
HAL Id: insu-03210089
https://insu.hal.science/insu-03210089

Submitted on 27 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The wave distribution function in a hot magnetospheric
plasma’ The direct problem

O Santol, Michel Parrot

To cite this version:
O Santol, Michel Parrot. The wave distribution function in a hot magnetospheric plasma’ The direct
problem. Journal of Geophysical Research Space Physics, 1996, �10.1029/95JA03510�. �insu-03210089�

https://insu.hal.science/insu-03210089
https://hal.archives-ouvertes.fr


JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. A5, PAGES 10,639-10,651, MAY 1, 1996 

The wave distribution function in a hot 

magnetospheric plasma' The direct problem 

O. Santol•k I and M. Parrot 
Laboratoire de Physique et Chimie de l'Environnement, Centre National de la Recherche 
Scientifique, Orl6ans, France 

Abstract. Studying electromagnetic waves in a magnetospheric plasma, it is often 
important to find their directions of propagation. When the assumption of a plane 
wave is not valid, the determination of the wave distribution function (WDF) is 
required. The WDF specifies the distribution of wave-energy density with respect 
to the frequency and the wave-normal direction. An alternative approach to the 
estimation of the experimentally accessible data for a given WDF is suggested with 
the hot-plasma and/or Doppler effects taken into account. The method is based 
on an explicit frequency dependence of the WDF. Examples of solutions, including 
the determination of the wave-refractive index, the wave-growth rate, the group 
velocity, and theoretical predictions of experimental data at predefined frequencies, 
are given in different cases. First, whistler-mode waves in a hot plasma near the 
geostationary orbit were studied. Second, the low-frequency waves observed by the 
low-altitude satellite Freja in the auroral zone were subjected to theoretical analysis. 
A complex, multimodal structure of the wave characteristics was found, mainly 
around the resonance angle. In the case of extremely short-wavelength waves, the 
influence of the Doppler effect produced qualitative changes of the wave-normal 
dependence of wave parameters. 

1. Introduction 

The in situ measurement of fluctuating fields is an im- 
portant tool for investigating wave phenomena in space 
plasmas. Usually, several components of the electric 
and magnetic fields are simultaneously measured, pro- 
viding information about the wave propagation. The 
following two general approaches can be chosen: (1) the 
presence of a single plane wave is supposed or (2) a set 
of waves with a continuous distribution of wave-normal 

directions is studied. 

The first alternative has been extensively developed 
by many authors [e.g., Means, 1972; McPherron et al., 
1972; Arthur et al., 1976]. The normal direction of a 
plane wave is determined by various procedures based 
on the assumption of the perpendicularity of the wave 
magnetic field to the wave normal. Methods to verify 
the initial assumption of the single plane wave were also 
worked out [e.g., McPherron et al., 1972; Samson and 
Olson, 1980]. Their application to the measured data 
has shown that, in some cases, the wave field is more 
complicated. Especially, the data on hiss events are not 
consistent with the idea of a single plane wave [Par- 
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rot and Lefeuvre, 1986]. At a given frequency, several 
propagation directions can simultaneously be observed 
and several wave modes may also be involved. In such 
a case, the subject of analysis must be a general wave 
continuum. 

In order to describe this continuum, the concept of 
the wave distribution function (WDF) was proposed 
by Storey and Lefeuvre [1974]. Using an analogy with 
the particle distribution function from the kinetic the- 
ory of gases, the WDF was introduced as a distribu- 
tion Fn•(x, k, t) of the wave-energy density in the wave- 
vector space: 

w• (x, k, t) - /a F•(x,k,t) d3]•, (1) k 

where wm is the energy density of a wave mode rn ob- 
served at a position x and at a time t, and contained 
in a region f•t of wave vectors k. Estimation of the 
experimental signals using a known shape of the WDF 
constitutes the WDF direct problem. The resolution 
of this problem is given by Storey and Lefeuvre [1979, 
1980], who first solved the problem for waves propagat- 
ing in a cold plasma without considering the Doppler 
effect. They have also proposed the use of an explicit 
frequency dependence of the WDF ((1) contains this de- 
pendence in an implicit form, via the plasma dispersion 
relation which gives the connection between the wave 
vector and the wave frequency). 

Using these results, the inverse problem of the WDF 
(i.e., the estimation of an approximate shape of the 
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WDF based on the knowledge of experimental signals) 
has been resolved [Lefeuvre, 1977; Lefeuvre and Delan- 
noy, 1979; Delannoy and Lefeuvre, 1986] and applied 
to the experimental data [e.g., Parrot and Lefeuvre, 
1986, Lefeuvre et al., 1992]. More recently, Oscarsson 
and ti•b'nnmark [1989, 1990] and Oscarsson [1989, 1994] 
studied the WDF problem in a hot plasma with the 
Doppler effect, but using the implicit frequency depen- 
dence of the WDF. 

The aim of this paper is to develop a method for 
solving the WDF direct problem in a hot plasma with 
the Doppler effect, using an approach similar to Storey 
and Lefeuvre [1979, 1980]. Section 2 will present the di- 
rect problem and the two different approaches, section 
3 contains a brief description of our method, whereas 
applications to real events are given in section 4. Con- 
clusions are summarized in section 5. (The SI system 
of units is used throughout the paper.) 

2. The Direct Problem of the WDF 

2.1. The Different Forms of the WDF 

The original form of the WDF in (1) depends on the 
wave vector k, which is not easily obtained from expe- 
rimental measurements. Therefore Storey and Lefeuvre 
[1979] proposed to replace the wave vector k by two 
quantities' the wave-normal direction •: - k/k (k is 
the modulus of the wave vector), and the observed fre- 
quency coo. The wave-normal direction k is determined 
by two angles 0 and ½ (Figure 1). For a given wave 
vector k the corresponding frequency coo is obtained by 
taking into account the Doppler effect and the response 
of the medium to wave propagation. 

The Doppler effect coo -Ico -k.vo I, (ll means the 
absolute value, co is the wave frequency in the medium, 
and vo is the velocity of the receiver in the medium) 
was neglected in the work of Storey and Lefeuvre [1979], 
where coo - co. This approximation is well justified 
if the influence of the Doppler effect is negligible in 
comparison with the experimental frequency resolution. 
In the following, the velocity vo is supposed to be 
much smaller than the velocity of light and nonrelativis- 
tic transformations between the receptor and medium 
frames will be used. 

_• xs(• ) 
vø ................. "l k • Bø 

(•) 

x • (p) ,.. 

Figure 1. Physical coordinate system p linked with B0 
and vo, the latter being the relative velocity between 
the medium and the satellite. 

The response of the medium to the wave propaga- 
tion is described by the dispersion relation D(co, k) - 0. 
Using this last substitution, Storey and Lefeuvre [1979], 
supposing a given position x and a given time t, wrote 
(1) in a form equivalent to 

(2) 

where d2/c represents a two-dimensional integration 
(over a solid angle) for the wave-normal directions con- 
tained in the region f2•. In (1), f2k is now defined by 
the shape of f2• and the frequency interval (co•, co2). 

For a given shape of the WDF, i.e., in the case of a 
pure direct problem, the G form (see (2)) and the F 
form (see (1)) are equivalent. The WDF can be trans- 
formed from one form to the other through the equation 

(k) - (vg. - vo). (3) 
where vg,• is the group velocity of wave mode m. The 
physical dimension of F,• is similar to the energy unit, 
whereas for G,• it is the spectral density of the energy 
density. 

However, the solution of the WDF direct problem is 
often used as a part of a WDF reconstruction method. 
The WDF is here defined by experimental data, and 
the direct problem must be defined more precisely; the 
task is to calculate an estimation of the data which can 

be compared with the data really measured. In this 
case, the two WDF representations are not equivalent. 
The main advantage of the G form representation (see 
(2)) is that the k dependence is replaced by the coo 
dependence. The wave data are usually obtained as a 
function of time, and their coo dependence is obtained 
by spectral analysis. With the G form, a wave phe- 
nomenon found around a certain frequency coo may be 
directly compared with a theoretical estimate using the 
corresponding WDF. Oppositely, the F form requires al- 
ways a complex 2-D surface in the k space to be found, 
according to the given coo. In this case, the only signi- 
ficant WDF values are those obtained on this surface. 

The same problem arises with the F form in the case of 
instruments providing spectral information for a prede- 
fined set of frequencies [e.g., Cornilleau-Wehrlin et al., 
1•]. 

The G form representation can be therefore assigned 
to the experimental data in a more straightforward way. 
As will be shown, a multiplicity of wave modes, often 
observed in a hot plasma, can be also introduced. The 
G form has been used by Storey and Lefeuvre [1979], 
œefeuvre and Delannoy [1979], and Delannoy and œefeu- 
vre [1986] to study the reconstruction of the WDF of 
electromagnetic waves in a cold plasma, without con- 
sidering the Doppler effect. Storey and Lefeuvre [1979] 
demonstrated that different wave modes are better se- 

parated with this representation. 
The Fform ofthe WDF (see (1)) was used by Oscars- 

son and Rb'nnmark [1989, 1990] and Oscarsson [1994] 
to reconstruct the WDF in a hot plasma with the 



SANTOLIK AND PARROT: WAVE DISTRIBUTION FUNCTION IN A HOT PLASMA 10,641 

WHAMP (Waves in Homogenous, Anisotropic, Multi- 
component Plasmas) program [Rb'nnmark, 1982]. With 
this last representation, the Doppler effect can be sim- 
ply introduced. 

As discussed by Storey and Lcfcuvrc [1979], the reso- 
lution in frequency wo depends always on the temporal 
resolution of the G form of the WDF. An analogous re- 
lation between the wave vector and spatial resolutions 
must be taken into account for the F form. RSnnmark 

and Larsson [1988] directly included this relation for 
their definition of the WDF. 

We will use the G form defined in (2), because the fi- 
nal purpose is to reconstruct the WDF from frequency- 
dependent experimental data. In this definition, fre- 
quency and time are supposed to be independent vari- 
ables. The respective resolutions of these variables 
will be considered as independent experimental errors 
caused by the spectral analysis of the data. 

2.2. The Relationship Between the WDF and 
Measurable Wave Parameters 

In the case of electromagnetic waves in plasma, 
of experimental signals ½i can be defined as 

a set 

cqe ] e -- E•,..., ENe, cB•,..., cBNb, ne • (4) 
•o•o 

where Exo.. ENe are the signals obtained by Ne elec- 
tric antennae, Bx... BNb are obtained by Nb magnetic 
antennae, ne is the electronic density, c is the velocity 
of light, q• is the electron charge, and z0 is the vacu- 
um permittivity. The scale factors for Bi and n• arc 
used in order to obtain the same physical unit for all ei 
components. 

For a given frequency coo the corresponding spectral 
matrix is ,•ij(coo)- {ei(coO)ej(coO)), where {x)is the 
ensemble average of a random variable x and asterisk 
means the complex conjugate. The ei are the complex 
spectrum amplitudes of the experimental signals el. In 
practice, the spectral analysis roughly corresponds to 
the filtering of the signal by a passband filter with a cen- 
tral frequency coo and a nonzero frequency bandwidth 
Aco. As discussed by Lefeuvre [1977] and Storey and 
Lefeuvre [1979], who suppose a continuous distribution 
of elementary plane waves with no mutual coherence 
and a narrow bandwidth Aco, the relationship between 
the spectral matrix and the G form of the WDF is given 
by 

: Z / amij(coo, O, qS) Gin(coo, 0, (3) d2•c , (5) 
where m represents the different wave modes. The path 
integration is carried over the full solid angle of wave- 
normal directions, and for a given mode m the integra- 
tion kernels amij are calculated from 

a•,j(wo, O, •) - a• d•,(wo, O, •) d•j(wo, O, •) (6) 

The quantities di and 6 correspond to an elementary 
plane wave with a normal direction defined by the an- 
gles 0 and •b; coo represents the Doppler-shifted fre- 
quency of the elementary wave; • is its energy density; 
di is the complex amplitude of the ith elementary sig- 
nal. This amplitude would be equal to the amplitude 
of the ith experimental signal in the ideal case, where 
only an elementary plane wave was measured without 
experimental noise. The complex amplitude di can be 
calculated by considering the physical properties of the 
medium, using solutions of the dispersion relation as 
well as characteristics of the experiment. 

3. Description of the Method 

The resolution of the direct problem of the WDF in 
a hot plasma is based on (5). The principal task is the 
calculation of the integration kernels amij with (6). In 
a hot plasma and/or introducing the Doppler effect, a 
numerical procedure must be employed. This requires 
a discretization of the integration in (5), and a set of 
porcupines of distinct wave-normal directions must be 
introduced. The integration of the WDF direct problem 
(5) is then transformed into a discrete form for a given 
frequency coo, 

N,• 

=ZZamij(Omt 
m 

, Or.) Gr.(Or., Or.) (7) 

where œ is the index specifying one of the Nr• predefined 
directions for a given porcupine rn, and rrr•g is the ele- 
mentary space angle. The quality of reproduction of (5) 
by the discrete approximation (7) is strongly influenced 
by the choice of a distribution of directions in a porcu- 
pine. We use an igloo distribution (for illustration, see 
Figure 2) which provides the best coverage of a region 
of directions (a space angle). 

Equation (7) allows a straightforward introduction of 
different distinct wave modes appearing in a hot plasma 

I • xs(P) 

x • (p) 

g 0 

Figure 2. Igloo integration. 
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at a given frequency. The index m defines a separate 
porcupine of directions for each wave mode. The pro- 
cedure of computing the integration kernels must be 
therefore able to get all the values of arnij(Ornl, q•rnl) in 
the corresponding mode within a porcupine rn. 

To calculate these integration kernels, the dispersion 
relation of the hot anisotropic medium must be first 
resolved. Using the G form of the WDF, the Doppler 
effect will be introduced at this moment, because the 
frequency wo is considered as an independent variable. 
This requires a simultaneous resolution of the dispersion 
relation and the equation of the Doppler effect. 

3.1. The Doppler-Shifted Dispersion Relation 

The wave modes are defined by distinct roots of the 
dispersion relation, which is defined by 

O(w, k): det D(w, k, 0, 05): 0 , (8) 

where the dispersion tensor D is calculated using the 
dielectric tensor, E = I+ •l El; I is the unit tensor, and 
El represents the contribution of a plasma component. 
The plasma component is defined by the type of parti- 
cles (electrons or different ion species) or by the shape 
of their distribution function. The following three dif- 
ferent approximations of E1 have been included in our 
method: cold plasma, algebraic expressions for a hot 
and weakly relativistic plasma [Sazhin, 1987, 1988], and 
a numeric procedure for a hot nonrelativistic plasma 
[RSnnmark, 1983]. Following $azhin [1987], the non- 
relativistic approximation does not allow the analysis 
of plasma waves near the cutoff frequencies, where the 
value of the refractive index is small. 

The equation of the Doppler effect •w - wo q- k.vo 
must be used with (8) to find k and .•w for a given 
value of wo and a given wave-normal direction. The 
nonlinear system of equations can have several solutions 
corresponding to different wave modes. 

Several cases must be considered to obtain the solu- 

tion of the dispersion relation, depending on the stabi- 
lity of the wave mode. If the wave is stable, .•w is null 
and F is a Hermitian tensor [Stix, 1962]. Therefore D 
also is a Hermitian tensor and its determinant is real. 

The solution is given by the real roots k as soon as the 
wave-normal direction and the frequency are fixed. If 
the wave modes are quasi-stable; that is, •w is low, ap- 
proximations can be used (for example, [Sazhin, 1993]). 
For a more general solution, a combination of k and •w 
that makes the complex value det D(w, k, 0, •b) to vanish 
for given 0, •b, and wo must be found. As the resolution 
of the dispersion relation is a numerical problem, it is 
necessary to make a preliminary estimate of the solution 
for wave mode m in an initial wave-normal direction. 

Generally, the dispersion relation is symmetrical in 
the space of wave-normal directions and the solution 
can only be sought in a part of this space. However, 
the symmetry is disturbed by the Doppler effect, and 
several cases must be envisaged, depending on the value 
of the vo components. 

3.2. The Integration Kernels 

Using the solution of the dispersion relation, the in- 
tegration kernels are calculated. In (6) the ratio for a 
given mode m can be written as (supposing given wo, 
0, and 

•i ½j ,n ,,• * (9a) t• = ei ej ' 
where 

• = v/_ • . (9b) 
In the definition (9b) of the normalized vector •, the 

vector • of analytic signals must correspond to the vec- 
tor of experimental signals given by (4). To obtain •, 
the parameters of the elementary plane wave (electric 
and magnetic fields, electronic density variation) will be 
found first. In the second step the influence of experi- 
mental devices (electric or magnetic antennae) will be 
considered. 

For a given wave mode m the solution of the dis- 
persion relation can be used to calculate the dispeps. ion 
tensor D,•. The polarization of the electric field E of 
the elementary plane wave, which is necessary to calcu- 
late the kernels amij, can be found from Dm l• - 0. 
With the polarization and the following expression of 
the energy density of the analytic plane wave which can 
be derived from Stix [1962], 

1 ]•. OD,• ]•, (10) 
a direct procedure to calculate the normalized electric 
field ]•n _ ]•/X/• has been found. The normalized wave 
magnetic field is then given by 

c 1•1 • - cl•l / x• - • k x (11) 
and the normalized electronic density perturbation n, 
is linked to the normalized electric field l• • through 
Coulomb's law: 

,• C •!• n, = k. (12) 
•o 

The normalized signals • can now be calculated, us- 
ing the results of the last paragraphs. As for the signals 
of the electric and magnetic components, we must cal- 
culate the projection of the field vector in the direction 
of the corresponding antenna. The electric signals may 
need a supplementary correction to account for the fi- 
nite length of the antenna and the coupling impedance 
to the plasma. As the next step, all signals are mul- 
tiplied by the complex transfer function of the corre- 
sponding eiectronic chain. Finally, with the signals • 
and (9a), we can calculate the kernels a•ij. 

3.3. The Group Velocity 

When the dispersion relation is known for a given 
wave mode m, the group velocity of an elementary plane 
wave can be calculated as 
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Vg • • 

x • (p) : .... 

•c •xz(•) 
•(•) 

, 

Figure 3. Coordinate system k linked to the wave 
vector. 

(0k det D.• ) vg,• - -R 0• der D,• (13) 
The calculation of this velocity is necessary for the 
transformation from one representation of the WDF to 
the other with (3). It could also be useful for interpret- 
ing the results of the WDF analysis. 

Using the derivatives of D,•, we have 

(0s det D,• ) vg•(k) = -• kO• det D,• ' 
va2(k ) - vo•(p) sin• , 

(0k der D.• ) vga(k) - -• 0•odetD,• ' (14) 

where the derivative 0 o det D,• is found from the fact 
that der D,• depends only on the angle ½5 through the 
Doppler effect. The quantity vo•(p) is the component 
of the velocity vo in the direction of the axis x•(p) (see 
Figure 1). 

The components of the group velocity are calculated 
in the coordinate system linked to the wave vector (Fi- 
gure 3). To express the group velocity in the physical 
coordinate system of Figure 1, a transformation has to 
be performed. 

4. Examples of Solutions 

4.1. Whistler Mode Waves in a Plasma Near the 

Geostationary Orbit 

The first tests of this method used typical plasma 
parameters near the equator at L - 6.6. Two main 
reasons lead to this choice. (1) In this region a two- 
peaked WDF of whistler-mode waves (i.e., violations of 
the assumption of a single plane wave) has been ob- 
served on board Geos 1 [Parrot and Lefeuvre, 1986]. 
(2) The work of Horne and $azhin [1990] and $azhin 
and Horne [1990] contains a numerical solution of the 
dispersion relation for the whistler-mode waves at fixed 
frequencies. Their plasma model corresponds to Geos 
i observations in this region. To compare their results 

with the output of our method, the same plasma and 
wave parameters have been chosen. 

The plasma model is composed of the following three 
Maxwellian components: (1) cold electrons with a num- 
ber density of 106 m -a and temperature T = i eV; (2) 
hot electrons with a density of 1.81x105 m -a and T = 
200 eV; and (3) ions as a neutralizing background. The 
electron gyrofrequency is Qe/27r = 3000 Hz. 

Three whistler-wave frequencies have been examined 
as follows: wo/2•r = 1200, 1800, and 2400 Hz. No 
Doppler effect has been introduced (wo = •w). Figure 
4 contains an example of results in the case of wo/27r = 
1800 Hz. The dependencies of obtained parameters on 
the polar angle 0 are presented. Without the Doppler 
effect the dependencies on the azimuthal angle •5 are 
either constant functions or can be determined as sim- 

ple algebraic expressions. The value •5 = 0 ø has been 
therefore used. 

Figure 4 (left) contains (from the top) the wave- 
refractive index, N = kc/•w (c is the velocity of light); 
the ratio .•w/•w expressing wave damping; the group- 
velocity modulus normalized to the velocity of light 
va/c; and the group-velocity direction represented by 
the deviation of the group-velocity vector from the vec- 
tor of the ambient magnetic field. The solid line corre- 
sponds to the solutions obtained when using the nu- 
meric procedure for the hot-plasma dielectric tensor 
[Rb'nnmark, 1983], the dotted line corresponds to al- 
gebraic expressions of this tensor [Sazhin, 1987, 1988], 
and the dashed line represents the cold-plasma approx- 
imation of the dielectric tensor [Stix, 1962]. We have 
calculated the cold-plasma solution taking into account 
the total plasma density obtained as the sum of the 
densities of both cold and hot electrons. For 0 well be- 

low the resonance angle 0R, the three procedures give 
similar results (in the presented case 0R = 51.8ø), the 
observed differences between the hot and cold plasma 
results being less than 2ø76. However, if a simplified cold 
plasma solution is used, the bias of the obtained re- 
fractive index can reach about 10o76 [Sazhin and Horne, 
1990]. In the cold-plasma approximation the waves do 
not propagate for 0 greater than 

Considering the results of the hot-plasma procedure, 
we observe a complex behavior of the wave propagation 
near the resonance angle and a heavy damping for large 
0 values, 0 > 57 ø. The plots of the hot-plasma refrac- 
tive index obtained by a numerical procedure of Horne 
and $azhin [1990] and $azhin and Horne [1990] have 
been well reproduced by our procedure when using the 
numerical approximation of the dielectric tensor. The 
same holds true for the other two frequencies, 1200 and 
2400 Hz (not shown). Additionally, new branches of the 
dispersion curves have been found near the resonance 
angle. All presented curves are composed of four dis- 
tinct parts and were created by independent runs of the 
procedure for solving the dispersion relation. For each 
run the initial refractive index N was found analyzing 
all solutions of the dispersion relation for N < 1000. For 
0 > 0n the differences between the results of numeri- 
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Figure 4. Solution to the wave distribution function (WDF) direct problem for equatorial hiss 
outside the plasmasphere. The frequency is 1800 Hz and corresponds to 0.6 f2,/2•r. A plasma 
model containing 18.1% of Maxwellian electrons with a temperature of 200 eV is assumed. The 
results obtained with three different procedures for the plasma dielectric tensor are compared. 
(left) Dependence of the solution of the dispersion relation on 0, refractive index, wave damping, 
and the group velocity vector of an elementary whistler wave. (right) Dependence of some 
integration kernels aij calculated for the same elementary wave on 0. 

cal and algebraic procedures are presented in Figure 4. 
The wave growth obtained by the algebraic procedure is 
unrealistic, because the validity of the algebraic approx- 
imation fails for 0 > 52.8 ø, according to the conditions 
stated by Sazhin [1987, 1988]. 

As has been shown, the calculation of the spectra esti- 
mates for a given WDF is straightforward once the val- 
ues of the integration kernels are known (see (7)). For 
example, a WDF shape modeled by several plane waves 
can be introduced by the summation of only the terms 
corresponding to the respective wave-normal directions. 
If the WDF shape is given as an analytic function, the 
spectra estimation represents a simple summation of a 
large number of known terms. The knowledge of inte- 
gration kernels is therefore crucial to solve the WDF di- 
rect problem. In Figure 4 (right), examples of the 0 de- 
pendencies of some integration kernels aij are presented. 
Three magnetic and three electric antennae were used, 
with their directions along the axes of the coordinate 
system of Figure 1. The electric field (Ex, Ey, and 
and magnetic field components, rescaled by the velocity 

of light (cBx, cBy, and cBz), have been used in place 
of the experimental signals ii in (6). The SI units have 
been used to calculate absolute values of the kernels; 
that is, their physical dimension is [V •' m J-1 Hz]. Four 
representative examples of the kernels are drawn. The 
dependencies calculated with the cold-plasma approxi- 
mation of the dielectric tensor are equal to the results of 
the algebraic expressions derived by Storey and Lefeu- 
vre [1980]. They are also approximately equal to the 
hot-plasma solutions. For 0 values well below the reso- 
nance angle, the difference is less than 2%. Comparing 
the results of the two hot-plasma procedures (numeric 
and algebraic), an excellent conformity is obtained, ex- 
cept for 0 values above 50 ø, where a complex behavior 
of the numerical hot-plasma dependencies is observed. 
The simpler algebraic approximation cannot be used so 
near the resonance cone. However, this restriction is 
not very important, because it applies only in the case 
of heavily damped waves. 

The results indicate that the hot-plasma approach 
may be useful in the study of equatorial hiss outside the 
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plasmasphere. Hot electrons convected from the plasma 
sheet can influence the relative amplitudes and phases of 
observed waves over a range of several degrees near the 
resonance cone. Therefore the shape of the integration 
kernels aij is biased against the cold-plasma case and 
the reconstruction of the WDF should take this effect 

into account, especially if the waves are found near the 
resonance angle. 

The existence of several whistler-mode branches in 

a narrow 0 interval near the resonance angle may be 
a problem arising from the hot-plasma approach; for a 
given wave-normal direction there are several values of 
the integration kernels and the WDF reconstruction be- 
comes more complex. In the particular case of Figure 4 
the rejection of the heavily damped branches is a natu- 
ral way to solve the problem. The characteristic length 
of wave damping of these branches can be estimated 
by using the presented results; the satellite must be at 
a distance of less than several tens of kilometers from 

the region of generation to observe the damped whistler 
branches. However, if several branches with a compa- 
rable damping rate are present (as was observed for 
wo/2•r = 2400 Hz), this straightforward solution can- 
not be applied and a more complex multimodal WDF 
reconstruction is necessary. 

4.2. Ion-Cyclotron Waves in the Auroral 
Magnetosphere' 

Another example is taken from a different region 
of the Earth's magnetosphere. On the auroral field 
lines, wave propagation and stability can be affected by 
beams of energetic electrons. Alfv•n electromagnetic 
ion cyclotron (EMIC) waves are often observed simul- 
taneously with electron precipitation [e.g., Ternerin and 
Lysak, 1984]. Oscarsson and RSnnmark [1990] studied 
an EMIC wave emission observed on board the Viking 
satellite at an altitude of 4300 km. The study is based 
on the data of two electric antennae and follows the 

procedure of Oscarsson and RSnnmark [1989]. The 
main part of the observed wave energy was concen- 
trated around half of the local proton gyrofrequency. 
The observed auroral electrons are modeled by a drift- 
ing MaxwellJan distribution, with a drift energy of 4 keV 
and the relative density 0 1% of cold proton-electron 
plasma. 

The published solutions of the WDF direct problem 
correspond to the wave-vector-dependent representa- 
tion. A limited range of wave-vector components near 
the resonance of EMIC waves is taken into account. 

This solution has been compared with the output of our 
method. A range of frequencies from 19 Hz to the pro- 
ton gyrofrequency •H+/2•r: 190 Hz and a range of 0 
values from 800 to 89.90 have been examined. The prin- 
cipal results in a selected part of this range are shown 
in Figure 5. The spatial growth • = ..•w/2zrvg is pre- 
sented as a 3-D image in the gray scale. White corre- 
sponds to strongly damped waves out of the resonance 
cone, and the gray-to-black scale represents stable and 
growing waves. Three isolines provide rough informa- 
tion about values of the refractive index N. They are 

14 0 '"" :'.'"•'•:::• ................. 

87.0 87.5 88.0 88.5 89.0 89.5 

0 ø 

0 1 2 3 4 

Spatial growth rate (10 -9 m -1) 
Figure 5. Solution of the hot-plasma dispersion rela- 
tion in the auroral region for an altitude of 4300 km. 
The hot-plasma model as in the work of Oscarsson and 
RSnnmark [1990] has been used. The gray scale corre- 
sponds to the spatial-growth coefficient •w/2•rvg, plot- 
ted versus wave frequency coo, and the angle 0 between 
the wave-normal and the ambient magnetic field. The 
labeled isolines represent the common logarithm of the 
refractive index. 

labeled by the common logarithm of N; that is, they 
correspond to N: 316, 1000, and 3160. In the region 
shown the minimum value is N: 150 for 0: 870 and 

coo/2•r = 20 Hz. A fiat maximum of the spatial growth 
is found at 0 • 88.60 and at frequency coo/2•r • 100 Hz, 
which agrees with the observed maximum of wave ac- 
tivity. The corresponding refractive index is N • 470. 
To compare these results with the original solution of 
Oscarsson and RSnnmark [1990], a transformation was 
made to the space of wave vectors. The published re- 
sults are well reproduced, including the absolute values 
of the wave-growth coefficient. 

Note that the obtained maximum wave growth of 4.3 
x10 -9 m -1 is too small to explain the observations. 
The amplification of the wave amplitude by a factor 
of 7 is needed to get the observed signal-to-noise ra- 
tio. With a spatial growth rate of 4.3 x 10 -9 m -• the 
waves must propagate across a distance of 7.2 x 107 m, 
which corresponds to an unrealistic distance of about 
11 Earth radii. A wrong assumption may have been 
made about the form of the distribution function of the 

electron beam in the generation region. Gustafsson et 
al. [1990] noted that the wave growth may be increased 
by a higher density and smaller thermal spread of the 
model beam. The approximative calculation of Ternerin 
and Lysak [1984] provides a higher spatial growth for a 
smaller drift energy of the beam. As will be confirmed 
by our numeric results, an increased beam density and 
decreased thermal and drift energy lead to higher wave 
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growths, but the propagation characteristics of EMIC 
waves become more complex. 

Erlandson et al. [1994] recently studied the auro- 
ral region at lower altitudes (about 1800 km) using the 
data of the Freja satellite. EMIC waves were observed 
in the region of electron precipitation at an invariant 
latitude of 69 ø. An estimation provides a low plasma 
electron density of 40 cm -a. Wave emissions were con- 
fined to the following two frequency bands: (1) low- 
frequency waves below the local oxygen gyrofrequency 
(f2o+/2•r .• 25 Hz), with a maximum activity at 8 Hz, 
and (2) higher-frequency waves, between the local he- 
lium (f214e+/2•r • 100 Hz) and hydrogen gyrofrequen- 
cies, peaked at about 130 Hz. 

No analysis of wave propagation and stability was 
made for this event, and we have applied the developed 
method to this case for the following reasons. (1) Using 
the solution to the dispersion relation of EMIC waves, 
we can deduce the main properties of wave propagation 
and we can attempt to explain the observed spectrum. 
(2) The possibility and usefulness of the WDF recon- 
struction for similar events can be verified. 

The propagation characteristics of EMIC waves are 
strongly influenced by the relative abundance of ion 
species. We thus need this information as input data 
for the resolution of the WDF direct problem. As di- 
rect measurement of the thermal plasma composition 

2 4 6 8 

% He + 

0 1 2 3 4 

Refractive index 

Figure 6. The refractive index of electromagnetic ion 
cyclotron (EMIC) waves in the higher-frequency band 
of the event described by Erlandson et al. [1994] versus 
the relative abundance of helium and oxygen ions. The 
scale corresponds to 0: 0 ø The following three regions 
with different qualitative properties of wave propaga- 
tion are shown (from top right to bottom left): evanes- 
cent waves, unducted waves without plasma resonance, 
and ducted waves with a resonance near 0 = 90 ø. The 
plasma was assumed to be cold. 

has not been published by Erlandson et al. [1994], we 
will use the wave observations as an estimator of these 

data. The ion composition mainly affects the higher- 
frequency band of observed EMIC waves. We will first 
suppose a plasma composed of cold hydrogen, helium, 
and oxygen ions and cold electrons. Figure 6 shows a 
view of the propagation of left-polarized EMIC waves 
at 130 Hz for various ion compositions. The scale of 
gray shades represents the value of the refractive index 
N for 0 : 0 ø. In the region above the diagonal the 
mode is evanescent and the waves do not propagate in 
a plasma with higher oxygen and helium fractions. The 
dotted line represents the cutoff (N = 0). From the cut- 
off to the bottom left corner (where 100% of H + is as- 
sumed), the refractive index increases up to N = 4. The 
oblique, light-colored boundary line corresponds to the 
ion composition where the crossover frequency is equal 
to 130 Hz. On this line, two cold-plasma modes are ex- 
changed. The crossover line bounds a region where the 
waves have a plasma resonance (N --• oo) near 0: 90 ø. 
Outside of this region, there is no resonance of EMIC 
waves. The waves with resonance have the direction of 

group velocity nearly always aligned with the ambient 
magnetic field. The waves without resonance have the 
group velocity roughly aligned with the phase velocity; 
that is, the group velocity has the direction of the DC 
magnetic field only for 0 m 0 ø. 

The stopband in the measured spectra [Erlandson et 
al., 1994] between the local He + and O + gyrofrequen- 
cies is an important feature of the event. A more de- 
tailed analysis of the wave propagation shows that the 
observed spectrum implies a negligible fraction of He + 
ions. If only 1% of helium were supposed, the wave 
propagation below fli•+ would be possible in a band- 
width of •fli•+ , and a new stopband above f214•+ would 
be induced. Nevertheless, the presence of O + and H + 
fractions is required to explain the observed stopband. 
Its lower boundary is then defined by the local oxygen 
gyrofrequency. If the higher frequency band contains 
left-polarized EMIC waves, the boundary at 100 Hz can 
be explained in two different ways. 

1. The first is the cutoff of EMIC waves. The cor- 

responding ion-composition estimate is 20% of O + and 
80% of H + The EMIC waves above 100 Hz propagate 
in a mode without plasma resonance. The frequency 
interval where the theory predicts the impossibility of 
propagation of EMIC waves corresponds to the observed 
stopband. 

2. The second is the crossover of EMIC waves. This 

corresponds to a composition with 5% of O + and 95% 
of H + The EMIC waves above 100 Hz have a plasma 
resonance, and their group velocity is directed along the 
field lines. 

Figure 7 presents the solution to the WDF direct 
problem for a higher band of observed EMIC waves 
(a representation similar to that in Figure 4 has been 

1 

used)' a frequency of 130 Hz ( m •fli•+) and a plasma 
with 95% of cold H + and 5% of cold O + have been sup- 
posed. The model plasma composition follows case 2 
of the analysis presented above. However, the majority 
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of H + is unusual at low altitudes where the observa- 

tions have been made [e.g., see Lefeuvre et al., 1992]. In 
Figure 7 the cold-plasma approximation of the electron 
distribution (dashed line) is compared with the hot- 
plasma numeric results (solid line) in the whole range 
of 0 values. The hot-plasma model was chosen in ac- 
cordance with the electron-energy spectra published by 
Erlandson et al. [1994]. A low temperature of i eV 
was assumed for the main Maxwellian component of 
electron distribution. Maxwellian electrons with higher 
temperature are not apparent in the spectra. Two drift- 
ing Maxwellian beams with drift energies of i keV and 
100 eV have been added. They propagate earthward 
in the direction parallel to the ambient magnetic field. 
The energy corresponding to the thermal spread of the 
beams has been fixed at 0.1 of the respective drift ener- 
gy. The published spectra are not calibrated to the 
absolute values of electron flux. The relative number of 

electrons in the beams must therefore be treated as a 

free parameter. A relatively high fraction of beam elec- 

trons has been assumed to emphasize hot-plasma effects 
on the wave propagation; each beam is taken to contain 
1% of the total electron density. Figure 7 shows a slight 
difference between the hot- and cold-plasma solutions, 
especially in the 0 range from 200 to 600 . The wave 
dispersion expressed by the refractive index is practi- 
cally not affected by this difference, whereas the group 
velocity and integration kernels exhibit a small bias of 
several percent (up to 8% in the case of kernel aBzBz). 
All differences are due to the electron beams. The re- 

placement of the 1-eV Maxwellian electrons by their 
cold-plasma approximation has a negligible effect on the 
obtained results as well as the use of 1-eV Maxwellian 

ions in place of the cold ones. 
A surprising effect is that the electron beams influ- 

ence wave propagation relatively far from the resonance, 
where no effects concerning the wave stability occur. 
More pronounced hot-plasma effects over a wider range 
of 0 values might be supposed in the case of a sub- 
stantial hot Maxwellian fraction in the electron distri- 
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Figure 8. Solution of the hot-plasma dispersion rela- 
tion of ducted EMIC waves at an altitude of 1700 km. 
The plasma model consists of 95% of cold H + ions, 5% 
of cold O + ions, 99.9% of Maxwellian electrons with 
a temperature of 1 eV, and 0.1% of auroral electrons 
forming a beam with the drift energy 1 keV and ther- 
mal energy 100 eV. The spatial growth rate is plotted 
as a two-dimensional function of the frequency and 0. 
Three isolines correspond to the wave refractive indices 
316, 1000, and 3160 and are labeled by the common 
logarithms of these values. 

bution. Such a distribution has been reported, e.g., by 
Gustafsson et al. [1990] from orbit 849 of the Viking 
satellite, where over 10% of the total electron density 
is observed as Maxwellian electrons with a temperature 
of 500 eV. Our calculations show that the influence on 

the obtained curves is negligible, even if 20% of 500 eV 
electrons are assumed to be present. 

Near the resonance angle, the auroral electrons can 
exchange their energy with the EMIC waves. The 0 
interval where unstable waves can be found is very nar- 
row, below the resolution of Figure 7. The solution for 
the dispersion relation has been used to analyze wave 
stability near the resonance. Figure 8 shows the solu- 
tion to the complex dispersion relation as in Figure 5. 
The spatial growth rate is presented in the frequency- 
0 plane by shades of gray. Approximate information 
about the values of the wave refractive index is given 
by isolines. The plasma model consists of cold ions (95% 
H + and 5% O+), Maxwellian electrons with a tempe- 
rature of 1 eV, and a single electron beam with the 
drift energy 1 keV. The energy of the thermal spread 
has been assumed to be 0.1 of drift energy, and beam 
electrons are supposed to constitute 0.1% of the total 
electron density. A narrow interval of 0 values of about 
1 ø near the resonance is examined. The range of fre- 

i •'•H+ quenc}es covers the observe(] spectra] peak from • 
3•H+ A fine step-like structure is an artifact due to • . 

to a finite number of examined frequencies. A light 
region in the top right part of Figure 8 corresponds 
to heavily damped waves outside the resonance cone. 
At a fixed frequency and with decreasing 0 we first see 
a short, fiat interval of relatively stable waves, then a 
sharp positive peak of growing waves, and suddenly, a 
deep negative peak of wave damping. For low 0 values 
the waves are stable (represented by the gray area at the 
bottom left of Figure 8) and the wave parameters are 
not far from the cold-plasma approximation as shown 
in Figure 7. For an increasing frequency the maximum 
spatial growth rate increases from about 3x 10 -8 m -1 
to over 8 x 10 -8 m -1 contrary to the trend observed in 
the measured spectrum, where the maximum intensity 
falls in lower frequencies. The absolute values of wave 
growth are higher than in the case of the EMIC waves 
in Figure 5, but they are still insufficient to explain the 
observed signal-to-noise ratio. 
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Figure 9. Parallel projection of the (top) refractive 
index and the (bottom) spatial growth rate (, plot- 
ted versus 0. The plasma model is assumed to be 
as in Figure 8, with a frequency corresponding to the 
higher-frequency peak in the measured spectrum (130 

i /271'). The solid line corresponds to zero ion Hz • 5•+ 
temperature (cold-plasma approximation), the dashed 
line corresponds to Maxwellian ions with a temperature 
of i eV, and the dotted line represents the ion tempe- 
rature of 10 eV. The resonance condition for the 1-keV 

electron beam corresponds to the horizontal line in Fi- 
gure 9 (top), where the beam velocity (v• • 1.88 x l08 
m/s) is equal to phase velocity v/. 
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The influence of a finite ion temperature is shown 
in Figure 9. The solid lines present a horizontal cut 
of Figure 8 for the frequency 130 Hz (the location of 
the higher frequency peak in the measured spectrum). 
The dashed and dotted lines were calculated using the 
same plasma model, except for the temperature of ion 
components. The cold-plasma approximation has been 
replaced by a Maxwellian distribution with the tem- 
peratures 1 eV (dashed line) and 10 eV (dotted line). 
The approximate condition for the Landau resonance 
(the phase-velocity projection equal to the beam ve- 
locity) is plotted in Figure 9 (top). Near the 0 value, 
where the condition is fulfilled, the positive peak of the 
wave growth occurs. Its shape is almost independent 
of the ion temperature. For a higher 0 a fiat secondary 
peak is observed. Its width is strongly dependent on 
the ion temperature. This interval of weakly growing 
waves may be interpreted as a resonance on the proton 
gyrofrequency. As demonstrated, the finite ion tem- 
perature has no substantial influence on the total wave 
growth, because the Landau resonance is the main ge- 
neration mechanism at observed frequencies. 

We also analyzed the wave stability in the observed 
low-frequency band of EMIC waves. The results, simi- 
lar to those presented in Figure 8, were obtained for 
the same plasma model. The general shape of the de- 
pendence of wave growth on 0 and frequency has been 
conserved. The only differences are a more compressed 
scale of 0 values (the hot-plasma effects are observed in 
a scale of 0.01 ø) and much lower absolute values of the 
spatial growth rate. At 8 Hz (the maximum intensity in 
the lower band of the measured spectrum), wave growth 
reaches only about 6% of the value at 130 Hz. 

To study how the wave growth depends on the rela- 
tive abundance of beam electrons and on the drift ener- 

gy of the beam, the original plasma model from Fig- 
ure 7 has been assumed. Two dense electron beams 

with energies of 100 eV and 1 keV are expected to in- 
crease substantially the wave growth at 8 Hz. Figure 10 
presents the obtained results in a form similar to that 
in Figure 9. Near the resonance angle, the solution of 
the dispersion relation is split into three independent 
branches. The conditions for the Landau resonance of 

both beams are plotted in Figure 10 (top), which shows 
that two branches contain the growing waves (dashed 
and dotted lines). Each of them fulfills the resonance 
condition of the respective beam. The third branch 
(solid line) follows the cold-plasma solution and be- 
comes damped near the cold-plasma resonance. The 
influence of the respective plasma components is com- 
pletely separated. If just one beam is present, only 
the corresponding branch exists without substantial 
changes. In accordance with the results of Ternerin and 
Lysak [1984], the 100-eV beam causes greater spatial 
wave growth than the 1-keV beam. However, the tem- 
poral growth .,•co/•co is approximately equal for both 
beams, and the difference is due to a lower group veloc- 
ity of the 100-eV branch. A fiat secondary peak on the 
100-eV branch is interpreted as the resonance on the 
first harmonic of the oxygen gyrofrequency (25 Hz). Its 
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Figure 10. Same as Figure 9, but with the plasma 
model with two dense electron beams as in Figure 7 
used to study the increase of wave growth in the low- 
frequency band (8 Hz • «go+/2•r)of observed EMIC 
wavesø Three separate branches are marked with dif- 
ferent line styles. The solid line corresponds to a 
damped branch connected with the Maxwellian plasma, 
the dashed line represents a branch resonant with the 
1-keV beam, and the dotted line is a branch resonant 
with the 100-eV beam. The resonance condition for 
both electron beams is drawn. 

intensity is again much lower than the growth due to 
the Landau resonance. 

With the plasma model containing more free energy, 
same-order values of the wave growth have been oh- 
tinned as for the previous results in the higher-frequency 
band. However, with the same model the wave disper- 
sion at 130 Itz exhibits similar properties as reported in 
Figure 10, and the wave growth is again more than 16 
times higher than at 8 Hz. Note that the influence of in- 
creasing the beam density is not only quantitative; the 
behavior of wave dispersion near the resonance qualita- 
tively changes and new EMIC branches occur. The ef- 
fect of beam temperature has been studied without ob- 
taining new information about the rate of wave growth 
in the higher and lower EMIC bands. While decreas- 
ing the thermal spread of the beam, the growth rate 
increases in both bands by approximately the same fac- 
tor. The results of the presented preliminary analysis 
of linear instability of EMIC waves disagree with the 
observed spectrum, mainly in the following points. (1) 
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The wave growth obtained for the low-frequency band 
is only about 6% of the growth in the higher-frequency 
band, but the waves are observed in both bands. (2) 
In both bands a higher growth has been obtained for 
higher frequencies. The slope is rather inverse in the 
measured spectrum. 

Some effects probably cannot be explained by the li- 
near theory of homogeneous media that was used in our 
analysis. The disagreement may be also due to a diffe- 
rence of the assumed plasma model from the conditions 
in the generation region, in which case, propagation ef- 
fects should be taken into account. The reconstruction 

of the WDF can be an important tool in the analysis of 
EMIC waves. Propagation effects may lead to splitting 
of wave normals into two different directions [Parrot 
and Lefeuvre, 1986], or the observed wave normals can 
be declined from their original directions. The WDF 
reconstruction on selected frequencies would therefore 
help to find the most probable interpretation of the ob- 
served spectrum. 

4.3. Influence of the Doppler Effect 

The Doppler effect was not taken into account in any 
of the cases presented above. If a satellite velocity of 5 
km/s is supposed, a nonnegligible bias of the observed 
frequency requires a relatively high refractive index of 
several thousands. In the case of Figure 9 or 10 this con- 
dition is fulfilled and the Doppler effect should be taken 
into account. To do this, we need information about the 
wave normal directions of the observed waves. The re- 

construction of the WDF or an equivalent approach is 
therefore necessary. Figure 11 presents an example of 
effects which can be obtained when the Doppler effect 
is taken into account. A plasma model as in the case 
of cold ions in Figure 9 is supposed. The solid line rep- 
resents the same solution of the dispersion relation as 
presented by the solid line in Figure 9; that is, the satel- 
lite velocity vo is supposed to be perpendicular to the 
wave normal, and no Doppler effect is seen. 

The dashed line corresponds to the satellite velocity 
nearly antiparallel to the wave normal. The compo- 
nent vox(p) of the velocity (i.e., the projection of vo to 
the axis xx(p) of the coordinate system of Figure 1) is 
equal to 5 km/s and the wave normal is defined by the 
angle ;b=180 ø. For lower 0 values the refractive index 
is not sufficiently high to observe an influence of the 
Doppler effect. If 0 > 89.55 ø, the Doppler effect causes 
decreasing of the refractive index and an extension of 
the interval where the hot plasma effects are observed. 

The dotted line presents the results when the satel- 
lite velocity is nearly parallel to the wave normal. The 
normal is now defined by ;b = 0 ø for the same com- 
ponent vox(p) of the velocity. For lower • values and 
lower refractive index, the results are again identical to 
those in the case without the Doppler effect. However, 
as the refractive index increases, important differences 
are obtained. At the • value, where the maximum wave 
amplification is observed, the EMIC mode solution is 
mirrored to the lower 0 values, with increasing refractive 
index. This phenomenon has a clear consequence con- 
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Figure 11. Dependence of the solution of the Doppler- 
shifted dispersion relation on 0. (top to bottom) re- 
fractive index, spatial growth rate, group-velocity mo- 
dulus normalized to the velocity of light, and devia- 
tion of the group velocity from the ambient magnetic 
field. The solid line corresponds to the case without 
the Doppler effect, the solution taking into account the 
velocity vox(p) of 5 km/s is presented by the dotted line, 
and the dashed line corresponds to an opposite veloci- 
ty. The plasma model is assumed as in Figure 8, with a 
frequency corresponding to the higher-frequency peak 
in the measured spectrum (130 Hz • 5 + 

cerning the WDF problem; the multimodal approach 
described in section 2 must be used. 

5. Conclusions 

This paper contains a detailed characterization of the 
WDF in a hot plasma. A resolution of the direct prob- 
lem has been made, taking into account the Doppler 
effect. Our approach is essentially similar to the cold- 
plasma method of Storey and Lcfcuvrc [1980], and it is 
different from Oscarsson and Rb'nnmark [1989]. We use 
an explicit frequency dependence of the WDF which is 
well related to the experimental data recorded by satel- 
lites. 

Our detailed theoretical analysis of different waves 
in a hot plasma has provided a description of physi- 
cal quantities (wave refractive index, wave growth rate, 
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group velocity, electromagnetic field intensities), which 
have been computed with plasma parameters that are 
relevant to different experimental observations. The 
difference between cold- and hot-plasma solution is 
shown. Important effects are mainly observed around 
the resonance angle. Waves propagating with high va- 
lues of refractive index are strongly influenced by the 
Doppler effect. The detailed calculations have demon- 
strated that the Doppler effect may increase the number 
of wave branches which can be observed at a given fre- 
quency and for a fixed wave-normM direction. 

Further work needs to be done now to solve the in- 

verse problem of the WDF, i.e., to find the shape of the 
WDF using experimental data. The problem is more 
complicated than that for the cold-plasma approxima- 
tion, because the solution of the dispersion relation in- 
dicates that several wave modes are often observed for 

a given 0 angle. 
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