form

hjΓrjpi ¼ Cpε
p=3r4p=3 for l ≪ r ≪ lI ð5Þ

for positive moment order p, where ε is the incompressible
kinetic energy dissipation rate per unit mass and Cp are,
supposedly, universal constants. Similarly to classical K41
scalings, Eq. (5) results from dimensional arguments and
the assumption that, within the classical range, the statistics
of Γr depends only on ε and r.
The local scaling exponents displayed in Fig. 4(b)

exhibit a plateau in the classical range, confirming the
power-law behavior of circulation moments at those scales.
For low-order moments (p < 3), the exponents approx-
imately match the K41 prediction, plotted as dashed
horizontal lines. This observation is consistent with the
scaling of the circulation variance in Fig. 2. On the other
hand, higher-order moments yield lower exponent values
than those predicted by K41 theory. This departure is clear
evidence of circulation intermittency in the classical range
of quantum turbulence. Moreover, it is qualitatively con-
sistent with the trends observed in the inertial range of
classical turbulence [15,16,18–20]. A more quantitative
comparison of the scaling exponents in classical and
quantum flows is provided in the next section.

C. Scaling exponents in the classical regime

We finally quantify the anomalous exponents of the
circulation in the classical range of the quantum turbulent
tangle. With this aim, we average the local scaling
exponents over a range of loop sizes within l ≪ r ≪ lI.
The precise averaging range is given by the green area in

(a)

(b)

FIG. 4. (a) The p-order moments of the circulation over square
loops of area A ¼ r2 from the gGP simulation. (b) Local scaling
exponents λpðrÞ ¼ d½loghjΓrjpi�=d½log r�. Dashed horizontal
lines correspond to the K41 scalings λK41p ¼ 4p=3. The blue
dashed line shows PrðΓr ≠ 0Þ ¼ 1 − PrðΓr ¼ 0Þ, which corre-
sponds to the pth circulation moment in the limit p → 0þ
[Eq. (6)]. The blue and green areas, respectively, illustrate the
quantum and classical regimes.
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Fig. 4. As in Ref. [20], we also compute fractional
circulation moments. However, note that we do not include
negative moments p ∈� − 1; 0½, as done in that work,
because the discrete nature of the circulation distribution
in quantum flows results in a finite probability of having
Γr ¼ 0, and thus negative order moments diverge.
The circulation scaling exponents λp obtained from

our simulations are shown in Fig. 5. As suggested by
the behavior of the circulation moments discussed in the
previous section, the departure from K41 scaling (solid red
line in the figure) is weak for low-order moments, while it
becomes significant for orders p ≥ 3.
Strikingly, the scaling exponents are consistent with

the recent results in high-Reynolds-number classical
turbulence [20] (dashed lines in Fig. 5). To give some
relevant context, that work provides evidence of a bifractal
behavior of the scaling exponents. Concretely, for low-
order moments p < 3, the exponents grow linearly as
λp ¼ αp, with α ≈ 1.367. This robust scaling, almost
independent of Reynolds number, is close but not exactly
equal to the α ¼ 4=3 predicted from K41 phenomenology.
As for orders p > 3, they are accurately described by a
monofractal fit λp ¼ hpþ ð3 −DÞ, with a fractal dimen-
sion D and Hölder exponent h that display a weak-
Reynolds-number dependence. At the highest Reynolds
number studied in that work, they are estimated as D ≈ 2.2
and h ≈ 1.1. We stress that the above bifractal fit, which we
adopt here for its simplicity, is empirically derived in
Ref. [20] from direct numerical simulation data. Note that
an alternative functional form of the scaling exponents λp in
classical turbulence, which also closely matches the

numerical data, has recently been proposed based on a
dilute vortex gas model [22].
For high-order moments, the anomalous exponents

in the quantum-flow case display a behavior that is
close to that observed in classical turbulence. The inset
of Fig. 5 shows the relative deviation from K41 estimates,
ðλK41p − λpÞ=λK41p , and its comparison with the bifractal
model fitted in Ref. [20]. For p > 3, the bifractal model
lies between error bars of our data, which hints at the
universality of inertial-range dynamics across different
turbulent systems.
Low-order moments are particularly interesting. From a

statistical point of view, the main contribution to those
moments comes from loops having a very small circulation,
which are the most probable ones (see Fig. 3). A loop with
small circulation might either be the result of a region of the
flow where there are few vortices or the opposite regime,
where many vortices of opposite signs cancel each other’s
contributions to the circulation. The last case corresponds
to a very rare intermittent event. Such an idea was invoked
by Iyer et al. [20] to explain the intermittency of low-order
moments.
In the case of quantum turbulence, the discrete nature of

vortices is very important, and regardless of the size of the
loop, there is always a nonzero probability of having a total
zero circulation. In fact, we can relate low-order moments
with such probability as

hjΓrjpi ¼
X
n≠0

jΓrjpPrðnÞ

¼ 1 − Prð0Þ þ phlog jΓrji≠0 þ oðpÞ; ð6Þ

where PrðnÞ is the circulation PMF and hO½Γr�i≠0 ¼P
n≠0O½Γr�PrðnÞ. The above expression results from the

Taylor expansion jΓrjp ¼ 1þ p log jΓrj þ oðpÞ around
p ¼ 0 and the fact that h1i≠0 ¼ 1 − Prð0Þ. Remarkably,
the probability of having zero circulation displays a clear
r−4=3 power-law scaling in the classical regime, as shown in
Fig. 6. This power law is related to a partial polarization of
the quantum vortices. Indeed, in the case of a fully polarized
tangle, we trivially have that Prð0Þ ¼ 0, as all vortices have
the same sign within a loop. In the opposite regime of a
totally unpolarized tangle, we have that Prð0Þ ∼ r−1. This
scaling results from considering N ∼ ðr=lÞ2 homo-
geneously distributed uncorrelated vortices enclosed in a
loop of size r and computing the probability of having
exactly N=2 positive vortices among those N. Such prob-
ability is simply given by 2−Nð N

N=2Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
2=Nπ

p
∼ ðr=lÞ−1.

The r−4=3 scaling thus corresponds to a partial polarization
of the tangle. Note that the transition between the quantum
and the classical regimes ismanifest.At small scales,we find
that Prð0Þ ¼ 1 − ðr=lÞ2, which corresponds to the proba-
bility of not finding any vortex.

FIG. 5. Scaling exponents of the circulation moments for loop
sizes within the classical range (l ≪ r ≪ lI). Blue circles with
error bars correspond to gGP simulations. The solid line shows
K41 scaling λK41p ¼ 4p=3, and the dashed line shows the bifractal
fit in classical turbulence [20]. Inset: relative deviation from K41
estimates, ðλK41p − λpÞ=λK41p . Error bars indicate the standard
deviation of each λp within the classical range.
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It is interesting that for classical flows, albeit the circu-
lation takes continuous values, the probabilityPðjΓrj < ανÞ
of having low circulation values presents the same power
law in the inertial range, as also reported in Fig. 6. For a
classical flow, this scaling can be derived by invoking K41
phenomenology, which predicts that the statistics of γ ¼
Γrε

−1=3r−4=3 is scale invariant in this range. It follows that

PðjΓrj< ανÞ¼Pðjγj< ανε−1=3r−4=3Þ∼ανε−1=3r−4=3 ð7Þ

for α ≪ 1. Here, we assume that the PDFof γ is finite at zero.
Besides, for r much smaller than the Taylor microscale λT,
one has that Γr ∼ ωir2 (see Sec. III A) and a similar argu-
ment leads to PðjΓrj < ανÞ ∼ r−2, as is also displayed in
Fig. 6 [40]. Again, the small scales of classical and quantum
fluids strongly differ.
Finally, note that the asymptotic approach predicted in

Eq. (6) is clearly verified in Fig. 4 for low-order moments.
The finite value of Prð0Þ in the quantum case implies a
discontinuity of the moments when p → 0þ since
hjΓrj0i ¼ 1. The subdominant power-law term in Eq. (6)
explains the reduced inertial range observed in Fig. (5) for
low-order moments.

IV. SUMMARY AND DISCUSSION

The recent work of Iyer et al. [20] has sparked renewed
interest in the statistics of velocity circulation in high-
Reynolds-number classical turbulent flows. Their numeri-
cal results have showcased the relative simplicity of
circulation statistics in the inertial range, despite the
intermittency of these flows. This simplicity contrasts with
the complexity of velocity increment statistics, as well as
that of enstrophy or dissipation, which display multifractal
statistics as a result of turbulence intermittency [14].

It has been long suggested that quantum turbulence
shares many similarities with classical flows at scales
much larger than those associated with individual
quantum vortices. For instance, experimentalists have
struggled to find significant differences between finite-
temperature superfluid helium and classical flows at those
scales [25,27,41]. Features of classical turbulence, most
notably, the scaling of the energy spectrum EðkÞ ∼ k−5=3

resulting from Kolmogorov’s self-similarity theory, have
also been observed in low-temperature quantum turbu-
lence [11,30,33,42–48]. However, for a few reasons
detailed below, such observations only show a limited
picture of inertial-range dynamics in quantum flows. First,
most of these studies have looked at the scaling properties
of the velocity field and its wave-number spectrum.
The velocity field is a singular quantity that diverges at
the vortex filament locations. This property has led to
considering a regularized version of it, whose physical
interpretation is less clear. Second, even though K41
scaling has been observed in low-temperature quantum
turbulence, little is known regarding deviations from
them due to intermittency. Indeed, despite a few works
[27,28,32], because of numerical and experimental limi-
tations, nonconclusive results exist for how the intermit-
tency of those flows compares with classical turbulence. In
numerical simulations, because of the two disjoint ranges
of scales with nontrivial dynamics (as opposed to just one
in classical turbulence), high resolutions are needed to
obtainmore than a decade of inertial range in wave-number
space [31,33,49].
The differences between classical and quantum turbu-

lence become more evident at smaller scales, as the
regularity of classical flows at scales below the dissipative
length is in stark contrast with the singular nature of
quantized vortices. At those scales, quantization leads to
enhanced intermittency of velocity statistics in superfluid
helium [28,50] and in zero-temperature quantum turbu-
lence [32]. Note that at quantum scales, both the singularity
of the velocity field and compressible effects such as sound
emission become important. As mentioned above, this
leads to the necessity of regularizing and decomposing
the velocity field into different contributions. In contrast,
the velocity circulation considered in this work does not
suffer from such limitations, as it is nonsingular and, by its
definition, is exempt from contributions from compressible
dynamics.
In this work, we have numerically investigated circu-

lation statistics in low-temperature quantum turbulence. In
superfluid flows, the velocity circulation is intimately
linked to the quantum nature of the system. We have
performed high-resolution numerical simulations of a
generalized Gross-Pitaevskii model, allowing for a rela-
tively large degree of scale separation between the vortex
core size ξ, the mean intervortex distance l, and the integral
scale of the flow lI. The main objectives of this work have

FIG. 6. Probability of having zero circulation in gGP simu-
lations (blue line) and of having a weak circulation in Navier-
Stokes simulations (orange line). The dashed lines show their
respective predictions at large and small scales.
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been twofold: (1) to disentangle the differences between
classical and quantum turbulence at small scales, and (2) to
provide new evidence of the strong analogy between both
physical systems at large scales, which, as we show, goes
beyond self-similarity predictions and includes intermittent
behavior. Our results strongly reinforce the view of
quantum turbulence as the skeleton of classical flows,
which can be used to provide a better understanding of the
latter. Besides, note that the physics of the Kelvin wave
cascade, which becomes important at quantum scales,
should play no role in circulation statistics, as the circu-
lation around a vortex is blind to the presence of such
vortex excitations.
We have considered the circulation Γr integrated over

square loops of varying area A ¼ r2. As is customary in
classical turbulence, we have characterized the scaling
properties of the circulation in terms of its moments
hjΓrjpi and their dependence on the scale r of the integration
loop. We have shown that all circulation moments follow
two distinctive power-law scalings, for r much smaller and
much larger than the mean intervortex distance l.
At small (or quantum) scales, our main finding is that

circulation moments are independent of the moment
order p, which translates the extreme intermittency of
the circulation at these scales. This result is a consequence
of the quantized nature of circulation and the discreteness
of vortex filaments. The small-scale dynamics of circu-
lation in quantum flows is in strong contrast with that in
classical flows, where, as a result of viscosity, the velocity
field is smooth at very small scales, leading to very different
circulation statistics.
At scales larger than l (the classical range), we have

found that low-order circulation moments closely follow
the predictions of K41 phenomenology theory, which were
initially proposed by Kolmogorov for classical turbulence.
This result, by itself, is very important, as it highlights the
strong analogy between classical and quantum flows at
large scales. While K41 scalings have previously been
observed in the energy spectrum of zero-temperature
quantum turbulence, this is the most convincing evidence
to date of such behavior, as the circulation is a well-defined
physical quantity in quantum turbulence, and the observed
K41 range spans about one full decade in scale space.
In addition, our work provides unprecedented evidence

of intermittency in the classical range of zero-temperature
quantum turbulence. The circulation moments obtained
from our simulations not only display intermittent behavior
(in the form of deviation from K41 estimates), but they do
so in a way that is quantitatively similar to the anomalous
scaling of circulation in classical turbulence. The impres-
sive similarity between these two a priori very different
systems strongly reinforces the idea of universality of
inertial-range dynamics in classical and quantum flows.
Indeed, since Kolmogorov’s pioneering works in 1941, it
has been conjectured that such dynamics is independent of

the viscous dissipation mechanisms in classical fluids. The
present work goes further to suggest that, more generally,
inertial-range dynamics and intermittency are independent
of the small-scale physics and, in particular, of the
regularization mechanism. In classical turbulence, viscosity
plays the role of smoothing out (or regularizing) the flow at
small scales. In quantum flows, regularization results from
dispersive effects taking place at scales smaller than the
vortex core size. Note that in Ref. [51], it was suggested
that for classical flows in the limit of infinite Reynolds
numbers, the Kelvin theorem is violated and might be
recovered only in a statistical sense, somehow as a
consequence of the dissipative anomaly of turbulence
[14]. It would be of great interest to study how this picture
changes in quantum turbulence and to investigate whether
an analog of the classical circulation cascade exists [52].
In previous classical turbulence experiments [15,16],

circulation has been evaluated using the particle image
velocimetry (PIV) technique, which provides a measure of
the velocity field over a two-dimensional slice of the flow.
While this technique has been applied in finite-temperature
superfluid 4He [53–55], the interpretation of PIV measure-
ments in this system remains unclear [56,57]. As an
alternative, variants of the particle tracking velocimetry
(PTV) technique have been used in most recent studies of
4He [56–64]. To our knowledge, no attempts have been
made to compute the velocity circulation in superfluid
experiments. While perhaps challenging, such a study
would be of great interest to the turbulence community.
The emergence of K41 scalings in quantum turbulence

results from the partial polarization of vortex filaments
[35,36]. In quantum flows, because of the discrete nature of
circulation, there is always a finite probability of having
zero circulation, whose scale dependence also results from
partial polarization. Such a behavior is also seen in classical
flows and can be explained by invoking K41 phenomenol-
ogy. This observation suggests that a possible stochastic
modeling of classical and quantum turbulence, or at least of
circulation statistics, could be based on a discrete combi-
natorial approach where spinlike vortices are generated
with ad hoc correlations. For such a study, it will be
important to gain a better understanding of the polarization
of quantum turbulent tangles and of how this translates to
classical flows. Alternatively, in Iyer et al. [20], the
bifractal behavior of circulation intermittency has been
related to the presence of “moderately wrinkled vortex
sheets” with fractal dimension D ¼ 2.2. It would be
interesting to relate these ideas to the partial polarization
and the arrangement of quantum vortices. Such ideas will
be addressed in a future work.
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APPENDIX A: COMPUTATION OF
CIRCULATION

Via Stokes’ theorem, Eq. (1) around a closed loop C can
be written in terms of the vorticity field ω ¼ ∇ × v,

ΓA ¼
Z Z

A
ω · ndS; ðA1Þ

where A is the area enclosed by the loop and n its
associated normal unit vector. Since the superfluid is
irrotational away from vortices, this alternative form
amounts to counting the contributions of the vortices
enclosed within a loop. In quantum flows, the vorticity
field is extremely irregular, being effectively represented
by a sum of Dirac deltas. This property renders Eq. (A1)
impractical for numerically evaluating the circulation in
quantum flows.
For the above reasons, we compute the circulation in

quantum and classical flows using its velocity-based form
Eq. (1). The algorithm, described in the following, enables
the evaluation of the line integral in Eq. (1) with high
accuracy over rectangular loops aligned with the Cartesian
axes of the domain. For simplicity, we consider a square
loop of size r × r, with sides respectively aligned with the
x- and y-coordinate axes in a 2π-periodic domain. Here, we
denote by vðxÞ ¼ (vxðx; yÞ; vyðx; yÞ) the in-plane veloc-
ity field.
The circulation over such a square loop with opposite

corners at ðx0; y0Þ and ðx1;y1Þ¼ðx0þr;y0þrÞ is given by

Γr ¼ ½Vxðy0Þ�x1x0 þ ½Vyðx1Þ�y1y0 − ½Vxðy1Þ�x1x0 − ½Vyðx0Þ�y1y0 ;
ðA2Þ

where ½VxðyÞ�ba ¼
R
b
a vxðx0; yÞdx0 is the integral of vx along

the x direction. This notation, and what follows below,
similarly applies to the y component of the velocity.
Using the Fourier representation of the velocity

field, its vx component can be written as vxðx; yÞ ¼P
k ûkðyÞeikx. Then, its integral is ½VxðyÞ�ba¼ðb−aÞû0ðyÞþP
k≠0 ½−ði=kÞûkðyÞ�ðeikb−eikaÞ. However, note that the

velocity field is singular at vortex locations, and as a
result, the Fourier coefficients ûk decay slowly with the
wave number k. Hence, compared to the complex wave
function ψ , a large number of Fourier modes are needed to
accurately describe the velocity field.

In practice, to obtain an accurate representation of the
velocity field on a given 2D cut of the 3D domain, we first
evaluate the wave function ψðxÞ on a 2D grid that is β times
finer, along each direction, than the original 20482 grid.
This evaluation is performed exactly from the Fourier
coefficients of ψ . In practice, this is done by zero-padding
the Fourier representation of ψ (from 2048 to 2048β
Fourier modes along each direction).
In Fig. 7, we present the variance of the velocity

circulation obtained using different values of the resampling
factor β. For small loop sizes, the scaling hjΓAj2i ∼ A1

predicted by Eq. (4) is only observed when β is large enough
(β ≥ 8), while for small β, the small-scale moments are
contaminated by spurious circulation values. Throughout
this work, the value β ¼ 16 is used; i.e., the velocity is
computed on a 327682 grid for each 2D cut. Note that for
loop sizes in the classical range (where the K41 scaling
hjΓAj2i ∼ A4=3 is observed), resampling becomes less
important.
Finally, the inset of Fig. 7 shows the measured PDF of

the circulation along loops in the quantum range, for the
same values of β. In all cases, the PDFs display peaks at
small integer values of Γr=κ, as expected from the under-
lying physics. However, intermediate noninteger values are
also sampled in the distributions. These are a purely
numerical artifact, mainly a consequence of the approxi-
mation error arising from the Fourier truncation of the
velocity field. This error strongly decreases at high resam-
pling factors, as evidenced by the increasing separation
between peaks and valleys as β increases. Another source

FIG. 7. Moments of order 2 for different values of the resampling
in gGP simulations with N3 ¼ 20483. Resampling factors are
β ¼ 1, 2, 4, 8, and 16. As the resampling increases, vortices are
better resolved, and the expected scaling at small scales arises. At
large scales, the system is less affected by resampling. Inset:
probability distribution of the circulation for a loop size
r=l ¼ 0.67. Peaks are observed at small-circulation values which
are multiples of κ. The separation between peaks and valleys is
higher as the resampling increases. Tails exhibit a Γ−3

r scaling.

MÜLLER, POLANCO, and KRSTULOVIC PHYS. REV. X 11, 011053 (2021)

011053-10



of spurious circulations originates when vortices are present
very close to an integration path. Such events lead to
unphysical, very large circulation values sampling the r−1

divergence of the velocity, whose signatures are PDF tails
exhibiting a Γ−3

r scaling. As seen in the figure, resampling
also helps reduce this error by a few orders of magnitude. In
a second step, these spurious contributions to the circu-
lation distributions are further suppressed by only consid-
ering the peaks of Γr=κ close to integer values, from which
discrete PMFs are constructed. Only peaks that have a
prominence of at least 3 orders of magnitude are consid-
ered; i.e., the value of the peaks should be at least 1000
times larger than their neighbors.

APPENDIX B: NONLOCAL INTERACTION
POTENTIAL

To model the presence of the roton minimum in super-
fluid 4He, the governing equation includes an isotropic
nonlocal interaction potential [31,65]

V̂IðkÞ¼
�
1−V1

�
k
krot

�
2

þV2

�
k
krot

�
4
�
exp

�
−

k2

2k2rot

�
;

ðB1Þ

where V̂IðkÞ ¼
R
eik·rVIðrÞd3r is the Fourier transform of

the normalized interaction potential V̂Iðk ¼ 0Þ ¼ 1. The
wave number associated with the roton minimum is
denoted as krot, and V1 ≤ 0 and V2 ≤ 0 are two dimension-
less parameters that are set to reproduce the dispersion
relation of superfluid 4He (see Ref. [31]). This model also
includes a beyond-mean-field correction controlled by two
dimensionless parameters χ and γ that correspond to its
amplitude and order, respectively. This term arises from
considering a strong interaction between bosons.
The parameters used in the simulations were set to

krotξ ¼ 1.638, V1 ¼ 4.54, V2 ¼ 0.01, χ ¼ 0.1, and γ ¼ 2.8
in order to mimic the dispersion relation of superfluid 4He.
The speed of sound and the particle density are fixed as
c ¼ 1 and n0 ¼ 1.

APPENDIX C: NAVIER-STOKES SIMULATIONS

Classical turbulence simulations are performed using the
LaTu solver [66], which solves the incompressible Navier-
Stokes equations

∂v
∂t þ v ·∇v ¼ −∇pþ ν∇2vþ f ; ðC1Þ

∇ · v ¼ 0 ðC2Þ

using a standard Fourier pseudospectral method in a three-
dimensional periodic domain of size ð2πÞ3, with a third-
order Runge-Kutta scheme for the temporal discretization.

Here, ν is the fluid viscosity, p is the pressure field, and f is
an external forcing that emulates a large-scale energy
injection mechanism. The forcing is active within a
spherical shell of radius jkj ≤ 2 in Fourier space.
Simulations are performed on a grid of N3 ¼ 10243

collocation points, at a Taylor scale Reynolds number
Reλ ≈ 320. Circulation statistics are gathered once the
simulation reaches a statistically steady state, when the
energy injection and dissipation rates are in equilibrium.
Circulation is computed from a set of velocity fields
obtained from the simulations. As in the quantum turbu-
lence simulations, circulation is computed from its
velocity-based definition, Eq. (1), using the Fourier coef-
ficients of the velocity field as described in Appendix A.
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