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Key Points: 

 Pore-scale reactive transport modeling of diffusion controlled mineral precipitation  

 Examined the evolution of pore structures and averaged bulk properties  

 Developed modified porosity-diffusivity relationship that accounts for pore-scale mineral 

precipitation dynamics  
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Abstract 

Mineral precipitation affects the pore structure and thus transport properties of porous media. In 

this study, we investigated the pore-scale dynamics of precipitation in diffusion controlled 

systems and the resulting impacts on the effective diffusivity, using a micro-continuum reactive 

transport model. Forty 2D pore structures representing both idealized and realistic geometries 

were simulated with consideration of different precipitation scenarios and rates. A homogeneous 

nucleation scenario reproduced patterns observed in previous experimental study showing 

mixing-induced precipitation, and a surface growth scenario captured the pattern for mineral 

precipitation on a substrate with the same or similar mineral structures. In all cases, local 

precipitation resulted in the reduction in the average porosity of the domain (𝛷) until the 

cessation of diffusive transport and the termination of precipitation. The minimum porosity 

reached was referred to as the critical porosity (𝛷𝑐). The effective diffusivity (𝐷𝑒𝑓𝑓) decreased 

with 𝛷 and dropped sharply to effectively zero, i.e. the critical effective diffusivity (𝐷𝑒𝑓𝑓𝑐
), as 𝛷𝑐 

was reached. These pore-scale dynamics can be captured by a revised 𝛷 − 𝐷𝑒𝑓𝑓 relationship that 

explicitly considers the critical porosity and the corresponding effective diffusivity, and the pre-

exponential coefficient and the exponent of the relationship varied with initial pore structure and 

the precipitation kinetics. Overall, the homogeneous nucleation scenario results in systematically 

larger 𝛷𝑐 and coefficients that give a sharper decrease in diffusivity as 𝛷𝑐 is approached, 

compared to the surface growth scenario. The revised relationship was also implemented at 

continuum scale and used to examine column scale diffusivity change and reactions. 

Plain Language Summary 

Mineral precipitation alters the internal structures of geo-materials, and thus affect how fluid and 

solutes migrate in these porous media. Typically, this alteration has been modelled by assuming 

that the changes in transport properties are proportional to the amount of mineral precipitation, 

following a simple power law function. However, previous experimental studies have pointed 

out that in addition to the amount of mineral precipitation, how the structures of porous media 

are altered by the mineral precipitates can be important as well. In our study, we used numerical 

modeling that resolves the geometry of porous media explicitly to investigate how the structures 

evolve as a result of mineral precipitation. In these simulations, we consider initial geometry of 

different complexity and a range of precipitation rates that have been reported in previous 

studies. All the simulations showed that a small amount of precipitation can result in plugging of 

the porous media, by clogging a small portion of the transport pathways. Based on the simulation 

results, we demonstrated that the simple power law function can be modified to account for these 

structural changes. We have also implemented this modified power law relationship to simulate a 

column experiment published previously, and showed good agreements.    

1 Introduction 

Mineral dissolution and precipitation can change the structures of fractured porous media, 

and thus control their mechanical and hydrodynamic properties. Mineral precipitation is widely 

observed, and occurs when the fluid is over-saturated with respect to one or multiple mineral 

phases. Some conditions that can be encountered in natural and engineered systems and lead to 

mineral precipitation include (i) solubility change, e.g., due to the presence of temperature 

gradients [Griffiths et al., 2016; Steefel and Lasaga, 1994], (ii) mixing of fluids [Emmanuel and 

Berkowitz, 2005; Tartakovsky et al., 2008], and (iii) mineral dissolution that increases the 
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concentration of key chemical species [Garcia-Rios et al., 2015; Li et al., 2017; Seigneur et al., 

2019; Steefel and Lichtner, 1994; Xie et al., 2015]. Understanding and predicting the evolution of 

Earth’s systems resulting from mineral precipitation are important. For instance, mineralization 

of CO2 injected into the underground as part of geologic carbon storage is an important 

permanent trapping mechanism [Matter et al., 2016], and mineral precipitation can affect the 

efficiency of hydraulic fracturing and the performance of other subsurface energy applications 

[Vankeuren et al., 2017]. In addition, salt precipitation alters the hydraulic properties of soils 

[Bergstad et al., 2018] and the porosity in coastal environments, expecially in the saltwater-

freshwater mixing zones [Singurindy et al., 2004]. Mineral precipitation is one mechanism used 

to scavenge contaminants in aquifers [Wright et al., 2011], a by-product of remediation 

technologies such as in situ chemical oxidation [H L Chen and Park, 2017], and can reduce the 

efficiency of membranes used for water desalination [Rahardianto et al., 2008]. Therefore, 

evaluating and predicting mineral precipitation and its impacts on porous media are needed for 

improving practices and management of soils and groundwater resources.  

In continuum scale modeling [Lichtner, 1996; Steefel and Lichtner, 1994; 1998; Steefel et 

al., 2005; Steefel et al., 2015b], the change of flow and transport properties resulting from 

mineral precipitation, and mineral reactions in general, is typically described by power law 

functions of porosity (𝜙). Commonly used functional relations include the Kozeny-Carman 

relationship between porosity and permeability, and Archie’s law that relates effective diffusivity 

to porosity. These relationships are easy to implement and allow some considerations of system 

specificity such as textural heterogeneity through the empirical coefficients [Cai et al., 2017; 

Luquot and Gouze, 2009; Menke et al., 2017; Peng et al., 2012; Smith et al., 2013; Steinwinder 

and Beckingham, 2019]. 

However, adjusting the parameters alone in some cases fails to produce flow and 

transport properties that are directly measured or inferred from observations. In flow-through 

experiments in carbonate rocks with induced precipitation, [Luquot and Gouze, 2009] observed 

that porosity-permeability relationship shifted away from a power law relationship as 

precipitation progresses. Navarre-Sitchler et al. [Navarre-Sitchler et al., 2009] performed 

diffusion experiments on weathered basalt samples and the corresponding parent materials and 

showed that the effective diffusivity (𝐷𝑒𝑓𝑓) evaluated using micro- x-ray fluorescence 

spectroscopy cannot be fitted with a simple form of Archie’s law given by 𝐷𝑒𝑓𝑓 = 𝐷𝑚𝑎𝜙𝑚, 

where 𝐷𝑚 is the molecular diffusion coefficient and 𝑎 and 𝑚 are empirical coefficients. In 

Chagneau et al. [Chagneau et al., 2015], a set of column experiments were carried out to assess 

the changes in the effective diffusivity of the system as a result of mineral precipitation. In the 

study of [Chagneau et al., 2015], a 1D continuum reactive transport model using Archie’s law 

either over-estimated the amount of precipitation or over-estimated the tracer transport.  

These studies highlighted the need of further development of constitutive relations or 

other means to account for pore-scale dynamics that are not captured by bulk averaged 

parameters in continuum scale modeling. For this purpose, pore-scale experiments and modeling 

have been used to investigate microscopic scale dynamics that arise from geometric and 

mineralogical heterogeneity and that can propagate to larger scale processes [L Chen et al., 2014; 

Cil et al., 2017; Deng et al., 2018; Molins et al.; Zhang et al., 2010a]. For system evolution 

driven by mineral precipitation, complexity of pore-scale dynamics is compounded by the 

processes of nucleation and crystal growth. It was shown that the morphology and texture of the 

precipitates depend on the substrates [C. Noiriel et al., 2016], supersaturation [Kim et al., 2020; 
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Rajyaguru et al., 2019; Zhang et al., 2010b], and local hydrodynamics [Poonoosamy et al., 

2019]. Parallel pore-scale modeling studies were used to simulate precipitation patterns [Yoon et 

al., 2012], and their dependence on fluid saturation [Prasianakis et al., 2017]. Pore-scale models 

were also used to examine system evolution and their dependence on different nucleation 

mechanisms, e.g. epitaxial crystal growth versus crystal growth along the direction of maximum 

concentration gradient or probabilistic nucleation versus deterministic nucleation [L Chen et al., 

2014; Fazeli et al., 2020].  

These studies with well controlled and characterized experiments and high-fidelity 

modeling have provided valuable data and important mechanistic understanding of precipitation-

driven pore-scale dynamics. While a few studies have examined permeability evolution 

following precipitation and its relationship with respect to porosity change [Fazeli et al., 2020; 

C. Noiriel et al., 2016], how pore-scale dynamics translate into continuum scale transport 

properties remains an open question. In our study, we aim to use carefully designed pore-scale 

reactive transport simulations to address this gap. The complexity and uncertainties of 

precipitation kinetics are considered by including different precipitation scenarios and rates. In 

the following sections, we first present the model and simulation approach and then follow this 

with pore-scale simulation results and discussion of the revised mathematical relation that 

integrates the pore-scale dynamics into column/continuum scale simulations.  

2 Methods 

The approach taken in this work is the simulation of diffusion-reaction processes in 2D 

domains derived from openly available digital rock data. The simulations were performed 

systematically under different model assumptions and over a range of parameters. The 

simulations used the solution chemistry and major physical bulk properties of the experimental 

work of [Chagneau et al., 2015], in which celestite precipitation was induced in the quartz sand 

packed column by the mixing of a Sr rich fluid and a sulfate rich fluid introduced via diffusion 

from the two ends, respectively. This allowed us to leverage the experimental data for 

comparison and discussion. The precipitation reaction writes as follows. All aqueous reactions 

and the corresponding equilibrium constants are summarized in the supporting information.  

𝑆𝑟2+ + 𝑆𝑂4
2− → 𝑆𝑟𝑆𝑂4(𝑠)        eqn(1) 

2.1 Pore geometry  

Two pore geometries were considered, using data archived at the digital rock portal 

(https://www.digitalrocksportal.org/). One dataset represents an idealized geometry from a 

random packing of hard spheres with uniform radii [Finney, 2016]. A 3D volume image was 

generated using the reported coordinates of the sphere centers, using a radius of 150 µm and a 

voxel size of 5 µm. The voxel size was representative of the resolution of micro-tomography 

images, and the diameter was comparable to the grain size used in the experiments of [Chagneau 

et al., 2015]. The other dataset included grayscale synchrotron x-ray computed tomography 

images of a column that was packed with quartz sands of grain sizes of 420-600 µm [Molnar, 

2016]. The images had a resolution of 9.87 µm and were rescaled to a resolution of 5 µm such 

that the grain sizes were comparable with the Finney pack geometries. For the simulations, the 

CT images from [Molnar, 2016] were segmented in MATLAB using Otsu’s method [Otsu, 

1979] to generate a binary volume image. The average porosity of the middle section of the 

Finney pack was 48 %, whereas the average porosity of the quartz pack was 33 %. These values 

https://www.digitalrocksportal.org/
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are on the higher and lower end of the values reported for the experimental columns (42±9 %), 

respectively.  

For our simulations, twenty 2D domains were randomly selected from each 3D volume, 

as illustrated in Figure 1. The domain size was 1 mm by 1 mm (200 by 200 grid cells) for the 

Finney pack geometries (numbered as FGeo1-20), and was 1 mm by 1.75 mm (200 by 350 grid 

cells) for the quartz pack geometries (numbered as QGeo1-20). The width was larger for the 

quartz pack geometries to ensure initial connectedness of the domain. 

 

Figure 1. Illustration of the 2D domains of (a) the Finney pack geometry and (b) the quartz sand 

pack geometry, and of the fluid chemistry boundary conditions used in the simulations.  

2.2 Reactive transport model for precipitation simulations  

In our study, the code Crunchtope [Steefel et al., 2015b] was used for all the reactive 

transport simulations. For pore-scale simulations, modifications were made to implement the 

micro-continuum approach: the pore geometry was explicitly represented, whereas porosity was 

used to keep track of partial volume in individual grid cells due to precipitation. As the system 

considered was diffusion controlled, the main governing equation written with respect to the total 

concentration of a chemical component Ψ𝑖 is given as follows:  

𝜕𝜙Ψ𝑖

𝜕𝑡
= 𝛻 ∙ (𝜙𝐷𝛻Ψ𝑖) − 𝜗𝑖𝑅𝑖        eqn(2) 

where the local porosity (𝜙) is 1.0 in the pore space, 0.0 inside the mineral grains, and is a 

fractional value as precipitation progresses and occupies part of the grid cell. 𝐷 is the diffusion 

coefficient, which is equal to the molecular diffusion coefficient in the pore space, and is 𝐷𝑚𝜙 in 

grid cells occupied by the precipitates to account for the tortuosity caused by the presence of the 

solid phase. Two additional non-linear tortuosity models (𝐷 = 𝐷𝑚𝜙𝑛0, 𝑛0 = 2 𝑜𝑟 3) were also 

tested for a subset of the simulation conditions to examine the impacts of this assumption. For 

simplicity, we assumed that the molecular diffusion for all aqueous species is the same, with 

𝐷𝑚= 2.24×10-9 m2/s following that of the tracer in [Chagneau et al., 2015]. The total 

concentration is the sum of the concentration of the primary species and those of other species 

that can be expressed in terms of the primary species based on mass action laws. The 

concentrations of all primary species were calculated by solving the mass balance equation 

(eqn(2)). Spatial discretization for numerically solving eqn(2) follows the image resolution.  

The reaction term (last term on the right hand side) accounts for the concentration change 

caused by mineral reactions, with 𝜗𝑖 being the stoichiometric coefficient and one for celestite. 
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Two precipitation conceptualizations were considered to bracket different reaction mechanisms. 

In one scenario, homogeneous nucleation was enabled in the pore space, and provided the initial 

surface area for subsequent crystal growth. This is referred to as the homogeneous nucleation 

(HN) scenario. In the other scenario, referred to as the surface growth (SG) scenario, 

homogeneous nucleation in the pore space was not enabled. This is also equivalent of assuming 

that heterogeneous nucleation is fast and crystal growth picks up immediately. 

𝑅𝑖 = {
𝑅𝑖,𝑛𝑢𝑐  + 𝑅𝑖,𝑡𝑠𝑡,     𝑓𝑜𝑟 𝐻𝑁

𝑅𝑖,𝑡𝑠𝑡,                        𝑓𝑜𝑟 𝑆𝐺
        eqn(3) 

Crystal growth rate was calculated from the transition state theory rate law 

(𝑅𝑖,𝑡𝑠𝑡 [𝑚𝑜𝑙/𝑚3𝑠]) and is positive for the precipitation reaction.  

𝑅𝑖,𝑡𝑠𝑡 = 𝐴𝑘𝑟𝑥𝑛 ∏ 𝑎
𝑗

𝑛𝑗  𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
) (1 − (

𝐼𝐴𝑃

𝐾𝑠𝑝
)

𝑚1

)
𝑚2

     eqn(4) 

where 𝐴 [𝑚2/𝑚3] is the bulk surface area of the mineral, 𝑘𝑟𝑥𝑛 [𝑚𝑜𝑙/𝑚2𝑠] is the kinetic factor, 

𝑎𝑗 is the activity of any catalytic and inhibitory species, and 𝑛𝑗  is the corresponding reaction 

order. The Arrhenius term accounts for the temperature (𝑇 [𝐾]) effect, where 𝐸𝑎[𝐽/𝑚𝑜𝑙]  is the 

activation energy, and 𝑅 [𝐽/𝑚𝑜𝑙 𝐾] is the ideal gas constant. The thermodynamic driving force is 

measured by the saturation index, which is the ratio of ionic activity product (IAP) to solubility 

(𝐾𝑠𝑝), and 𝑚1 and 𝑚2 are constants dependent on the reaction mechanisms. 

Homogeneous nucleation rate (𝑅𝑖,𝑛𝑢𝑐 [𝑚𝑜𝑙/𝑚3𝑠])  was described by the classical 

nucleation theory and was implemented in CrunchTope as follows [Li et al., 2017]: 

𝑅𝑖,𝑛𝑢𝑐 = 𝐴0𝐽0exp (−
16𝜋𝑣2𝛼3

3𝑘𝐵
3 𝑇3(ln(

𝐼𝐴𝑃

𝐾𝑠𝑝
))

2)       eqn(5) 

where 𝐴0 is unity [𝑚2/𝑚3], and 𝐽0 is the kinetic factor with a value of 1.0×10-8 mol/m2s for 

celestite, which is within the range inferred from the experimental study of [Poonoosamy et al., 

2019]. 𝑣 is the molecular volume (8.21×10-29 m3 for celestite), 𝛼 is the effective interfacial 

tension (0.092 J/m2 for celestite, [Nielsen and Sohnel, 1971]), and 𝑘𝐵 is the Boltzmann constant. 

It is assumed that the nuclei formed via homogeneous nucleation stay in the same grid cell, 

where the crystal growth continues.  

For the homogeneous nucleation scenario, at a given time (𝑡), the surface area used in eqn 

(4) was calculated as  

𝐴 = 𝑀𝑊 ∙ 𝑠𝑠𝑎 ∙ ∫ 𝑅𝑖
𝑡

0
         eqn(6) 

where 𝑀𝑊 [𝑔/𝑚𝑜𝑙] is the molecular weight, and 𝑠𝑠𝑎 is the specific surface area [m2/g].  

For the surface growth scenario, the surface area used in eqn(4) was the geometric 

surface area of the solid phase and was calculated based on the pore geometry as the gradient of 

the local porosity using the micro-continuum formulation derived from the volume averaging 

theorem ([Soulaine et al., 2017] and references therein):  

𝐴 = |𝛻𝜙|          eqn(7) 

In order to account for uncertainties introduced by the kinetic data, two sets of kinetic 

coefficients and two specific surface areas were examined in the simulations. One kinetic 
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formulation followed [Palandri, 2004] and included a non-linear dependence on pH. The other 

kinetic formulation used was from [Marty et al., 2015] and was independent of any other species. 

The specific surface area of celestite varies substantially, as reported in [Chagneau et al., 2015]. 

Accordingly, two values, 0.44 and 44 m2/g, were chosen as the bounding cases. Overall, higher 

specific surface area and the kinetic coefficient from [Marty et al., 2015] would result in higher 

reaction rate. The parameters and kinetic scenarios are summarized in table 1.  

Table 1. The kinetic data and surface area setup for different precipitation scenarios simulated in 

this study. The data are from * [Nielsen and Sohnel, 1971], ** [Poonoosamy et al., 2019], *** 

[Marty et al., 2015], **** [Palandri, 2004].  
Scenario Nucleation Crystal growth kinetic data Surface area Reference 

Homogeneous 

nucleation 

𝛼 = 0.092 J/m2 * 
𝐽0 = 1.0 ×

10−8 mol/m2s ** 

𝑘𝑟𝑥𝑛 = 𝑘𝑀𝑎𝑟𝑡𝑦 

𝑚1 = 2, 𝑚2 = 0.5 

𝑙𝑜𝑔𝑘𝑀𝑎𝑟𝑡𝑦 = −7.23 *** 

Specific 

surface area 

0.44 m2/g 

ssa0.44 

𝛼 = 0.092 J/m2 

𝐽0 = 1.0 × 10−8 mol
/m2s 

𝑘𝑟𝑥𝑛 = 𝑘𝑢𝑠𝑔𝑠𝑎𝐻+
0.109 

𝑚1 = 𝑚2 = 1 

𝑙𝑜𝑔𝑘𝑢𝑠𝑔𝑠 = −5.66 **** 

Specific 

surface area 

0.44 m2/g 

ssa0.44_usgs 

𝛼 = 0.092 J/m2 

𝐽0 = 1.0 × 10−8 mol
/m2s 

𝑘𝑟𝑥𝑛 = 𝑘𝑀𝑎𝑟𝑡𝑦 

𝑚1 = 2, 𝑚2 = 0.5 

𝑙𝑜𝑔𝑘𝑀𝑎𝑟𝑡𝑦 = −7.23 

Specific 

surface area 

44 m2/g 

ssa44 

Surface 

growth 

N/A 

𝑘𝑟𝑥𝑛 = 𝑘𝑀𝑎𝑟𝑡𝑦 

𝑚1 = 2, 𝑚2 = 0.5 

𝑙𝑜𝑔𝑘𝑀𝑎𝑟𝑡𝑦 = −7.23 

Porosity 

gradient area 
pga 

N/A 

𝑘𝑟𝑥𝑛 = 𝑘𝑢𝑠𝑔𝑠𝑎𝐻+
0.109 

𝑚1 = 𝑚2 = 1 

𝑙𝑜𝑔𝑘𝑢𝑠𝑔𝑠 = −5.66 

Porosity 

gradient area 
pga_usgs 

Mineral precipitation was used to update local porosity:  

 𝜙𝑡+1 = 𝜙𝑡 − 𝑅𝑖𝑉𝑚𝑑𝑡         eqn(8) 

where 𝑉𝑚 is the molar volume of celestite, and 𝑑𝑡 is the time step.  

The precipitation simulations used boundary conditions similar to the experiment. The 

two ends of the computational domain were assigned a Dirichlet boundary condition, in contact 

with a solution of 0.5 M SrCl2 and a Na2SO4 solution of 0.5 M, respectively (Figure 1). The other 

two sides were assigned no flux boundary conditions.  

2.3 Numerical tracer experiments  

During the precipitation simulations, pore structures were recorded at multiple time 

points. Numerical tracer experiments were performed to evaluate the corresponding effective 

diffusivity, similar in concept and execution to those considered by [Navarre-Sitchler et al., 

2009] and [Steefel et al., 2015a]. The governing equation of the numerical tracer experiments 

was similar to the precipitation simulations, but without the reaction term. 

𝜕𝜙𝐶𝑡𝑟𝑎𝑐𝑒𝑟

𝜕𝑡
= 𝛻 ∙ (𝜙𝐷𝛻𝐶𝑡𝑟𝑎𝑐𝑒𝑟)        eqn(9) 

In the tracer simulations, the Dirichlet boundary on the left was considered as the inlet 

and was exposed to a solution with a non-reactive tracer of 1 M. The pairing boundary, i.e. the 
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outlet, had a zero-gradient boundary condition and was where the tracer break-through curve 

(𝐶𝑡𝑟𝑎𝑐𝑒𝑟(𝑡)|𝑥=𝐿) was monitored. Other boundary conditions, spatial discretization, and diffusion 

coefficients were set up in the same way as the precipitation simulations.  

The effective diffusivity (𝐷𝑒𝑓𝑓) is the bulk transport property of the entire computational 

domain, and is evaluated by fitting the tracer break-through curve from the numerical tracer 

experiments using the 1D diffusion equation.  

 
𝜕𝐶𝑡𝑟𝑎𝑐𝑒𝑟

𝜕𝑡
= 𝐷𝑒𝑓𝑓

𝜕2𝐶𝑡𝑟𝑎𝑐𝑒𝑟

𝜕𝑥2         eqn(10) 

Its relation with respect to the domain porosity (𝛷), which is the average of the local 

porosity in all grid cells in the domain (𝛷 = ∑ ∑ 𝜙(𝑥, 𝑦)𝑦𝑥 ), was analyzed. In the following 

sections, porosity refers to the domain porosity unless specified otherwise.  

Numerical tracer experiments were performed for all Finney pack geometries, and a 

subset of four quartz sand pack geometries.  

3 Simulation results  

3.1 Pore geometry evolution and porosity reduction  

In the homogeneous nucleation scenario, a precipitation band formed in the pore space 

(Figure 2(a)-(c) and (f)-(h)). This type of pattern was observed in the microfluidic experiments 

by [Zhang et al., 2010b], in which calcium-carbonate precipitation was induced by the mixing of 

the calcium-rich and carbonate-rich fluids in the analog porous media, and the precipitation band 

tracked the mixing line of the two fluids. Their experimental observation was also confirmed by 

the companion modeling work [Yoon et al., 2012], and the initial surface area was assumed to be 

provided by the top and bottom surfaces of the microfluidic cell. In our study, the initial surface 

area was created by the homogeneous nucleation in the fluid that was locally supersaturated.  

In contrast, under the surface growth scenario, the precipitates coated the mineral grains 

and the precipitation pattern was thus largely influenced by the initial pore structure (Figure 2(d)-

(e) and (i)-(j)). This precipitation pattern was consistent with the scenario when the substrate had 

a similar crystal structure to the precipitating mineral. Similar patterns have been observed in the 

experimental study of [Catherine Noiriel et al., 2012] when the injected fluid over-saturated with 

respect to calcium carbonate interacted with the calcite spar substrate. In these cases, 

heterogeneous nucleation, which was not considered in our model, is fast and the following 

crystal growth is the dominant process. 
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Figure 2. Snapshots of pore geometry evolution for a Finney pack geometry (a-e) and a quartz 

sand pack geometry (f-j) for different precipitation setups: (a)(f) – ssa0.44, (b)(g) - ssa0.44_usgs, 

(c)(h) – ssa44, (d)(i) – pga, (e)(j) – pga_usgs. Note: due to the difference in reaction rate and 

geometry, each case reached the clogging point at different time steps and the snapshots shown 

are thus at different times.  

Across different precipitation model setups and initial pore geometries, the domain 

porosity (𝛷) decreased as a result of precipitation and reached a non-zero constant value 

afterwards (Figure 3), indicating that the precipitation reaction became inhibited. As the 

precipitates blocked the transport pathways, mixing of the two fluids was suppressed and thus 

the precipitation reaction was no longer sustained. Here, the average porosity within the 2D 

computational domain at the end of the precipitation reaction is referred to as the critical porosity 

(𝛷𝑐).  

Under the surface growth scenario, domain porosity decreased continuously from the 

beginning of the simulation until the critical porosity was reached. In comparison, in the 
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homogeneous nucleation scenario, the domain porosity remained unchanged initially as the 

nucleation dominated over the crystal growth pathway. The decrease in 𝛷 became evident once 

enough surface area had been created by nucleation for the crystal growth to pick up. The critical 

porosity tended to be lower under the surface growth scenario. For instance, for the quartz pack 

geometries, surface growth simulations had critical porosity as low as 24 %, whereas the critical 

porosity of homogeneous nucleation simulations were always above 31 %. This is because in the 

surface growth scenario, precipitation occurred on the grain surfaces outside of the pore throats 

that was less effective in clogging the transport pathway (Figure 2(d)-(e) and (i)-(j)).  

For the same precipitation conceptualization and geometry, a lower critical porosity was 

observed at a slower reaction rate. For example, in the Finney pack simulations, the critical 

porosity for the ssa0.44 (specific surface area = 0.44 m2/g) case was lower than the ssa44 

(specific surface area = 44 m2/g)  case by 3 percentage points. This is a result of the interplay 

between precipitation and diffusion, which is typically measured by the Damkohler number (Da). 

At the lower precipitation rate (lower Da), in grid cells that are over-saturated, less chemicals 

(Sr2+ and SO4
2-) are removed from the solution by precipitation and more are transported 

downgradient. As a result, more grid cells become oversaturated, and by the time when the 

transport paths become clogged, more precipitation would have happened. As shown in Figure 2, 

the precipitation band formed in the homogeneous nucleation scenario was thicker at a slower 

reaction rate, and the growth of the grain surfaces was observable in a wider region in the surface 

growth cases.  
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Figure 3. Domain porosity (𝛷) evolution for (a) twenty Finney pack geometries (FGeo1-20) and 

(b) twenty quartz sand pack geometries (QGeo1-20) with different precipitation setups. Note: 

some cases had longer simulations as they required longer to reach the clogging time point than 

other cases.  

The overall reduction in the domain porosity varied between less than 1 % to 12 % for the quartz 

pack geometries, and between ~1 % to 20 % for the Finney pack geometries (Figure 3). The 

reduction in porosity is positively correlates with the initial porosity in the Finney pack 

geometries; whereas there is no clear correlation between the porosity reduction and the initial 

porosity for the quartz pack geometries (Figure S1). This implies that for the idealized hard 
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sphere packing of Finney geometries, initial porosity is a good indicator of the pore structure and 

connectivity. In contrast, for the quartz pack geometries, there is more spatial heterogeneity in 

the pore structure, and porosity does not accurately reflect the connectivity of the pore structures. 

For instance, it was reported that permeability of sandstones from different basins does not vary 

monotonically with porosity and samples with comparable porosity can have different 

permeability and thus connectivity [Zou et al., 2012].   

3.2 Effective diffusivity evolution  

The effective diffusivity decreased with the porosity (Figure 4). The initial effective 

diffusivity ranged between 1.1e-9 and 1.6e-9 m2/s in the 20 Finney pack geometries given a 

molecular diffusion coefficient of 2.24e-9 m2/s for the tracer. The relatively large initial effective 

diffusivity was indicative of the presence of open transport pathways. As the porosity 

approached the clogging value, the effective diffusivity decreased significantly. At the critical 

porosity, the effective diffusivity became effectively zero, as evidenced by the termination of the 

mixing and precipitation. This was also expected in our simulations, as precipitation was allowed 

to proceed until local porosity (𝜙) was effectively zero (a non-zero but negligible value was used 

for numerical reasons). Such clogging has also been observed experimentally. In the experiments 

of [Zhang et al., 2010b], dissolution of the precipitated calcium carbonate was observed at the 

late stage, confirming negligible transport through the precipitates and thus the termination of 

mixing and further precipitation as observed in the simulations here.  

These trends are consistent with what was observed in [Navarre-Sitchler et al., 2009]. 

Therefore, we accounted for the clogging effect of the precipitates on effective diffusivity by 

adopting the following mathematical formulation:  

𝐷𝑒𝑓𝑓 = 𝐷𝑒𝑓𝑓𝑐
+ 𝑎𝐷𝑚(𝜙 − 𝜙𝑐)𝑛       eqn(11) 

where 𝑎 and 𝑛 are empirical coefficients. Theoretically, the value of 𝐷𝑒𝑓𝑓𝑐
 can be 

determined by running the numerical tracer experiment on the pore structure at the critical 

porosity. Here, because 𝐷𝑚𝜙 → 0 when 𝜙 → 0 in the pore space that is clogged by the 

precipitates, 𝐷𝑒𝑓𝑓𝑐
→ 0, as also confirmed by the numerical tracer experiments which showed no 

break-through of the tracer after 10 million seconds. Therefore, a value of 1e-15 m2/s was 

assumed for 𝐷𝑒𝑓𝑓𝑐
 across all geometries and precipitation scenarios. This value is on the same 

order of magnitude as the value used for unweathered basalt rocks in [Navarre-Sitchler et al., 

2009], and provides a reasonable estimate for low diffusivity systems that can be encountered. 

Using a value of 0 or 1e-15 m2/s for 𝐷𝑒𝑓𝑓𝑐
 did not affect the evaluation of the parameters 𝑎 and 

𝑛. Because each simulation evolves differently and it was impossible to predict the clogging time 

a priori and thus set the output time steps accordingly, data points are sparse in the region where 

the diffusivity drops dramatically within a small porosity change and a relatively short time 

period.    
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Figure 4. Effective diffusivity in relation to the porosity from the tracer simulations and the 

fitting line using eqn(11) for the five precipitation kinetic setups of all the Finney pack 

geometries (FGeo1-20). The goodness-of-fitting R2 parameter is 0.97 on average, and larger 

than 0.91 for all 100 cases except for two.  

For the Finney pack geometries (Figure 5), the pre-exponential coefficient (𝑎) for the two 

surface growth cases (i.e., ‘pga’ and ‘pga_usgs’) were 0.24±0.06 (mean±standard deviation) and 

0.29±0.07, respectively, and were smaller than those for the three homogeneous nucleation cases 

(i.e., ‘ssa0.44’, ‘ssa0.44_usgs’, and ‘ssa44’), which were 0.46±0.06, 0.45±0.07, and 0.49±0.08, 

respectively. Under the same precipitation scenario, the reaction rate only had a minor impact on 

the pre-exponential coefficient. The exponent (𝑛) in the surface growth scenario, which was 

0.41±0.08 and 0.36±0.09 for the two cases, was slightly larger than in the homogeneous 

nucleation scenario. For the three homogeneous nucleation cases, 𝑛 showed a larger variation 

across different geometries, with values of 0.26±0.09, 0.30±0.13, and 0.29±0.16. For FGeo8, 

simulations were performed with larger domain sizes for ‘ssa0.44_usgs’ and ‘pga_usgs’. The 

simulations showed similar evolution in the pore structures. The pre-exponential coefficient and 

exponent values are within the ranges observed for different geometries. More information is 

provided in the Supporting Information.  
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Figure 5. (a) pre-exponential coefficient and (b) exponent of eqn(11) for all Finney pack 

geometries (filled circle), and the subset of quartz sand pack geometries simulated (open square) 

for different precipitation kinetic setups.  

Diffusion simulations of the quartz pack geometries resulted in similar observations 

(Figure 5). The pre-exponential coefficient was lower than that of the Finney pack geometries. It 

was 0.22±0.07, 0.3±0.09, 0.26±0.08 for ‘ssa0.44’, ‘ssa0.44_usgs’, and ‘ssa44’, respectively, 

which was larger than the two surface growth cases (0.11±0.1 and 0.14±0.1). The exponent 

values were 0.21±0.2, 0.38±0.22, 0.24±0.15 for the three homogeneous nucleation cases, and 

were comparable to the average values of the Finney pack geometries. The exponent for the two 

surface growth cases were on the higher end of the range observed for the Finney pack 

geometries, with values of 0.47±0.25 and 0.44±0.21.  

Everything else being equal, a smaller pre-exponential coefficient leads to a lower 

effective diffusivity. This is consistent with the observation that the pre-exponential coefficients 

of the quartz pack geometries, for which the initial diffusivitiy ranges between 3.2 and 7.2e-10 

m2/s, are systematically lower than those of the Finney pack geometires, for which the initial 

diffusivities are 1.1e-9-1.6e-9 m2/s. A weak positive correlation was observed between the pre-

exponential coefficient and the initial diffusivity (Supporting Information). The exponent 

controls the shape of the curve described by eqn(11). A small exponent corresponds to a limited 

reduction in diffusivity at early stages of porosity reduction and a sharp decrease towards the 

critical porosity. For instance, in the homogeneous nucleation scenario (for which the exponent 

tends to be lower), the initial development of the precipitation bands did not necessarily translate 

to transport pathway clogging and thus reduction in the diffusivity. In contrast, in the surface 

growth scenario, precipitation resulted in grain dilation very early on, the pore throats and thus 

diffusivity decreased continuously from the beginning of the simulations, corresponding to 

higher exponents. The trajectory of the diffusvity evolution depend on not only the precipitation 

mechanism, but also the pore structures. This is why large standard deviations in the exponent 

were observed among different geometries. However, no clear correlation was observed between 

the exponent and the initial porosity or diffusivity in our simulations. Additional pore structure 

characteristics need to be examined in the future.   
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4 Discussion  

Our work advances our understanding and predictive capability of precipitation driven 

alteration of porous media in two ways. The modeling workflow presented enables the prediction 

of precipitation as a result of the chemical gradients developed from pore structure heterogeneity 

and various chemical interactions, in comparison with assumed uniform precipitation or other 

prescribed precipitation patterns. It therefore gives a more truthful representation of the pore-

scale dynamics. In addition, while considerable variations were observed in the precipitation 

patterns among different geometries and precipitation kinetic setups, the macroscopic 𝛷 − 𝐷𝑒𝑓𝑓 

relationship was fairly consistent across all the simulations. This observation confirms the 

possibility of using this mathematical relationship for upscaling. 

Our study is nevertheless based on 2D simulations (given the prohibitively high 

computational cost for hundreds of full 3D simulations) of pore structures with fairly large pore 

sizes, whereas real systems involve three dimensional processes and smaller pore sizes, 

especially ones in which diffusion is the dominant transport mechanism. Regardless of these 

differences, we expect the major observations of our study to hold in a more general sense. For 

instance, in the experimental study of [Rajyaguru et al., 2019], a chalk was used as a proxy 

material to examine diffusion-reaction dynamics in low-permeability systems. The sample used 

in the experiment had a porosity of 45%, comparable to the ones used in our study. Although the 

median pore throat size was ~0.66 m, one order of magnitude lower than the resolution of our 

model,  a thin precipitation disk was observed due to homogeneous nucleation of barite, similar 

to the precipitation band predicted in our simulations. More importantly, the experimental study 

also observed that the same amount of precipitates resulted in a larger reduction of the diffusivity 

when homogeneous nucleation was dominant. This was in contrast to when heterogeneous 

nucleation on the substrate (similar to the surface growth scenario in our simulations) was 

dominant, consistent with our observation that homogeneous nucleation results in higher 𝛷𝑐 and 

lower porosity reduction. The traditional Archie’s law has been extensively evaluated 

experimentally and numerically, and the same formulation has been recovered for 2D and 3D 

domains. But the exponent of Archie’s law was found to be lower in 2D, approximately equal to 

1, than in 3D, approximately equal to 2, for various 3D natural media [Hunt, 2004]. Following 

these observations, we expect that eqn(11) is broadly applicable, but the coefficients may be 

different in 3D due to the different number of degrees of freedom or different level of disorder, 

in addition to varying with the precipitation scenario and pore geometries as shown in our 

simulations. In this section, we discuss some of the assumptions and limitations, with the 

objective of increasing clarity of the applicability of our results and highlighting some future 

research needs.  

4.1 Impacts of mineral precipitation mechanisms and texture  

Our simulations accounted for the impacts of pore geometry and precipitation kinetics of 

homogeneous nucleation and surface growth, but did not resolve single crystals or the texutres of 

the precpitates that can vary with nucleation and crystal growth mechanisms [L Chen et al., 

2014; Fazeli et al., 2020].  
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Figure 6. Comparison of the porosity evolution of ten Finney pack geometries using the default 

linear grid-cell level tortuosity model (a), the nonlinear tortuosity model with exponent of 2 (b) 

and 3 (c), and the pre-exponential coefficient (d) and exponent (e) of the 𝛷 − 𝐷𝑒𝑓𝑓 relationship 

of the three cases.   

Additional simulations for ten Finney pack geometries and the ‘ssa44’ case were 

performed to evaluate how the texture of and thus tortuosity in the developing precipitates affect 

the macroscopic porosity-diffusivity evolution. These simulations used the non-linear 

relationships, 𝐷𝑚𝜙2 and 𝐷𝑚𝜙3, at the grid cell level, and showed the same trend as the linear 

tortuosity model simulations (Figure 6). However, for the higher exponents, the critical porosity 

(𝛷𝑐) was larger, i.e., the porosity reduction was smaller. Across the ten geometries simulated, the 

reduction was 1.6-3.9 % and 1.3-3.3 % for the exponent of 2 and 3, respectively; compared to 

1.9-5.3 % in the linear tortuosity model simulations. This is consistent with the conceptualization 

that a larger exponent results in increased loss of connectivity for a given amount of porosity 

reduction. Accordingly, the transport pathways are clogged at a faster speed even though the 

precipitation rate is the same, as illustrated by the thinner precipitation bands (Figure 6 (a)-(c)). 

The non-linear tortuosity model did not affect the pre-exponential coefficient of the 𝛷 − 𝐷𝑒𝑓𝑓 

relationship noticeably, which was 0.48±0.08 and 0.50±0.06 for the exponent of 2 and 3, 

respectively, or the exponent (𝑛), which was 0.33±0.17 and 0.36±0.14 for the exponent of 2 and 

3, respectively.  

Another textural feature that may affect the macroscopic 𝛷 − 𝐷𝑒𝑓𝑓 relationship is the 

‘microporosity’, i.e., nanopores that remain in the precipitates due to reduced nucleation and 

precipitation rate under confinement. It has been reported that nucleation and precipitation in 
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nanopores are prohibited or significantly reduced [Stack et al., 2014], because of the pore-size 

controlled solubility (PCS) effect [Emmanuel and Ague, 2009] or local transport limitations. If 

the PCS effect is dominant and the diffusive transport through the nanopores is nonnegligible, 

the mixing region and the precipitation bands will continue to grow until precipitation becomes 

undetectable, leading to phenomenological plugging of the system. The corresponding 𝛷𝑐 is 

expected to be lower than what would be expected from our pore-scale simulations, whereas the 

corresponding 𝐷𝑒𝑓𝑓𝑐
 will be constrained by the tortuosity in the precipitates and the thickness of 

the precipitation band, and is likely to be larger. In contrast, if the predominant mechanism for 

the remaining nanopores is local transport limitation, we may expect slight increase in 𝛷𝑐, and 

𝐷𝑒𝑓𝑓𝑐
 is by definition close to zero. However, in order to quantitatively evaluate the impacts of 

microporosity, information on the amount and tortuosity of the remaining nanopores is required. 

Thus, future studies on mechanistic understanding of various nucleation and crystal growth 

processes that contribute to the creation of microporosity, and proper conceptualization of these 

processes in pore-scale models are needed. 

4.2 Application of the revised relationship  

The revised formulation (eqn(11)) was implemented in 1D continuum simulations similar 

to [Chagneau et al., 2015], for comparison with the column experiments. The 1D continuum 

model solves eqns(2)(4)(6) and (8), with equal discretization of 0.1 mm. Each grid cell is a 

combination of mineral grains and pore space with an initial porosity (Φ𝑖𝑛𝑖) of 39 % according to 

the CT image data. The precipitation rate follows the transition state theory rate law seeded with 

a tiny surface area initially. More details are documented in the Supporting Information. For the 

four parameters in eqn(11), the critical porosity (Φ𝑐) was set at 31% based on the post-reaction 

CT images. The exponent was set to be 2 according to prior studies of 3D natural rocks [Hunt, 

2004; Navarre-Sitchler et al., 2009]. The pre-exponential factor was constrained by the initial 

effective diffusivity (𝐷𝑒𝑓𝑓𝑖𝑛𝑖
) of the column, i.e., 4.48e-10 m2/s:  

𝑎(𝛷𝑖𝑛𝑖 − 𝛷𝑐)𝑛 = 𝐷𝑒𝑓𝑓𝑖𝑛𝑖
       eqn(12) 

There was no direct measurement of 𝐷𝑒𝑓𝑓𝑐
, and thus two values, 1e-15 m2/s and 5e-12 

m2/s were tested. The simulation results were compared with the effluent tracer flux and the 

amount of precipitates from the experiment.  

 

Figure 7. Tracer flux at the outlet. The experimental observations are shown in the open black 

circles, in comparison with simulations results using the traditional form of Archie’s law (red 

dotted line), and using the revised relationship with 𝐷𝑒𝑓𝑓𝑐
= 1e-15 m2/s (green dotted line) and 
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𝐷𝑒𝑓𝑓𝑐
= 5e-12 m2/s (blue dotted line). The traditional Archie’s law is given by 𝐷𝑒𝑓𝑓 = 1.3149𝜙2 

, the exponent is the same as the revised relationship based on literature data, and the pre-

exponential factor is determined based on the initial porosity and diffusivity reported in the 

experimental study.  

In the experiment, tritiated water (HTO) was used as the tracer. The effluent flux peaked 

at ~15 Bq/m2s around day 6, and stayed around 8 Bq/m2s after day 15. The precipitates were 

observed in a ~6 mm zone and were largely located in a 0.35 mm thick disk, and amounted to 

20-35 mg in different parallel experiments. Compared to the simple form of Archie’s law, the 

revised relationship provdes a better agreement with the experimental observations (Figure 7 and 

Table S1). The case of 𝐷𝑒𝑓𝑓𝑐
= 1e-15 m2/s implicitly assumes that diffusion limitation is the only 

mechanism for precipitation termination as in the pore scale simulations. In this simulation, the 

precipitates were present in a ~7 mm zone and amounted to 20 mg by day 80. However, the flux 

went to zero after about twenty days. A 𝐷𝑒𝑓𝑓𝑐
 of 5e-12 m2/s effectively assumes the 

microporosity scenario due to PCS effect as discussed above. The presence of microporosity was 

implied by the variable grey values in the CT images collected in the experimental study 

[Chagneau et al., 2015], even though the individual pores constitute the microporosity were not 

resolved given the resolution of the images. In this case, the flux remained non-zero after the 

initial decrease, and agreed well with the experimental observations. As the suppression of 

precipitation in microporosity was not explicitly modeled, the simulation adopts a simple 

treatment of setting the precipitation rate to zero when 𝛷𝑐 was approached. The total amount of 

precipitates was ~113 mg within a ~9.5 mm zone. Both are larger than the low 𝐷𝑒𝑓𝑓𝑐
 case given 

the higher diffusive flux and mixing. This over-estimation in precipitation may be attributed to 

sample hetereogeneity along the column that was not considered, and that different precipitation 

mechanisms may be present in microporosity, i.e., nano-pores.  

5 Conclusions 

In this study, we performed numerical investigation of pore-scale precipitation dynamics 

and their impacts on effective diffusivity (𝐷𝑒𝑓𝑓). The modeling results reproduced precipitation 

patterns that were observed in previous experiments. A precipitation band formed in the scenario 

of homogeneous nucleation, whereas the precipitates coated the grain surfaces in the surface 

growth scenario. For all geometries and precipitation rate setups simulated, the progress of the 

precipitation reaction led to the decrease of domain porosity (𝛷) and 𝐷𝑒𝑓𝑓 until transport in the 

system was completely clogged. The surface growth scenario required more precipitation than 

the homogeneous nucleation scenario to clog the system and was largely influenced by the initial 

pore geometry. At a higher precipitation rate, the system was clogged with a smaller amount of 

the precipitate, i.e. the critical porosity (𝛷𝑐) was higher. Based on these observations, the 𝛷 −
𝐷𝑒𝑓𝑓 relationship (traditional Archie’s law) was revised to explicitly account for the clogging 

effect, i.e., 𝛷𝑐 and critical effective diffusivity (𝐷𝑒𝑓𝑓𝑐
) were included in the relationship. The two 

fitting parameters, the pre-exponential coefficient and the exponent, were between 0-1 for all 

simulations, and showed large variations across different geometries. For the surface growth 

scenario, the pre-exponential coefficient tended to be lower and the exponent was slightly higher 

than for the homogeneous nucleation scenario. Application of this revised relationship in the 1D 

continuum scale model produced improved results that agree better with the column experiment 

compared to the traditional Archie’s law. The amount of precipitation is still over-estimated, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

which indicates that other precipitation mechanisms may be present that reduced mineral 

precipitation. Future studies are needed to better understand processes such as precipitation 

under confinement and to conceptualize these processes for implementation in reactive transport 

models.  
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crunchtope simulation can be accessed at https://github.com/denghangPU/diffusion-dominated-
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