Rapid deglaciation during the Bølling-Allerød Interstadial in the Central Pyrenees and associated glacial and periglacial landforms

Marc Oliva, M. Fernandes, D. Palacios, J.-M. Fernández-Fernández, I. Schimmelpfennig, D. Antoniades

To cite this version:

Marc Oliva, M. Fernandes, D. Palacios, J.-M. Fernández-Fernández, I. Schimmelpfennig, et al.. Rapid deglaciation during the Bølling-Allerød Interstadial in the Central Pyrenees and associated glacial and periglacial landforms. Geomorphology, 2021, 385, pp.107735. 10.1016/j.geomorph.2021.107735. insu-03207633

HAL Id: insu-03207633
https://insu.hal.science/insu-03207633
Submitted on 26 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal Pre-proof

Rapid deglaciation during the Bølling-Allerød Interstadial in the Central Pyrenees and associated glacial and periglacial landforms
M. Oliva, M. Fernandes, D. Palacios, J.-M. Fernández-Fernández, I. Schimmelpfennig, A.S.T.E.R. Team, D. Antoniades

PII: S0169-555X(21)00143-4
DOI: https://doi.org/10.1016/j.geomorph.2021.107735
Reference: GEOMOR 107735

To appear in: Geomorphology

Received date: 26 February 2021
Revised date: 1 April 2021
Accepted date: 1 April 2021

Please cite this article as: M. Oliva, M. Fernandes, D. Palacios, et al., Rapid deglaciation during the Bølling-Allerød Interstadial in the Central Pyrenees and associated glacial and periglacial landforms, Geomorphology (2021), https://doi.org/10.1016/ j.geomorph.2021.107735

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Rapid deglaciation during the Bølling-Allerød Interstadial in the Central Pyrenees and associated glacial and periglacial landforms

M. Oliva ${ }^{1}$, M. Fernandes ${ }^{2}$, D. Palacios ${ }^{3}$, J-M. Fernández-Fernández ${ }^{2}$, I. Schimmelpfennig ${ }^{4}$, ASTER Team ${ }^{4,5} \& D$. Antoniades ${ }^{6}$
${ }^{1}$ Department of Geography, Universitat de Barcelona, Catalonia, Spain
${ }^{2}$ Centre for Geographical Studies, IGOT, Universidade de Lisboa, Lisbon, Portugal
${ }^{3}$ Department of Geography, Complutense University of Madrid, Madrid, Spain
${ }^{4}$ Aix-Marseille Université, CNRS, IRD, INRAE, Coll. France, UM 34 CEREGE, Aix-en-Provence, France
${ }^{5}$ Consortium: Georges Aumaître, Didier Bourlès, Karim Keddadouche
${ }^{6}$ Department of Geography \& Centre for Northern Studies, Université Laval, Quebu•Canada
\section*{Corresponding author}
Marc Oliva, marcoliva@ub.edu
Department of Geography, Universitat de Barcelona
Montalegre 6-8, 3rd floor, 08001 - Barcelona

Rapid deglaciation during the Bølling-Allerød Interstadial in the Central Pyrenees and associated glacial and periglacial landforms

Abstract

The Central Pyrenees hosted a large ice cap during the Late Pleistocene. The cirques under relatively low-altitude peaks ($2200-2800 \mathrm{~m}$) include the greatest variety of glacial landforms (moraines, fossil debris-covered glaciers and rock glaciers), but their age and formation process are poorly known. Here, we focus on the headwaters of the Garonne $\tilde{n}^{i} \mathrm{ve} \mathrm{e}_{\mathrm{i}}$, namely on the low-altitude Bacivèr Cirque (highest peaks at $\sim 2600 \mathrm{~m}$), with widesprea 1 et sive and depositional glacial and periglacial landforms. We reconstruct the pattern \because ci2glaciation from geomorphological observations and a 17 -sample dataset of ${ }^{10} \mathrm{Be}$ Cosmic-Kay Exposure (CRE) ages. Ice thickness in the Baciver Cirque must have reached $\sim 200 \mathrm{~m}$ (uиı. the maximum ice extent of the last glacial cycle, when it flowed down towards the $\mathcal{C} \curlyvee$ nnne paleoglacier. However, by $\sim 15 \mathrm{ka}$, during the Bølling-Allerød (B-A) Interstadial, the mou ${ }^{\text {th }}$ of the cirque was deglaciated as the tributary glacier shrank and disconnected from the Ca.one paleoglacier. Glacial retreat was rapid, and the whole cirque was likely to have been a olaciated in only a few centuries, while paraglacial processes accelerated, leading to the ansmation of debris-free glaciers into debris-covered and rock glaciers in their final stages. Climate conditions prevailing at the transition between the $\mathrm{B}-\mathrm{A}$ and the Younger Dryas (YD) favored glacial growth and the likely development of small moraines within the slopes of the cirque walls by $\sim 12.9 \mathrm{ka}$, but the dating uncertainties make it impossible to state whether these moraines formed during the B-A or the YD. The melting of these glaciers favored paraglacial dynamics, which promoted the development of rock glaciers as well as debris-covered glaciers. These remained active throughout the Early Holocene until at least $\sim 7 \mathrm{ka}$. Since then, the landscape of the Bacivèr Cirque has seen a period of relative stability. A similar chronological sequence of deglaciation has been also detected in other cirques of the Pyrenees below 3000 m . As

in other mid-latitude mountain regions, the B-A triggered the complete deglaciation of the Garonne paleoglacier and promoted the development of the wide variety of glacial and periglacial landforms existing in the Bacivèr cirque.

Key words: Central Pyrenees, Bølling-Allerød, deglaciation, Cosmic-Ray Exposure dating, moraines, polished bedrock, paraglacial processes.

1- Introduction

Termination-1 (T-1), the period spanning from the end of the Last Glacial Maximum (LGM, 19-20 ka; Clark et al., 2009) to the onset of the Holocene (11.7 ka; Denton et al., 2014), saw a massive world-wide glacial retreat that favored a large-scale reorganisation of oceanic and atmospheric circulation patterns, global sea level rise, redefinition of coastlines, shifts in land cover and ecosystems, and changes in greenhouse gas concentrations. An accurate comprehension of the spatial and temporal patterns of environmental change that occurred during the last major deglacial period, particularly glacial oscillations, can provide insights int. rapid landscape readjustment, which allows the significance of recent trends due to warming c : $: m$ tes to be assessed in a longerterm context (Oliva et al., 2019b; Oliva et al., 2021). A better understanding of the sensitivity of glaciers in mid-latitude mountains to rapidly changing nari climates can thus help to assess the magnitude of future changes and the fate of mounti in g aciers in these regions.

Whereas the long-term, global-scale glac al .etreat that occurred during T-1 was favored by greenhouse gas increases, regional glaciai advances and retreats followed forcings at smaller scales (Denton et al., 2014). In the Northern Pemisphere, ice core records from Greenland reveal a sequence of alternating colder ar 1 wa.mer periods during T-1: the cold period, the Oldest Dryas (OD; 17.5-14.6 ka), was follov:ed by the much warmer Bølling-Allerød (B-A) Interstadial (14.612.9 ka) and a subsequenı eet...ı to colder conditions during the Younger Dryas (YD; 12.9-11.7 ka) (Rasmussen et al., 2014). In mid-latitude regions, such as the Iberian Peninsula, glaciers shrank in response to the long-term warming that was recorded during T-1, although colder millennial-scale phases favored re-expansion and warmer periods triggered accelerated shrinking (Oliva et al., 2019b). While local maximum ice extents during the last glacial cycle occurred asynchronously in different mountain ranges in Iberia (Oliva et al., 2019b), glacial oscillations during T-1 followed very similar patterns in response to changing climate in the North Atlantic region (Buizert et al., 2018; Rea et al., 2020). For areas where chronological data are available, such as the Central Range
(Carrasco et al., 2015; Palacios et al., 2012), Pyrenees (Andrés et al., 2018; Palacios et al., 2017b, 2017a, 2015b), Cantabrian Mountains (Rodríguez-Rodríguez et al., 2017), and Sierra Nevada (Gómez-Ortiz et al., 2012; Palacios et al., 2016), glaciers generally advanced during the OD and YD, and retreated during the B-A and after the YD during the Early Holocene.

In the Pyrenees, where the present work focuses, glacial records in several valleys (Gállego, Ésera, Noguera Ribargoçana, Ariège) have shown evidence of two periods with glacial expansion during T-1 (Crest et al., 2017; Jomelli et al., 2020; Palacios et al., 2017b, 2015a; Pallàs et al., 2006). The first phase of glacial advance after the massive retreat of the LGD took place during the OD, with ice tongues up to 15 km long reaching the mountain front ${ }^{\mathrm{T}}$ ne second phase, in the late Pleistocene, occurred during the YD with the presence c^{\dagger} smaal glaciers up to 4 km long which developed from north-facing cirques of the highest mis si s, above 2200 m (García-Ruiz et al., 2016). In between, the B-A saw a rapid glacial re re,t, with the ice disappearing from most of the highest massifs by 15-14 ka and the formati , f ruck glaciers and debris-covered glaciers in many cirques in response to intense paraglac: $\mathfrak{a l}$ readjustment, mainly in relatively low-altitude cirques below 2800 m (Andrés et al., 2018; F ilic us et al., 2017b). By the end of the YD at 11-10.5 ka, almost all YD glaciers had disappf an \downarrow and a new generation of rock glaciers formed in the recently deglaciated cirques (Oliva et a ${ }^{1}, 2 \iota^{1} \cdot 6$).

Despite recent advances i. © . . understanding of climatic and environmental consequences during T-1, the spatial and temporal patterns of glacial response in some European mountains is still poorly known, particularly in the Mediterranean region. In this sense, the Pyrenees, located in the transitional area between Atlantic and Mediterranean climatic influence, and between the southern and northern European mountains, constitute a mountain range of great glacial and climatic relevance. However, the chronology of glacial oscillations in several valleys of the Central Pyrenees is still uncertain, particularly for T-1. In addition, the origin of the great variety of glacial and periglacial landforms, especially in relatively low-altitude cirques, is unknown, as is the chronology
of their formation. Data from this area and this period is therefore needed to shed light on the prevailing paleoclimatic conditions, as well as the atmospheric configuration driving glacial oscillations during T-1. To this end, we had the following specific objectives:

- To provide new data on glacial oscillations during T-1 for the Upper Garonne Basin, where absolute deglaciation ages are still lacking.
- To compare results from the Upper Garonne Basin with the timing of deglaciation as well as the age of formation and stabilization of the different glacial and periglacial landforms that exist in many of the cirques at lower alti: des in the Pyrenees.
- To compare glacial evolution in this mountain rang, with that which occurred in the Iberian mountains as well as other southern Ev: optail ranges, and contrast their spatiotemporal patterns. This is needed to frame th, g^{1} dcial response within the paleoclimatic evolution of Europe during deglaciatio 1, as inferred from natural archives and climate models.

2- Study area

The Pyrenees are the largest mountain a 1 ge in the Iberian Peninsula, spanning a 400 km W-E transect. The central part of the r nge contains the highest massifs, with peaks exceeding 3000 m asl, such as the Maladeta (340.1 m), Monte Perdido (3355 m) and Posets (3371 m). This research focuses on the Bacivèr (1. T u, rocated in the upper Garonne valley (Fig. 1), at latitudes $42^{\circ} 40^{\prime} \mathrm{N}$ $42^{\circ} 42^{\prime} \mathrm{N}$ and longitudes $0^{\circ} 57^{\prime} \mathrm{E}-1^{\circ} 00^{\prime} \mathrm{E}$.

Figure 1

The relief is structured by the U-shaped Garonne valley that drains towards the N-NW, receiving inflow from tributary rivers that drain adjacent glacial valleys with headwaters in peaks ranging from 2800 to 3000 m . Glacial cirques in the Upper Garonne valley are predominantly NE-exposed and the altitude of their floors ranges between 2200 and 2400 m (Lopes et al., 2018). The floor of the Bacivèr Cirque, where this study focuses, is located at similar altitudes but faces W ; it extends
over $10 \mathrm{~km}^{2}$ with the highest altitudes exceeding 2600 m at the Marimanya ($2675 \mathrm{~m} ; 42^{\circ} 42^{\prime} 33$ " N $1^{\circ} 00^{\prime} 44$ "), La Llança (2658 m) and Bacivèr (2642 m) peaks and the lowest at $1850-1900 \mathrm{~m}$ at the Beret Plateau (Fig. 1). This area represents the hydrological divide between rivers draining to the Atlantic via the Garonne River and those flowing to the Mediterranean Sea via the Noguera Pallaresa.

At present, the mean air annual temperature (MAAT) at the nearby Bonaigua station (2266 m) is 3 ${ }^{\circ} \mathrm{C}$ whereas the annual precipitation totals 1227 mm , mostly in the form of snow that falls during the cold months of the year. Snow on the ground generally persists , حr 7-8 months of the year. The treeline lies between 2200 and 2300 m, where Pinus nigra is red.ced at higher elevations by alpine meadows on the cirque floor and barren rocky terrain elser herc. The lithology of the area is mainly composed of Carboniferous granodiorites and granites, hut there are also Silurian marbles at the lower margins of the Bacivèr Cirque and limeston s in ercalated with Devonian slates on the Beret Plateau (ICGC, 2016).

The landscape of the Baciver Cirque incı. des a wide range of glacial and periglacial landforms that are inherited from the last Pleistocene g arial cycle and the subsequent deglaciation (Fernandes et al., 2017). The W-NW aspect of his compound cirque and the high elevation of its floor (22002400 m) resulted in abundant nc wfall accumulation and its subsequent transformation into ice during the cold Pleistoce . $^{\wedge}$ t'...uses. However, the chronology of the local maximum ice extent of the last glacial cycle is not yet known, although recent studies encompassing the entire Garonne paleoglacier show evidence that the entire cirque was largely covered by ice during that phase (Fernandes et al., 2017). This is confirmed by the existence of glacially polished surfaces $\sim 200 \mathrm{~m}$ above the Bacivèr Cirque floor. Post-LGM warming favored the shrinking of that glacier, which receded and lost thickness during the last deglaciation. This is confirmed on the Beret Plateau, where glacial striae on polished surfaces show different directions which suggest that the glacier descending from the Bacivèr Cirque, among others, diverged either to the main Garonne Glacier
(SW) or the Noguera Pallaresa Glacier (N). Within the Bacivèr Cirque, there is a variety of erosive and depositional landforms, including moraine complexes indicative of multiple readvances within the final stages of the long-term deglaciation. As observed in other neighboring valleys, the melting of the last glaciers favored the development of rock glaciers during the paraglacial stage (Knight, 2019; Knight et al., 2019), although they are inactive under present-day climate conditions (Fernandes et al., 2018). The southern fringe of the Bacivèr Cirque is included in the BaqueiraBeret ski resort domain, which has altered some slopes to expand winter sports facilities.

3- Methodology

In order to reconstruct past glacial oscillations since the onset or acylaciation in the Bacivèr Cirque, we used an integrated geomorphological and geochronologıal approach. Field work was conducted in June 2016, when the absence of snow cover enabler $i \rightarrow$ identification of different geomorphic features and collection of samples for Cosmic-Rav ${ }^{\top}<\mathrm{p}^{\prime}$ sure (CRE) dating.

3.1 Geomorphological mapping

We produced a geomorphological map „ 1: 29000 scale by using an ArcGIS 10.7 (ESRI) database. The map was based on: (i) stere (sco ic photo-interpretation though out the Iberpix 4 online anaglyph map viewer (https://wı.w.icn.es/iberpix $2 / \mathrm{visor} /$); (ii) visual inspection of satellite imagery from Google Earth; and (i1) the combination of orthophotomaps (0.25 m cellsize) and highresolution LIDAR digital ele vation models (density points of $0.5-2 \mathrm{~m}^{-2}$) obtained from the 'Institut Cartogràfic i Geològic de Catalunya’(http://www.icc.cat/appdownloads). Special attention was paid to glacial landforms and related features, which were outlined and symbolized according to Joly (1997). The generated geomorphological map was then validated in the field, as we surveyed the entire area with a focus on glacial and periglacial landforms.

3.2 Field strategy and sampling

We collected a total of 17 samples for CRE dating using a hammer and a chisel. We targeted boulders belonging to moraines, a debris-covered glacier and glacially polished outcrops of granites
and granodiorites. We aimed to ensure the optimal exposure of the sampling sites to the cosmic-ray flux, and thus selected flat-topped and gentle surfaces $\left(<20^{\circ}\right)$ of rock outcrops rather than steep slopes or sharp crests. The thickness of the extracted samples ranged from 2 to 4.5 cm (Table 1). To account for any shielding due to the surrounding topography, the topographic shielding factor was calculated for all sampling sites by means of the ArcGIS toolbox devised by Li (2018) that implements well-known routines explained in Dunne et al. (1999), and only needs a point shapefile of the sampling sites, including the strike and the dip of the sampled surfaces, and a digital elevation model (DEM).

Table 1

3.3 Laboratory procedures and exposure age calculation

Before the chemical processing of the samples, they were ©rushed and sieved to the $0.25-0.8 \mathrm{~mm}$ fraction at the Physical Geography Laborator! (čaversidad Complutense de Madrid, Spain). Thereafter, we treated the rock samples at ι° Laboratoire National des Nucléides Cosmogéniques $\left(\mathrm{LN}_{2} \mathrm{C}\right)$ of the Centre Européen de ? echerche et d'Enseignement des Géosciences de l'Environnement (CEREGE; Aix- $\kappa_{1} \mathrm{P}_{1}$ vence, France). In accordance with the quartz-rich lithology of the samples, they wer nrocessed for the extraction of the in situ produced cosmogenic nuclide ${ }^{10} \mathrm{Be}$.

In order to remove magnew` minerals, we conducted a magnetic separation through a "Frantz LB1" separator. Once the non-magnetic fraction was isolated, it underwent several rounds of chemical attacks with a concentrated mixture of hydrochloric $(1 / 3 \mathrm{HCl})$ and hexafluorosilicic $\left(2 / 3 \mathrm{H}_{2} \mathrm{SiF}_{6}\right)$ acids to dissolve and discard the non-quartz minerals. Subsequently, four successive partial dissolutions of the remaining minerals with concentrated hydrofluoric acid (HF) helped dissolve the remaining impurities (e.g. non-dissolved feldspar minerals) and removed atmospheric ${ }^{10} \mathrm{Be}$. As a result, samples yielded from 8 to 22 g of purified quartz (Table 2). Just before the total dissolution of quartz, $150 \mu \mathrm{~L}$ of an in-house manufactured (from a phenakite crystal) ${ }^{9}$ Be carrier solution
(spike, concentration: $3025 \pm 9 \mu \mathrm{~g} \mathrm{~g}$; Merchel et al., 2008) were added to the samples. The purified quartz was subsequently dissolved by acid leaching with 48% concentrated HF (3.6 mL per g of quartz +30 mL in excess). Following the total dissolution, we evaporated the resulting solutions until dryness, and recovered samples with HCl (7.1 molar). The Be samples were then precipitated at $\mathrm{PH}=9$ to beryllium hydroxide $\left(\mathrm{Be}(\mathrm{OH})_{2}\right)$ by means of ammonia $\left(\mathrm{NH}_{3}\right)$, and separated from other elements in resin columns: an Dowex 1X8 anionic exchange column to remove elements such as Fe, Mn and Ti , and a Dowex 50WX8 cationic exchange column to discard B and recover Be (Merchel and Herpers, 1999). The final eluted Be was precipitatec gain, and the Be precipitate was dried and oxidized to BeO at $700^{\circ} \mathrm{C}$. Finally, the targets for ac eler itor mass spectrometer (AMS)
 1:1 proportion and pressing the mixture into copper catt. ndes

The targets were analysed at the Accelerator po ir ies Sciences de la Terre, Environnement et Risques (ASTER) national AMS facility at $\overbrace{2}$ RESE in order to measure the ${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ ratio from which the ${ }^{10} \mathrm{Be}$ concentration was later inferrea 'Table 2). The AMS measurements were calibrated against the in-house standard STD-11 w ic an assigned ${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ ratio of $(1.191 \pm 0.013) \times 10^{-11}$ (Braucher et al., 2015). The analythal 1σ uncertainties include uncertainties in the AMS counting statistics and an external $0.5 \% \mathrm{~A}_{1}{ }^{\top} \mathrm{S}$ error (Arnold et al., 2010) and the uncertainty related to the chemical blank correct:on. $\mathrm{Tb}:{ }^{10} \mathrm{Be}$ half-life considered was $(1.387 \pm 0.0012) \times 10^{6}$ years (Chmeleff et al., 2010; Ko."nninek et al., 2010).

Table 2

We calculated ${ }^{10} \mathrm{Be}$ exposure ages by using the CREp online calculator (Martin et al., 2017; available online at: http://crep.crpg.cnrs-nancy.fr/\#/), where we selected the following settings: LSD (Lifton-Sato-Dunai) elevation/latitude scaling scheme (Lifton et al., 2014), ERA40 atmospheric model (Uppala et al., 2005) and geomagnetic database based on the LSD framework (Lifton et al., 2014). These settings yielded a world-wide mean ${ }^{10} \mathrm{Be}$ production rate at sea level high latitude (SLHL) of 3.98 ± 0.22 atoms $\mathrm{g}^{-1} \mathrm{yr}^{-1}$. Exposure age results of the samples are shown in Table 2,
together with their full 1σ uncertainties (derived from analytical and production rate uncertainties) and their analytical uncertainties only. The uncertainties discussed throughout the text are given with their analytical uncertainties only, for internal comparison. Due to the high analytical uncertainty, arising from low AMS currents and counting statistics, sample A-17 was discarded from the discussion.

In order to evaluate the impact of potential erosion on the exposure ages, we assumed a steady erosion rate ($1 \mathrm{~mm} \mathrm{ka}^{-1}$) with a conservative maximum value according to André (2002). The impact of snow cover was estimated by extrapolating the current s. . w duration in the area, with an annual average of 7.5 months at $2200-2300 \mathrm{~m}$ and a mean thic^ ners of 100 cm based on the data series of Bonaigua station (Fig. 1) available since 1997-1 (98 wervei Meteorològic de Catalunya; $\underline{h t t p: / / w w w . i g c . c a t / w e b / c a / a l l a u s ~ g r u i x ~ n e u ~ v 2 . p h p ? e=\llcorner ~ n ̊ ~ g u a \& t=t o t e s) ~(T a b l e ~ 3) . ~ W e ~ a p p l i e d ~}$ eq. 3.76 in Gosse and Phillips (2001) to calculate the snow correction factor.(Gosse and Phillips, 2001)(Gosse and Phillips, 2001) Erosion an \uparrow Si ow corrections as a whole resulted in ages older by $\sim 9 \%$, with a minor contribution from the erosion correction ($<2 \%$). However, throughout the text we use the uncorrected ages in order io a nole comparison with other areas, and considering that past snow cover thickness and du ati n are unknown. It must have changed significantly since the cirque's deglaciation, with an at arnation of colder/warmer periods associated with changing moisture conditions.

Table 3

3.4 Paleoglacier reconstruction and Equilibrium-Line Altitude (ELA) calculation

Paleoglaciers were reconstructed to model their spatial extent and paleotopography during the considered time periods. Three-dimensional glacier reconstruction was produced using the 'GLaRe' ArcGIS toolbox devised by Pellitero et al. (2016). It estimates past ice thickness along a flowline by applying the perfect-plasticity physical-based numerical model of Van der Veen (1999) following the calculation routines later proposed by Benn and Hulton (2010). The toolbox only requires a
flowline, a tentative paleoglacier geometry (approached as a basin whose boundaries are defined by the position of lateral and/or frontal moraines) and a digital elevation model. Ice thickness was modelled by using an average shear stress of 100 kPa (Paterson, 1994; Benn and Hulton; 2010). Ice thicknesses were corrected based on shape factors (F-factor) obtained from a number of representative cross-sections in order to reduce the error of modelled values to < 10% (Pellitero et al., 2016). From these procedures, we produced DEMs of the paleoglaciers during different stages. Later, from those DEMs, ELAs were calculated by using the automatic toolbox developed by Pellitero et al. (2015). The selected methods were the Accumulat.n Area Ratio (Porter, 1975) and the Area Altitude Balance Ratio (AABR; Osmaston, 2005) W en applying the AABR, we considered two BR, namely: 1.75 ± 0.71 (global) and $1.9 \pm \mathrm{C} .81$ for mid-latitude maritime glaciers (Rea et al., 2009). We selected the latter, given the lo ation of the study area in the mid-latitudes and the local influence of the Atlantic air masses conversely, for the AAR, the ratio 0.6 ± 0.05 (Porter, 1975) has been applied.

4- Results

The spatial distribution of glacial and pe is lacial landforms across the Bacivèr Cirque suggests the occurrence of a sequence of per inds during the deglaciation of the cirque. The timing of these phases is constrained by 17^{10} b, ClN ages inferred from glacial and periglacial records (Table 2).

4.1 Geomorphological evic'nce and CRE sampling strategy

Bacivèr is a large amphitheatre-shaped cirque (5 km long, 3.8 km wide) that forms the headwaters of the Malo River, which drains towards the Beret Plateau and flows into the Garonne River 6 km below. This complex cirque can be divided in three large geomorphological units (Fig. 2): (i) the peaks and walls that form the head of the amphitheatre, (ii) the set of glacial, periglacial and paraglacial landforms distributed at the foot of the walls, and (iii) the large flat floor, composed of polished bedrock surfaces with small depressions and scattered erratic boulders. The cirque was
heavily glaciated during the last glacial cycle, and the deglaciation following the LGM left widespread glacial and periglacial records (Fig. 3):

Figure 2

Figure 3
(i) The cirque floor shows traces of intense glacial abrasion, with very scarce glacial deposits, mostly in the form of small, vegetated moraine ridges and some sparse erratic boulders. The short vertical distance between the cirque's walls and its floor implied low debris supply, which may explain the relatively small size of the moraine systems dist $\because \because$ tei across the cirque. Glacial erosion on the cirque floor generated several staggered, over- leef ened basins that were occupied by lakes following deglaciation. From the central-lower par..t i.e cirque, we collected three samples for CRE dating, two from polished surfaces (A-14, A-15) and one from an erratic boulder (A-10). The cirque gradually narrows downstream, ber min.s a steep U-shaped glacial valley until the confluence with the Beret Plateau at 1860 m . Tnis lowest section mainly includes polished surfaces, with few remnants of moraine deposits $\dot{\cdots}$ e to the topographical setting, which favors intense erosion processes that have destroye $\% e^{-1}$ a idl accumulations. Here, we collected two samples from a polished bedrock surface ($\mathrm{A}-16$ \& 17) that is indicative of the onset of deglaciation of the bottom of the Bacivèr valley.
(ii) The Bacivèr Cirque cons itutes a compound cirque (Barr and Spagnolo, 2015) composed of five smaller cirques with NW, N, E, SE and SW aspects (Fig. 3). Depending on the deepening of the individual cirques, distinct geomorphological sequences are present: (a) in steep and heavily carved out landforms (e.g. SE- and SW-exposed cirques), there are several generations of rock glaciers distributed in the upper part of the cirque basins that still show well-preserved furrows and ridges, with vegetation colonizing the lowest crests that reflects their current inactivity; in addition, some moraine ridges surround these landforms and enclose these small cirques distributed above the cirque floor; in the E cirque, there is also a small, collapsed, debris-covered glacier with
longitudinal ridges and furrows; (b) elongated moraine ridges fill the depressions in small glacial hollows at the contact between the cirque floor and the steep but short rock slopes (e.g. NW and E units).

The chronological study focused particularly on the eastern side of the main Bacivèr Cirque, at the foot of the summit ridge stretching N-S between Tuc de Marimanya and Cap del Muntanyó d'Àrreu (2602 m), where the main glacial and periglacial deposits are distributed. The northern side forms a 1 km -long, straight profile with peaks ranging from 2630 to 2530 m , and an elongate moraine, parallel to the wall at a distance of only 200 m , stretching ver 800 m at altitudes between 2410 and 2460 m ; here, we collected samples for CRE dating (A.-11, A-12) from two moraine boulders. The southern hollow is more excavated by glal and periglacial processes, including four small tongue-shaped moraines filling the hollows vitl. polished surfaces amongst them. We collected two samples from the northernmost mor ire idge only 180 m from the wall (A-1, A-2), two samples from the central part of the f رlis lea bedrock 180 m from the wall (A-3, A-4), two samples from the external moraine of a debris-cuvered glacier 160 m from the wall (A-5, A-7), and one sample from a boulder located or a idge inside this moraine 120 m from the wall (A-6). Moreover, we collected three sampi- from polished bedrock surfaces at distances of $\sim 100-200 \mathrm{~m}$ from the moraines and $\sim 300-4 \cap 0 \mathrm{ft} . \mathrm{m}$ the wall, in both areas (A-8, A-9, A-13).
(iii) The peaks surrounduı. hio cirque have relatively homogeneous altitudes ranging from 2500 to 2650 m , with small elevation differences of $150-200 \mathrm{~m}$ with respect to the base of the cirque floor. The cirque walls are steep and covered by a thick debris mantle generated by the intense frost shattering of the upper rock outcrops.

4.2 Geochronological data

The 17 samples collected for CRE dating yielded ages spanning from the $\mathrm{B}-\mathrm{A}$ to the Mid-Late Holocene (Fig. 4). Glacial retreat during the last deglaciation in the Bacivèr valley started following the LGM according to the lowermost samples, which yielded ages of 18.6 ± 1.2 (A-17) and $14.2 \pm$
0.4 ka (A-16), respectively. Sample A-17 is considered an outlier because it is 3-4 ka older and its analytical uncertainty is significantly higher compared to the remaining samples of the dataset, and therefore is not further discussed.

Figure 4

Post-LGM glacial shrinking exposed the central-lowest part of the cirque floor, as revealed by the samples collected from the polished bedrock that yielded ages of 13.5 ± 0.4 (A-14) and 14.1 ± 0.4 $\mathrm{ka}(\mathrm{A}-15)(13.8 \pm 0.4 \mathrm{ka} ; \mathrm{n}=2)$ as well as from a scattered erratic boulder $15.4 \pm 0.6 \mathrm{ka}$ (A-10). The samples collected from polished bedrock in the upper part of the cit' ${ }^{\text {nes }}$ show ages very similar to those of the central-lower sector. The sample from the northerac yielded an age of $15.2 \pm 0.6 \mathrm{ka}$ (A-13), whereas the samples from the southern sector of the Pacivèr Cirque were aged $15-14 \mathrm{ka}$ (A8 and A-9, respectively).

The two sampled boulders from the moraine of the hionhern side of the cirque returned ages of 10.0 $\pm 0.4(\mathrm{~A}-12)$ and $\left.13.3 \pm 0.5 \mathrm{ka}(\mathrm{A}-1)_{1}\right)$ although the former is not consistent with the chronostratigraphic sequence and thus was : ejected. By contrast, the more robust chronology of the southern cirque unit gave slightly olr.a $\mathrm{a}_{\text {亏 }}-\mathrm{s}$ of 12.7 ± 0.5 (A-1) and $12.8 \pm 0.4 \mathrm{ka}(\mathrm{A}-2)(12.8 \pm 0.5$ ka ; $\mathrm{n}=2$) for the boulders of the $\mathrm{no}_{1}{ }^{\text {+hernmost moraine. Samples from the polished bedrock dividing }}$ the moraine ridges within the $\mathrm{ir}_{\text {que }}$ e yielded an age range of $\sim 16-14 \mathrm{ka}$ (A-3 and A-4, respectively). These are slightly older then the ages of boulders on the external moraine of a debris-covered glacier that were dated at $15-14 \mathrm{ka}$ (A-5 and A-7, respectively). Finally, one sample from the external ridge inside this landform was dated at $7.2 \pm 0.3 \mathrm{ka}$ (A-6).

5- Discussion

The combination of geomorphological observations with ${ }^{10} \mathrm{Be}$-dated glacial features distributed across the Bacivèr Cirque enabled us to infer space-time patterns of deglaciation in the cirque since the Late Glacial. In addition, this chronology also indicates the timing of formation of a debriscovered glacier located on the highest slopes of the cirque:

5.1 Chronology of the deglaciation and geomorphological significance

The age of polished glacial surfaces indicated that the deglaciation of the mouth of the cirque where it gradually turns into a narrow U-shaped glacial valley - had occurred by $14.2 \pm 0.8 \mathrm{ka}$, and consequently that the Bacivèr tributary glacier was disconnected from the main Garonne paleoglacier flowing from the upper Beret Plateau downslope through the Aran valley prior to this time (A-16; Fig. 5).

Figure 5

Glacial retreat was a very rapid process during the $\mathrm{B}-\mathrm{A}$ as the entine chque was deglaciated by $\sim 15-$ 14 ka , according to polished surfaces from the central-lowest oart of the cirque floor. These surfaces yielded a deglaciation age ($13.8 \pm 0.4 \mathrm{ka}$) that overlaps ..itı that inferred from samples collected from the highest areas of the cirque, both from the eac.ern : $\sim 15-14 \mathrm{ka}$) and northern sides ($15.0 \pm$ 0.7 ka). There are minor inconsistencies bet vec.: the CRE dataset (see Table 2) and the geomorphological stratigraphy, as some bu.lers are slightly older than the ages of the polished bedrock surfaces on which they rest. This nay be due to nuclide inheritance: (i) the boulder may have fallen on the glacier during a pfiiרd vi glacial shrinking that exposed the highest section of the cirque walls, and it was subsenu ntly transported supraglacially a few hundred meters prior to deposition on the cirque fle~~ (ك̧.ner et al., 2017); or (ii) the boulder was not reworked enough (inefficient erosion) given is closeness to the cirque headwall and the subsequent limited bearing and transport distance (see García-Ruiz, 1979). Also, variations in the local snow cover, which is much thicker on bedrock surfaces than on boulders that protrude considerably from the ground, might be responsible for the age differences. We therefore consider that within the geomorphological and analytical uncertainties of the CRE dating, the exposure of erratic boulders and related polished bedrock started roughly at the same time. Ice-moulded surfaces within the individual glacial cirques provided similar deglaciation ages (Fig. 3; $\sim 16-14 \mathrm{ka}$). This phase, however, is compatible with the occurrence of periods of relative glacial stability, which may have
generated the small moraine ridges distributed on the main cirque floor (Fig. 3), as well as the small debris-covered glacier located in the eastern hollow of the Bacivèr Cirque. Here, two boulders returned slightly younger ages ($\sim 15-14 \mathrm{ka}$; see Table 2) than the neighbouring polished bedrock ($\sim 16-14 \mathrm{ka})$. These exposure ages from the highest surfaces suggest that the rapid glacial shrinking recorded during the B-A probably favored the disappearance of glaciers in the cirque by $\sim 15-14 \mathrm{ka}$, with some stagnant ice masses in favorable topographical settings under the protection of the wall and with an intense debris supply.

In short, the considerable homogeneity of the CRE results in th, area seems to indicate a rapid retreat of 3 km of the glacier at the beginning of B-A, with on', c'all glaciers (200-300 m long) sheltered by the wall surviving, and under an intense pe agiacial activity. This abundant debris supply caused the residual glaciers to evolve towards a ange of typologies, including debriscovered glaciers in some cirques, and rock glacier, in others. These landforms are widespread features in deglacierizing mountains that ral sitın from glaciated into paraglacial landscapes (Knight et al., 2019). The coincidence o. the ages of the boulders belonging to these formations and those of the rock platforms where they r-siud indicates the short time elapsed between the general deglaciation and the collapse of thes residual small glaciers, which determined the stabilization of their deposits (Fig. 3).

Exposure ages of morain bu.iders revealed that the highest moraine was abandoned and finally stabilised at $12.8 \pm 0.5 \mathrm{ka}$, whereas one sample from the northernmost dated landform (Fig. 3) yielded a slightly older age of $13.3 \pm 0.5 \mathrm{ka}$; the average of the three moraine samples results in an age of $12.9 \pm 0.3 \mathrm{ka}$. Remarkably, we highlight that these are minimum ages that do not include erosion and snow corrections (Table 3). The uncertainty range of CRE dating and the small number samples makes it difficult to differentiate whether the moraine stabilised at the end of the B-A or at the beginning of the YD.

Journal Pre-proof

The absence of further glacial landforms at higher elevations suggests that the Bacivèr Cirque has not accumulated glacial ice since $\sim 12.9 \mathrm{ka}$. However, the degradation of these glaciers enhanced paraglacial dynamics and the persistence of small ice masses as small debris-covered glaciers. A sample collected from a ridge of one such landform yielded an exposure age of $7.2 \pm 0.3 \mathrm{ka}$. We interpret this as the age of stabilization of the boulder once the inner ice melted away and mobility ceased, which might be representative of the collapse/final melting of the inner sector of the debriscovered glacier (Fig. 6). The location of the sample on a ridge 100 m distant from the wall rules out the possibility of the boulder having fallen from the wall and sup norts this interpretation. Our data suggests that this debris-covered glacier formed under intense , ara lacial dynamics following the deglaciation and stabilizing during the Early Holocene. Del ricer vered and rock glaciers located in other small hollows of this valley and in similar relative pos tions may also have followed a similar pattern to that observed in other Pyrenean valleys (i.ndrés et al., 2018; García-Ruiz et al., 2016; Palacios et al., 2017b).

Figure 6

5.2 Late Quaternary glacial dynamics n he Central Pyrenees and Iberian Peninsula

The Iberian ranges are among the nountains where knowledge about Pleistocene glacial evolution has most improved in the lest au_dde (Oliva et al., 2019b). New chronological information about their glacial history from . 'cent years has been complemented with a better knowledge of the spatial and temporal dynamics of periglacial processes that reshaped the landscape fashioned by Quaternary glaciers, particularly during the Holocene (Oliva et al., 2018, 2016).

In this Iberian context, together with the Sierra Nevada massif and the Cantabrian Mountains, the Pyrenees stand out as the mountain ranges where the numerous glacial studies have produced the best chronologies of glacial oscillations (Table 4). There is still an open debate and divergent information with regards to the timing of the maximum glacial advance during the last glacial cycle on both the northern and southern slope of the Pyrenees (Delmas et al., 2021). There is more
consensus, and much more homogeneous information, about the timing of glacial advances and retreats during colder and warmer periods during T-1. However, most research has been conducted in the major glacial valleys and highest mountain cirques, whereas lower-altitude catchments remain poorly investigated. To shed light on the role of altitude and topographical conditions controlling glacial oscillations during $\mathrm{T}-1$, we reconstructed the deglaciation process in the upper Garonne Basin focusing on one valley of its headwaters, the Bacivèr Cirque. The fact that its cirque summits reach only $2600-2650 \mathrm{~m}$ determined a pattern of deglaciation similar in both extent and timing to some of the tributaries of the Gállego Valley (Palacios c ${ }^{+}$al., 2017b) or the Ariège Valley (Jomelli et al., 2020) - where summits are around $2600-2700 \mathrm{~m}$ rather than that reported for glaciers developed at the foot of summits around 3000 m (Ga. ${ }^{\circ}$ cí. -Ruiz et al., 2016; Palacios et al., 2017b; Pallàs et al., 2006).

In the Pyrenees, the highest peaks exceeding 290 m remained covered by extensive, thick and strongly erosive ice caps during the Late $Q^{\text {att }}$ nar y, while in lower ranges between 2400 to 2800 m glaciers were much thinner. Consequ.ntly, many of these ridges emerged above the glaciers as nunataks (Delmas et al., 2021). Ti is \sim of great importance for understanding the local geomorphological evolution durin; 11 , especially on substrates of crystalline rocks. The cirques of the highest peaks were intense ${ }^{1} \mathrm{y}$ en $\mathrm{e}^{\text {ded }}$ by glacial processes, which removed the entire weathering mantle. As such, when ${ }^{\prime}$ 'ac. ${ }^{2}$ rs retreated, paraglacial dynamics were less intense in these areas. By contrast, in lower-altitude ...assifs, the weathered mantle has been partially preserved on the walls (less affected by glacial erosion) and when glaciers retreated, paraglacial processes were comparatively more intense. For this reason, a greater diversity of glacial and periglacial sedimentary landforms, which can provide a detailed picture of the environmental evolution during deglaciation, is found in the interior of low-altitude crystalline cirques. This geomorphological pattern has also been identified in other mid-altitude cirques of the Central Pyrenees, such as Catieras, Piniecho and Brazato (Palacios et al., 2017b), as well as in other relatively high cirques in the Eastern Pyrenees, including Malniu and Perafita (Andrés et al., 2018).

Table 4

The cold conditions that prevailed during the OD favored the reoccupation of the valley floors by glaciers at $\sim 17-16 \mathrm{ka}$ (Fig. 7), as occurred in several valleys in the Central and Eastern Pyrenees (Palacios et al., 2017a) (Table 4). At this time, the upper Garonne Basin must still have been extensively glaciated, with moraine systems located in the main valley also fed by the glacier descending from the Bacivèr Cirque that contributed ice to the Garonne paleoglacier (Fernandes et al., 2017). However, this phase was reconstructed based on the identification of moraine systems alone, and no direct ages are yet available for the upper Garonne va 'ey.

Figure 7

As temperatures rose by $3-5^{\circ} \mathrm{C}$ in western Europe duriro thc B-A Interstadial (Clark et al., 2012), the Garonne paleoglacier receded rapidly and severa ${ }^{1}$ smu ${ }^{11}$ alpine or cirque glaciers remained, individualized within the headwaters of the high st r...eys. CRE dates of the lowest sections of the Bacivèr valley suggest that the disconnectio. 1, etween the Beret Plateau (i.e. Garonne paleoglacier) and the Bacivèr paleoglaciers took place pıi rr to $14.2 \pm 0.8 \mathrm{ka}$. At that time, the glacier had a length of 3.8 km and had shrunk significar, since the maximum ice expansion of the last glacial cycle, when the Garonne paleoglacier ruched a length of 89 km (Fernandes et al., 2017). In fact, the overlapping between the sam- ${ }_{-}^{-1}$ es _ollected from the cirque floor and the polished bedrock surfaces of the higher glacial thresı lds suggests that deglaciation was a very rapid process and that the entire cirque ($\sim 10 \mathrm{~km}^{2}$) was ice-free by $\sim 15-14 \mathrm{ka}$. The presence of small (undated) moraine ridges distributed across the Bacivèr Cirque (Fig. 2c and 3) reveals the occurrence of short periods of glacial advance or standstills during the B-A. However, as small moraines, these ridges must have formed during short periods favoring shifts in glacier mass balance that resulted in stabilization or even very limited glacier growth within an overall trend of warming and accelerated retreat (see e.g. Chandler et al., 2016). The partial overlapping of the CRE uncertainty ranges impedes precise constraints of particular events within the cirque's deglaciation chronology, which has also occurred
in other massifs in the Pyrenees where the transition between different T-1 cold/warm periods cannot be detected with high precision (e.g. Pallàs et al., 2006). In any case, glaciers in the Pyrenees during the B-A may only have persisted in the highest northern cirques of the highest massifs whereas low-altitude catchments must have been ice-free during this period (Oliva et al., 2019b), as most of the glaciated massifs were during the OD in the Mediterranean region (Palacios et al., 2017b, 2017a). In the Alps, glacial extents were significantly reduced during the B-A and glaciers only persisted in the highest sectors of the highest valleys (Ivy-Ochs, 2015).

The cooling from the B-A to the YD in Western Europe has been $c_{2} \cdot$ antified at $5-10^{\circ} \mathrm{C}$ (Clark et al., 2012), although it might have been lower in the Iberian Penii. $\sim_{1} \boldsymbol{1}_{1}$: terrestrial records suggest a temperature decrease of $2.5^{\circ} \mathrm{C}$ (Iriarte-Chiapusso et al., 010 , whereas marine records from the Alborán Sea (Cacho et al., 2002) and the Portugues crast (Rodrigues et al., 2010) point to temperatures lower by $4-5^{\circ} \mathrm{C}$. In parallel to the lo vei emperatures that generally prevailed during the YD, significant hydrological shifts wer re oraid (Bartolomé et al., 2015; Cheng et al., 2020; Rea et al., 2020) that must have affected the ELA in the Central Pyrenees. In the case of the Bacivèr cirque, we assume that these small glace s eadvanced or stabilised at the transition between the BA and the YD, probably due to the pitection of a thick debris cover on a glacier that did not reach the cirque floor. These cirque olac ors were small (Fig. 5), with lengths of $0.2-0.3 \mathrm{~km}$ and surface extents of 13-18 ha, and wih' th ir fronts at elevations of $\sim 2400 \mathrm{~m}$. These glaciers represented only $\sim 0.3 \%$ of the length of the ' Jaronne paleoglacier during the maximum ice extent of the last glacial cycle (Fernandes et al., 2017). This pattern is similar to that in in the Upper Gállego Valley (Catieras and Piniecho cirques) where the B-A frontal moraines are located $0.4-0.6 \mathrm{~km}$ from the headwall, at 2300-2350 m, in cirques where the maximum elevations are $\sim 2700 \mathrm{~m}$, slightly higher than in the Bacivèr Cirque (Palacios et al., 2017a). Similar to the Bacivèr cirque, in the Alps, glacial expansion during the $\mathrm{B}-\mathrm{A} / \mathrm{YD}$ transition left two moraine systems that were dated between ~ 13.5 and $\sim 12 \mathrm{ka}$ (Ivy-Ochs, 2015); in the highest mountains in Greece on Mount Olympus moraines stabilized at $\sim 13.5-11.7 \mathrm{ka}$ (Styllas et al., 2018) and on Mount Chelmos at $\sim 13.1-10.5 \mathrm{ka}$ (Pope et
al., 2017); and in Anatolian mountains two phases occurred at ~ 13 and ~ 11.5 ka, both in the Kaçkar Mountain range (Akçar et al., 2007) and Uludağ Mountain (Zahno et al., 2010).

Based on the reconstruction of the two dated moraine ridges, during the transition between the $\mathrm{B}-\mathrm{A}$ and the YD, the ELA in the Bacivèr Cirque must have been at 2485 and 2504 m , respectively (average 2495 m ; Table 5). The current regional $0^{\circ} \mathrm{C}$ isotherm in the Central Pyrenees lies at ~ 2950 m (López-Moreno et al., 2019), which roughly coincides with the ELAs in some still glaciated massifs such as Monte Perdido and Maladeta (Chueca et al., 2005). Therefore, assuming an ELA depression of 455 m with respect to the current regional estimate $\quad \mp 2950 \mathrm{~m}$, an average lapse rate of $0.65^{\circ} \mathrm{C} 100 \mathrm{~m}^{-1}$ and no change in precipitation - as inferred $\mathrm{t} \cdot{ }^{\circ} \mathrm{s}$, me areas in the Mediterranean region, such as the Maritime Alps (Spagnolo and Ribolini, "01ジ) - summer temperatures must have been $\sim 3.0^{\circ} \mathrm{C}$ lower than at present during the transition het ween the $\mathrm{B}-\mathrm{A}$ and the YD to allow the formation or stabilization of such small glaciers. A ss balance models suggest slightly lower temperatures in the Ariège Valley, rangins, fri m 2.9 and $5.1^{\circ} \mathrm{C}$, based on the reconstruction of glaciers from the moraine systems of twe cirques (Jomelli et al., 2020).

Overall, our results and those from other stadies in the Pyrenees show that the time spanning from the early B-A to the YD was a m or civer of landscape change in the high sectors of the Pyrenees as: (i) prevailing warm conditic. $\mathrm{a} r$ romoted the definitive disappearance of glaciers in most cirques, particularly in low-to mı aıiade cirques, (ii) glacial shrinking favored the formation of debriscovered glaciers that extend over the cirque floors, and (iii) glacial retreat was followed by very intense paraglacial dynamics that favored the formation of permafrost-related landforms such as rock glaciers and protalus lobes (Fernandes et al., 2018) as well as abundant slope failures in formerly glaciated areas (Fernandes et al., 2020).

Table 5

The temperature increase of $\sim 4^{\circ} \mathrm{C}$ in western Europe recorded at the onset of the Holocene (Clark et al., 2012) favored the disappearance of YD glaciers. However, as detected in some cirques at the
foot of the highest peaks, at $\sim 2900-3000 \mathrm{~m}$ in the Central and Eastern Pyrenees (Table 4), intense paraglacial adjustment following glacial shrinking led to the formation of rock glaciers (Andrés et al., 2018; Oliva et al., 2016). Indeed, the deep glacial hollows excavated in steep slopes surrounding the Bacivèr Cirque included well-developed rock glaciers. Interestingly, in an east-facing hollow that was less excavated by glacial and periglacial erosion, a debris-covered glacier formed once climate conditions became unfavorable for glacial activity. According to the exposure age of the sampled boulder (sample A-6) suggesting its geomorphic stabilization, this landform must have contained glacial ice until at least $\sim 7.2 \mathrm{ka}$, when it finally m ${ }^{1}$ 'ed away during the Holocene Thermal Maximum (Renssen et al., 2009). This timing is very sim lar to the stabilization of rock glaciers in the Central and Eastern Pyrenees (Andrés et al., 2८18. García-Ruiz et al., 2016; Palacios et al., 2015a), as well as to the final collapse of the debres vered glaciers that existed in the Sierra de la Demanda, Iberian Range, that persisted unti¹ , 5 ka (Fernández-Fernández et al., 2017). As revealed by present-day analogs, these landfr. ns an undergo significant morphodynamic changes in deglacierizing mountains and may have a $_$ng residence time in the landscape (Knight et al., 2019). Ice can thus persist protected $\mathrm{b} \cdot \mathrm{n}$, th the debris cover in sheltered areas, little affected by atmospheric temperatures, as also d tectud in Iceland (Campos et al., 2019; Fernández-Fernández et al., 2020; Tanarro et al., 2019).

However, recent resear, ${ }^{h}$.as lso shown that debris-covered glaciers can be more sensitive to climate variability than inially thought, as some features may respond rapidly to changes in temperature and precipitation (Charton et al., 2020). Therefore, when interpreting past glacial oscillations both climate changes as well as paraglacial processes must be taken into account. This means that the great intensity of the paraglacial readjustment in these cirques, under relatively lowaltitude peaks in crystalline rocks and where the rock walls retain most of the weathered mantle, interferes with the effects of climate on glacier dynamics. In any case, it should be highlighted that the same chronological pattern for the deglacial period was also observed in cirques with similar characteristics in the Central (Palacios et al., 2017b) and Eastern Pyrenees (Andrés et al., 2018).

The new debris cover on the glacier surface, supplied by paraglacial processes, can promote glacier advance or long-term stability by drastically reducing the ablation and shifting mass balance (Herreid and Pellicciotti, 2020). As such, paraglacial processes can interrupt the deglaciation process to some extent even without climatic influence (Hambrey et al., 2019, 2008; Jones et al., 2019; Rowan et al., 2015). The factors controlling the advances/retreats of debris-covered glaciers, as well as their collapse, are not fully understood, and further research is needed to clarify their response to short- and long-term climate trends. This is particularly important in the current global warming scenario, where glacier shrinking is accelerating and p° "glacial processes are delivering large amounts of sediment to the surface of glaciers, considerin $\mathcal{c}_{\mathcal{c}}$ tha 7.3% of the area of mountain glaciers is debris-covered and this percentage is expecter : icrease in response to increasing temperatures (Herreid and Pellicciotti, 2020).

Since the inferred disappearance of glacial ice of the crque at $\sim 7.2 \mathrm{ka}$, the natural evolution of the landscape of the Bacivèr Cirque has befa riven mainly by nival processes and periglacial dynamics (Fernandes et al., 2017). Currnt morpnodynamics are associated with the occurrence of a seasonal frost ground thermal regime, is pi . mafrost conditions are only found extensively in areas above 2900 m in the Central Pyrerec. (Serrano et al., 2019), much higher than the highest summits of the Bacivèr Cirque.

In summary, the reconstri. ${ }^{-} t \iota^{\prime}$. emporal pattern of deglaciation of the Bacivèr Cirque during $\mathrm{T}-1$ is fully consistent with the timing reported in other sectors of the Pyrenees (Andrés et al., 2018; Palacios et al., 2017b) and other Iberian mountains (see summary in Oliva et al., 2019b) with accelerated glacier retreat during the $\mathrm{B}-\mathrm{A}$, and the subsequent activation of paraglacial processes and a minor glacial re-expansion during the B-A/YD transition. No disparity in timing of maximum ice extent across the Mediterranean mountains is observed during the last deglaciation. The ages of glacial advances and retreats in Iberia during T-1 are similar to those that occurred in centralnorthern Europe, such as Iceland (Fernández-Fernández et al., 2020), the British Isles (Barth et al.,
2016), and the Alps (Ivy-Ochs, 2015; Moran et al., 2016). The chronology is also similar to that reported in other temperate European mountains, such as the Anatolian Peninsula (Köse et al., 2019; Sarıkaya et al., 2017), the Carpathians (Gheorghiu et al., 2015; Makos et al., 2018), the southern Balkans (Styllas et al., 2018), the Dinaric Alps (Žebre et al., 2019), and Atlas Mountains (Hughes et al., 2018). Indeed, the timing of oscillations resembles the past evolution of the Scandinavian Ice Sheet, which retreated considerably during the B-A and regrew and advanced tens of km as temperatures declined during the transition towards the YD (Greenwood et al., 2015; Hughes et al., 2016; Mangerud et al., 2016). All in all, the data s rms to indicate that deglaciation followed very homogeneous climatic patterns throughout Eurol e, with minor differences imposed by local topoclimatic conditions.

6- Conclusions

One of the main attractions of the natural heritaçe -it ie Central Pyrenees is its glacial landscape. During Quaternary colder phases, glacier ha ve fashioned the valleys and cirques, which were subsequently reshaped by periglacial concitions during the warmer interglacial periods. Despite the fact that the highest massifs of the Cen ra Pyrenees are some of the mid-latitude mountain areas where glacial evolution has been studıd in the greatest detail, the timing of development of glacial phenomena remains poorly in estigated for cirques at lower altitudes. This is the case of the Bacivèr Cirque, from whi re ..e introduced CRE ages of glacial landforms that are indicative of glacial oscillations during T-1 in the upper Garonne valley.

The Atlantic-influenced upper Garonne Basin favored the development of the longest glacier in the entire range ($\sim 90 \mathrm{~km}$) despite having its headwaters at elevations of 2600-2650 m, 600-800 m lower than the highest peaks in the Pyrenees. The chronology of deglaciation of one of the cirques in the headwaters of the Garonne paleoglacier also contributes to a better understanding of glacial oscillations on the northern slope of the Pyrenees. The Bacivèr Cirque, with its wide cirque floor located at 2200-2400 m, was located above the regional ELA during the maximum ice extent of the
last glacial cycle. As temperatures increased following the LGM, glaciers rapidly retreated to the headwaters of the highest valleys and the glacier flowing downvalley from the Bacivèr Cirque became disconnected from the Garonne Glacier prior to $\sim 15-14 \mathrm{ka}$, when the lowest part of the cirque became ice free. Glacial recession was enhanced during the B-A at $\sim 15-14 \mathrm{ka}$, with the cirque likely being fully deglaciated. Small cirque glaciers formed or remained at the foot of the wall during the transition between the B-A and the YD. These small glaciers were affected by paraglacial readjustment of the slopes, which triggered their transformation into rock glaciers and a debris-covered glacier. Their fronts collapsed almost immediate y_{y}^{\prime} but in some cases, their upper sections remained active during the Early Holocene, until at east $\sim 7 \mathrm{ka}$; since then, periglacial slope processes and nival activity have shaped the highest p. rts of the massif. The chronology of glacial advances and retreats during T-1 reconstructed fror the Bacivèr Cirque is similar to that reported from other lower Pyrenean glaciers. Therfiv e, the period spanning from the early B-A to the transition towards the YD dramatically $\operatorname{tr} \ldots \mathrm{f} .$. med the mountain landscape of the Pyrenees and favored the development of the great geou rephological diversity of glacial and periglacial landforms that exists today in many $\operatorname{cir}_{(1)} \mathrm{U}_{1} \times$ or this mountain range.

The glacial and periglacial landscrpe of the Bacivèr Cirque inherited from past periods and slightly reshaped during the current intarglicial is also being intensely transformed by human activities. The expansion of the neighior ng ski resort, with the ski slopes and associated infrastructure, has already destroyed geomor,inc evidence. The findings presented in this study are thus clear evidence of the richness of crucial information that this cirque contains, and of the need to preserve its landscape for future generations.

Acknowledgements

This research was funded by the Research Group ANTALP (Antarctic, Arctic, Alpine Environments; 2017-SGR-1102) funded by the Government of Catalonia and by the Research Group ZEPHYRUS (Climate Change and Environmental Systems) of the Universidade de Lisboa. The study topics complement those of the project PALEOGREEN (CTM2017-87976-P) funded by the Spanish Ministry of Economy and

Competitiveness and the NUNANTAR project funded by the Fundação para a Ciência e Tecnologia of Portugal (02/SAICT/2017-32002). Marc Oliva is supported by the Ramón y Cajal Program (RYC-201517597). José María Fernández-Fernández is supported by a postdoctoral grant within the NUNANTAR project, whereas Marcelo Fernandes holds a PhD fellowship of the Fundação para a Ciência e Tecnologia of Portugal (FCT - UIDB/00295/2020). The ${ }^{10} \mathrm{Be}$ and ${ }^{36} \mathrm{Cl}$ measurements were performed at the ASTER AMS national facility (CEREGE, Aix en Provence), which is supported by the INSU/CNRS and the ANR through the "Projets thématiques d'excellence" program for the "Equipements d'excellence" ASTER-CEREGE action and IRD. This research is also supported and framed within the College on Polar and Extreme Environments (Polar2E) of the University of Lisbon. We thank Jesús Ruiz-Fernández an. ${ }^{\text {T }}$ María Palacios for their support in the field. We also thank Matteo Spagnolo and an anonymous revic ve for their comments on a draft of this paper.

References

Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P.W., V..d.r. M., Schlüchter, C., 2007. Paleoglacial records from Kavron Valley, NE Turk, y: `ield and cosmogenic exposure dating evidence. Quat. Int. 164-165, 170-183. https:/心'i.org/10.1016/j.quaint.2006.12.020

André, M.F., 2002. Rates of Postgla sai rock weathering on glacially scoured outcrops (AbiskoRiksgränsen area, $68^{\circ} \mathrm{N}$). G ${ }^{\circ} \mathrm{o}_{\mathrm{z}}{ }^{-\quad \text { Ann. Ser. A Phys. Geogr. 84, 139-150. }}$

Andrés, N., Gómez-Ortiz, A. Fernández-Fernández, J.M., Tanarro, L.M., Salvador-Franch, F., Oliva, M., Palacios, D., 2018. Timing of deglaciation and rock glacier origin in the southeastern Pyrenees: a review and new data. Boreas 47, 1050-1071. https://doi.org/10.1111/bor. 12324

Arnold, M., Merchel, S., Bourlès, D.L., Braucher, R., Benedetti, L., Finkel, R.C., Aumaître, G., Gottdang, A., Klein, M., 2010. The French accelerator mass spectrometry facility ASTER: Improved performance and developments 268, 1954-1959.

Barr, I.D., Spagnolo, M., 2015. Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. Earth-Science Rev. 151, 48-78. https://doi.org/10.1016/j.earscirev.2015.10.004

Barth, A.M., Clark, P.U., Clark, J., McCabe, A.M., Caffee, M., 2016. Last Glacial Maximum cirque glaciation in Ireland and implications for reconstructions of the Irish Ice Sheet. Quat. Sci. Rev. 141, 85-93. https://doi.org/10.1016/j.quascirev.2016.04.006

Bartolomé, M., Moreno, A., Sancho, C., Stoll, H.M., Cacho, I., Spötl, C., Belmonte, Á., Edwards, R.L., Cheng, H., Hellstrom, J.C., 2015. Hydrological change in L $\operatorname{couthern~Europe~responding~to~}$ increasing North Atlantic overturning during Greenland ${ }^{\text {Cw }}{ }^{\prime}$ lai 1. Proc. Natl. Acad. Sci. 112, 6568-6572. https://doi.org/10.1073/pnas. 1503990112

Benn, D.I., Hulton, N.R.J., 2010. An ExcelTM spreadst eet \uparrow "ogram for reconstructing the surface profile of former mountain glaciers and ice r aps. ©omput. Geosci. 36, 605-610. https://doi.org/10.1016/j.cageo.2009.0ヶ.’6

Braucher, R., Guillou, V., Bourlès, D.L , A rrıvld, M., Aumaître, G., Keddadouche, K., Nottoli, E., 2015. Preparation of ASTER in-hoise 10Be/9Be standard solutions 361, 335-340.

Buizert, C., Keisling, B.A., Box, J.ॅ., He, F., Carlson, A.E., Sinclair, G., DeConto, R.M., 2018. Greenland-Wide Seasc nal emperatures During the Last Deglaciation. Geophys. Res. Lett. 45, 1905-1914. https://dci r.rg/10.1002/2017GL075601

Cacho, I., Grimalt, J.O., Canals, M., 2002. Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years: A molecular biomarker approach. J. Mar. Syst. 33-34, 253-272. https://doi.org/10.1016/S0924-7963(02)00061-1

Campos, N., Tanarro, L.M., Palacios, D., Zamorano, J.J., 2019. Slow dynamics in debris-covered and rock glaciers in Hofsdalur, Tröllaskagi Peninsula (northern Iceland). Geomorphology 342, 61-77. https://doi.org/10.1016/j.geomorph.2019.06.005

Carrasco, R.M., Pedraza, J., Domínguez-Villar, D., Willenbring, J.K., Villa, J., 2015. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quat. Sci. Rev. 129, 163-177. https://doi.org/10.1016/j.quascirev.2015.09.021

Chandler, B.M.P., Evans, D.J.A., Roberts, D.H., 2016. Recent retreat at a temperate Icelandic glacier in the context of the last ~ 80 years of climate change in the North Atlantic region. Arktos 2. https://doi.org/10.1007/s41063-016-0024-1

Charton, J., Jomelli, V., Schimmelpfennig, I., Verfaillie, D., Favier, V., Mokadem, F., Gilbert, A., Brun, F., Aumaître, G., Bourlès, D.L., Keddadouche, K., 2020. i. debris-covered glacier at Kerguelen $\left(49^{\circ} \mathrm{S}, 69^{\circ} \mathrm{E}\right)$ over the past 15000 years. Anta \quad Ju. $13,1-13$. https://doi.org/10.1017/S0954102020000541

Cheng, H., Zhang, H., Spötl, C., Baker, J., Sinha, A., Li, H., Jartolomé, M., Moreno, A., Kathayat, G., Zhao, J., Dong, X., Li, Y., Ning, Y., Jia. X., Z.ng, B., Brahim, Y.A., Pérez-Mejiás, C., Cai, Y., Novello, V.F., Cruz, F.W., Severing as, J.P., An, Z., Edwards, R.L., 2020. Timing and structure of the Younger Dryas event \mathfrak{a}, d its underlying climate dynamics. Proc. Natl. Acad. Sci. U. S. A. 117, 23408-23417. ${ }^{\prime}$ thu.//doi.org/10.1073/pnas. 2007869117

Chmeleff, J., von Blanckenburg, ‥, I'ossert, K., Jakob, D., 2010. Determination of the 10Be halflife by multicollector I'-Y-\IS and liquid scintillation counting. Nucl. Instruments Methods Phys. Res. Sect. B Bean Interact. with Mater. Atoms 268, 192-199. https://doi.org/10.1016/j.nimb.2009.09.012

Chueca, J., Julián, A., Saz, M.A., Creus, J., López-Moreno, J.I., 2005. Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68, 167-182. https://doi.org/10.1016/j.geomorph.2004.11.012

Çiner, A., Sarıkaya, M.A., Yıldırım, C., 2017. Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface exposure dating: Moraines vs. rock glaciers. Quat. Geochronol. 42, 76-88. https://doi.org/10.1016/j.quageo.2017.07.003

Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science (80-.). 325, 710714. https://doi.org/10.1126/science. 1172873

Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E., Cheng, H., Kaufman, D.S., Liu, Z., Marchitto, T.M., Mix, A.C., Morrill, C., Otto-Bliesner, B.L., Pahnke, K., Russell, J.M., Whitlock, C., Adkins, J.F., Blois, J.L., Clark, J., Colman, S.M., Curry, W.B., Flower, B.P., He, F., Johnson, T.C., Lynch-Stieglitz, J., Markgraf, V., McManus, J., Mitrovica, J.X., Moreno, P.I., Williams, J.W., 2012. Globa: -limate evolution during the last deglaciation. Proc. Natl. Acad. Sci. 109, E1134-E1142. https://doi.org/10.1073/pnas. 1116619109

Crest, Y., Delmas, M., Braucher, R., Gunnell, Y., Calvet, 1•, 2017. Cirques have growth spurts during deglacial and interglacial periods: Evidice from ${ }^{10} \mathrm{Be}$ and ${ }^{26} \mathrm{Al}$ nuclide inventories in the central and eastern Pyrenees. Geor orr .ology 278, 60-77. https://doi.org/10.1016/j.geomorph. ¿?16.10.035

Delmas, M., Gunnell, Y., Calvet, M., 工ei...uch, T., Oliva, M., 2021. The Pyrenees: glacial landforms from the Last Glacial Maximı η, in: Palacios, D., Hughes, P., García-Ruiz, J.M., Andrés, N. (Eds.), European Glacip! 「 aııscapes. Elsevier.

Denton, G.H., Anderson, R.t , Toggweiler, J.R.R., L Edwards, R., Schaefer, J.M., Putnam, A.E., Jiménez-Amat, P., Zahn, R., Bentley, M.J., Ocofaigh, C.Ó., Anderson, J.B., Conway, H., Davies, B.J., Graham, A.G.C., Hillenbrand, C.D., Hodgson, D.A., Jamieson, S.S.R., Larter, R.D., Mackintosh, A., Smith, J.A., Verleyen, E., Ackert, R.P., Bart, P.J., Berg, S., Brunstein, D., Canals, M., Colhoun, E.A., Crosta, X., Dickens, W.A., Domack, E.W., Dowdeswell, J.A., Dunbar, R., Ehrmann, W., Evans, J., Favier, V., Fink, D., Fogwill, C.J., Glasser, N.F., Gohl, K., Golledge, N.R., Goodwin, I., Gore, D.B., Greenwood, S.L., Hall, B.L., Hall, K., Hedding, D.W., Hein, A.S., Hocking, E.P., Jakobsson, M., Johnson, J.S., Jomelli, V., Jones, R.S.,

Klages, J.P., Kristoffersen, Y., Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S.J., Massé, G., McGlone, M.S., McKay, R.M., Melles, M., Miura, H., Mulvaney, R., Nel, W., Nitsche, F.O., O’Brien, P.E., Post, A.L., Roberts, S.J., Saunders, K.M., Selkirk, P.M., Simms, A.R., Spiegel, C., Stolldorf, T.D., Sugden, D.E., van der Putten, N., van Ommen, T., Verfaillie, D., Vyverman, W., Wagner, B., White, D.A., Witus, A.E., Zwartz, D., Buizert, C., Gkinis, V., Severinghaus, J.P., He, F., Lecavalier, B.S., Kindler, P., Leuenberger, M., Carlson, A.E., Vinther, B.M., Masson-Delmotte, V., White, J.W.C., Liu, Z., Otto-Bliesner, B.L., Brook, E.J., Bentley, M.J., Fogwill, C.J., Kubik, P.W., 'rgden, D.E., Hodgson, D.A., Roberts, S.J., Smith, J.A., Verleyen, E., Sterken, M., Labarcue, A., Sabbe, K., Vyverman, W., Allen, C.S., Leng, M.J., Bryant, C., Glasser, N.F., Davies, B j., Carrivick, J.L., Rodés, A., Hambrey, M.J., Smellie, J.L., Domack, E.W., Mül' r, J. Stein, R., Miettinen, A., Divine, D. V., Husum, K., Koç, N., Jennings, A., Levy, L i , Kelly, M.A., Lowell, T. V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, ¿. ?., Чowley, J.A., Axford, Y.L., Schaefer, J.M., Finkel, R.C., Goehring, B.M., Alley, R.B., Denton, G.H., Håkansson, L., Briner, J.P., Alexanderson, H., Aldahan, A., Pc ss . rrt, G., Tabone, I., Blasco, J., Robinson, A., AlvarezSolas, J., Montoya, M., Bennik`. O., Björck, S., Schaefer, J.M., Finkel, R.C., Balco, G., Alley, R.B., Caffee, M.W., Briner, : P., Young, N.E., Gow, A.J., Schwartz, R., Bevis, M., Harig, C., Khan, S.A., Brown. A. Sit ons, F.J., Willis, M., Fettweis, X., van den Broeke, M.R., Madsen, F.B., Kendrick, E., Cacr amise, D.J., van Dam, T., Knudsen, P., Nylen, T., Arndt, J.E., Jokat, W., Dorschel, B., Bradley, S.L., Reerink, T.J., Van De Wal, R.S.W., Helsen, M.M., Stokes, C.R., Margold, M., Clark, C.D., Tarasov, L., Kelly, M.A., Lowell, T. V., Hall, B.L., Schaefer, J.M., Finkel, R.C., Goehring, B.M., Alley, R.B., Denton, G.H., Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L., Glasser, N.F., Bentley, M.J., Fogwill, C.J., Kubik, P.W., Sugden, D.E., Ocofaigh, C.Ó., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P., Hodgson, D.A., Anderson, J.B., Bentley, M.J., Canals, M., Domack, E.W., Dowdeswell, J.A., Evans, J., Glasser, N.F., Hillenbrand, C.D., Larter, R.D., Roberts, S.J., Simms, A.R., Cofaigh,
C.Ó., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P., Hodgson, D.A., Anderson, J.B., Bentley, M.J., Canals, M., Domack, E.W., Dowdeswell, J.A., Evans, J., Glasser, N.F., Hillenbrand, C.D., Larter, R.D., Roberts, S.J., Simms, A.R., Buizert, C., Gkinis, V., Severinghaus, J.P., He, F., Lecavalier, B.S., Kindler, P., Leuenberger, M., Carlson, A.E., Vinther, B.M., Masson-Delmotte, V., White, J.W.C., Liu, Z., Otto-Bliesner, B.L., Brook, E.J., Jiménez-Amat, P., Zahn, R., Mcgehee, R., Schaefer, J.M., Finkel, R.C., Balco, G., Alley, R.B., Caffee, M.W., Briner, J.P., Young, N.E., Gow, A.J., Schwartz, R., Sinclair, G., Carlson, A.E., Mix, A.C., Lecavalier, B.S., Milne, G.A., Mathias, A., Buize. ${ }^{+}$C., DeConto, R., Jomelli, V., Schimmelpfennig, I., Favier, V., Mokadem, F., Landais, A., Rin erknecht, V., Brunstein, D., Verfaillie, D., Legentil, C., Aumaitre, G., Bourlès, D.L , Yer Jadouche, K., Martinson, D.G., Miettinen, A., Divine, D. V., Husum, K., Koç, N., lennı ıgs, A., Bentley, M.J., Hodgson, D.A., Smith, J.A., Cofaigh, C.Ó., Domack, E.W., La ı , R.D., Roberts, S.J., Brachfeld, S., Leventer, A., Hjort, C., Hillenbrand, C.D., Evans, 「., Ja^kson, R., Carlson, A.E., Hillaire-Marcel, C., Wacker, L., Vogt, C., Kucera, M., Peck, '...., Allen, C.S., Kender, S., McClymont, E.L., Hodgson, D.A., Bentley, M.J., Oc‘,frǐ̌h, C.Ó., Anderson, J.B., Conway, H., Davies, B.J., Graham, A.G.C., Hillenbrand, ‘.D., Hodgson, D.A., Jamieson, S.S.R., Larter, R.D., Mackintosh, A., Smith, J.A., Verleyen, E., Ackert, R.P., Bart, P.J., Berg, S., Brunstein, D., Canals, M., Colhoun, I .A., Crosta, X., Dickens, W.A., Domack, E.W., Dowdeswell, J.A., Dunbar, R., Ehrmann V '., Evans, J., Favier, V., Fink, D., Fogwill, C.J., Glasser, N.F., Gohl, K., Golledge, N.R., Goodwin, I., Gore, D.B., Greenwood, S.L., Hall, B.L., Hall, K., Hedding, D.W., Hein, A.S., Hocking, E.P., Jakobsson, M., Johnson, J.S., Jomelli, V., Jones, R.S., Klages, J.P., Kristoffersen, Y., Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S.J., Massé, G., McGlone, M.S., McKay, R.M., Melles, M., Miura, H., Mulvaney, R., Nel, W., Nitsche, F.O., O’Brien, P.E., Post, A.L., Roberts, S.J., Saunders, K.M., Selkirk, P.M., Simms, A.R., Spiegel, C., Stolldorf, T.D., Sugden, D.E., van der Putten, N., van Ommen, T., Verfaillie, D., Vyverman, W., Wagner, B., White, D.A., Witus, A.E., Zwartz, D.,

Müller, J., Stein, R., Hodgson, D.A., Roberts, S.J., Smith, J.A., Verleyen, E., Sterken, M., Labarque, M., Sabbe, K., Vyverman, W., Allen, C.S., Leng, M.J., Bryant, C., Levy, L.B., Kelly, M.A., Lowell, T. V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Smith, R.C., Vernet, M., McCave, I.N., Crowhurst, S.J., Kuhn, G., Hillenbrand, C.D., Meredith, M.P., Bennike, O., Björck, S., Lecavalier, B.S., Fisher, D.A., Milne, G.A., Vinther, B.M., Tarasov, L., Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., Dyke, A.S., Arndt, J.E., Jokat, W., Dorschel, B., Winsor, K., Carlson, A.E., Caffee, M.W., I rod, D.H., Bevis, M., Harig, C., Khan, S.A., Brown, A., Simons, F.J., Willis, M., Fettweis, I' ., vi: n den Broeke, M.R., Madsen, 2 F.B., Kendrick, E., Caccamise, D.J., van Dam, T., Knu Is.n „., Nylen, T., Shakun, J.D., Clark, P.U., He, F., Lifton, N.A., Liu, Z., Otto-Bliesner, P L., S. Rintoul, S., W. Hughes, C., Olbers, D., Glasser, N.F., Davies, B.J., Carrivick, J.L.. i. dés, A., Hambrey, M.J., Smellie, J.L., Domack, E.W., Larsen, N.K., Levy, L.P., Ca. ${ }^{\text {'son, A.E., Buizert, C., Olsen, J., Strunk, A., }}$ Bjørk, A.A., Skov, D.S., Håkansson, L., b. ंner, J.P., Alexanderson, H., Aldahan, A., Possnert, G., Putnam, A.E., Edwards, R.L., $7 . \mathrm{o}_{3}$, wweiler, J.R.R., Schaefer, J.M., Anderson, R.F., Denton, G.H., Tabone, I., Blasco, J., Rc insın, A., Alvarez-Solas, J., Montoya, M., Lecavalier, B.S., Fisher, D.A., Milne, G.A., Vinther, B.M., Tarasov, L., Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J , D. ke, A.S., Stokes, C.R., Margold, M., Clark, C.D., Tarasov, L., Jackson, R., Carlson, A E., Hillaire-Marcel, C., Wacker, L., Vogt, C., Kucera, M., Mcgehee, R., Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L., Glasser, N.F., Golledge, N.R., Keller, E.D., Gomez, N., Naughten, K.A., Bernales, J., Trusel, L.D., Edwards, T.L., Jomelli, V., Schimmelpfennig, I., Favier, V., Mokadem, F., Landais, A., Rinterknecht, V., Brunstein, D., Verfaillie, D., Legentil, C., Aumaitre, G., Bourlès, D.L., Keddadouche, K., McCave, I.N., Crowhurst, S.J., Kuhn, G., Hillenbrand, C.D., Meredith, M.P., Martinson, D.G., R. Rintoul, S., W. Hughes, C., Olbers, D., Peck, V.L., Allen, C.S., Kender, S., McClymont, E.L., Hodgson, D.A., Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Smith, R.C., Vernet, M., Bradley,
S.L., Reerink, T.J., Van De Wal, R.S.W., Helsen, M.M., Denton, G.H., Anderson, R.F., Toggweiler, J.R.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., Shakun, J.D., Clark, P.U., He, F., Lifton, N.A., Liu, Z., Otto-Bliesner, B.L., 2014. The Last Glacial Termination. Quat. Sci. Rev. 100, 1652-1656. https://doi.org/10.1126/science. 1184119

Dunne, J., Elmore, D., Muzikar, P., 1999. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, 3-11. https://doi.org/10.1016/S0169-555X(98)00086-5

Fernandes, M., Oliva, M., Palma, P., Ruiz-Fernández, J., Lopes, L.. Linl $^{\text {n. Glacial stages and post- }}$ glacial environmental evolution in the Upper Garonne va'ㅊu., Central Pyrenees. Sci. Total Environ. 584-585, 1282-1299. https://doi.org/10.1010;; scitotenv.2017.01.209

Fernandes, M., Palma, P., Lopes, L., Ruiz-Fernández, J, Peııira, P., Oliva, M., 2018. Spatial distribution and morphometry of permafrostreland landforms in the Central Pyrenees and associated paleoclimatic implications 4,7 , $96-108$. https://doi.org/10.1016/j.quaint.2017.u? 071

Fernandes, M., Oliva, M., Vieira, G. 24? 0 . Paraglacial slope failures in the Aran valley (Central Pyrenees). Quat. Int. https:/i'doı.rrg/10.1016/j.quaint.2020.07.045

Fernández-Fernández, J M., Pali cios, D., García-Ruiz, J.M., Andrés, N., Schimmelpfennig, I., Gómez-Villar, A., Santrs-González, J., Álvarez-Martínez, J., Arnáez, J., Úbeda, J., Léanni, L., Aumaître, G., Bourlès, D., Keddadouche, K., 2017. Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: A case study in the Sierra de La Demanda, northern Spain. Quat. Sci. Rev. 170, 232-249. https://doi.org/10.1016/j.quascirev.2017.06.034

Fernández-Fernández, J.M.J.M., Palacios, D., Andrés, N., Schimmelpfennig, I., Tanarro, L.M.L.M., Brynjólfsson, S., López-Acevedo, F.J., Sæmundsson, P., Team, A.S.T.E.R.S.T.E.R., 2020. Constraints on the timing of debris-covered and rock glaciers: An exploratory case study in the

Hólar area, northern Iceland. Geomorphology 361, 107196.
https://doi.org/10.1016/j.geomorph.2020.107196

García-Ruiz, J.M., 1979. El glaciarismo cuaternario en la Sierra de la Demanda (Logroño- Burgos, España). Cuad. Investig. Geogr. e Hist. 5, 325.

García-Ruiz, J.M., Palacios, D., González-Sampériz, P., de Andrés, N., Moreno, A., Valero-Garcés, B., Gómez-Villar, A., 2016. Mountain glacier evolution in the Iberian Peninsula during the Younger Dryas. Quat. Sci. Rev. 138, 16-30. https://doi.org/10.1016/j.quascirev.2016.02.022

Gheorghiu, D.M., Hosu, M., Corpade, C., Xu, S., 2015. Deglacia*in' cunstraints in the Parâng Mountains, Southern Romania, using surface exposure d'tin ${ }_{2} \cdot$. Quat. Int. 388, 156-167. https://doi.org/10.1016/j.quaint.2015.04.059

Gómez-Ortiz, A., Palacios, D., Palade, B., Vázquez-Caiem, L., Salvador-Franch, F., 2012. The deglaciation of the Sierra Nevada (Southern . vain). Geomorphology 159-160, 93-105. https://doi.org/10.1016/j.geomorph.2012.13.008

Gosse, J.C., Phillips, F.M., 2001. Terre $\operatorname{tr}_{\mathrm{a}^{1}}{ }^{\text {in }}$ situ cosmogenic nuclides:theory and application. Quat. Sci. Rev. 20, 1475-156\%, https://doi.org/10.1016/S0277-3791(00)00171-2

Greenwood, S.L., O’Regan, M. Suärd, H., Flodén, T., Ananyev, R., Chernykh, D., Jakobsson, M.,
 retreat, south-central ゝweden. Boreas 44, 619-637. https://doi.org/10.1111/bor. 12132

Hambrey, M.J., Quincey, D.J., Glasser, N.F., Reynolds, J.M., Richardson, S.J., Clemmens, S., 2008. Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat. Sci. Rev. 27, 2361-2389. https://doi.org/10.1016/j.quascirev.2008.08.010

Hambrey, M.J., Quincey, D.J., Glasser, N.F., Reynolds, J.M., Richardson, S.J., Clemmens, S., Jones, D.B., Harrison, S., Anderson, K., Korschinek, G., Bergmaier, A., Faestermann, T.,

Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., Remmert, A., Žebre, M., Sarıkaya, M.A., Stepišnik, U., Yıldırım, C., Çiner, A., Barth, A.M., Clark, P.U., Clark, J., McCabe, A.M., Caffee, M., Gheorghiu, D.M., Hosu, M., Corpade, C., Xu, S., Greenwood, S.L., O’Regan, M., Swärd, H., Flodén, T., Ananyev, R., Chernykh, D., Jakobsson, M., Knight, J., Harrison, S., Jones, D.B., Makos, M., Rinterknecht, V., Braucher, R., Tołoczko-Pasek, A., Arnold, M., Aumaître, G., Bourlès, D., Keddadouche, K., Mangerud, J., Aarseth, I., Hughes, A.L.C., Lohne, Ø.S., Skår, K., Sønstegaard, E., Svendsen, J.I. Rowan, A. V., Egholm, D.L., Quincey, D.J., Glasser, N.F., Sarıkaya, M.A., Çiner, A., Yıl łırın , C., Styllas, M.N., Schimmelpfennig, I., Benedetti, L., Ghilardi, M., Aum ît:• 'j., Bourlès, D., Keddadouche, K., 2019. Late-glacial and Holocene history of the nort leas Mediterranean mountains - New insights from in situ-produced 36 Cl -based cos.ıiっ ray exposure dating of paleo-glacier deposits on Mount Olympus, Greece. Q’^" د.i. Rev. 39, 14-24. https://doi.org/10.1016/j.quascirev.2015.1: 013

Herreid, S., Pellicciotti, F., 2020. The s ate ,i rock debris covering Earth's glaciers. Nat. Geosci. 13, 621-627. https://doi.org/10.1 $3 \mathrm{sc}^{2} \mathrm{~s} 41561-020-0615-0$

Hughes, A.L.C., Gyllencreutz, I . I ohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets -. ci. onological database and time-slice reconstruction, DATED-1. Boreas 45, 1-45. https://doi.org/10.1111/bor. 12142

Hughes, P.D., Fink, D., Rodés, Á., Fenton, C.R., Fujioka, T., 2018. Timing of Pleistocene glaciations in the High Atlas, Morocco: New 10Be and 36Cl exposure ages. Quat. Sci. Rev. 180, 193-213. https://doi.org/10.1016/j.quascirev.2017.11.015

Iriarte-Chiapusso, M.J., Muñoz Sobrino, C., Gómez-Orellana, L., Hernández-Beloqui, B., GarcíaMoreiras, I., Fernández Rodriguez, C., Heiri, O., Lotter, A.F., Ramil-Rego, P., 2016. Reviewing the Lateglacial-Holocene transition in NW Iberia: A palaeoecological approach
based on the comparison between dissimilar regions. Quat. Int. 403, 211-236.
https://doi.org/10.1016/j.quaint.2015.09.029

Ivy-Ochs, S., 2015. Variaciones glaciares en los Alpes europeos al final de la última glaciación. Cuad. Investig. Geogr. 41, 295-315. https://doi.org/10.18172/cig. 2750

Joly, F., 1997. Glossaire de géomorphologie. Base de donnés sémiologiques pour la cartographie, Masson/Arm. ed. Paris.

Jomelli, V., Chapron, E., Favier, V., Rinterknecht, V., Braucher, R., Tournier, N., Gascoin, S., Marti, R., Galop, D., Binet, S., Deschamps-Berger, C., Tissr u. h., Aumaitre, G., Bourlès, D.L., Keddadouche, K., 2020. Glacier fluctuations durin ; thi Late Glacial and Holocene on the Ariège valley, northern slope of the Pyrenees an an anstructed climatic conditions. Mediterr. Geosci. Rev. 2, 37-51. https://doi.org/10.10u?/s42990-020-00018-5

Jones, D.B., Harrison, S., Anderson, K., 2019 Nı 'intain glacier-to-rock glacier transition. Glob. Planet. Change 181, 102999. https://doi.c•-//10.1016/j.gloplacha.2019.102999

Kleinsmiede, W.F.J., 1960. Geology of th = Valle de Arán (Central Pyrenees) 25, 129-245.

Knight, J., 2019. A new model of ocn glacier dynamics. Geomorphology 340, 153-159. https://doi.org/10.1016/j.s om rrph.2019.05.008

Knight, J., Harrison, S., Jo. as, D.B., 2019. Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology 324, 14-24.
https://doi.org/10.1016/j.geomorph.2018.09.020

Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., Remmert, A., 2010. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268, 187-191. https://doi.org/10.1016/j.nimb.2009.09.020

Köse, O., Sarıkaya, M.A., Çİner, A., Candaş, A., 2019. Late Quaternary glaciations and cosmogenic 36 Cl geochronology of Mount Dedegöl, south-west Turkey. J. Quat. Sci. 34, 51-63. https://doi.org/10.1002/jqs. 3080

Li, Y., 2018. Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: a GIS model for discrete sample sites. J. Mt. Sci. 15, 939-947. https://doi.org/10.1007/s11629-018-4895-4

Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Eaıh Planet. Sci. Lett. 386, 149160. https://doi.org/10.1016/J.EPSL.2013.10.052

Lopes, L., Oliva, M., Fernandes, M., Pereira, P., Palma, P., Ru'z-Fernández, J., 2018. Spatial distribution of morphometric parameters of glacial cirqies in the Central Pyrenees (Aran and Boí valleys). J. Mt. Sci. 15. https://doi.org/1(.luñ//s11629-018-4873-x

López-Moreno, J.I., Alonso-González, E., Mu. serrat, O., Del Río, L.M., Otero, J., Lapazaran, J., Luzi, G., Dematteis, N., Serreta, A , ’ic., I., Serrano-Cañadas, E., Bartolomé, M., Moreno, A., Buisan, S., Revuelto, J., 2019. (iro. nd-based remote-sensing techniques for diagnosis of the current state and recent evortic of the Monte Perdido Glacier, Spanish Pyrenees. J. Glaciol. 65, 85-100. https://doi org.'10.1017/jog.2018.96

Makos, M., Rinterknecht, ${ }^{\text {V }}$, Braucher, R., Tołoczko-Pasek, A., Arnold, M., Aumaître, G., Bourlès, D., Keddadouche, K., 2018. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains - Revised deglaciation chronology based on the 10Be exposure age dating. Quat. Sci. Rev. 187, 130-156. https://doi.org/10.1016/j.quascirev.2018.03.006

Mangerud, J., Aarseth, I., Hughes, A.L.C., Lohne, Ø.S., Skår, K., Sønstegaard, E., Svendsen, J.I., 2016. A major re-growth of the Scandinavian Ice Sheet in western Norway during AllerødYounger Dryas. Quat. Sci. Rev. 132, 175-205. https://doi.org/10.1016/j.quascirev.2015.11.013

Martin, L.C.P., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N., Laurent, V., 2017. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat. Geochronol. 38, 25-49. https://doi.org/10.1016/J.QUAGEO.2016.11.006

Merchel, S., Herpers, U., 1999. An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry. Radiochim. Acta 84, 215-219. https://doi.org/10.1524/ract.1999.84.4.215

Merchel, S., Arnold, M., Aumaître, G., Benedetti, L., Bourlès, D.L., Lraucher, R., Alfimov, V., Freeman, S.P.H.T., Steier, P., Wallner, A., 2008. Nuclear i. chuments and Methods in Physics Research B Towards more precise 10 Be and 36 Cl data from measurements at the 10 À 14 level : Influence of sample preparation Be / B e. Nucı. .nst. Methods Phys. Res. B 266, 49214926. https://doi.org/10.1016/j.nimb.2008.07.l² 1

Moran, A.P., Ivy Ochs, S., Vockenhuber, C., Kerschner, H., 2016. Rock glacier development in the Northern Calcareous Alps at the Pleisurene-Holocene boundary. Geomorphology 273, 178188. https://doi.org/10.1016/j.g. unG.ph.2016.08.017

Oliva, M., Serrano, E., Gómez-C.tiz, A., González-Amuchastegui, M.J., Nieuwendam, A., Palacios, D., Pérez-Alberti, A., Felı ero, R., Ruiz-Fernández, J., Valcárcel, M., Vieira, G., Antoniades, D., 2016. Spatial and te, poral variability of periglaciation of the Iberian Peninsula. Quat. Sci. Rev. 137, 176-199. https://doi.org/10.1016/j.quascirev.2016.02.017

Oliva, M., Žebre, M., Guglielmin, M., Hughes, P.D., Çiner, A., Vieira, G., Bodin, X., Andrés, N., Colucci, R.R., García-Hernández, C., Mora, C., Nofre, J., Palacios, D., Pérez-Alberti, A., Ribolini, A., Ruiz-Fernández, J., Sarıkaya, M.A., Serrano, E., Urdea, P., Valcárcel, M., Woodward, J.C., Yıldırım, C., 2018. Permafrost conditions in the Mediterranean region since the Last Glaciation. Earth-Science Rev. 185, 397-436. https://doi.org/10.1016/j.earscirev.2018.06.018

Oliva, M., Gómez-Ortiz, A., Palacios, D., Salvador-Franch, F., Andrés, N., Tanarro, L.M., Fernández-Fernández, J.M., Barriocanal, C., 2019a. Multiproxy reconstruction of Holocene glaciers in Sierra Nevada (south Spain). Mediterr. Geosci. Rev. https://doi.org/10.1007/s42990-019-00008-2

Oliva, M., Palacios, D., Fernández-Fernández, J.M., Rodríguez-Rodríguez, L., García-Ruiz, J.M.M., Andrés, N., Carrasco, R.M.M., Pedraza, J., Pérez-Alberti, A., Valcárcel, M., Hughes, P.D.D., 2019b. Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Rev. 192, 564-600. https://doi.org/10.1016/j.earscirev.2019.03.015

Oliva, M., Palacios, D., Fernández-Fernández, J.M., 2021. Ibe in _and of glaciers. Elsevier.

Osmaston, H., 2005. Estimates of glacier equilibrium lin $\sim^{n^{1}+1}{ }^{2} .$. des by the Area×Altitude, the Area×Altitude Balance Ratio and the AreaxAltitur` Ba^{\prime} 'ance Index methods and their validation. Quat. Int. 138-139, 22-31. https:/du....rg/10.1016/j.quaint.2005.02.004

Palacios, D., de Andrés, N., de Marcos, J., Va^ ruez-Selem, L., 2012. Glacial landforms and their paleoclimatic significance in Sierr s coluadarrama, Central Iberian Peninsula. Geomorphology 139-140, 67-: 8. ı'tps://doi.org/10.1016/j.geomorph.2011.10.003

Palacios, D., de Andrés, N., Lópe¿ Moreno, J.I., García-Ruiz, J.M., 2015a. Late Pleistocene deglaciation in the יиpp re G íllego Valley, central Pyrenees. Quat. Res. (United States) 83, 397414. https://doi.org/1 ${ }^{\text { }} 1$ J16/j.yqres.2015.01.010

Palacios, D., Gómez-Ortiz, A., Andrés, N., Vázquez-Selem, L., Salvador-Franch, F., Oliva, M., 2015b. Maximum extent of Late Pleistocene glaciers and last deglaciation of La Cerdanya mountains, Southeastern Pyrenees. Geomorphology 231, 116-129. https://doi.org/10.1016/j.geomorph.2014.10.037

Palacios, D., Gómez-Ortiz, A., Andrés, N., Salvador, F., Oliva, M., 2016. Timing and new geomorphologic evidence of the last deglaciation stages in Sierra Nevada (southern Spain).

Quat. Sci. Rev. 150, 110-129. https://doi.org/10.1016/j.quascirev.2016.08.012

Palacios, D., de Andrés, N., Gómez-Ortiz, A., García-Ruiz, J.M., 2017a. Evidence of glacial activity during the Oldest Dryas in the mountains of Spain. Geol. Soc. Spec. Publ. 433, 87110. https://doi.org/10.1144/SP433.10

Palacios, D., García-Ruiz, J.M., Andrés, N., Schimmelpfennig, I., Campos, N., Léanni, L., Aumaître, G., Bourlès, D.L., Keddadouche, K., 2017b. Deglaciation in the central Pyrenees during the Pleistocene-Holocene transition: Timing and geomorphological significance. Quat. Sci. Rev. 162, 111-127. https://doi.org/10.1016/j.quascirev.201; 93.007

Pallàs, R., Rodés, Á., Braucher, R., Carcaillet, J., Ortuño, M., Boı lonau, J., Bourlès, D., Vilaplana, J.M., Masana, E., Santanach, P., 2006. Late Pleistor and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10b, exposure ages, south-central Pyrenees. Quat. Sci. Rev. 25, 2937-2963. ht. ps..','ioi.org/10.1016/j.quascirev.2006.04.004

Paterson, W.S.B., 1994. The Physics of Glacıc.s, 3rd Editio. ed. Elsevier, London. https://doi.org/10.1016/C2009-0-1^こ22-Y

Pellitero, R., Rea, B.R., Spagnolo, I. Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., Ribolini, A., 2015. A GIS tool for automai ~ calculation of glacier equilibrium-line altitudes. Comput. Geosci. 82, 55-62. httl s://c oi.org/10.1016/j.cageo.2015.05.005

Pellitero, R., Rea, B.R., Spaynolo, M., Bakke, J., Ivy-Ochs, S., Frew, C.R., Hughes, P., Ribolini, A., Lukas, S., Renssen, H., 2016. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Comput. Geosci. 94, 77-85. https://doi.org/10.1016/j.cageo.2016.06.008

Pope, R.J., Hughes, P.D., Skourtsos, E., 2017. Glacial history of Mt Chelmos, Peloponnesus, Greece. Geol. Soc. Spec. Publ. 433, 211-236. https://doi.org/10.1144/SP433.11

Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W.Z., Lowe,
J.J., Pedro, J.B., Popp, T., Seierstad, I.K., Steffensen, J.P., Svensson, A.M., Vallelonga, P., Vinther, B.M., Walker, M.J.C., Wheatley, J.J., Winstrup, M., 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14-28. https://doi.org/10.1016/j.quascirev.2014.09.007

Rea, B.R., Pellitero, R., Spagnolo, M., Hughes, P., Ivy-Ochs, S., Renssen, H., Ribolini, A., Bakke, J., Lukas, S., Braithwaite, R.J., 2020. Atmospheric circulation over Europe during the Younger Dryas. Sci. Adv. 6, eaba4844. https://doi.org/10.1126/sciadv.a. a4844
 temporal complexity of the holocene thermal maximun. Nat. Geosci. 2, 411-414. https://doi.org/10.1038/ngeo513

Rodrigues, T., Grimalt, J.O., Abrantes, F., Naugh on, Г., Flores, J.-A., 2010. The last glacialinterglacial transition (LGIT) in the we ${ }^{*} \cdot \mathrm{n}$ mid-latitudes of the North Atlantic: Abrupt sea surface temperature change and sea le $\leadsto 1$ implications. Quat. Sci. Rev. 29, 1853-1862. https://doi.org/10.1016/j.quascir~: 2こ.0.04.004

Rodríguez-Rodríguez, L., Jiménı-J.́nchez, M., Domínguez-Cuesta, M.J., Rinterknecht, V., Pallàs, R., 2017. Timing of las ac laciation in the Cantabrian Mountains (Iberian Peninsula; North Atlantic Region) based . n in situ-produced 10Be exposure dating. Quat. Sci. Rev. 171, 166181. https://doi.org/10.1016/j.quascirev.2017.07.012

Rowan, A. V., Egholm, D.L., Quincey, D.J., Glasser, N.F., 2015. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debriscovered glaciers in the Himalaya. Earth Planet. Sci. Lett. 430, 427-438. https://doi.org/10.1016/j.epsl.2015.09.004

Sarıkaya, M.A., Çiner, A., Yıldırım, C., 2017. Cosmogenic 36Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quat. Geochronol. 39,

189-204. https://doi.org/10.1016/j.quageo.2017.03.003

Serrano, E., Lende, M.G., Ignacio, J., Moreno, L., Pisabarro, A., Fernández, A.M., de SanjoséBlasco, J.J., Gómez-Lende, M., López-Moreno, J.I., Pisabarro, A., Martínez-Fernández, A., 2019. Periglacial environments and frozen ground in the central Pyrenean high mountain area : Ground thermal regime and distribution of landforms and processes. Permafr. Periglac.

Process. 30, 292-309. https://doi.org/10.1002/ppp. 2032

Spagnolo, M., Ribolini, A., 2019. Glacier extent and climate in the Maritime Alps during the Younger Dryas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 536. 199400. https://doi.org/10.1016/j.palaeo.2019.109400

Styllas, M.N., Schimmelpfennig, I., Benedetti, L., Ghilar'. Keddadouche, K., 2018. Late-glacial and Holocen hisıry of the northeast Mediterranean mountains - New insights from in situ-prodn cen^{2} © Cl -based cosmic ray exposure dating of paleo-glacier deposits on Mount Olymı ' \quad, Greece. Quat. Sci. Rev. 193, 244-265. https://doi.org/10.1016/j.quascirev. $20 \wedge^{\circ} 06.020$

Tanarro, L.M., Palacios, D., Andrés. N., Fernández-Fernández, J.M., Zamorano, J.J., Sæmundsson, P., Brynjólfsson, S., 2019. L'ncı.anged surface morphology in debris-covered glaciers and rock glaciers in Tröllaskagi jen ' nsula (northern Iceland). Sci. Total Environ. 648, 218-235. https://doi.org/10.1016/ scitotenv.2018.07.460

Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.F., Morcrette, J.J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J., 2005. The ERA-40 re-
analysis. Q. J. R. Meteorol. Soc. 131, 2961-3012. https://doi.org/10.1256/qj.04.176

Zahno, C., Akçar, N., Yavuz, V., Kubik, P.W., Schlüchter, C., 2010. Chronology of Late
Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quat. Sci. Rev. 29, 11731187. https://doi.org/10.1016/j.quascirev.2010.01.012

Žebre, M., Sarıkaya, M.A., Stepišnik, U., Yıldırım, C., Çiner, A., 2019. First 36 Cl cosmogenic moraine geochronology of the Dinaric mountain karst: Velež and Crvanj Mountains of Bosnia and Herzegovina. Quat. Sci. Rev. 208, 54-75. https://doi.org/10.1016/j.quascirev.2019.02.002

List of figures

Figure 1. Location of (a) the Central Pyrenees; and (b) the Bacivèr Cirque within this range.

Figure 2. Examples of the main geomorphological units in the Bacivèr Cirque, together with the location of the dated samples: (a) peaks and cirque walls; (b) moraine generated by the debris-covered glacier at the foot of the cirque walls; (c) view of the cirque floor (with minor moraine ridges marked in the picture) from the highest moraines; and (d) polished bedrock surfaces distributed in the cirque floor.

Figure 3. (a) Geomorphological map of the study area, with CRF ı cults of the dated landforms; and (b) enlargement of the eastern part of the cirque wiere a larger number of samples were collected.

Figure 4. Examples of sampled moraines and polish bedrock, together with CRE ages (ka).

Figure 5. Glacial extent and ice thickness in ...1. Ba•ivèr Cirque during different time stages: (a) ice thickness in the cirque adapted from tie reconstruction of Fernandes et al. (2017) for the entire Upper Garonne Basin; ($)$) «» extent prior to the OD deglaciation in the lower part of the cirque (the limits of the glaciers during that phase are not yet determined); and (c) ice masses that existed in the -irque during the YD.

Figure 6. Schematic eve ${ }^{1}{ }^{1} \mathrm{mi}_{i} \sim \mathrm{n}$ of the formation of the moraine system and rock glaciers in the Bacivèr Cirque duıng the last deglaciation: (a) the cirque was covered by a thick ice cover during the maximum ice extent of the last glacial cycle; (b) at the end of the OD, glaciers receded towards the highest valleys and left widespread small moraine ridges and glacial boulders across the Beret Plateau; (c) during the B-A, deglaciation was a very rapid process and the entire Bacivèr Cirque was ice free by $\sim 14-15 \mathrm{ka}$; and (d) ice expansion during the YD favored the formation of small glaciers at the foot of the highest peaks of the cirque.

Figure 7. Normalized probability distribution functions (PDF) of exposure ages vs. temperature evolution since the LGM based on the $\delta^{18} \mathrm{O}$ record from the NGRIP ice core from Greenland (time periods are defined after Rasmussen et al. (2014)). The plots of the units result from the sum of the individual PDF of the samples belonging to them.

Table 1. Geographic location of samples, topographic shielding factor, sample thickness and vertical distance from the summit.

Sample name	Landform	Latitude (DD)	Longitude (DD)	Elevation (m a.s.l.) ${ }^{\text {a }}$	Topographic shielding factor	Thickness (cm)
Mouth of the cirque						
ARAN-16	Polished surface	42.7017	0.9717	1998	0.9748	3.0
ARAN-17	Polished surface	42.7033	0.9700	1949	0.9626	3.2
Central lower polished bedrock						
ARAN-14	Polished surface	42.6968	0.9880	2215	1.0000	3.7
ARAN-15	Polished surface	42.6946	0.9879	2179	0.9897	3.5
Central higher erratic boulder						
ARAN-10	Erratic boulder	42.6980	0.9956	2322	0.9972	3.3
Highest polished surfaces						
ARAN-3	Polished surface	42.6950	1.0047	2436	0.9718	4.0
ARAN-4	Polished surface	42.6948	1.0046	2438	0.9688	4.0
ARAN-8	Polished surface	42.6961	1.0031	2371	0.9801	4.5
ARAN-9	Polished surface	42.6967	1.0023	23,3	0.9859	3.5
ARAN-13	Polished surface	42.7034	1.0063	37.	0.9849	3.0
Highest moraines						
ARAN-1	Moraine boulder	42.6959	1.0052	?. 31	0.9671	3.0
ARAN-2	Moraine boulder	42.6959	1.0052	2431	0.9659	2.2
ARAN-11	Moraine boulder	42.7034	1.0062	2371	0.9856	3.0
ARAN-12	Moraine boulder	42.7067	$1 \mathrm{n0}$ 。:	2437	0.9746	4.0
Debris-covered glacier						
ARAN-5	Moraine boulder	42.6945	1.4 ${ }^{7} 42$	2437	0.9732	3.0
ARAN-6	Moraine boulder	42.6943	1.0043	2435	0.9598	3.0
ARAN-7	Moraine boulder	42.6945	1.0041	2434	0.9705	3.2

${ }^{\text {a }}$ Elevations are derived from the 5 m Digit: 1 El, vation Model of the Spanish "Instiuto Geográfico Nacional" and are subjected to a vertical accuracy of $\pm 5 \mathrm{~m}$

Table 2. AMS analytical data and calculated exposure ages. ${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be}$ ratios were inferred from measurements at the ASTER AMS facility. Individual ages are shown with their full uncertainties (including analytical AMS uncertainty and production rate uncertainty) and analytical uncertainty only within brackets. Arithmetic mean ages are given with their full uncertainties (including standard deviation and production rate uncertainty) and standard deviations only in brackets. Ages in grey italics correspond to potential outliers and thus are rejected and excluded from the interpretation and discussion.

${ }^{10}$ Be samples analytical AMS data								
Sample name	Quartz weight (g)	$\begin{aligned} & \text { mass } \\ & \text { of } \\ & \text { carrie } \\ & \mathrm{r}\left({ }^{9} \mathrm{Be}\right. \\ & \mathrm{mg}) \end{aligned}$	ASTE R AMS cathod e numbe r	$\begin{aligned} & { }^{14} \mathrm{Be} /{ }^{9} \mathrm{Be}\left(10^{-}\right. \\ & \left.{ }^{14}\right) \end{aligned}$	Blank correction (\%)	$\begin{aligned} & {\left[{ }^{10} \mathrm{Be}\right]\left(10^{4}\right.} \\ & \text { atoms } \left.\mathrm{g}^{-1}\right) \end{aligned}$	Age (ka)	Mean age (ka)
Mouth of the cirque								
A-16	18.0	0.461	IGHY	$\begin{aligned} & 15.042 \pm \\ & 0.420 \end{aligned}$	1.32	$\begin{aligned} & 25.370 \pm \\ & 0 .{ }^{1 n} \end{aligned}$	$\begin{aligned} & 14.2 \pm 0.8 \\ & (0.4) \end{aligned}$	$\begin{aligned} & 14.2 \pm 0.8 \\ & (0.4) \end{aligned}$
A-17	21.3	0.458	IGHZ	$\begin{aligned} & 22.411 \pm \\ & 1.490 \\ & \hline \end{aligned}$	0.89	$\begin{gathered} 31.91+ \\ -\quad .141 \\ \hline \end{gathered}$	$\begin{aligned} & 18.6 \pm 1.5 \\ & (1.2) \\ & \hline \end{aligned}$	
Central lower polished bedrock								
A-14	21.7	0.458	IGHW	$\begin{aligned} & 20.693 \pm \\ & 0.654 \end{aligned}$	0.97	$\begin{aligned} & \text { 2. } 838 \pm \\ & \cap, y 22 \end{aligned}$	$\begin{aligned} & 13.5 \pm 0.8 \\ & (0.4) \end{aligned}$	$\begin{aligned} & 13.8 \pm 0.9 \\ & (0.4) \end{aligned}$
A-15	20.5	0.456	IGHX	$\begin{aligned} & 19.694 \pm \\ & 0.543 \end{aligned}$	1.02	$\begin{aligned} & 29.035 \pm \\ & 0.810 \end{aligned}$	$\begin{aligned} & 14.1 \pm 0.8 \\ & (0.4) \end{aligned}$	
Central higher erratic boulder								
A-10	20.5	0.469	IGHS	$\begin{aligned} & 23.563 \pm \\ & 0.877 \\ & \hline \end{aligned}$	- 91	$\begin{aligned} & 35.806 \pm \\ & 1.345 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.4 \pm 1.0 \\ & (0.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 15.4 \pm 1.0 \\ & (0.6) \\ & \hline \end{aligned}$
Highest polished surfaces								
A-3	20.0	0.456	IGHL	$\begin{aligned} & 25.89 \text { ユ } \\ & 0.7 \times \end{aligned}$	0.78	$\begin{aligned} & 39.034 \pm \\ & 1.168 \end{aligned}$	$\begin{aligned} & 16.0 \pm 1.0 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 14.8 \pm 1.3 \\ & (0.9) \end{aligned}$
A-4	12.5	0.462	IGHM	$\begin{aligned} & 14.033 \\ & \sim 560 \end{aligned}$	1.38	$\begin{aligned} & 34.125 \pm \\ & 1.382 \end{aligned}$	$\begin{aligned} & 14.1 \pm 0.9 \\ & (0.5) \end{aligned}$	
A-8	14.7	0.465	IGHQ	$\begin{aligned} & 16 .:^{11} \pm \\ & 0: 41 \end{aligned}$	1.15	$\begin{aligned} & 34.993 \pm \\ & 1.826 \end{aligned}$	$\begin{aligned} & 15.0 \pm 1.1 \\ & (0.7) \end{aligned}$	
A-9	21.3	0.464	$\mathrm{IGF}^{\text {m }}$	$\begin{aligned} & 2.111 \pm \\ & 0 . / 33 \end{aligned}$	0.86	$\begin{aligned} & 32.122 \pm \\ & 1.065 \end{aligned}$	$\begin{aligned} & 13.8 \pm 0.8 \\ & (0.4) \end{aligned}$	
A-13	7.9	0.450	GH ,	9.718 ± 0.414	2.10	$\begin{aligned} & 36.223 \pm \\ & 1.578 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.2 \pm 1.0 \\ & (0.6) \\ & \hline \end{aligned}$	
Highest moraines								
A-1	21.0	0.57	: SH	$\begin{aligned} & 21.479 \pm \\ & 0.758 \end{aligned}$	0.93	$\begin{aligned} & 30.905 \pm \\ & 1.102 \end{aligned}$	$\begin{aligned} & 12.7 \pm 0.8 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 12.9 \pm 0.9 \\ & (0.3) \end{aligned}$
A-2	20.9	$0 . .2$	IGHK	$\begin{aligned} & 21.561 \pm \\ & 0.703 \end{aligned}$	0.93	$\begin{aligned} & 31.225 \pm \\ & 1.028 \end{aligned}$	$\begin{aligned} & 12.8 \pm 0.8 \\ & (0.4) \end{aligned}$	
A-11	20.8	${ }^{\sim} .454$	IGHT	$\begin{aligned} & 16.955 \pm \\ & 0.596 \end{aligned}$	1.19	$\begin{aligned} & 24.419 \pm \\ & 0.869 \end{aligned}$	$\begin{aligned} & 13.3 \pm 0.9 \\ & (0.5) \end{aligned}$	
A-12	21.6	0.456	IGHU	$\begin{aligned} & 22.450 \pm \\ & 0.885 \end{aligned}$	0.87	$\begin{aligned} & 31.457 \pm \\ & 1.252 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \pm 0.7 \\ & (0.4) \end{aligned}$	
Debris-covered glacier								
A-5	20.7	0.461	IGHN	$\begin{aligned} & 25.426 \pm \\ & 1.110 \end{aligned}$	0.76	$\begin{aligned} & 37.513 \pm \\ & 1.652 \end{aligned}$	$\begin{aligned} & 15.2 \pm 1.0 \\ & (0.6) \end{aligned}$	-
A-6	21.6	0.462	IGHO	$\begin{aligned} & 12.470 \pm \\ & 0.599 \end{aligned}$	1.55	$\begin{aligned} & 17.537 \pm \\ & 0.856 \end{aligned}$	7.2 ± 0.5 (0.3)	
A-7	21.7	0.454	IGHP	$\begin{aligned} & 24.384 \pm \\ & 0.754 \end{aligned}$	0.83	$\begin{aligned} & 33.718 \pm \\ & 1.052 \end{aligned}$	$\begin{aligned} & 13.8 \pm 0.8 \\ & (0.4) \end{aligned}$	
Chemistry blank details								
Blank name	Processed with	$\begin{aligned} & \text { mass } \\ & \text { of } \\ & \text { carrie } \\ & \mathrm{r}\left({ }^{9} \mathrm{Be}\right. \\ & \mathrm{mg}) \end{aligned}$	ASTE R AMS cathod e numbe r	$\begin{aligned} & { }^{14} \mathrm{Be} /{ }^{9} \mathrm{Be}\left(10^{-}\right. \end{aligned}$	$\left[{ }^{10} \mathrm{Be}\right]\left(10^{4}\right.$ atoms)			

A- 1, 2, 3, 7 ,
$11,13,14, \quad 0.456 \quad$ CHBM $\quad 0.201 \pm 0.026 \quad 6.127 \pm$
15, 16, 17
CHBM $\quad 0.201 \pm 0.026 \quad 0.795$
BK-3
A- $4,5,6,8$,
9, 10, 12

Table 3. Exposure ages according to erosion and snow cover corrections.

Sample name	Exposure ages (ka)			
	No correction	Erosion correction	Snow correction	Erosion + snow correction
Mouth of the cirque				
A-16	$14.2 \pm 0.8(0.4)$	14.4 ± 0.8 (0.4)	$15.3 \pm 0.9(0.4)$	$15.5 \pm 0.9(0.4)$
A-17	18.6 ± 1.5 (1.2)	18.9 ± 1.5 (1.2)	20.0 ± 1.6 (1.2)	20.3 ± 1.6 (1.2)
Central lower polished bedrock				
A-14	$13.5 \pm 0.8(0.4)$	$13.7 \pm 0.8(0.4)$	$14.5 \pm 0.9(0.4)$	$14.7 \pm 0.9(0.5)$
A-15	$14.1 \pm 0.8(0.4)$	14.3 ± 0.8 (0.4)	15.1 ± 0.9 (0.4)	$15.3 \pm 0.9(0.4)$
Central higher erratic boulder				
A-10	$15.4 \pm 1.0(0.6)$	$15.6 \pm 1.0(0.6)$	$16.6 \pm 1.1(0.6)$	$16.9 \pm 1.1(0.6)$
Highest polished surfaces				
A-3	$16.0 \pm 1.0(0.5)$	$16.2 \pm 1.0(0.5)$	$17.2 \pm 1.0(0.5)$	$17.5 \pm 1.0(0.5)$
A-4	$14.1 \pm 0.9(0.5)$	14.3 ± 0.9 (0.6)	$15.1 \pm 1.0(0.6)$	$15.3 \pm 1.0(0.6)$
A-8	$15.0 \pm 1.1(0.7)$	$15.2 \pm 1.1(0.8)$	$16.1 \pm 1.2(0.8)$	$16.4 \pm 1.2(0.8)$
A-9	$13.8 \pm 0.8(0.4)$	$14.0 \pm 0.9(0.5)$	14.8 ± 0.9 (C 5)	$15.0 \pm 0.9(0.5)$
A-13	$15.2 \pm 1.0(0.6)$	$15.4 \pm 1.0(0.6)$	$16.4 \pm 1 . \pm 0.7)$	$16.6 \pm 1.1(0.7)$
Highest moraines				
A-1	$12.7 \pm 0.8(0.5)$	$12.9 \pm 0.8(0.5)$	$13.7 \pm$ し.~ (0.5)	$13.9 \pm 0.9(0.5)$
A-2	$12.8 \pm 0.8(0.4)$	$13.0 \pm 0.8(0.4)$	$\cdots{ }^{2} \pm 0.8$ (0.4)	$14.0 \pm 0.9(0.4)$
A-11	$13.3 \pm 0.9(0.5)$	$13.4 \pm 0.9(0.5)$	${ }^{1}+.3=0.9(0.5)$	$14.5 \pm 0.9(0.5)$
A-12	$10.0 \pm 0.7(0.4)$	$10.1 \pm 0.7(0.4$;	10.8 ± 0.7 (0.4)	$10.9 \pm 0.7(0.4)$
Debris-covered glacier				
A-5	$15.2 \pm 1.0(0.6)$	$15.4 \pm 1.0(0.7)$	$16.4 \pm 1.1(0.7)$	$16.6 \pm 1.1(0.7)$
A-6	$7.2 \pm 0.5(0.3)$	7.3 ± 0.5 ($6 .{ }^{.}$)	$7.8 \pm 0.5(0.4)$	$7.8 \pm 0.5(0.4)$
A-7	$13.8 \pm 0.8(0.4)$	$14.0 \pm 0 . \quad(1 .+)$	$14.9 \pm 0.9(0.4)$	$15.1 \pm 0.9(0.4)$

Table 4. Glacial activity during the main cold and warm periods following the LGM in different Iberian mountains.

Mountain range	Massif/area	Oldest Dryas	Bølling-Allerød	Younger Dryas	Early to midHolocene	References
Pyrenees	Eastern	The existence of frontal moraines generated at 1715.5 demonstrates the existence of glacial advances in Puigpedrós-Tossa Plana de Lles massifs, Carlit massif and in the Têt valley (lengths 2-3 km). These moraines were relatively close to the headwalls of the valleys at 22002300 m .	CRE ages show a rapid retreat of glaciers towards the interior of the cirques in the Puigpedrós-Tossa Plana de Lles massifs and Ariège valley, sometimes coetaneous with the formation of rock glaciers, which stabilized shortly after their formation	Moraines formed at 1311.5 ka have been dated in the Puigpedrós-Tossa Plana de Lles massifs and Ariège valley. These complexes are located at $2300-2400 \mathrm{~m}$, and at 1-1.5 km from the headwalls in the highest and northfacing cirques	The last glaciers disappeared during the midHolocene and gave rise to the formation of rock glaciers in the Ariège	Delmas et al., (2008), Pallàs et al. (2010), Palacios et al., (2015), Delmas (2015), Tomkins et al. (2017), Andrés et al., (2018), Jomelli et al. (2020)
Pyrenees	Central	Lateral and frontal moraines have been dated in the Gállego Valley at $\sim 16 \mathrm{ka}$ (length 11 km). Moraines within the cirques have been also dated at $\sim 16 \mathrm{ka}$ in lower cirques (e.g. Piniecho) at 2400 m (length 0.3 km).	CRE ages evidence a rapid retreat of the glaciers towards the interior of the cirques in Noguera Ribagorçana, Ésera and Gállego valleys	Glaciers form $d \bar{d} u r$. g the YD generated $1 .{ }^{\text {nr }}$ nes at the end r_{i} th. period in the hig' es val' ys of the Nogue. Ribagorçana and Gál' bo ba ins at distances of ?-6 kı from the cirque heaa, is. Once they n ilted, rock glaciers seveloped in the interior of many cirques	Some rock glaciers stabilized during the mid- Holocene in cirques of the Gállego valley	Pallàs et al. (2006), Crest et al. (2017), Palacios et al. (2017), Tomkins et al. (2018)
Cantabrian Mountains	Central Massif and Montaña Palentina	A frontal moraine was dated at $\sim 15 \mathrm{ka}$ and other arches suggest front stagnations and/or minor re-advances at 17.5 ka in the Monasterio valley. Evidence of glaci ${ }^{\text {a }}$ advances, formation moraines at $11^{1} 6$ ka also repo ${ }^{\circ}{ }^{\circ}{ }^{\prime}{ }^{\prime} \boldsymbol{j}_{1}$ the \quad ventaña Pal $\neg n t i n$ Rock glacie. weru active by 16 k : in the Porma .chment	Glacial tre : anc format. η r rock glaciers 1. some cir ries such as the Mona ${ }^{\text {rio }}$ C'心. nent during t.e s-t	Possible presence of glaciers in the higher north-facing cirques	No evidence of glacial activity has been found in this range	RodríguezRodríguez et al. (2016, 2017), Pellitero et al. (2019)
Central Range	Sierra de Guadarrama	Moraines from 1617 ka very close to the LGM ones. Rock glacier stabilization at 15 ka	Glacial retreat and definitive disappearance of most of the glaciers	Possible existence of small glacierets in Peñalara. Definitive disappearance of the ice at 11.7 ka	No evidence of glacial activity	$\begin{aligned} & \hline \text { Palacios et } \\ & \text { al. (2012) } \\ & \text { Carrasco et } \\ & \text { al. (2016) } \end{aligned}$
	$\begin{array}{ll} \text { Sierra } & \text { de } \\ \text { Gredos } & \end{array}$	Glacial readvances in many valleys left several push moraines at 17.5-16 ka, a few hundred meters behind LGM moraines	Rapid retreat of the glaciers to the interior of the cirques, at the foot of the headwalls	Small glaciers in the interior of the north facing and higher cirques	Retreat at 10 ka as the last evidence of glacial activity	Palacios et al. 2011. Carrasco et al., 2015
Iberian Range	Demanda, Cebollera and Urbión	Glacial recovery and readvance at ~ 17 ka in the San Lorenzo cirque, with a small ice tongue $\quad 300 \mathrm{~m}$ long) at 1950 m that	Glacial retreat and development of rock glaciers inside some cirques and onset of the collapse of some debris-	Chronological evidence of glacial advances is not yet available, although the presence of glaciers during this period is likely in the Demanda, Mencilla and Urbión massifs	Evidence of glacial activity in the Iberian Range during the Early Holocene is limited to the remnants of a	Vegas et al. (2002), Fernández- Fernández et al. (2017), García-Ruiz et al. (2020)

		deposited the highest moraine. Formation of a rock glacier at $\sim 15 \mathrm{ka}$ in the Peña Negra cirque	covered glaciers (San Lorenzo cirque) 		small debriscovered ice mass in the San Lorenzo and Mencilla cirques although they remained active until midHolocene	
Betic Range	Sierra Nevada	Glacial readvance at ~ 17 ka with ice tongues occupying the valley bottoms at 2500-2800 m (lengths 2-3 km). Formation of moraines close to the LGM moraine systems	Rapid glacial recession at ~ 15 to 14.5 ka as revealed by CRE dates of polished bedrock surfaces. Glaciers were probably only confined within the northern highest cirques	Glacier expansion at ~ 13 to 12 ka in the cirques and headwaters of the highest valleys at 2800-3000 m, namely in east-facing slopes (lengths $\sim 1 \mathrm{~km}$). Few glaciers existed on the southern slope and only in the westernmost valleys	Small glaciers persisted at the foot of the highest peaks at $\sim 3000 \mathrm{~m}$ until ~ 10 to 9 ka . Their melting favoured paraglacial processes with the development of rock glaciers that stabilized ~ 7 to 6 ka	Gómez-Ortiz et al. (2015, 2012), Oliva et al. (2014; Palacios et al., (2016)

Table 5. Reconstructed ELAs (m) for the YD moraines using the AAR and AABR methods.

Glacier	AAR=0.6 $\pm \mathbf{0 . 0 5}$	$\mathbf{A A B R}=\mathbf{1 . 9} \pm \mathbf{0 . 8 1}$	$\mathbf{A A B R}=\mathbf{1 . 7 5} \pm \mathbf{0 . 7 1}$	Average ELA
Malo	$2486+10 /-5$	2484 ± 10	$2484+10 /-5$	2485
Rosari	2499 ± 5	2507 ± 10	$2507+10 /-5$	2504

Highlights

- We reconstruct the deglaciation of the Bacivèr cirque, in the Central Pyrenees
- The cirque hosts a wide range of glacial and periglacial processes and landforms
- A rapid deglaciation occurred during the Bølling-Allerød (B-A) by 15-14 ka
- Paraglacial dynamics subsequently formed debris-covered glaciers and rock glaciers
- As in other mountain regions, the B-A played a major role shaping the landscape

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 7

