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Abstract9

Biogeochemical reaction kinetics are generally established from batch reactors where10

concentrations are uniform. In natural systems, many biogeochemical processes are char-11

acterized by spatially and temporally variable concentration gradients that often occur at12

scales which are not resolved by field measurements or biogeochemical and reactive transport13

models. Yet, it is not clear how these sub-scale chemical gradients affect reaction kinetics14

compared to batch kinetics. Here we investigate this question by studying the paradig-15

matic case of localized pulses of solute reacting with a solid or a dissolved species in excess.16

We consider non-linear biogeochemical reactions, representative of mineral dissolution, ad-17

sorption and redox reactions, which we quantify using simplified power-law kinetics. The18

combined effect of diffusion and reaction leads to effective kinetics that differ quantitatively19

and qualitatively from the batch kinetics. Depending on the nonlinearity (reaction order)20

of the local kinetics, these effects lead to either enhancement or decrease of the overall re-21

action rate, and result in a rich variety of reaction dynamics. We derive analytical results22

for the effective kinetics, which are validated by comparison to direct numerical simulations23

for a broad range of Damköhler numbers and reaction order. Our findings provide new in-24

sights into the interpretation of imperfectly mixed lab experiments, the effective kinetics of25

field systems characterized by intermittent reactant release and the integration of sub-scale26

concentration gradients in reactive transport models.27

1 Introduction28

The kinetics of biogeochemical reactions are used to predict a range of processes, including the29

weathering of rock, the transport and degradation contaminants, and the nutrient cycling that30

sustains subsurface microbial life. Given the importance of transport processes in governing the31

removal and supply of products and reactants and the necessity to consider a variety of spatial and32

temporal scales, reactive transport models are increasingly used to predict processes occurring in33

the subsurface (e.g., see reviews by Van Cappellen and Gaillard, 2018; Steefel et al., 2005; Li et34

al., 2017; Maher and Navarre-Sitchler, 2019; Maher and Mayer, 2019) A host of other studies rely35
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on conceptual frameworks that integrate reactive transport principles, with applications ranging36

from interpretation of global elemental cycles (Lasaga et al., 1994), to catchment elemental fluxes37

over synoptic (e.g. Kirchner and Neal, 2013) or geologic timescales (e.g. Maher and Chamberlain,38

2014), to nutrient cycling at microsites (e.g. Keiluweit et al., 2016). In all cases, biogeochemical39

kinetics have to be represented at an appropriate temporal and spatial scale. However, kinetic40

models are generally derived from well-mixed batch experiments in the lab. Yet, reaction kinetics41

can differ by orders of magnitude from homogeneous batch reactors to heterogeneous field systems42

(White and Brantley, 2003; Meile and Tuncay, 2006; Maher et al., 2006; Navarre-Sitchler and43

Brantley, 2007; Li et al., 2008; Salehikhoo et al., 2013; Wen and Li, 2017a; Wen and Li, 2018;44

Wang et al., 2018). Different hypotheses have been investigated to explain these discrepancies.45

These include diffusion limitations or geometrical constraints at the pore scale that reduce access46

of solutes to reactive surfaces compared to fully mixed systems (Molins et al., 2012; Molins et47

al., 2014; Beckingham et al., 2016; Soulaine et al., 2017; Beckingham et al., 2017; Deng et al.,48

2018), physical heterogeneity that induces spatially heterogeneous solute fluxes and modifies the49

effective reactive surfaces (Atchley et al., 2013; Wen and Li, 2017a; Wen and Li, 2018; Jung and50

Navarre-Sitchler, 2018a; Jung and Navarre-Sitchler, 2018b; Wang et al., 2018) and geochemical51

heterogeneity, where averaging can also lead to scale effects in effective reaction kinetics (Atchley52

et al., 2014; Salehikhoo et al., 2013). These studies highlight the role of delayed or heterogeneous53

access to reactive surfaces at different scales. A complementary question that has received less54

attention is: what is the impact of heterogeneous and time evolving concentration landscapes on55

reaction kinetics, when access to reactive surfaces or to other dissolved reactants is not limited?56

Concentration gradients are created by spatially heterogeneous or transient release of solutes.57

They can be sustained by stretching induced by flow, whether at pore scale (Heyman et al., 2020)58

or at Darcy scale (Le Borgne et al., 2017), and are ultimately destroyed by diffusion. In the case59

of linear kinetics, heterogeneity in concentration fields does not impact the effective kinetics when60

access to reactive surfaces or other reactants is not limited. However, for non-linear kinetics that61

imply the local reaction rate is a non-linear function of local solute concentrations, the average62

reaction rate over a non-homogeneous concentration field is expected to differ from the local63

kinetics (Battiato et al., 2009; Battiato and Tartakovsky, 2011; Hubert et al., 2020). Such non-64

linear reaction kinetics play a central role in a broad range of biogeochemical reactions, including65

dissolution, redox and sorption reactions (Serrano, 2001; Serrano, 2003; Guo et al., 2015). Yet,66

it is not known how different types of non-linear kinetics may lead to either enhanced or reduced67

effective kinetics when considering heterogeneous solute plumes.68

Many physical, climatic, and biological processes result in localized and intermittent release69

of solutes that generate temporally and spatially variable concentration fields in subsurface en-70

vironments (Fig. 1). Rain events (Fig. 1.a) leach soil and induce pulses of dissolved chemical71

compounds into groundwater (Murphy et al., 2018). River stage variations (Fig. 1.b ) induce72

pulses of oxygen-rich water in hyporheic zones and the underlying groundwater systems, lead-73

ing to chemical disequilibrium and the degradation, fixation or release of contaminants, such as74

organic carbon, nitrate or arsenic (Datta et al., 2009; Malzone et al., 2016; Trauth and Fleck-75

enstein, 2017; Bandopadhyay et al., 2018). Biological activity in general (Fig. 1.c), can induce76

pulses of chemical compounds (e.g. Hinsinger et al., 2003). For instance, roots release dissolved77

gases and other compounds through daily cycles of respiration and exudation, and via associated78

fungal and microbial organisms (e.g. Li et al., 2017). Finally engineered injections (Fig. 1.d)79

create chemical disequilibrium and trigger a range of reactive pulses. This includes managed80

aquifer recharge (Magesan et al., 1998; Urióstegui et al., 2016; Al-Yamani et al., 2019), which81

is often performed by periodically wetting and drying the system (Dutta et al., 2015), lead-82

ing to biogeochemical reactions such as ammonium-nitrogen reduction and pathogen removal83

(Abel et al., 2014). Injection of concentrated carbon dioxide into the deep subsurface results84
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in density-driven instabilities, leading to localized high concentrations of reactive CO2-rich fluid85

(Szulczewski et al., 2012). Collectively, reactive pulses play an important role in a broad range of86

engineered injections, including soil and groundwater remediation (Kitanidis and McCarty, 2012;87

Rolle and Le Borgne, 2019), seasonal energy storage, through heat, hydrogen or underground88

pumped storage hydroelectricity (Panfilov, 2010; Pujades et al., 2017; Hermans et al., 2018),89

geothermal dipoles (Burté et al., 2019), and injection and storage of water used for fracking90

operations (Llewellyn et al., 2015).

a.	rainfall	events

c.	biological	activity
daily	to	seasonal	cycles d.	engineer	injections

e.g.	arti�icial	recharge,	
bank	�iltration,	

underground	storage

b.	river	stage	variations

e.	Heterogeneities

2 2

t1

t2

f.	Concentration	pro�ile g.	Batch

t1

t2

c0

s0 s0

chemical leaching,
dilution by recharge,

redox condition change,
gas exchange,

dissolution / precipitation,
acidi�ication (H S, CO )

Figure 1: Conceptual representation of biogeochemical pulses in the subsurface. When released, pulses
are concentrated and localized (orange dots). As they are transported in the subsurface, they are
stretched by velocity gradients and form elongated lamella structures (Le Borgne et al., 2015). Solute
concentrations are driven by dilution, which occurs by diffusion along the concentration gradients, and
reactions either with minerals or other dissolved solutes. The arrows indicate an injection or an exchange
of solute. Four types of processes generating reactive pulses are highlighted: a. soil leaching by rain,
b. surface water – groundwater exchanges, c. biological activity (the brown circle represents the root
zone), and d. engineered injections. In all these applications, chemical gradients can be enhanced and
sustained by physical heterogeneities, as illustrated in inset e. The inset f. illustrates the considered
simplified one-dimensional concentration profile that evolve under the action of diffusion and reaction.
The effective kinetics of such reactive pulses are compared to batch kinetics that evolve through reaction
alone under uniform concentrations (inset g.).

91

Because chemical gradients are enhanced and sustained by physical heterogeneities (Le Borgne92

et al., 2013; Heyman et al., 2020) (see inset of Fig. 1), they develop over a range of scales that93

cannot be fully resolved by field sampling approaches that average solute (e.g., screened ground-94

water wells) or reactive transport models. Hence, effective kinetic models that capture the effect95
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of sub-scale concentration gradients are required. Macrodispersion theory, where the dispersive96

flux is assumed to be proportional to the concentration gradient, tends to strongly underes-97

timate concentration gradients, leading to significant errors when used in reactive transport98

models (Gramling et al., 2002; Dentz et al., 2011a). Non-Fickian dispersion theories have suc-99

cessfully described the asymmetry of solute plumes resulting from trapping in low velocity areas100

(Berkowitz et al., 2006). However, this framework aims at describing spatial dispersion of solute101

plumes and does not quantify subscale concentration gradients governed by mixing (Dentz et al.,102

2011b). Recent mixing theories have provided a new framework to predict the full distribution103

of concentrations and concentration gradients both at pore scale (Heyman et al., 2020) and at104

Darcy scale (Le Borgne et al., 2013). In this framework, solute plumes are represented as en-105

sembles of elongated lamellar structures, i.e. solute filaments elongated in one direction and106

compressed in the other. The latter develop systematically in heterogeneous media both at the107

pore (De Anna et al., 2014b) and Darcy (Le Borgne et al., 2014) scale. This is due to velocity108

gradients at different scales that deform solute plumes into such filaments, whose formation and109

merging controls mixing rates (Le Borgne et al., 2015). At the scale of a solute lamella, the effect110

of stretching on the enhancement of concentration gradients and mixing is quantified explicitly111

by a change of variable that leads to one-dimensional equation formally identical to a diffusion112

equation in the direction perpendicular to the lamella (Villermaux, 2019). The full distribution113

of concentration is then predicted from the distribution of stretching rates. While this framework114

has been successfully used to model mixing-limited reactions (De Anna et al., 2014a; Rolle and115

Le Borgne, 2019), its coupling with other types of reactions, such as solid-fluid reactions is an116

outstanding challenge. The key difficulty for this is to first solve analytically the coupling of117

diffusion transverse to solute lamella with non-linear kinetic laws.118

Here we use analytical solutions and numerical simulations to establish the effective kinetic119

laws that result from coupled diffusion and non-linear reactions in spatially and temporally120

variable concentration gradients. We consider pulses of solute that react either with a homo-121

geneously distributed solid phase or fluid phase, both in excess with respect to the transported122

solute. Hence, there is no limitation of access to reactive surfaces or other reactants, which allow123

use to isolate and formalize the coupling between non-homogeneous concentration distributions124

and non-linear kinetics. Dilution of solute concentration by mixing with the background fluid125

transfers high concentrations towards lower concentrations (Kitanidis, 1994), which may either126

reduce or enhance the average kinetics, depending on the reaction order of the local kinetics.127

Although mixing plays an important role in this problem, it does not act to bring reactants128

into contact as extensively studied in the context of mixing-induced reactions, where reactions129

are limited by the mixing of spatially segregated reactants (see recent reviews of Rolle and Le130

Borgne, 2019; Valocchi et al., 2019). Instead, we study how changes in concentration distribu-131

tions by mixing may lead to the emergence of effective kinetics that differ from local kinetics.132

In complex multi-component reactions, this effect acts together with a range of other processes133

and therefore it is difficult to understand and quantify. Therefore, although we have studied134

a simplified reaction in order to isolate a particular phenomenon, our results are expected to135

be relevant to a large range of geochemical systems, where this effect acts together with other136

known mechanisms, including spatial segregation of reactants either in fluid or in solid phases.137

In section 2, we present the reactive transport problem. In section 2.5, we define the studied138

effective quantities. In section 3, we present the numerical and analytical results for a range139

of Damköhler numbers and non-linear kinetics. In the section 4, we discuss the implications of140

our findings for different types of reaction, including mineral dissolution, redox reactions and141

soprtion.142
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2 Reactive transport problem143

2.1 Reaction kinetics144

We study the reaction of a mobile aqueous species, with concentration c, which reacts with other145

aqueous species or with a solid surface. The latter are assumed to be in excess and homogeneously146

distributed, so that the reaction kinetics r(c) only depends on the concentration c through the147

non-linear rate law:148

r(c) = kcβ , (1)

where β > 0 is the effective order of the reaction and k is the reaction rate constant, which149

integrates the effect of other species in excess (units [mol1−βLd(β−1)T−1], where d is the spatial150

dimension).151

In a well-mixed batch reactor, the concentration c is homogeneous in space and depends only152

on time (see lower right inset of Fig. 1). The concentration decreases everywhere according to the153

reaction rate (1), so that the kinetic rate law describing the evolution of the mean concentration154

c as a function of time t is given by155

d

dt
c = −r(c), (2)

with c = M/V , where M is the mass of reactant and V is the volume of the batch reactor.156

Although it is simplified, the system isolates the effect of transient concentration gradients157

on upscaled kinetics. The characterization of this basic yet non-trivial system may thus guide158

the understanding of more complex biogeochemical systems, where this effect is coupled to other159

mechanisms, such as heterogeneous reactive surfaces, spatial segregation of multiple elements160

and mixing limitations. As discussed in section 4, it is relevant for mineral dissolution far-161

from-equilibrium (Hellmann and Tisserand, 2006; Maher, 2011; Guo et al., 2015), for non-linear162

sorption kinetics (Weber J. et al., 1991; Perry et al., 1997; Serrano, 2003) and for homogeneous163

redox reactions where β depends on the stoichiometric coefficients (Bethke, 1996; Bleam, 2017).164

We focus on β 6= 1, because dilution by mixing has no effect on linear reactions in the sense165

that the upscaled kinetics are the same as the local kinetics in this case. Indeed, for the linear166

reaction, β = 1, mass decay over time is independent of the spatial concentration distribution.167

2.2 Reactive pulses168

We wish to compare the batch dynamics Eq. (2), to the dynamics of the average concentration169

under diffusive transport for the same local reaction. Thus, we consider the reactant to be170

described by a non-homogeneous concentration c(x, t) depending on both position x and time t171

(see lower middle inset of Fig.1). We assume that the concentration is independent of the other172

spatial coordinates y and z over a reference surface S. This assumption is taken here for simplicity173

of analytical derivations, and can be relaxed to consider three dimensional transport processes174

following the same approach. The concentration is thus assumed to obey the diffusion-reaction175

equation,176

∂c

∂t
−D ∂2c

∂x2
= −r(c), (3)

where D[L2T−1] is the diffusion coefficient, which we assume to be constant. The initial condition177

is taken as a rectangular pulse identical to the batch conditions, but the pulse is allowed to diffuse178

in an infinite one-dimensional domain. At the boundaries, concentration tends to zero. Note179

that, in natural systems, boundaries limiting diffusive mass transfer would ultimately lead to a180

homogenization of the domain and a convergence to the batch reaction rates. Our results hence181
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describe the transient regimes before this happens. For a reference scale L larger than the pulse182

characteristic size, L�
√
Dt, the mean concentration is,183

c =
M

LS
. (4)

The temporal evolution of the mean concentration is obtained by integrating Eq. (3) over space,184

d

dt
c(t) = − k

L

L/2∫
−L/2

dx c(x, t)β . (5)

Note that only the reaction term contributes directly to the change in mass, which can be shown185

by integration by parts. However, transport affects the shape of the concentration profile, and186

thus indirectly impacts the total mass and the average concentration. This one-dimensional187

diffusion-reaction approach is also relevant to understand the effect of plume stretching on reac-188

tion kinetics in heterogeneous media. Indeed, solutes transported in the subsurface tend to follow189

elongated lamella structures (Le Borgne et al., 2015) where concentrations vary weakly along the190

stretching direction and concentration gradients develop mostly in one-dimension transverse to191

lamellae (Fig. 1).192

2.3 Non-dimensional units193

In order to meaningfully compare the dynamics for different conditions, it is convenient to define194

non-dimensional quantities in terms of values characterizing the different physical processes at195

play. We define the non-dimensional position as x∗ = x/w0, where w0 is the initial pulse width,196

the non-dimensional concentration as c∗ = c/c0, where c0 is the initial concentration, and the197

non-dimensional average concentration as c∗ = cL/(c0w0). Note that the non-dimensional initial198

concentration and average concentration are thus c∗(0) = c∗(0) = 1. Furthermore, we define199

non-dimensional time as t/τR, where200

τR =
1

kcβ−10

(6)

is the characteristic reaction time (inverse rate) associated with the initial concentration c0.201

In the following, we drop the asterisk for notational brevity. All quantities discussed are non-202

dimensional in the sense discussed here unless mentioned.203

In non-dimensional units, the kinetic equation for the batch is,204

dc

dt
= −cβ , (7)

which can be solved with the initial condition c(0) = 1 to yield,205

c(t) = [1 + (β − 1)t]−
1

β−1 . (8)

This solution holds whenever β 6= 1, that is, for nonlinear reactions. The special case of linear206

reactions leads to the classical c(t) = e−t exponential decay.207

In order to account for the effect of dilution by mixing, we identify the time needed to208

homogenize the width of the initial condition as209

τD =
w2

0

2D
, (9)
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corresponding to the time to homogenize a unit distance in nondimensional coordinates. The210

relative importance of reaction with respect to dilution is characterized by the dimensionless211

Damköhler number212

Da = τD/τR. (10)

Fast reactions relative to dilution correspond to Da > 1, while slow reactions correspond to213

Da < 1. In nondimensional terms, the diffusion-reaction equation becomes214

∂c

∂t
− 1

2Da

∂2c

∂x2
= −cβ . (11)

Note that, in nondimensional variables, the initial condition is a rectangular pulse of unit width.215

The dimensionless total mass obeys216

d

dt
c(t) = − 1

L

L/2∫
−L/2

dx c(x, t)β . (12)

All introduced parameters and their units are given in table 3 (Appendix A).217

2.4 Numerical analysis218

To explore the different effective reaction regimes, we first solved Eq. (11) numerically using Mat-219

lab’s pdepe method, a numerical solver for one-dimensional partial differential equations (Skeel220

and Berzins, 1990). We use Neumann boundary conditions, i.e. no flux boundary condition, and221

a rectangular pulse of unit normalized width as initial condition (Fig. 1f). The domain size is222

chosen large enough to maintain close to zero concentrations at the domain boundaries at the end223

of the simulation, and the grid discretization is refined to ensure the convergence of the solver.224

To analyze the effective kinetics at the pulse scale, that is for averaged concentrations over the225

solute pulse, we study the time evolution of the average concentration c(t) and the evolution of226

the effective reaction rate as a function of the average concentration.227

We compare these numerical simulations to analytical solutions that we derived using the ap-228

proximation discussed in the following section. Furthermore, we test these analytical predictions229

for one geochemically relevant example using the multi-component reactive transport model,230

CrunchFlow (version 1.0). Boundary and initial conditions for these simulations are described in231

the corresponding section. As for Matlab simulations, we use a domain large enough to ensure232

that the pulse does not reach the boundary and a grid discretization small enough to ensure233

convergence of the results.234

2.5 Gaussian approximation for analytical derivations235

When reactions are described by nonlinear local kinetics, transport and reaction interact in com-236

plex ways. Reaction impacts local concentration gradients, which in turn affect diffusive fluxes.237

The latter leads to changes in the spatial concentration profile, which affects reaction. These238

interactions are captured by the diffusion-reaction equation (11). In order to better understand239

the interplay between reaction dynamics and dilution, and how it leads to different average ki-240

netics compared to a well-mixed batch reactor, we develop an approximate analytical description241

of the average concentration, for a range of Damköhler numbers Da and reaction orders β.242

In non-dimensional units, the initial condition is a rectangular pulse of unit finite width,243

identical with the batch conditions. Before diffusion has time to deform the pulse substantially,244

which is the case for times much smaller than the characteristic diffusion time τD, we expect245
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the dynamics to be well-approximated by the batch kinetics, so that the average concentration246

approximately follows Eq. (8). This corresponds to t � Da in nondimensional terms. For247

non-dimensional times t & Da, diffusion has appreciably deformed the initial pulse. To derive248

analytical solutions for this problem, we approximate the reactive solute profiles as Gaussian249

distributions. This approximation is expected to be highly accurate for low Da when diffusion is250

faster at modifying the concentration distribution than reaction. It turns out to be also accurate251

in intermediate and high Da ranges (Appendix C), which facilitates an analytical solutions for252

the effective kinetics. The concentration distribution of reactive pulses is thus approximated as,253

c(x, t) =
M(t)√
2πσ2(t)

e
− x2

2σ2(t) , (13)

where the variance σ2(t) and mass M(t) evolve in time as a function of diffusion and reaction.254

Note that in the absence of reaction, the solution corresponds to M(t) = 1, and σ2(t) ∝ t/Da.255

Inserting Eq. (13) into Eq. (12), we obtain,256

d

dt
M(t) = −M(t)β√

β
[2πσ2(t)]

1−β
2 . (14)

The Gaussian assumption allows second spatial derivatives in Eq. (11) to be estimated as,257

∂2c

∂x2
=

(
− 1

σ2
+
x2

σ4

)
c, (15)

hence, at x = 0, we have for the maximum concentration,258

c(0, t) =
M(t)√
2πσ2(t)

, (16)

and for the second spatial derivative,259

∂2c

∂x2

∣∣∣
x=0

= − M(t)√
2πσ(t)3

. (17)

Inserting Eq. (16) and (17) in Eq. (11) at x = 0, we obtain260

d

dt

M(t)√
2πσ2(t)

= − M(t)

2Da
√

2πσ(t)3
− M(t)β

(2π)β/2σ(t)β
. (18)

As discussed in Appendix B, Eq. (14) and (18) provide two independent equations to solve for261

the two unknowns M(t) and σ(t). Since the average concentration is proportional to the total262

mass (equation (4)), the dimensionless average concentration is equal to the dimensionless mass,263

c(t) = M(t). The accuracy of the Gaussian approximation is discussed in Appendix C.264

3 Results265

First, numerical simulations for the average concentration as a function of time for different266

values of β are presented for broad range of Damköhler numbers and reaction orders in order267

to demonstrate the resulting behavior and departure of the effective kinetics from the batch268

systems. As expected, for β = 1, the effective kinetics are equal to the batch kinetics (Fig. 2.b).269

For the other cases, the results can be generalized as:270
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• Forβ < 1, the average concentration of the pulse decreases faster than in the batch reactor,271

and the effective reaction rate of the pulse system is globally greater than the batch reactor272

(Fig. 2a).273

• For β > 1, the average concentration of the pulse decreases more slowly than in the batch274

reactor and the effective reaction rate of the pulse injected system is globally less than the275

batch reactor (Fig. 2c-d).276

Qualitatively, this effect may be understood as follows. For β < 1, the reaction is more efficient277

when distributing a given mass in the low concentration range because of the form of the kinetics278

(Eq. (1)). Dilution by diffusion accelerates the transfer of mass towards lower concentration279

values and thus enhances the average kinetics compared to the batch case.As a result, the time280

at which the average concentration goes to zero (Fig. 2.a) decreases with decreasing Da as dilution281

accelerates the effective kinetics. The opposite effect occurs for β > 1, leading to a reduction of282

the effective kinetics compared to batch kinetics. For the extreme case of β > 3, dilution retards283

the reaction to such a level that the average concentration converges asymptotically to a nonzero284

value (Fig. 2.d), with the asymptotic residual concentration increasing with decreasing Da.285
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Figure 2: Average concentration in a reactive pulse as a function of time for a) β = 0.5, b) β = 1,
c) β = 2 and d) β = 3.5. Numerical simulations for low, intermediate and high Da numbers (circles)
are compared to batch kinetics (black solid line). The final time for full reactant consumption tf , which
occurs for β < 1, is indicated with arrows in figure a). The residual average concentration c∞, which
occurs for β > 3, is indicated with arrows in figure d). Note that the y-axis differs between panels to
resolve the differences in concentration evolution.

The impact of dilution on reaction kinetics may be also understood by plotting the total286

reaction rate as a function of the average concentration (Fig. 3). For linear kinetics, the effective287
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kinetics are identical to the batch kinetics independent of Da (Fig. 3.b). For low Da and β < 1,288

the global reaction rates are always greater than the batch for a given average concentration289

(Fig. 3.a). For low Da and β > 1, the global reaction rates are always less than the batch for290

a given average concentration (Fig. 3.c and Fig. 3.d). The difference between effective reaction291

kinetics and batch kinetics can reach several orders of magnitude. At low Damköhler numbers292

(Blue dots in Fig. 3) and quasi-constant average concentration, the variation in the reaction rates293

is substantial (an increase for β < 1 and a decrease for β > 1) . This counterintuitive regime294

is due to the action of diffusion, which distributes mass towards low concentration values, such295

that while the total reaction rate varies, the overall rate is insufficient to affect the total mass.296

At high Damköhler numbers (Green dots in Fig. 4) the effective rate first follows a batch-like297

behavior and then departs towards effective kinetics that are a function on β. In the following,298

we present our analytical results for the effective kinetics as a function of β.299
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Figure 3: Effective kinetics of reactive pulses quantified as the rate of change of the mean concentration
as a function of mean concentration for a) β = 0.5, b) β = 1, c) β = 2 and d) β = 3.5. Numerical
simulations for low, intermediate and high Da numbers (circles) are compared to the batch reactor
solution (black solid line). Note that the y-axis differs between panels to resolve the differences in
concentration evolution.

3.1 Reaction order β < 1300

For β < 1, the average concentration reaches zero at a finite time tf (Fig. 4.a). For large301

Damköhler numbers, diffusion does not have time to induce significant dilution before t = tf .302

Therefore, this time is identical to the time required to consume the full reactant mass in batch303
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reactions (Green dots and line in Fig. 4.a, Appendix B.2.1):304

tf =
1

1− β
, for Da > 1. (19)

For low Damköhler numbers, using the assumption of a Gaussian concentration distribution, we305

obtain a solution for the evolution of the average concentration (Appendix B.1, Eq. (B.2)), in306

good agreement with numerical simulations (Blue dots and dashed lines in Fig. 4.a). This leads307

to the following estimate of tf (Appendix B.1, Eq. (B.4)),308

tf ∼ Da
1−β
3−β , for Da < 1. (20)

This scaling and the convergence to a constant value given by Eq. (19) at large Da are verified309

from numerical simulations in Fig. 4.b. The effect of dilution is thus to accelerate the effective310

kinetics, with a consumption time up to ten times less than predicted from the batch kinetics311

for Da = 10−3.312

Da
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3

F
in
al

ti
m
e
t f

0.1

0.5

1

2

3
b)

Simulations

Power law scaling for low Da

Predicted constant at high Da

Time t
10

-2
10

-1
10

0

M
ea
n
co
n
ce
n
tr
at
io
n
c̄

10
-2

10
-1

10
0

a)

Da = 10−3

Da = 10−2

Da = 10−1

Da = 1

Da = 10

Da = 102

Da = 103

Figure 4: Effect of Damköhler on effective kinetics for β = 0.5, a) Average concentration as a function
of time for several Damköhler numbers. Numerical results (dots) are compared to the analytical solutions
of Eq. (B.2) (dashed lines). The batch solution is shown as a continuous line. b) Time tf at which the
mean concentration reaches zero as a function of Damköhler number. Black circles represents simulations,
dashed lines represents the analytical predicions of Eq. (19) for low Damköhler numbers and Eq. (20)
for high Damköhler number.

3.2 Reaction order 1 < β < 3313

For 1 < β < 3, we predict that the departure from the batch kinetics is not only a difference in314

the magnitude of the reaction but also in its order. The latter is shown by the power law scaling315

that relates the average reaction rate to the average concentration ( dashed lines in Fig. 5),316

with an exponent that differs from the batch reaction order. For low Damköhler numbers, our317

solution implies that the average concentration decays in time as a power law (Appendix B.1,318

Eq. (B.6)),319

c(t) ∼ t−
3−β

2(β−1) , (21)
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and the effective rate rM follows (Appendix B.1, Eq. (B.9))320

dc

dt
∼ cβ̃ , (22)

with the effective reaction order β̃,321

β̃ =
1 + β

3− β
. (23)

For high Damköhler numbers, two regimes occur (Fig. 8). The first regime, for t < Da, follows322

the batch kinetics (Appendix B.2.1). In the second regime, for t > Da, (Appendix B.2.2), the323

effective kinetics follow the same power law behavior as for low Damköhler number (Fig. 5.a)324

defined by Eq. (22).325

These predictions are consistent with numerical simulations for all Damköhler numbers (Fig. 5.a)326

and all local reaction order β (Fig. 5.b). For low to intermediate Damköhler numbers, the ef-327

fective kinetics follow the predicted power law kinetics, characterized by the effective reaction328

order β̃ for the full range of concentrations (Fig. 5.b). For large Damköhler numbers (green dots329

in Fig. 5.a ) the effective kientic shows two regimes: a first regime following the batch kinetics330

given by Eq. (1) and a second power law regime given by Eq. (22). The difference between the331

effective and local reaction orders is largest for large reaction orders (Fig. 6). For β = 1.5, the332

effective order β̃ = 1.7 is relatively close to the batch reaction order. Above β = 1.5, the effective333

order increases rapidly and is equal to β̃ = 3 for β = 2. As β tends to 3, the deviation between334

the effective reaction order and the batch reaction order can become very large as the effective335

reaction order tends to infinity (Fig. 6).336
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Figure 5: Effective kinetics in terms of mean concentration, a) β = 2, for Low, intermediate and high
Da numbers, b) Da = 1 for different β in the range 1 < β < 3. Numerical results (dots) are compared to
analytical solutions (dashed lines). The power law behavior predicted by Eq. (22) is shown as a dashed
line.

3.3 Reaction order β > 3337

For β > 3, the pulse reaction is much less efficient compared to a batch reactor, in the sense that338

the average reaction rate is smaller than in batch conditions for a given average concentration.339

For β > 3, dilution slows down the reaction so that the average concentration does not reach zero340
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Figure 6: Effective reaction order β̃ predicted by Eq. (23) as a function of the batch reaction order for
1 < β < 3 (solid line). The dashed line represents β̃ = β.

but converges to an asymptotic minimum value c∞ (Fig. 7). For β = 3, the average concentration341

decays to zero logarithmically as t → ∞ (Appendix B.1, Eq. (B.3)). Note that this behavior342

differs fundamentally from the lower reaction orders discussed above, for which the reaction rate343

is always larger than zero and there is no residual concentration, except for Da = 0.
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Figure 7: Effect of Damköhler on effective kinetics for β = 3.5, a) Numerical simulations (circles) as
a function of time for different Damköhler number. Analytical model predictions for the asymptotic
residual concentration are shown as dashed lines. b) Asymptotic residual mean concentration as a
function of Damköhler number. Black circles represents simulations, the dashed black line represents
the analytical model corresponding to Eq. (B.5) in Appendix B for low Damköhler numbers and to
Eq. (25) for high Damköhler numbers.
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For low Damköhler numbers, the solution for the evolution of the mean concentration (Ap-345

pendix B.1, Eq. (B.2)) leads for β > 3 to an asymptotic value c∞ such that (Eq. (B.5))346

1− c∞ ∼ Da. (24)

As Da tends to zero, the asymptotic residual mean concentration tends to one (Fig. 7), which347

highlights the inhibiting effect of dilution on mass evolution for β > 3.348

For high Damköhler numbers, the asymptotic residual mean concentration occurs in the349

second regime, leading to an asymptotic minimum value (Appendix B.2.2, Eq. (B.21))350

c∞ ∼ Da−
1

β−1 , (25)

which again quantifies the inhibiting effect of dilution on reaction as Da increases. These ana-351

lytical results closely match numerical simulations (Fig. 7.b).352

4 Discussion353

Our findings demonstrate that chemical gradients alter effective reactive kinetics through the354

coupling of diffusion and nonlinear reactions. By investigating the evolution of reactive solute355

pulses, as a paradigm for chemical gradients that evolve over space and time, we have uncovered356

a diverse spectrum of effective kinetic dynamics that depend on (1) the reaction nonlinearity357

(reaction order β) and (2) the relative importance of reaction and dilution quantified by the358

Damköhler number Da. A central conclusion of our study is that dynamic chemical gradients359

not only change the magnitude of the effective kinetic coefficient but also change the nature of the360

non-linearity compared to the local kinetics. This result is in contrast with previous studies that361

have studied how diffusive limitation, physical and geochemical heterogeneities (e.g. Soulaine362

et al., 2017; Wen and Li, 2017b; Deng et al., 2018), alter the effective kinetic coefficients, while363

keeping the same effective kinetic laws as the local kinetics. While we have focused on simplified364

reaction kinetics to quantify and formalize this mechanism, these dynamics are expected to365

impact a large range of geochemical systems where they are coupled to other processes. In the366

following, we discuss the relevance to common classes of biogeochemical reactions based on a367

synthesis of the results discussed above. Subsequently, we provide an example for a mineral368

dissolution reactions where rate discrepancies are commonly observed. However, the approach369

is also applicable to other types of reactions, including redox, precipitation, complexation and370

adsorption reactions, as discussed in the following section.371

4.1 Characteristic persistence time of reactive pulses372

To illustrate the consequences of the derived effective kinetics across a broad range of β and Da,373

we calculate the persistence time of reactive pulses that quantifies a characteristic time for the374

decay of the pulse mass under the effect of reaction. We define this time as a the time required375

for the pulse mass to reach a given fraction of the initial mass. To compare with the batch376

reactor, we divide it by the time it would take for a batch reactor to reach the same fraction of377

the initial mass. This normalized persistence time tc is shown in Fig. 8 as a function of β and378

Da. We have taken here the fraction of the initial mass to calculate this time to be equal to 1%.379

Qualitatively similar results are obtained for other fractions. We have considered the full range380

of Damköhler numbers, from Da = 10−3 (fast dilution compared to reaction) to Da = 103 (fast381

reaction compared to dilution). This covers a range of characteristic reaction times, that vary382

broadly depending on the type of reaction, and of transport time scales, which depend on the383

pulse size and species diffusion coefficient (Eq. (9)).384
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On the left-hand side of Fig. 8, for β < 1, reactants disappear on the order of ten times385

faster than in the batch in the low Damköhler range, which is consistent with the analytical386

estimate of tf (Fig. 4). For 1 < β < 3, the characteristic persistence time increases sharply387

with the non-linear reaction order β, reaching several orders of magnitude increase. This is388

due to the emergence of effective reaction orders β̃ that become much larger than the batch389

reaction order for increasing β (Fig. 6). Within the grey zone, for β > 3, residual mass persists390

indefinitely and the characteristic persistence time tends to infinity. Collectively, these findings391

imply that when concentration fields are heterogeneous the commonly used approach of coupling392

residence time to batch kinetics may underestimate/overestimate the persistence of reactants by393

orders of magnitude. Our main analytical findings in the different quadrants of Fig. 8 provide394

a framework for assessing the impact of concentration gradients on effective kinetics for a given395

type of reaction, as discussed below.396

Figure 8: (Da, β) phase diagram of characteristic persistence time tc and synthesis of main analytical
results. The solid red line represents Da = 1. The dashed red and black lines correspond respectively to
β = 1 and β = 3. The color scale represents the time tc needed for the mean concentration to reach 1%
of initial mean concentration for the reactive pulses, normalized by the same time for the batch reactor.
The main reaction enhancement occurs for β < 1 and Da < 1 (blue area) while the effective reaction rate
is strongly slowed down for β > 1.5 (yellow area). For β > 3, residual mass persists indefinitely and the
characteristic persistence time may never be reached if the residual mass is larger than 1% (grey area).
The typical range of effective reaction orders β for mineral dissolution, adsorption and redox reactions
are indicated at the bottom.

4.2 Geochemical relevance of effective kinetics397

Our results are strictly valid when the concentration of one element is spatially variable and398

the others are in excess in the fluid or in the mineral phase. This simplification isolates and399
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formalizes the impact of transient concentration gradients on upscaled kinetics. In complex400

multi-component reactive system, this effect will act together with other known mechanisms,401

such as geochemical and physical heterogeneities, as well as multiple reactions. Although other402

processes will also contribute to the effective kinetics, we argue that the new phenomena described403

here will likely have a major contribution as it can alter reaction rates over orders of magnitude404

and modify the effective orders of reaction. For single step reactions, the reaction order β with405

respect to a given chemical species is equal to its stoichiometric coefficient. However, most406

biogeochemical reactions are complex multi-step reactions such that the rate-limiting step is407

unknown and hence most reaction orders are determined empirically and may range from 0 to 5.408

The lower left hand side of Fig. 8 would be typical of silicate mineral dissolution where409

reactions involve multiple steps that can be effectively described by an adaptation of transition410

state theory (Aagaard and Helgeson, 1982; Lasaga et al., 1994; Steefel and Lasaga, 1994):411

r = k

N∏
i=1

ani

(
1− Q

Keq

)m
, (26)

where r is the overall rate, k is the intrinsic kinetic constant, ai the ion activity, N the number412

of species, Q the ion activity product for the mineral-water reaction, and Keq the corresponding413

equilibrium constant. The empirical exponents n and m introduce a non-linearity of the reaction414

rate with respect to the species concentration (Hellmann and Tisserand, 2006). Far from equilib-415

rium, Q� Keq or Q� Keq, and when a single species is limiting, equation (26) can be written as416

the simplified non-linear kinetics that we consider (equation (1)), with β = n. Effective reaction417

orders estimated from laboratory experiments and typically range from β = 0.1 to 2 (Plummer418

and Wigley, 1976; Palandri and Kharaka, 2004). Such mineral dissolution reactions are typically419

slow and therefore correspond to the low Da range. The upper right-hand sider region of Fig. 8420

may be typical of redox reactios. Metal redox reactions are typically characterized by 1 6 β 6 4,421

while other redox reactions tend to have lower orders 1 6 β 6 2 (Bethke, 1996). Redox reactions422

involving organic matter may have orders as high as β = 5 (Bleam, 2017). In the middle region423

of Fig. 8, where tc transitions rapidly, adsorption kinetics may be particularly susceptible to424

the effects observed here. Adsorption reaction kinetics are generally modelled with first-order425

or pseudo-second-order kinetics (Rudzinski and Plazinski, 2006; Wu et al., 2009; Robati, 2013;426

Moussout et al., 2018), which correspond to β = 1 or β = 2, but higher reaction orders are also427

observed (Largitte and Pasquier, 2016).428

The first application of our findings is for understanding the behavior of reactive solutes in429

field systems (Fig. 9a). As illustrated in Fig. 1, concentration gradients in natural systems can430

be driven by a diverse set of processes, ranging from intermittent sources to physical hetero-431

geneity. For a given transport time, the reaction efficiency may be much faster (for β < 1) and432

much slower (for β > 1) than anticipated from batch kinetics (Fig. 8). This could lead to a433

much deeper penetration of reactive pulses or to a much faster consumption of solutes. A sec-434

ond application is reactive transport modelling; to capture the effect of concentration gradients435

on reaction kinetics, reactive transport models should have a spatial resolution finer than the436

smallest scale of concentration gradients (Fig. 9b). This is not possible for catchment scale appli-437

cations (e.g. Li et al., 2017) but it is also challenging for modeling column experiments because438

chemical gradients often persist at the microscale (Heyman et al., 2020). Hence, our findings439

may help defining effective kinetics that quantify the impact of subscale gradients in reactive440

transport models. A third application is the interpretation of biogeochemical kinetics measured441

in experimental systems that are not well mixed, i.e. where chemical gradients persist (Fig. 9c).442

Geochemical reactions occurring at high temperatures and pressures, such as those associated443

with geologic carbon storage (e.g. DePaolo and Cole, 2013; Jun et al., 2013; Beckingham et al.,444
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c. Interpreting experimental kinetics

a. Effective kinetics in �ield systems

b. Reactive transport modelling

Microscale chemical 
gradientsGas head space

Mixing front

Subgrid gradients
Intermitent 
solute input

Batch

Figure 9: Illustration of different applications where unresolved chemical gradients may alter effective
kinetics. a. Effective kinetics in field systems, such as CO2 injection in the subsurface, where reactive
pulses develop in mixing fronts. b. Reactive transport modeling, where subgrid chemical gradients
cannot be resolved in models. c. Interpreting experimental kinetics in unmixed batches, where microscale
chemical gradients can affect measured kinetics. The typical scales of expected chemical gradients for
these applications is indicated as dx. textcolorblueUpdate the order of subfigures to match new order
of section 5.
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Figure 10: Simulation of pyrite dissolution by a pulse of dissolved oxygen for Da = 10−3 (β = 0.5).
Normalized mean concentration is shown as a function of normalized time, following the same definition
as above. Results of the CrunchFlow simulation are shown as dots, the analytical model as a dashed
line (Eq. B.2) and the batch model as a continuous line (Eq. B.11).

2016; Beckingham et al., 2017), are often studied using batch reactors, where a gas headspace445

of a constant volume is used to maintain a constant pressure (Giammar et al., 2005; Johnson446

et al., 2014). Depending on the experimental conditions, pressure vessels can be difficult to mix447

via rocking or internal stirring, and are often static. Hence, in the absence of mechanical mixing,448

chemical gradients of different origin may develop, including dissolved gas convection, transport449

limitations and spatially heterogeneous reaction rates.450

4.3 Example of the oxidation of pyrite by a pulse of dissolved oxygen451

To illustrate these effective kinetics for a specific geochemical system, we take the example of452

pyrite dissolution by a pulse of dissolved oxygen. The aqueous oxidation of pyrite by oxygen is453

an example of geochemical process studied with reactive transport models to address a range454

of problems, including aquifer storage and recovery (Lazareva et al., 2015), acid mine drainage455

(Hubbard et al., 2009), and radioactive waste migration (Malmström et al., 2000; Yang et al.,456

2007). Intermittent release of dissolved oxygen, due to rainfall events or river stage variations457

(Fig. 1.a and 1.b), or flow heterogeneities (Fig. 1.e) often lead to small-scale dissolved oxygen458

gradients (Xu et al., 2000; Bochet et al., 2020) that are typically not resolved by reactive transport459

models. The reaction of oxidation of pyrite by oxygen can be written as,460

FeS2 + 7
2 O2 + H2O Fe2+ + 2 SO 2–

4 + 2 H+
461

Assuming that the other species are in excess, the kinetic rate law for pyrite oxidation by oxygen462

may be written with respect to oxygen as (McKibben and Barnes, 1986)463

1

3.5

dcO2

dt
≈ −kc0.5O2

, (27)

corresponding to β = 0.5.464

For the geochemical system considered here, the kinetics of subscale unresolved oxygen pulses465

would be faster than predicted by batch kinetics (Fig. 8). For instance, assuming a Damköhler466

number of 10−4, resulting from a kinetic rate constant of 6.6 × 10−9 mol/m2/s (Yang et al.,467

2007) and a diffusion coefficient of 10−9 mol/m2/s (Jung and Navarre-Sitchler, 2018a), dissolved468
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Table 1: Initial and injection chemistry used in CrunchFlow simulations for a single pulse, pyrite
dissolution

Species Initial condition (mol/L) Injection condition (mol/L)

Fe2+ 10−8 10−8

H+ 10−4 10−4

O2,aq 10−11 10−4

SO2−
4 10−8 10−8

Cl− Equilibrates charge Equilibrates charge

oxygen would be consumed 10 times faster than it would be in the well-mixed homogeneous469

system. The more rapid release of both Fe2+ and trace metals typically associated with pyrite470

(i.e., As, Pb, etc.) may have further implications for water quality. Although our results imply471

that kinetic rates used in reactive transport models of systems with sub-grid scale concentrations472

will be subject to additional uncertainty, our approach provides a concrete means of evaluating473

the range of kinetic parameters to enable robust sensitivity analysis or uncertainty quantification474

(e.g. Fenwick et al., 2014; Song et al., 2015).475

We have verified that this geochemical system can be accurately modeled by our framework476

under the considered assumptions (Fig. 10) using the multi-component reactive transport model477

CrunchFlow (Steefel et al., 2015). We first consider the case of a single pulse. The system is478

composed of pyrite with a porosity of 30% and dissolution kinetic constant k = 10−8.31 m mol−1479

s−1 (Yang et al., 2007). The considered solute species are O2,aq, Fe2+, SO2−
4 , and H+. For the480

initial condition in the domain prior to injection, the species concentrations are cO2
= 10−11481

mol/L, cFe2+ = 10−8 mol/L, cSO2−
4

= 10−8 mol/L, and pH is 4. Chloride is designated as the482

charge balancing ion to maintain electroneutrality. In the injected pulse, concentrations are the483

same as in the domain except for the oxygen concentration is set as c0 = 10−4 mol/L (Bochet484

et al., 2020, Table 1). The simulations were performed at 25°C with a diffusion coefficient of 10−7485

m2 s−1 (Elberling et al., 1994), leading to Da = 10−3 (Table 2). The CrunchFlow simulation is486

in good agreement with the analytical model (Fig. 10). As predicted, the average concentration487

reaches zero much faster than the batch.488

In order to evaluate the effect of a non-ideal concentration profile, we performed a CrunchFlow489

simulation with five irregularly spaced pulse injections of width 10−2 m each, with different initial490

oxygen concentrations (log(cO2
) = −4, −5, −6, −7, −8) (Table 2). The initial conditions491

are the same as in the single pulse case (Table 1) and all the injected concentrations except492

oxygen are the same as in the background domain. The equivalent batch is defined with initial493

concentration equal to the mean of the pulse initial concentrations. The parameters are adapted494

to the single-pulse analytical model with an equivalent pulse width equal to the sum of the495

pulse widths, and an equivalent initial concentration set as the mean of injection concentrations,496

resulting in Da= 5 10−2 (Table 2). In this case, the match with the analytical prediction remains497

excellent (Fig. 11) even though the concentration distribution is more complex than assumed in498

the analytical derivations.499
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Table 2: Parameters of the analytical model for the pyrite dissolution
case.

Parameter w0 D c0 ν k A Φ τD τR Da

Unit m m2/s mol/L [−] [unit] m2/m3 [−] [−] [−] [−]

Single pulse 10−2 10−7a 10−4b 3.5 4.8 10−9c 350 0.3 1.6 10−5 1.6 10−2 10−3

β = 0.5

Several pulses 10−2 10−7 10−4 3.5 4.8 10−9 350 0.3 4 10−4 7.5 10−3 5 10−2

β = 0.5 10−5

10−6

10−7

10−8

a(Elberling et al., 1994)
b(Bochet et al., 2020)
c(Yang et al., 2007)
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Figure 11: Simulation of pyrite dissolution by multiple pulses of dissolved oxygen (β = 0.5). Five
pulses with different initial concentrations and irregularly spaced are injected in the domain. a) is
the concentration profile in space at normalized time t ≈ 10−5 (blue), t ≈ 10−2 (orange), t ≈ 10−1

(green). b) the normalized mean concentration as a function of normalized time for the CrunchFlow
simulation (dots), an equivalent batch system (with initial concentration equal to the mean of injected
concentrations Eq. (B.11), continuous line), and an equivalent analytical model (considering one pulse
with initial concentration equal to the mean of injected concentrations, Eq. (B.2), dashed line), thus
corresponding to Da = 5 10−2.
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5 Conclusions500

The effective kinetics of reactive pulses reveal a rich diversity of behaviors driven by the interplay501

between dilution and non-linear reaction (Fig. 8). In the presence of concentration gradients,502

diffusion acts to redistribute mass towards lower concentrations, which, when coupled with non-503

linear reactions, can either enhance or inhibit the reaction efficiency depending on the local504

reaction order. We have derived approximate analytical solutions that capture these reactive505

dynamics and predict the different effective kinetic laws as a function of Damköhler number and506

the reaction order, which are representative of a range of reactive transport systems (Fig. 1, 8507

and 9). An important consequence of our results is the emergence of new effective kinetic laws508

characterized by upscaled orders that can be very different from those of the local kinetics. The509

coupling of transient concentration gradients and non-linear reactions hence leads to effective510

kinetics that can be much more non-linear than the batch kinetics (Fig. 6).511

To isolate this mechanism and derive approximate analytical solutions for the effective ki-512

netics, we considered here the idealized case of reactive pulses evolving through diffusion and513

reaction. In complex natural reaction networks, this effect acts together with a range of other514

processes and therefore it is difficult to understand and quantify. Other important phenomenon515

known to impact the effective kinetics include the limited access of solutes to reactive surfaces516

and mixing limitations, due to physical and geochemical heterogeneity at the pore or Darcy517

scale (Molins et al., 2014; Beckingham et al., 2017; Wen and Li, 2018; Jung and Navarre-518

Sitchler, 2018a; Valocchi et al., 2019). In multi-components systems, our results are strictly519

valid when one element is varying in space and time and the others are in excess. In natural520

systems several elements may be spatially variable and react with different orders leading to521

more complex behaviour. However, since the effect that we have uncovered leads to orders of522

magnitude differences between batch and effective reaction rates, it is likely playing a major, and523

so far unappreciated, role in multi-component systems.524

Although we explicitly solve the system for the ideal case of pulses, our general findings are525

expected to apply qualitatively to different types of concentration landscapes. Indeed, in the526

presence of concentration inhomogeneities, induced by intermittent reactant release or physical527

heterogeneity (Fig. 1), diffusion tends to redistribute mass towards lower concentrations, which528

leads to reaction enhancement or inhibition depending on the local reaction order β as described529

here. The derived analytical framework is an essential step to integrate a range of biogeochemical530

reactions in new mixing theories that describe the statistics of concentration gradients (Le Borgne531

et al., 2017). The lamella mixing theory was successfully used to predict the upscaled kinetics532

of mixing-driven reactions at pore scale (De Anna et al., 2014b) and Darcy scale (Le Borgne533

et al., 2014; Bandopadhyay et al., 2018) by coupling the one-dimensional compression-diffusion534

equation transverse to stretched solute lamellae with bi-molecular reactions in the fluid phase. By535

solving explicitly the coupling of diffusion and non-linear reactions, the method presented here536

resolves the main difficulty for the development of a reactive lamella framework to upscale the537

effective kinetics of a range of non-linear reactions under incomplete mixing conditions, including538

fluid-solid reactions.539

These findings would thus be useful to interpret the result of reactive experiments in which540

subscale chemical gradients develop due to poor mixing. These analytical results may also be used541

to guide reactive transport models that cannot fully resolve the scale of concentration gradients,542

which occurs in many reactive transport problems. Finally, they provide a new framework543

to understand the effect of concentration gradients on chemical reactions in field applications,544

in particular to understand the possible longer/smaller persistent time or penetration length545

of reactive solutes. These findings indeed suggest that the characteristic persistence time of546

biogeochemical pulses can differ by orders of magnitude from the predictions of models that547
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couple solute residence time with batch kinetics. Reactive pulses are consumed much faster548

when the order of the reaction is less than one, whereas they persist for a much longer time549

when the order of the reaction is larger than one. These effects are particularly important at550

low Damköhler number i.e., for reactions that are slow compared to the characteristic diffusion551

time. For orders of reaction larger than three, dilution slows down reaction to the point that a552

residual mass persists asymptotically.553
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Appendix A Notations560

We detail all notations used in the study in table 3.561

Appendix B Analytical solutions562

This appendix details the analytical derivations for effective kinetics under coupled diffusion and563

non-linear reactions based on the assumption of Gaussian distribution of the reactant (Eq. (13))564

for t� Da and of negligible diffusion for t� Da. The validity of these assumptions is discussed565

in Appendix C. The cases of low and high Damköhler are detailed separately below.566

B.1 Low Damköhler number567

In the limit of low Da, diffusion quickly deforms the pulse into a Gaussian distribution (Eq. (13)),568

whose variance evolves diffusively (see Appendix C and Fig. C.3),569

σ2(t) ≈ t+ Da/12

Da
, (B.1)

where we have set σ2(0) = 1/12 to match the variance of the initial rectangular profile. Inserting570

Eq. (B.1) into (14), we obtain571

M(t) =

[
Mi −

2√
β

1− β
3− β

(
2π

Da

) 1−β
2 [

(t+ Da)
3−β
2 −Da

3−β
2

]] 1
1−β

, (B.2)

with the initial mass Mi ≈ M(0) = 1. Note that for β = 1, 3 this solution is singular and is572

not valid. For linear kinetics, β = 1, the concentration profile is exactly Gaussian, and the total573

mass decays exponentially. For β = 3, combining Eq. (14) and Eq. (B.1), and carrying out the574

integration explicitly, we obtain575

Mβ=3(t) =

[
1 +

Da√
3π2

log

(
1 +

12t

Da

)]−1/2
, (B.3)
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Table 3: Definition of model parameters and units

Parameter Definition Units

r Reaction rate mol L−d T−1

c Concentration mol L−d

c0 Initial concentration mol L−d

c Mean concentration mol L−d

c∞ Normalized residual mean concentration, [−]

β non-linear power law exponent [−]

β̃ Power law exponent of the effective kinetic [−]

k reaction rate constant mol1−βLd(β−1) T−1

D Diffusion coefficient L2 T−1

Da Damköhler number [−]

L Characteristic length L

M Mass kg

S Reference surface L2

w0 Initial width L

σ Normalized variance [−]

t Time, normalized time T , [−]

tc Normalized persistence time [−]

tf Normalized final time, β < 1 [−]

τD Diffusion characteristic time T

τR Reaction characteristic time T

u Fluid velocity L T−1

V Volume of the batch L3

x Distance mol L−d T−1
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which decays to zero logarithmically as t→∞.576

Since the average concentration is proportional to the total mass (equation (4)), the dimen-577

sionless average concentration is equal to the dimensionless mass, c(t) = M(t). When β < 1, the578

mass reaches zero in a finite time according to Eq. (B.2), given to leading order in Da by579

tf =

(√
β

2

3− β
1− β

) 2
3−β

(
Da

2π

) 1−β
3−β

. (B.4)

For β > 3, the mass converges from above to an asymptotic minimum value according to580

Eq. (B.2). To leading order in Da, this gives,581

c∞ = 1− 2Da
√
β(β − 3)(2π)

β−1
2

. (B.5)

For 1 < β < 3, Eq. (B.2) follows a power-law decay, which leads to the average concentration,582

c(t) ≈
√

2π

Da

(√
β

2

3− β
β − 1

) 1
β−1

t−
3−β

2(β−1) , (B.6)

for t� Da.583

Differentiating Eq. (B.6), we find584

d

dt
c(t) = − 3− β

2(β − 1)

c(t)

t
, (B.7)

Because the average concentration decreases monotonically, c(t) is invertible, Solving Eq. (B.6)585

for time as a function of mean concentration, we have586

t(c) =

(
2π

Da

) β−1
3−β

(√
β

2

3− β
β − 1

) 2
3−β

c−
2(β−1)
3−β . (B.8)

Thus, the effective kinetics are given by587

d

dt
c(t) = β−

1
3−β

(
Da

π

β − 1

3− β

) β−1
3−β

c
1+β
3−β . (B.9)

B.2 High Damköhler number588

We now develop an approximate description for the behavior of the average concentration at589

high Damköhler. This involves two different regimes.590

B.2.1 First regime, t� Da591

First, for times t� Da, diffusion has not had time to significantly deform the initial condition.592

Thus, the average concentration evolves approximately according to the batch dynamics,593

dc(t)

dt
= −c(t)β , (B.10)

and we obtain594

c(t) = [1 + (β − 1)t]−
1

β−1 . (B.11)

For β < 1, the average concentration reaches zero during this regime at the time given by595

Eq. (19).596
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B.2.2 Second regime, t� Da,597

For t > Da, the spreading of the pulse by diffusion cannot be neglected. Rearranging Eqs. (14)598

and (18), we obtain for the variance599

d log σ(t)

dt
=

1

2Daσ2(t)
− (
√
β − 1)

d logM(t)

dt
. (B.12)

If the first term on the right hand side of Eq. (B.12) dominates compared to the second term, the600

evolution of the variance is approximately diffusive. Otherwise, if the second term dominates,601

the evolution of the variance is driven by the effect of reaction. Inserting Eq. (B.11) into (B.12),602

the condition for diffusion-dominated growth is thus603

σ(t)3−βM(t)β−1 <

√
β − 1√
β

(2π)
β−1
2

2Da
. (B.13)

We start by evaluating this inequality at t = Da, which is the onset of this second regime.604

Since mass follows the batch dynamics in the first regime (Eq. (B.11)), at t = Da, it is given by605

M(Da) = [1 + (β − 1)Da]−
1

β−1 . (B.14)

We substitute Eq. (B.14) and σ(Da) = 1/12 (corresponding to the initial variance of a rectangular606

pulse, assumed not to change appreciably up to t = Da) in Eq. (B.13), which gives the condition607

for a dominant diffusive variance growth at t = Da,608

2Da

(2π)
β−1
2

√
β − 1√
β

12−
3−β
2

1 + (β − 1)Da
< 1. (B.15)

For a given β, the left hand side of Eq. (B.15) is largest for Da→∞. Therefore, if the criterion609

holds in this limit, it holds for all Da. In this limit, the condition is610

2
√
β(
√
β + 1)(2π)

β−1
2 12

3−β
2

< 1. (B.16)

This holds for β . 5, as verified numerically. We focus on such β since higher β are not commonly611

encountered. Therefore, at t = Da, the variance growth is dominated by diffusion for the range612

of β that we consider, leading to a variance equal to613

σ2(t) ≈ σ2(Da) +
t−Da

Da
, (B.17)

with σ2(Da) = 1/12, and a mass given by the same equation as for the low Da regime, with the614

initial mass Mi ≈ M(Da), see Eq. (B.2). To test whether the criterion of diffusion dominated615

variance holds true at larger times, we substitute Eq. (B.17) and Eq. (B.2) in Eq. (B.13). This616

gives the criterion617

2Da

(2π)
β−1
2

√
β − 1√
β

[
1
12 + t−Da

Da

] 3−β
2

M(Da)− 2√
β

1−β
3−β

(
2π
Da

) 1−β
2

[
(t+ Da)

3−β
2 −Da

3−β
2

] < 1. (B.18)

It can be verified numerically that this criterion holds true at all times. For t→∞, this simplifies618

into619

3− β√
β + 1

< 1, (B.19)
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which is always true for β > 1. Hence, the variance evolves diffusively at t = Da and at all later620

times, and a regime with reaction-dominated variance growth is never observed. The accuracy621

of the growth of the variance according to Eq. (B.17) is discussed in Appendix C.622

The effective kinetics can thus be derived as follows for different β. For 1 < β < 3, the623

effective kinetics remain given by Eq. (B.9), and the average concentration by Eq. (B.6) with624

Mi = M(Da) (Eq. (B.14)). For β > 3, according to Eq. (B.11) after replacing the initial mass625

Mi by M(Da), the mass tends to an asymptotic constant value given by626

M∞ =

[
M(Da) + Da

2√
β

β − 1

β − 3
(2π)−

β−1
2

]− 1
β−1

. (B.20)

At sufficiently large Da, we can neglect M(Da) according to Eq. (B.14) because Da−
1

β−1 � Da.627

Thus, we obtain the asymptotic value for the average concentration,628

c∞ ≈ Da−
1

β−1

√
2π

(√
β

2

β − 3

β − 1

) 1
β−1

. (B.21)

Appendix C Hypothesis validation629

In addition to the numerical validation of the analytical derivation for the effective kinetics,630

we further test the validity of the assumptions that we use in our analytical derivations. The631

Gaussian assumption and the variance growth assumptions are discussed separately below.632

C.1 Gaussian assumption633

Here we assess the validity of the Gaussian assumption for different Damköhler numbers at times634

corresponding to different regimes. As highlighted by Eq. (13), Gaussian distributions of different635

widths σ and maximum value cpeak collapse to a single curve when represented according to the636

normalized variables x/σ and c/cpeak. It is thus convenient to use this normalization to test the637

Gaussian assumption. Furthermore, Gaussian curves are uniquely characterized by the power638

law scaling639

log(c/cpeak) ∼ (x/σ)
−2
. (C.1)

Therefore, Gaussian distributions are characterized by a straight line of slope 2 when representing640

log(| log(c/cpeak)|) against log(|x/σ|). Hence, any deviation from this slope corresponds to a non-641

Gaussian profile.642

In Fig. C.1, we test the Gaussian assumption in the case of β = 2 for low and high Damköhler643

numbers, respectively Da = 10−3 and Da = 103. At low Da, diffusion acts over much smaller time644

scales than reaction, and the profiles are Gaussian at all times (Fig. C.1.a and c), consistently645

with the hypothesis of Appendix B.1. For high Da, the early time profiles are non Gaussian646

and close to the initial square injection (Fig. C.1.b and d). In this regime, we do not assume647

Gaussianity but instead the dominance of reaction over diffusion (Appendix B.2.1). At late648

times, t � Da, the profiles are very close to Gaussian (Fig. C.1.a and C.1.b) and closely follow649

the power law scaling of Eq. (C.1) (Fig. C.1.b and d), which is consistent with the assumption650

of Appendix B.2.2.651

In Fig. C.2, we test the Gaussian assumption for the case of β = 0.5 for low Damköhler652

number, Da = 10−3. We do not represent large Da in Figure C.2 because mass reaches zero653

before t = Da in this case and only the first regime where we do not assume Gaussianity654

(Appendix B.2.1) is relevant. Again, consistently with the assumption of Appendix B.1, for low655
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Figure C.1: Test of Gaussianity of reactive pulses from numerical simulations for β = 2. Comparison
of reactive profiles, normalized by their peak values cpeak along the y axis and their standard deviation
σ along the x axis, with Gaussian profiles at early and late times, respectively t ≈ 10−1 × Da and
t ≈ 10×Da for a) Da = 10−3 , and b) Da = 103. Test of Gaussian power law scaling (Eq. (C.1)) for the
same cases respectively for c) low Da and d) high Da.

Da, the profiles are very close to Gaussian at all times (Fig. C.2.a) and closely follows the power656

law scaling of Eq. (C.1) (Fig. C.2.b). Results are similar for other reaction orders β < 1.657

These results confirm the assumptions that we have made in Appendix B for deriving ap-658

proximated analytical solution for the evolution of concentration distributions. For t � Da, we659

dot not assume that profiles are Gaussian but we assume that diffusion plays no role and that660

the evolution of concentration profiles is dominated by reaction alone. For small Da, this regime661

is very short and not considered here. For large Da, this regime is discussed in Appendix B.2.1.662

For t� Da, we assume that profiles are Gaussian, which is consistent with numerical simulations663

for all values of Da and β. This regime is discussed in Appendix B.1 and B.2.2.664

C.2 Variance growth assumption665

Here, we assess the validity of the assumption that the evolution of the variance is dominated666

by the diffusion term in Eq. (B.12). This leads to the prediction that the variance is constant667

for t � Da and grows diffusively for t � Da following Eq. (B.1) for Da ≤ 1 and Eq. (B.17)668

for Da > 1. We compare the variance growth in time obtained from numerical simulations with669

these predictions for different Damköhler numbers and β in Fig. C.3.670

In all cases, simulations are found to be in good agreement with analytical solutions. Note671

that for β < 1, the variance computed from numerical simulations starts decreasing at the end672

of the simulations, which is not captured by our model (Fig. C.3, a). A short time before the673

whole profile reaches zero, concentrations on the sides are reacting faster than they diffuse so674
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Figure C.2: Test of Gaussianity of reactive pulses from numerical simulations for β = 0.5. a) Com-
parison of reactive profiles, normalized by their peak values cpeak along the y axis and their standard
deviation σ along the x axis, with Gaussian profiles at early and late times, t ≈ 10−1×Da and t ≈ 10×Da
for Da = 10−3. The high Da profile is not represented because the mean concentration reaches zero before
the times at which we assume Gaussianity, t = Da. b) Test of Gaussian power law scaling represented
by Eq. (C.1).

that the variance starts to decrease before the whole profile reaches zero. This regime of variance675

decay is thus very short.676

6 Research data677

Research Data associated with this article can be accessed at https://doi.org/10.5281/678

zenodo.4114532.679
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Lavenant, C. Petton, B. W. Abbott, et al. (2020). “Iron-oxidizer hotspots formed by inter-720

mittent oxic–anoxic fluid mixing in fractured rocks”. In: Nature Geoscience 13.2, pp. 149–721

155.722
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Université de Rennes 1, CNRS, Géosciences Rennes UMR 6118, 35042 Rennes, France5

2Department of Geological and Environmental Sciences, Braun Hall #118, 450 Serra Mall, Stanford University,6

Stanford, CA, 94305, USA7

March 31, 20218

Abstract9

Biogeochemical reaction kinetics are generally established from batch reactors where10

concentrations are uniform. In natural systems, many biogeochemical processes are char-11

acterized by spatially and temporally variable concentration gradients that often occur at12

scales which are not resolved by field measurements or biogeochemical and reactive transport13

models. Yet, it is not clear how these sub-scale chemical gradients affect reaction kinetics14

compared to batch kinetics. Here we investigate this question by studying the paradig-15

matic case of localized pulses of solute reacting with a solid or a dissolved species in excess.16

We consider non-linear biogeochemical reactions, representative of mineral dissolution, ad-17

sorption and redox reactions, which we quantify using simplified power-law kinetics. The18

combined effect of diffusion and reaction leads to effective kinetics that differ quantitatively19

and qualitatively from the batch kinetics. Depending on the nonlinearity (reaction order)20

of the local kinetics, these effects lead to either enhancement or decrease of the overall re-21

action rate, and result in a rich variety of reaction dynamics. We derive analytical results22

for the effective kinetics, which are validated by comparison to direct numerical simulations23

for a broad range of Damköhler numbers and reaction order. Our findings provide new in-24

sights into the interpretation of imperfectly mixed lab experiments, the effective kinetics of25

field systems characterized by intermittent reactant release and the integration of sub-scale26

concentration gradients in reactive transport models.27

1 Introduction28

The kinetics of biogeochemical reactions are used to predict a range of processes , including the29

weathering of rock, the transport and degradation contaminants, and the nutrient cycling that30

sustains subsurface microbial life. Given the importance of transport processes in governing the31

removal and supply of products and reactants and the necessity to consider a variety of spatial and32

temporal scales, reactive transport models are increasingly used to predict processes occurring in33

the subsurface (e.g., see reviews by Van Cappellen and Gaillard, 2018; Steefel et al., 2005; Li et al., 2017; Maher and Navarre-Sitchler, 2019; Maher and Mayer, 201934
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) A host of other studies rely on conceptual frameworks that integrate reactive transport princi-35

ples, with applications ranging from interpretation of global elemental cycles (Lasaga et al., 1994)36

, to catchment elemental fluxes over synoptic (e.g. Kirchner and Neal, 2013) or geologic timescales37

(e.g. Maher and Chamberlain, 2014), to nutrient cycling at microsites (e.g. Keiluweit et al., 2016)38

. In all cases, biogeochemical kinetics have to be represented at an appropriate temporal and spa-39

tial scale. However, kinetic models are generally derived from well-mixed batch experiments in the40

lab . Yet, reaction kinetics can differ by orders of magnitude from homogeneous batch reactors to41

heterogeneous field systems (White and Brantley, 2003; Meile and Tuncay, 2006; Maher et al., 2006; Navarre-Sitchler and Brantley, 2007; Li et al., 2008; Salehikhoo et al., 2013; Wen and Li, 2017a; Wen and Li, 2018; Wang et al., 2018)42

. Different hypotheses have been investigated to explain these discrepancies. These include dif-43

fusion limitations or geometrical constraints at the pore scale that reduce access of solutes to reac-44

tive surfaces compared to fully mixed systems (Molins et al., 2012; Molins et al., 2014; Beckingham et al., 2016; Soulaine et al., 2017; Beckingham et al., 2017; Deng et al., 2018)45

, physical heterogeneity that induces spatially heterogeneous solute fluxes and modifies the effec-46

tive reactive surfaces (Atchley et al., 2013; Wen and Li, 2017a; Wen and Li, 2018; Jung and Navarre-Sitchler, 2018a; Jung and Navarre-Sitchler, 2018b; Wang et al., 2018)47

and geochemical heterogeneity, where averaging can also lead to scale effects in effective reaction48

kinetics (Atchley et al., 2014; Salehikhoo et al., 2013). These studies highlight the role of de-49

layed or heterogeneous access to reactive surfaces at different scales. A complementary question50

that has received less attention is: what is the impact of heterogeneous and time evolving con-51

centration landscapes on reaction kinetics, when access to reactive surfaces or to other dissolved52

reactants is not limited?53

Concentration gradients are created by spatially heterogeneous or transient release of solutes.54

They can be sustained by stretching induced by flow, whether at pore scale (Heyman et al., 2020)55

or at Darcy scale (Le Borgne et al., 2017), and are ultimately destroyed by diffusion. In the case56

of linear kinetics, heterogeneity in concentration fields does not impact the effective kinetics when57

access to reactive surfaces or other reactants is not limited. However, for non-linear kinetics that58

imply the local reaction rate is a non-linear function of local solute concentrations, the average59

reaction rate over a non-homogeneous concentration field is expected to differ from the local60

kinetics (Battiato et al., 2009; Battiato and Tartakovsky, 2011; Hubert et al., 2020). Such non-61

linear reaction kinetics play a central role in a broad range of biogeochemical reactions, including62

dissolution, redox and sorption reactions (Serrano, 2001; Serrano, 2003; Guo et al., 2015). Yet,63

it is not known how different types of non-linear kinetics may lead to either enhanced or reduced64

effective kinetics when considering heterogeneous solute plumes.65

Many physical, climatic, and biological processes result in localized and intermittent release66

of solutes that generate temporally and spatially variable concentration fields in subsurface en-67

vironments (Fig. 1). Rain events (Fig. 1.a) leach soil and induce pulses of dissolved chemical68

compounds into groundwater (Murphy et al., 2018). River stage variations (Fig. 1.b ) induce69

pulses of oxygen-rich water in hyporheic zones and the underlying groundwater systems, lead-70

ing to chemical disequilibrium and the degradation, fixation or release of contaminants, such71

as organic carbon, nitrate or arsenic (Datta et al., 2009; Malzone et al., 2016; Trauth and72

Fleckenstein, 2017; Bandopadhyay et al., 2018). Biological activity in general (Fig. 1.c) , can73

induce pulses of chemical compounds (e.g. Hinsinger et al., 2003). For instance, roots release74

dissolved gases and other compounds through daily cycles of respiration and exudation, and via75

associated fungal and microbial organisms (e.g. Li et al., 2017). Finally engineered injections76

(Fig. 1.d) create chemical disequilibrium and trigger a range of reactive pulses. This includes77

managed aquifer recharge (Magesan et al., 1998; Urióstegui et al., 2016; Al-Yamani et al., 2019)78

, which is often performed by periodically wetting and drying the system (Dutta et al., 2015),79

leading to biogeochemical reactions such as ammonium-nitrogen reduction and pathogen removal80

(Abel et al., 2014). Injection of concentrated carbon dioxide into the deep subsurface results81

in density-driven instabilities, leading to localized high concentrations of reactive CO2-rich fluid82

(Szulczewski et al., 2012). Collectively, reactive pulses play an important role in a broad range of83
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engineered injections, including soil and groundwater remediation (Kitanidis and McCarty, 2012;84

Rolle and Le Borgne, 2019), seasonal energy storage, through heat, hydrogen or underground85

pumped storage hydroelectricity (Panfilov, 2010; Pujades et al., 2017; Hermans et al., 2018),86

geothermal dipoles (Burté et al., 2019), and injection and storage of water used for fracking87

operations (Llewellyn et al., 2015).

a.	rainfall	events

c.	biological	activity
daily	to	seasonal	cycles d.	engineer	injections

e.g.	arti�icial	recharge,	
bank	�iltration,	

underground	storage

b.	river	stage	variations

e.	Heterogeneities

2 2

t1

t2

f.	Concentration	pro�ile g.	Batch

t1

t2

c0

s0 s0

chemical leaching,
dilution by recharge,

redox condition change,
gas exchange,

dissolution / precipitation,
acidi�ication (H S, CO )

Figure 1: Conceptual representation of biogeochemical pulses in the subsurface. When released, pulses
are concentrated and localized (orange dots). As they are transported in the subsurface, they are
stretched by velocity gradients and form elongated lamella structures (Le Borgne et al., 2015). Solute
concentrations are driven by dilution, which occurs by diffusion along the concentration gradients, and
reactions either with minerals or other dissolved solutes. The arrows indicate an injection or an exchange
of solute. Four types of processes generating reactive pulses are highlighted: a. soil leaching by rain,
b. surface water – groundwater exchanges, c. biological activity (the brown circle represents the root
zone), and d. engineered injections. In all these applications, chemical gradients can be enhanced and
sustained by physical heterogeneities, as illustrated in inset e. The inset f. illustrates the considered
simplified one-dimensional concentration profile that evolve under the action of diffusion and reaction.
The effective kinetics of such reactive pulses are compared to batch kinetics that evolve through reaction
alone under uniform concentrations (inset g.).

88

Because chemical gradients are enhanced and sustained by physical heterogeneities (Le Borgne89

et al., 2013; Heyman et al., 2020) (see inset of Fig. 1) , they develop over a range of scales90

that cannot be fully resolved by field sampling approaches that average solute (e.g., screened91

groundwater wells) or reactive transport models. Hence, effective kinetic models that capture92

the effect of sub-scale concentration gradients are required. Macrodispersion theory, where the93

dispersive flux is assumed to be proportional to the concentration gradient, tends to strongly94
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underestimate concentration gradients, leading to significant errors when used in reactive trans-95

port models (Gramling et al., 2002; Dentz et al., 2011a). Non-Fickian dispersion theories have96

successfully described the asymmetry of solute plumes resulting from trapping in low velocity97

areas (Berkowitz et al., 2006). However, this framework aims at describing spatial dispersion98

of solute plumes and does not quantify subscale concentration gradients governed by mixing99

(Dentz et al., 2011b). Recent mixing theories have provided a new framework to predict the full100

distribution of concentrations and concentration gradients both at pore scale (Heyman et al., 2020)101

and at Darcy scale (Le Borgne et al., 2013). In this framework, solute plumes are represented102

as ensembles of elongated lamellar structures, i.e. solute filaments elongated in one direction103

and compressed in the other. The latter develop systematically in heterogeneous media both104

at the pore (De Anna et al., 2014b) and Darcy (Le Borgne et al., 2014) scale. This is due to105

velocity gradients at different scales that deform solute plumes into such filaments, whose for-106

mation and merging controls mixing rates (Le Borgne et al., 2015). At the scale of a solute107

lamella, the effect of stretching on the enhancement of concentration gradients and mixing is108

quantified explicitly by a change of variable that leads to one-dimensional equation formally109

identical to a diffusion equation in the direction perpendicular to the lamella (Villermaux, 2019)110

. The full distribution of concentration is then predicted from the distribution of stretch-111

ing rates. While this framework has been successfully used to model mixing-limited reactions112

(De Anna et al., 2014a; Rolle and Le Borgne, 2019), its coupling with other types of reactions,113

such as solid-fluid reactions is an outstanding challenge. The key difficulty for this is to first114

solve analytically the coupling of diffusion transverse to solute lamella with non-linear kinetic115

laws.116

Here we use analytical solutions and numerical simulations to establish the effective kinetic117

laws that result from coupled diffusion and non-linear reactions in spatially and temporally118

variable concentration gradients. We consider pulses of solute that react either with a homo-119

geneously distributed solid phase or fluid phase, both in excess with respect to the transported120

solute. Hence, there is no limitation of access to reactive surfaces or other reactants, which121

allow use to isolate and formalize the coupling between non-homogeneous concentration distri-122

butions and non-linear kinetics. Dilution of solute concentration by mixing with the background123

fluid transfers high concentrations towards lower concentrations (Kitanidis, 1994), which may124

either reduce or enhance the average kinetics, depending on the reaction order of the local125

kinetics. Although mixing plays an important role in this problem, it does not act to bring re-126

actants into contact as extensively studied in the context of mixing-induced reactions, where127

reactions are limited by the mixing of spatially segregated reactants (see recent reviews of128

Rolle and Le Borgne, 2019; Valocchi et al., 2019). Instead, we study how changes in concen-129

tration distributions by mixing may lead to the emergence of effective kinetics that differ from130

local kinetics. In complex multi-component reactions, this effect acts together with a range of131

other processes and therefore it is difficult to understand and quantify. Therefore, although we132

have studied a simplified reaction in order to isolate a particular phenomenon, our results are133

expected to be relevant to a large range of geochemical systems, where this effect acts together134

with other known mechanisms, including spatial segregation of reactants either in fluid or in135

solid phases. In section 2, we present the reactive transport problem. In section 2.1, we define136

the studied effective quantities. In section 3, we present the numerical and analytical results for137

a range of Damköhler numbers and non-linear kinetics. In the section 4, we discuss the implica-138

tions of our findings for different types of reaction, including mineral dissolution, redox reactions139

and soprtion.140
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2 Reactive transport problem141

2.1 Reaction kinetics142

We study the reaction of a mobile aqueous species, with concentration c, which reacts with143

other aqueous species or with a solid surface. The latter are assumed to be in excess and144

homogeneously distributed, so that the reaction kinetics r(c) only depends on the concentration145

c through the non-linear rate law:146

r(c) = kcβ , (1)

where β > 0 is the effective order of the reaction and k is the reaction rate constant, which147

integrates the effect of other species in excess (units [ mol1−βLd(β−1)T−1], where d is the spatial148

dimension).149

In a well-mixed batch reactor, the concentration c is homogeneous in space and depends only150

on time (see lower right inset of Fig. 1). The concentration decreases everywhere according to the151

reaction rate (1), so that the kinetic rate law describing the evolution of the mean concentration152

c as a function of time t is given by153

d

dt
c = −r(c), (2)

with c = M/V , where M is the mass of reactant and V is the volume of the batch reactor.154

Although it is simplified, the system isolates the effect of transient concentration gradients155

on upscaled kinetics. The characterization of this basic yet non-trivial system may thus guide156

the understanding of more complex biogeochemical systems, where this effect is coupled to other157

mechanisms, such as heterogeneous reactive surfaces, spatial segregation of multiple elements158

and mixing limitations. As discussed in section 4, it is relevant for mineral dissolution far-159

from-equilibrium (Hellmann and Tisserand, 2006; Maher, 2011; Guo et al., 2015), for non-linear160

sorption kinetics (Weber J. et al., 1991; Perry et al., 1997; Serrano, 2003) and for homogeneous161

redox reactions where β depends on the stoichiometric coefficients (Bethke, 1996; Bleam, 2017)162

. We focus on β 6= 1, because dilution by mixing has no effect on linear reactions in the sense163

that the upscaled kinetics are the same as the local kinetics in this case. Indeed, for the linear164

reaction, β = 1, mass decay over time is independent of the spatial concentration distribution.165

2.2 Reactive pulses166

We wish to compare the batch dynamics Eq. (2), to the dynamics of the average concentration167

under diffusive transport for the same local reaction. Thus, we consider the reactant to be168

described by a non-homogeneous concentration c(x, t) depending on both position x and time169

t (see lower middle inset of Fig.1). We assume that the concentration is independent of the170

other spatial coordinates y and z over a reference surface S. This assumption is taken here for171

simplicity of analytical derivations, and can be relaxed to consider three dimensional transport172

processes following the same approach. The concentration is thus assumed to obey the diffusion-173

reaction equation,174

∂c

∂t
−D ∂2c

∂x2
= −r(c), (3)

where D[L2T−1] is the diffusion coefficient, which we assume to be constant. The initial condition175

is taken as a rectangular pulse identical to the batch conditions, but the pulse is allowed to diffuse176

in an infinite one-dimensional domain.177

At the boundaries, concentration tends to zero. Note that, in natural systems, boundaries178

limiting diffusive mass transfer would ultimately lead to a homogenization of the domain and a179
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convergence to the batch reaction rates. Our results hence describe the transient regimes before180

this happens. For a reference scale L larger than the pulse characteristic size, L �
√
Dt, the181

mean concentration is,182

c =
M

LS
. (4)

The temporal evolution of the mean concentration is obtained by integrating Eq. (3) over space,183

d

dt
c(t) = − k

L

L/2∫
−L/2

dx c(x, t)β . (5)

Note that only the reaction term contributes directly to the change in mass, which can be shown184

by integration by parts. However, transport affects the shape of the concentration profile, and185

thus indirectly impacts the total mass and the average concentration. This one-dimensional186

diffusion-reaction approach is also relevant to understand the effect of plume stretching on reac-187

tion kinetics in heterogeneous media. Indeed, solutes transported in the subsurface tend to follow188

elongated lamella structures (Le Borgne et al., 2015) where concentrations vary weakly along the189

stretching direction and concentration gradients develop mostly in one-dimension transverse to190

lamellae (Fig. 1).191

2.3 Non-dimensional units192

In order to meaningfully compare the dynamics for different conditions, it is convenient to define193

non-dimensional quantities in terms of values characterizing the different physical processes at194

play. We define the non-dimensional position as x∗ = x/w0, where w0 is the initial pulse width195

, the non-dimensional concentration as c∗ = c/c0, where c0 is the initial concentration, and196

the non-dimensional average concentration as c∗ = cL/(c0w0). Note that the non-dimensional197

initial concentration and average concentration are thus c∗(0) = c∗(0) = 1. Furthermore, we198

define non-dimensional time as t/τR, where199

τR =
1

kcβ−10

(6)

is the characteristic reaction time (inverse rate) associated with the initial concentration c0. In200

the following, we drop the asterisk for notational brevity. All quantities discussed are non-201

dimensional in the sense discussed here unless mentioned.202

In non-dimensional units, the kinetic equation for the batch is,203

dc

dt
= −cβ , (7)

which can be solved with the initial condition c(0) = 1 to yield,204

c(t) = [1 + (β − 1)t]−
1

β−1 . (8)

This solution holds whenever β 6= 1, that is, for nonlinear reactions. The special case of linear205

reactions leads to the classical c(t) = e−t exponential decay.206

In order to account for the effect of dilution by mixing, we identify the time needed to207

homogenize the width of the initial condition as208

τD =
w2

0

2D
, (9)
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corresponding to the time to homogenize a unit distance in nondimensional coordinates. The209

relative importance of reaction with respect to dilution is characterized by the dimensionless210

Damköhler number211

Da = τD/τR. (10)

Fast reactions relative to dilution correspond to Da > 1, while slow reactions correspond to212

Da < 1. In nondimensional terms, the diffusion-reaction equation becomes213

∂c

∂t
− 1

2Da

∂2c

∂x2
= −cβ . (11)

Note that, in nondimensional variables, the initial condition is a rectangular pulse of unit width.214

The dimensionless total mass obeys215

d

dt
c(t) = − 1

L

L/2∫
−L/2

dx c(x, t)β . (12)

All introduced parameters and their units are given in table 3 (Appendix A).216

2.4217

2.4 Numerical analysis218

To explore the different effective reaction regimes, we first solved Eq. (11) numerically using219

Matlab’s pdepe method, a numerical solver for one-dimensional partial differential equations220

(Skeel and Berzins, 1990). We use Neumann boundary conditions, i.e. no flux boundary con-221

dition, and a rectangular pulse of unit normalized width as initial condition ( Fig. 1f). The222

domain size is chosen large enough to maintain close to zero concentrations at the domain bound-223

aries at the end of the224

2.5225

simulation, and the grid discretization is refined to ensure the convergence of the solver. To226

analyze the effective kinetics at the pulse scale, that is for averaged concentrations over the227

solute pulse, we study the time evolution of the average concentration c(t) and the evolution of228

the effective reaction rate as a function of the average concentration.229

We compare these numerical simulations to analytical solutions that we derived using the ap-230

proximation discussed in the following section. Furthermore, we test these analytical predictions231

for one geochemically relevant example using the multi-component reactive transport model,232

CrunchFlow (version 1.0). Boundary and initial conditions for these simulations are described in233

the corresponding section. As for Matlab simulations, we use a domain large enough to ensure234

that the pulse does not reach the boundary and a grid discretization small enough to ensure235

convergence of the results.236

3237

2.1 Gaussian approximation for analytical derivations238

When reactions are described by nonlinear local kinetics, transport and reaction interact in com-239

plex ways. Reaction impacts local concentration gradients, which in turn affect diffusive fluxes.240
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The latter leads to changes in the spatial concentration profile, which affects reaction. These241

interactions are captured by the diffusion-reaction equation (11). In order to better understand242

the interplay between reaction dynamics and dilution, and how it leads to different average ki-243

netics compared to a well-mixed batch reactor, we develop an approximate analytical description244

of the average concentration, for a range of Damköhler numbers Da and reaction orders β.245

In non-dimensional units, the initial condition is a rectangular pulse of unit finite width,246

identical with the batch conditions. Before diffusion has time to deform the pulse substantially,247

which is the case for times much smaller than the characteristic diffusion time τD, we expect248

the dynamics to be well-approximated by the batch kinetics, so that the average concentration249

approximately follows Eq. (8). This corresponds to t � Da in nondimensional terms. For250

non-dimensional times t & Da, diffusion has appreciably deformed the initial pulse. To derive251

analytical solutions for this problem, we approximate the reactive solute profiles as Gaussian252

distributions. This approximation is expected to be highly accurate for low Da when diffusion is253

faster at modifying the concentration distribution than reaction. It turns out to be also accurate254

in intermediate and high Da ranges (Appendix C), which facilitates an analytical solutions for255

the effective kinetics. The concentration distribution of reactive pulses is thus approximated as,256

c(x, t) =
M(t)√
2πσ2(t)

e
− x2

2σ2(t) , (13)

where the variance σ2(t) and mass M(t) evolve in time as a function of diffusion and reaction.257

Note that in the absence of reaction, the solution corresponds to M(t) = 1, and σ2(t) ∝ t/Da.258

Inserting Eq. (13) into Eq. (12), we obtain,259

d

dt
M(t) = −M(t)β√

β
[2πσ2(t)]

1−β
2 . (14)

The Gaussian assumption allows second spatial derivatives in Eq. (11) to be estimated as,260

∂2c

∂x2
=

(
− 1

σ2
+
x2

σ4

)
c, (15)

hence, at x = 0, we have for the maximum concentration,261

c(0, t) =
M(t)√
2πσ2(t)

, (16)

and for the second spatial derivative,262

∂2c

∂x2

∣∣∣
x=0

= − M(t)√
2πσ(t)3

. (17)

Inserting Eq. (16) and (17) in Eq. (11) at x = 0, we obtain263

d

dt

M(t)√
2πσ2(t)

= − M(t)

2Da
√

2πσ(t)3
− M(t)β

(2π)β/2σ(t)β
. (18)

As discussed in Appendix B, Eq. (14) and (18) provide two independent equations to solve for264

the two unknowns M(t) and σ(t). Since the average concentration is proportional to the total265

mass (equation (4)), the dimensionless average concentration is equal to the dimensionless mass,266

c(t) = M(t). The accuracy of the Gaussian approximation is discussed in Appendix C.267
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3 Results268

First, numerical simulations for the average concentration as a function of time for different269

values of β are presented for broad range of Damköhler numbers and reaction orders in order to270

demonstrate the resulting behavior and departure of the effective kinetics from the batch systems.271

As expected, for β = 1, the effective kinetics are equal to the batch kinetics (Fig. 2.b). For the272

other cases, the results can be generalized as:273

• Forβ < 1, the average concentration of the pulse decreases faster than in the batch reactor,274

and the effective reaction rate of the pulse system is globally greater than the batch reactor275

(Fig. 2a).276

• For β > 1, the average concentration of the pulse decreases more slowly than in the batch277

reactor and the effective reaction rate of the pulse injected system is globally less than the278

batch reactor (Fig. 2c-d).279

4280

Qualitatively, this effect may be understood as follows. For β < 1, the reaction is more efficient281

when distributing a given mass in the low concentration range because of the form of the kinetics282

(Eq. (1)). Dilution by diffusion accelerates the transfer of mass towards lower concentration283

values and thus enhances the average kinetics compared to the batch case.As a result, the time at284

which the average concentration goes to zero (Fig. 2.a) decreases with decreasing Da as dilution285

accelerates the effective kinetics. The opposite effect occurs for β > 1, leading to a reduction286

of the effective kinetics compared to batch kinetics. For the extreme case of β > 3, dilution287

retards the reaction to such a level that the average concentration converges asymptotically to a288

nonzero value (Fig. 2.d), with the asymptotic residual concentration increasing with decreasing289

Da.290

The impact of dilution on reaction kinetics may be also understood by plotting the total291

reaction rate as a function of the average concentration (Fig. 3). For linear kinetics, the effective292

kinetics are identical to the batch kinetics independent of Da (Fig. 3.b). For low Da and β < 1,293

the global reaction rates are always greater than the batch for a given average concentration294

(Fig. 3.a). For low Da and β > 1, the global reaction rates are always less than the batch for295

a given average concentration (Fig. 3.c and Fig. 3.d). The difference between effective reaction296

kinetics and batch kinetics can reach several orders of magnitude. At low Damköhler numbers297

(Blue dots in Fig. 3) and quasi-constant average concentration, the variation in the reaction rates298

is substantial (an increase for β < 1 and a decrease for β > 1 ) . This counterintuitive regime is299

due to the action of diffusion , which distributes mass towards low concentration values, such300

that while the total reaction rate varies, the overall rate is insufficient to affect the total mass.301

At high Damköhler numbers (Green dots in Fig. 4) the effective rate first follows a batch-like302

behavior and then departs towards effective kinetics that are a function on β. In the following,303

we present our analytical results for the effective kinetics as a function of β.304

3.1 Reaction order β < 1305

For β < 1, the average concentration reaches zero at a finite time tf (Fig. 4.a). For large306

Damköhler numbers, diffusion does not have time to induce significant dilution before t = tf .307

Therefore, this time is identical to the time required to consume the full reactant mass in batch308
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Figure 2: Average concentration in a reactive pulse as a function of time for a) β = 0.5, b) β = 1, c)
β = 2 and d) β = 3.5. Numerical simulations for low, intermediate and high Da numbers (circles) are
compared to batch kinetics (black solid line). The final time for full reactant consumption tf , which
occurs for β < 1, is indicated with arrows in figure a). The residual average concentration c∞, which
occurs for β > 3, is indicated with arrows in figure d). Note that the y-axis differs between panels to
resolve the differences in concentration evolution.

reactions (Green dots and line in Fig. 4.a, Appendix B.2.1) :309

tf =
1

1− β
, for Da > 1. (19)

For low Damköhler numbers, using the assumption of a Gaussian concentration distribution, we310

obtain a solution for the evolution of the average concentration (Appendix B.1, Eq. (B.2)), in311

good agreement with numerical simulations (Blue dots and dashed lines in Fig. 4.a). This leads312

to the following estimate of tf (Appendix B.1, Eq. (B.4)),313

tf ∼ Da
1−β
3−β , for Da < 1. (20)

This scaling and the convergence to a constant value given by Eq. (19) at large Da are verified314

from numerical simulations in Fig. 4.b. The effect of dilution is thus to accelerate the effective315

kinetics, with a consumption time up to ten times less than predicted from the batch kinetics316

for Da = 10−3.317
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Figure 3: Effective kinetics of reactive pulses quantified as the rate of change of the mean concentration
as a function of mean concentration for a) β = 0.5, b) β = 1, c) β = 2 and d) β = 3.5. Numerical
simulations for low, intermediate and high Da numbers (circles) are compared to the batch reactor
solution (black solid line). Note that the y-axis differs between panels to resolve the differences in
concentration evolution.

3.2 Reaction order 1 < β < 3318

For 1 < β < 3, we predict that the departure from the batch kinetics is not only a difference in319

the magnitude of the reaction but also in its order. The latter is shown by the power law scaling320

that relates the average reaction rate to the average concentration ( dashed lines in Fig. 5), with321

an exponent that differs from the batch reaction order. For low Damköhler numbers, our322

solution implies that the average concentration decays in time as a power law (Appendix B.1,323

Eq. (B.6)),324

c(t) ∼ t−
3−β

2(β−1) , (21)

and the effective rate rM follows (Appendix B.1, Eq. (B.9))325

dc

dt
∼ cβ̃ , (22)

with326

the effective reaction order327

β̃,328

β̃ =
1 + β

3− β
. (23)
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Figure 4: Effect of Damköhler on effective kinetics for β = 0.5, a) Average concentration as a function
of time for several Damköhler numbers. Numerical results (dots) are compared to the analytical solutions
of Eq. (B.2) (dashed lines). The batch solution is shown as a continuous line. b) Time tf at which the
mean concentration reaches zero as a function of Damköhler number. Black circles represents simulations,
dashed lines represents the analytical predicions of Eq. (19) for low Damköhler numbers and Eq. (20)
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For high Damköhler numbers, two regimes occur ( Fig. 8). The first regime, for t < Da, follows329

the batch kinetics (Appendix B.2.1). In the second regime, for t > Da, (Appendix B.2.2), the330

effective kinetics follow the same power law behavior as for low Damköhler number (Fig. 5.a)331

defined by Eq. (22).332

These predictions are consistent with numerical simulations for all Damköhler numbers (Fig. 5.a)333

and all local reaction order β (Fig. 5.b). For low to intermediate Damköhler numbers, the ef-334

fective kinetics follow the predicted power law kinetics, characterized by the effective reaction335

order β̃ for the full range of concentrations (Fig. 5.b). For large Damköhler numbers (green dots336

in Fig. 5.a ) the effective kientic shows two regimes: a first regime following the batch kinetics337

given by Eq. (1) and a second power law regime given by Eq. (22). The difference between the338

effective and local reaction orders is largest for large reaction orders (Fig. 6). For β = 1.5, the339

effective order β̃ = 1.7 is relatively close to the batch reaction order. Above β = 1.5, the effective340

order increases rapidly and is equal to β̃ = 3 for β = 2. As β tends to 3, the deviation between341

the effective reaction order and the batch reaction order can become very large as the effective342

reaction order tends to infinity (Fig. 6).343

3.3 Reaction order β > 3344

For β > 3, the pulse reaction is much less efficient compared to a batch reactor, in the sense that345

the average reaction rate is smaller than in batch conditions for a given average concentration.346

For β > 3, dilution slows down the reaction so that the average concentration does not reach zero347

but converges to an asymptotic minimum value c∞ (Fig. 7). For β = 3, the average concentration348

decays to zero logarithmically as t → ∞ (Appendix B.1, Eq. (B.3)). Note that this behavior349

differs fundamentally from the lower reaction orders discussed above, for which the reaction rate350

is always larger than zero and there is no residual concentration, except for Da = 0.351

For low Damköhler numbers, the solution for the evolution of the mean concentration (Ap-352
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pendix B.1, Eq. (B.2)) leads for β > 3 to an asymptotic value c∞ such that (Eq. (B.5))353

1− c∞ ∼ Da. (24)

As Da tends to zero, the asymptotic residual mean concentration tends to one (Fig. 7), which354

highlights the inhibiting effect of dilution on mass evolution for β > 3.355

For high Damköhler numbers, the asymptotic residual mean concentration occurs in the356
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Figure 7: Effect of Damköhler on effective kinetics for β = 3.5, a) Numerical simulations (circles) as
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second regime, leading to an asymptotic minimum value (Appendix B.2.2, Eq. (B.21))357

c∞ ∼ Da−
1

β−1 , (25)

which again quantifies the inhibiting effect of dilution on reaction as Da increases. These ana-358

lytical results closely match numerical simulations (Fig. 7.b).359

4 Discussion360

Our findings demonstrate that chemical gradients alter effective reactive kinetics through the361

coupling of diffusion and nonlinear reactions. By investigating the evolution of reactive so-362

lute pulses, as a paradigm for chemical gradients that evolve over space and time, we have363

uncovered a diverse spectrum of effective kinetic dynamics that depend on (1) the reaction non-364

linearity (reaction order β) and (2) the relative importance of reaction and dilution quantified365

by the Damköhler number Da . A central conclusion of our study is that dynamic chemical366

gradients not only change the magnitude of the effective kinetic coefficient but also change the367

nature of the non-linearity compared to the local kinetics. This result is in contrast with previ-368

ous studies that have studied how diffusive limitation, physical and geochemical heterogeneities369

(e.g. Soulaine et al., 2017; Wen and Li, 2017b; Deng et al., 2018), alter the effective kinetic co-370

efficients, while keeping the same effective kinetic laws371

4.1372

as the local kinetics. While we have focused on simplified reaction kinetics to quantify and373

formalize this mechanism, these dynamics are expected to impact a large range of geochemical374
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systems where they are coupled to other processes. In the following, we discuss the relevance375

to common classes of biogeochemical reactions based on a synthesis of the results discussed376

above. Subsequently, we provide an example for a mineral dissolution reactions where rate377

discrepancies are commonly observed. However, the approach is also applicable to other types378

of reactions, including redox, precipitation, complexation and adsorption reactions, as discussed379

in the following section.380

4.1 Characteristic persistence time of reactive pulses381

To illustrate the consequences of the derived effective kinetics across a broad range of β and Da,382

we calculate the persistence time of reactive pulses that quantifies a characteristic time for the383

decay of the pulse mass under the effect of reaction. We define this time as a the time required384

for the pulse mass to reach a given fraction of the initial mass . To compare with the batch385

reactor, we divide it by the time it would take for a batch reactor to reach the same fraction of386

the initial mass. This normalized persistence time tc is shown in Fig. 8 as a function of β and387

Da. We have taken here the fraction of the initial mass to calculate this time to be equal to388

1%. Qualitatively similar results are obtained for other fractions. We have considered the full389

range of Damköhler numbers, from Da = 10−3 (fast dilution compared to reaction) to Da = 103390

(fast reaction compared to dilution). This covers a range of characteristic reaction times, that391

vary broadly depending on the type of reaction, and of transport time scales, which depend on392

the pulse size and species diffusion coefficient (Eq. (9)).393

On the left-hand side of Fig. 8, for β < 1, reactants disappear on the order of ten times faster394

than in the batch in the low Damköhler range, which is consistent with the analytical estimate395

of tf (Fig. 4). For 1 < β < 3, the characteristic persistence time increases sharply with the396

non-linear reaction order β, reaching several orders of magnitude increase. This is due to the397

emergence of effective reaction orders β̃ that become much larger than the batch reaction order398

for increasing β (Fig. 6). Within the grey zone, for β > 3, residual mass persists indefinitely399

and the characteristic persistence time tends to infinity. Collectively, these findings imply that400

when concentration fields are heterogeneous the commonly used approach of coupling residence401

time to batch kinetics may underestimate/overestimate the persistence of reactants by orders of402

magnitude.403

4.2404

Our main analytical findings in the different quadrants of Fig. 8 provide a framework for405

assessing the impact of concentration gradients on effective kinetics for a given type of reaction,406

as discussed below.407

4.2 Geochemical relevance of effective kinetics408

Our results are strictly valid when the concentration of one element is spatially variable and409

the others are in excess in the fluid or in the mineral phase. This simplification isolates and410

formalizes the impact of transient concentration gradients on upscaled kinetics. In complex411

multi-component reactive system, this effect will act together with other known mechanisms,412

such as geochemical and physical heterogeneities, as well as multiple reactions. Although other413

processes will also contribute to the effective kinetics, we argue that the new phenomena described414

here will likely have a major contribution as it can alter reaction rates over orders of magnitude415

and modify the effective orders of reaction. For single step reactions, the reaction order β with416

respect to a given chemical species is equal to its stoichiometric coefficient. However, most417
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Figure 8: (Da, β) phase diagram of characteristic persistence time tc and synthesis of main analytical
results. The solid red line represents Da = 1. The dashed red and black lines correspond respectively to
β = 1 and β = 3. The color scale represents the time tc needed for the mean concentration to reach 1%
of initial mean concentration for the reactive pulses, normalized by the same time for the batch reactor.
The main reaction enhancement occurs for β < 1 and Da < 1 (blue area) while the effective reaction rate
is strongly slowed down for β > 1.5 (yellow area). For β > 3, residual mass persists indefinitely and the
characteristic persistence time may never be reached if the residual mass is larger than 1% (grey area).
The typical range of effective reaction orders β for mineral dissolution, adsorption and redox reactions
are indicated at the bottom.

biogeochemical reactions are complex multi-step reactions such that the rate-limiting step is418

unknown and hence most reaction orders are determined empirically and may range from 0 to419

5.420

The lower left hand side of Fig. 8 would be typical of silicate mineral dissolution where421

reactions involve multiple steps that can be effectively described by an adaptation of transition422

state theory (Aagaard and Helgeson, 1982; Lasaga et al., 1994; Steefel and Lasaga, 1994):423

r = k

N∏
i=1

ani

(
1− Q

Keq

)
m, (26)

where r is the overall rate, k is the424

intrinsic kinetic constant, ai the ion activity, N the number of species, Q the ion activity425

product for the mineral-water reaction, andKeq the corresponding equilibrium constant. The em-426

pirical exponents n and m introduce a non-linearity of the reaction rate with respect to the species427

concentration (Hellmann and Tisserand, 2006). Far from equilibrium, Q � Keq or Q � Keq,428

and when a single species is limiting, equation (26) can be written as the simplified non-linear ki-429

netics that we consider (equation (1)), with β = n. Effective reaction orders estimated from labo-430
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c. Interpreting experimental kinetics

a. Effective kinetics in �ield systems

b. Reactive transport modelling

Microscale chemical 
gradientsGas head space

Mixing front

Subgrid gradients
Intermitent 
solute input

Batch

Figure 9: Illustration of different applications where unresolved chemical gradients may alter effective
kinetics. a. Effective kinetics in field systems, such as CO2 injection in the subsurface, where reactive
pulses develop in mixing fronts. b. Reactive transport modeling, where subgrid chemical gradients
cannot be resolved in models. c. Interpreting experimental kinetics in unmixed batches, where microscale
chemical gradients can affect measured kinetics. The typical scales of expected chemical gradients for
these applications is indicated as dx. textcolorblueUpdate the order of subfigures to match new order
of section 5.
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ratory experiments and typically range from β = 0.1 to 2 (Plummer and Wigley, 1976; Palandri and Kharaka, 2004)431

. Such mineral dissolution reactions are typically slow and therefore correspond to the low Da432

range. The upper right-hand sider region of Fig. 8 may be typical of redox reactios. Metal redox433

reactions are typically characterized by 1 6 β 6 4, while other redox reactions tend to have lower434

orders 1 6 β 6 2 (Bethke, 1996). Redox reactions involving organic matter may have orders as435

high as β = 5 (Bleam, 2017). In the middle region of Fig. 8, where tc transitions rapidly, adsorp-436

tion kinetics may be particularly susceptible to the effects observed here. Adsorption reaction437

kinetics are generally modelled with first-order or438

4.3439

pseudo-second-order kinetics (Rudzinski and Plazinski, 2006; Wu et al., 2009; Robati, 2013; Moussout et al., 2018)440

, which correspond to β = 1 or β = 2, but higher reaction orders are also observed (Largitte and Pasquier, 2016)441

.442

The first application of our findings is for understanding the behavior of reactive solutes in443

field systems (Fig. 9a). As illustrated in Fig. 1, concentration gradients in natural systems can be444

driven by a diverse set of processes, ranging from intermittent sources to physical heterogeneity.445

For a given transport time, the reaction efficiency may be much faster (for β < 1) and much446

slower (for β > 1) than anticipated from batch kinetics (Fig. 8). This could lead to a much447

deeper penetration of reactive pulses or to a much faster consumption of solutes.448

449

4.3450

A second application is reactive transport modelling; to capture the effect of concentration gradi-451

ents on reaction kinetics, reactive transport models should have a spatial resolution finer than the452

smallest scale of concentration gradients (Fig. 9 b). This is not possible for catchment scale ap-453

plications (e.g. Li et al., 2017) but it is also challenging for modeling column experiments because454

chemical gradients often persist at the microscale (Heyman et al., 2020). Hence, our findings may455

help defining effective kinetics that quantify the impact of subscale gradients in reactive transport456

models. A third application is the interpretation of biogeochemical kinetics measured in experi-457

mental systems that are not well mixed, i.e. where chemical gradients persist (Fig. 9c). Geochem-458

ical reactions occurring at high temperatures and pressures, such as those associated with geologic459

carbon storage (e.g. DePaolo and Cole, 2013; Jun et al., 2013; Beckingham et al., 2016; Beckingham et al., 2017)460

, are often studied using batch reactors, where a gas headspace of a constant volume is used to461

maintain a constant pressure (Giammar et al., 2005; Johnson et al., 2014). Depending on the462

experimental conditions, pressure vessels can be difficult to mix via rocking or internal stirring,463

and are often static. Hence, in the absence of mechanical mixing, chemical gradients of differ-464

ent origin may develop, including dissolved gas convection, transport limitations and spatially465

heterogeneous reaction rates.466

4.3 Example of the oxidation of pyrite by a pulse of dissolved oxygen467

To illustrate these effective kinetics for a specific geochemical system, we take the example of468

pyrite dissolution by a pulse of dissolved oxygen. The aqueous oxidation of pyrite by oxygen is469

an example of geochemical process studied with reactive transport models to address a range470

of problems, including aquifer storage and recovery (Lazareva et al., 2015), acid mine drainage471
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Figure 10: Simulation of pyrite dissolution by a pulse of dissolved oxygen for Da = 10−3 (β = 0.5).
Normalized mean concentration is shown as a function of normalized time, following the same definition
as above. Results of the CrunchFlow simulation are shown as dots, the analytical model as a dashed
line (Eq. B.2) and the batch model as a continuous line (Eq. B.11).

(Hubbard et al., 2009), and radioactive waste migration (Malmström et al., 2000; Yang et al.,472

2007). Intermittent release of dissolved oxygen, due to rainfall events or river stage variations473

(Fig. 1.a and 1.b), or flow heterogeneities (Fig. 1.e) often lead to small-scale dissolved oxygen474

gradients (Xu et al., 2000; Bochet et al., 2020) that are typically not resolved by reactive transport475

models. The reaction of oxidation of pyrite by oxygen can be written as476

,477

FeS2 + 7
2 O2 + H2O Fe2+ + 2 SO 2–

4 + 2 H+
478

Assuming that the other species are in excess, the kinetic rate law for pyrite oxidation by479

oxygen may be written with respect to oxygen as (McKibben and Barnes, 1986)480

1

3.5

dcO2

dt
≈ −kc0.5O2

, (27)

corresponding to β = 0.5.481

For the geochemical system considered here, the kinetics of subscale unresolved oxygen pulses482

would be faster than predicted by batch kinetics (Fig. 8). For instance, assuming a Damköhler483

number of 10−4, resulting from a kinetic rate constant of 6.6 × 10−9 mol/m2/s (Yang et al.,484

2007) and a diffusion coefficient of 10−9 mol/m2/s (Jung and Navarre-Sitchler, 2018a), dissolved485

oxygen would be consumed 10 times faster than it would be in the well-mixed homogeneous486

system. The more rapid release of both Fe2+ and trace metals typically associated with pyrite487

(i.e., As, Pb, etc.) may have further implications for water quality. Although our results imply488

that kinetic rates used in reactive transport models of systems with sub-grid scale concentrations489

will be subject to additional uncertainty, our approach provides a concrete means of evaluating490

the range of kinetic parameters to enable robust sensitivity analysis or uncertainty quantification491

(e.g. Fenwick et al., 2014; Song et al., 2015).492

We have verified that this geochemical system can be accurately modeled by our framework493

under the considered assumptions (Fig. 10) using the multi-component reactive transport model494

CrunchFlow (Steefel et al., 2015). We first consider the case of a single pulse. The system495

is composed of pyrite with a porosity of 30% and dissolution kinetic constant k = 10−8.31496
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Table 1: Initial and injection chemistry used in CrunchFlow simulations for a single pulse, pyrite
dissolution

Species Initial condition (mol/L) Injection condition (mol/L)

Fe2+ 10−8 10−8

H+ 10−4 10−4

O2,aq 10−11 10−4

SO2−
4 10−8 10−8

Cl− Equilibrates charge Equilibrates charge

m mol−1 s−1 (Yang et al., 2007). The considered solute species are O2,aq, Fe2+, SO2−
4 , and497

H+. For the initial condition in the domain prior to injection, the species concentrations are498

cO2
= 10−11 mol/L, cFe2+ = 10−8 mol/L, cSO2−

4
= 10−8 mol/L, and pH is 4. Chloride is499

designated as the charge balancing ion to maintain electroneutrality. In the injected pulse,500

concentrations are the same as in the domain except for the oxygen concentration is set as501

c0 = 10−4 mol/L (Bochet et al., 2020, Table 1). The simulations were performed at 25°C with a502

diffusion coefficient of 10−7 m2 s−1 (Elberling et al., 1994), leading to Da = 10−3 (Table 2). The503

CrunchFlow simulation is in good agreement with the analytical model (Fig. 10). As predicted,504

the average concentration reaches zero much faster than the batch.505

In order to evaluate the effect of a non-ideal concentration profile, we performed a CrunchFlow506

simulation with five irregularly spaced pulse injections of width 10−2 m each, with different initial507

oxygen concentrations (log(cO2
) = −4, −5, −6, −7, −8) (Table 2). The initial conditions508

are the same as in the single pulse case (Table 1) and all the injected concentrations except509

oxygen are the same as in the background domain. The equivalent batch is defined with initial510

concentration equal to the mean of the pulse initial concentrations. The parameters are adapted511

to the single-pulse analytical model with an equivalent pulse width equal to the sum of the512

pulse widths, and an equivalent initial concentration set as the mean of injection concentrations,513

resulting in Da= 5 10−2 (Table 2). In this case, the match with the analytical prediction remains514

excellent (Fig. 11) even though the concentration distribution is more complex than assumed in515

the analytical derivations.516

5 Conclusions517

The effective kinetics of reactive pulses reveal a rich diversity of behaviors driven by the interplay518

between dilution and non-linear reaction (Fig. 8). In the presence of concentration gradients,519

diffusion acts to redistribute mass towards lower concentrations, which, when coupled with non-520

linear reactions, can either enhance or inhibit the reaction efficiency depending on the local521

reaction order. We have derived approximate analytical solutions that capture these reactive522

dynamics and predict the different effective kinetic laws as a function of Damköhler number and523

the reaction order, which are representative of a range of reactive transport systems (Fig. 1, 8524

and 9). An important consequence of our results is the emergence of new effective kinetic laws525

characterized by upscaled orders that can be very different from those of the local kinetics. The526

coupling of transient concentration gradients and non-linear reactions hence leads to effective527
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Table 2: Parameters of the analytical model for the pyrite dissolution
case.

Parameter w0 D c0 ν k A Φ τD τR Da

Unit m m2/s mol/L [−] [unit] m2/m3 [−] [−] [−] [−]

Single pulse 10−2 10−7a 10−4b 3.5 4.8 10−9c 350 0.3 1.6 10−5 1.6 10−2 10−3

β = 0.5

Several pulses 10−2 10−7 10−4 3.5 4.8 10−9 350 0.3 4 10−4 7.5 10−3 5 10−2

β = 0.5 10−5

10−6

10−7

10−8

a(Elberling et al., 1994)
b(Bochet et al., 2020)
c(Yang et al., 2007)
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Figure 11: Simulation of pyrite dissolution by multiple pulses of dissolved oxygen (β = 0.5). Five
pulses with different initial concentrations and irregularly spaced are injected in the domain. a) is
the concentration profile in space at normalized time t ≈ 10−5 (blue), t ≈ 10−2 (orange), t ≈ 10−1

(green). b) the normalized mean concentration as a function of normalized time for the CrunchFlow
simulation (dots), an equivalent batch system (with initial concentration equal to the mean of injected
concentrations Eq. (B.11), continuous line), and an equivalent analytical model (considering one pulse
with initial concentration equal to the mean of injected concentrations, Eq. (B.2), dashed line), thus
corresponding to Da = 5 10−2.
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kinetics that can be much more non-linear than the batch kinetics (Fig. 6).528

To isolate this mechanism and derive approximate analytical solutions for the effective ki-529

netics, we considered here the idealized case of reactive pulses evolving through diffusion and530

reaction. In complex natural reaction networks, this effect acts together with a range of other531

processes and therefore it is difficult to understand and quantify. Other important phenomenon532

known to impact the effective kinetics include the limited access of solutes to reactive surfaces533

and mixing limitations, due to physical and geochemical heterogeneity at the pore or Darcy scale534

(Molins et al., 2014; Beckingham et al., 2017; Wen and Li, 2018; Jung and Navarre-Sitchler, 2018a; Valocchi et al., 2019)535

. In multi-components systems, our results are strictly valid when one element is varying in space536

and time and the others are in excess. In natural systems several elements may be spatially vari-537

able and react with different orders leading to more complex behaviour. However, since the538

effect that we have uncovered leads to orders of magnitude differences between batch and effec-539

tive reaction rates, it is likely playing a major, and so far unappreciated, role in multi-component540

systems.541

Although we explicitly solve the system for the ideal case of pulses, our general findings are542

expected to apply qualitatively to different types of concentration landscapes. Indeed, in the543

presence of concentration inhomogeneities, induced by intermittent reactant release or physical544

heterogeneity (Fig. 1), diffusion tends to redistribute mass towards lower concentrations, which545

leads to reaction enhancement or inhibition depending on the local reaction order β as described546

here. The derived analytical framework is an essential step to integrate a range of biogeo-547

chemical reactions in new mixing theories that describe the statistics of concentration gradients548

(Le Borgne et al., 2017). The lamella mixing theory was successfully used to predict the up-549

scaled kinetics of mixing-driven reactions at pore scale (De Anna et al., 2014b) and Darcy scale550

(Le Borgne et al., 2014; Bandopadhyay et al., 2018) by coupling the one-dimensional compression-551

diffusion equation transverse to stretched solute lamellae with bi-molecular reactions in the fluid552

phase. By solving explicitly the coupling of diffusion and non-linear reactions , the method pre-553

sented here resolves the main difficulty for the development of a reactive lamella framework to554

upscale the effective kinetics of a range of non-linear reactions under incomplete mixing condi-555

tions, including fluid-solid reactions.556

These findings would thus be useful to interpret the result of reactive experiments in which557

subscale chemical gradients develop due to poor mixing. These analytical results may also be558

used to guide reactive transport models that cannot fully resolve the scale of concentration gradi-559

ents, which occurs in many reactive transport problems. Finally, they provide a new framework560

to understand the effect of concentration gradients on chemical reactions in field applications,561

in particular to understand the possible longer/smaller persistent time or penetration length of562

reactive solutes. These findings indeed suggest that the characteristic persistence time of bio-563

geochemical pulses can differ by orders of magnitude from the predictions of models that couple564

solute residence time with batch kinetics. Reactive pulses are consumed much faster when the565

order of the reaction is less than one, whereas they persist for a much longer time when the order566

of the reaction is larger than one. These effects are particularly important at low Damköhler567

number i.e., for reactions that are slow compared to the characteristic diffusion time. For orders568

of reaction larger than three, dilution slows down reaction to the point that a residual mass569

persists asymptotically.570
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Appendix A Notations577

We detail all notations used in the study in table 3.578

Appendix B Analytical solutions579

This appendix details the analytical derivations for effective kinetics under coupled diffusion and580

non-linear reactions based on the assumption of Gaussian distribution of the reactant (Eq. (13))581

for t� Da and of negligible diffusion for t� Da. The validity of these assumptions is discussed582

in Appendix C. The cases of low and high Damköhler are detailed separately below.583

B.1 Low Damköhler number584

In the limit of low Da, diffusion quickly deforms the pulse into a Gaussian distribution (Eq. (13)),585

whose variance evolves diffusively (see Appendix C and Fig. C.3),586

σ2(t) ≈ t+ Da/12

Da
, (B.1)

where we have set σ2(0) = 1/12 to match the variance of the initial rectangular profile. Inserting587

Eq. (B.1) into (14), we obtain588

M(t) =

[
Mi −

2√
β

1− β
3− β

(
2π

Da

) 1−β
2 [

(t+ Da)
3−β
2 −Da

3−β
2

]] 1
1−β

, (B.2)

with the initial mass Mi ≈ M(0) = 1. Note that for β = 1, 3 this solution is singular and is589

not valid. For linear kinetics, β = 1, the concentration profile is exactly Gaussian, and the total590

mass decays exponentially. For β = 3, combining Eq. (14) and Eq. (B.1), and carrying out the591

integration explicitly, we obtain592

Mβ=3(t) =

[
1 +

Da√
3π2

log

(
1 +

12t

Da

)]−1/2
, (B.3)

which decays to zero logarithmically as t→∞.593

Since the average concentration is proportional to the total mass (equation (4)), the dimen-594

sionless average concentration is equal to the dimensionless mass, c(t) = M(t). When β < 1, the595

mass reaches zero in a finite time according to Eq. (B.2), given to leading order in Da by596

tf =

(√
β

2

3− β
1− β

) 2
3−β

(
Da

2π

) 1−β
3−β

. (B.4)

For β > 3, the mass converges from above to an asymptotic minimum value according to597

Eq. (B.2). To leading order in Da, this gives,598

c∞ = 1− 2Da
√
β(β − 3)(2π)

β−1
2

. (B.5)
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Table 3: Definition of model parameters and units

Parameter Definition Units

r Reaction rate mol L−d T−1

c Concentration mol L−d

c0 Initial concentration mol L−d

c Mean concentration mol L−d

c∞ Normalized residual mean concentration, [−]

β non-linear power law exponent [−]

β̃ Power law exponent of the effective kinetic [−]

k reaction rate constant mol1−βLd(β−1) T−1

D Diffusion coefficient L2 T−1

Da Damköhler number [−]

L Characteristic length L

M Mass kg

S Reference surface L2

w0 Initial width L

σ Normalized variance [−]

t Time, normalized time T , [−]

tc Normalized persistence time [−]

tf Normalized final time, β < 1 [−]

τD Diffusion characteristic time T

τR Reaction characteristic time T

u Fluid velocity L T−1

V Volume of the batch L3

x Distance mol L−d T−1
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For 1 < β < 3, Eq. (B.2) follows a power-law decay, which leads to the average concentration,599

c(t) ≈
√

2π

Da

(√
β

2

3− β
β − 1

) 1
β−1

t−
3−β

2(β−1) , (B.6)

for t� Da.600

Differentiating Eq. (B.6), we find601

d

dt
c(t) = − 3− β

2(β − 1)

c(t)

t
, (B.7)

Because the average concentration decreases monotonically, c(t) is invertible, Solving Eq. (B.6)602

for time as a function of mean concentration, we have603

t(c) =

(
2π

Da

) β−1
3−β

(√
β

2

3− β
β − 1

) 2
3−β

c−
2(β−1)
3−β . (B.8)

Thus, the effective kinetics are given by604

d

dt
c(t) = β−

1
3−β

(
Da

π

β − 1

3− β

) β−1
3−β

c
1+β
3−β . (B.9)

B.2 High Damköhler number605

We now develop an approximate description for the behavior of the average concentration at606

high Damköhler. This involves two different regimes.607

B.2.1 First regime, t� Da608

First, for times t� Da, diffusion has not had time to significantly deform the initial condition.609

Thus, the average concentration evolves approximately according to the batch dynamics,610

dc(t)

dt
= −c(t)β , (B.10)

and we obtain611

c(t) = [1 + (β − 1)t]−
1

β−1 . (B.11)

For β < 1, the average concentration reaches zero during this regime at the time given by612

Eq. (19).613

B.2.2 Second regime, t� Da,614

For t > Da, the spreading of the pulse by diffusion cannot be neglected. Rearranging Eqs. (14)615

and (18), we obtain for the variance616

d log σ(t)

dt
=

1

2Daσ2(t)
− (
√
β − 1)

d logM(t)

dt
. (B.12)

If the first term on the right hand side of Eq. (B.12) dominates compared to the second term, the617

evolution of the variance is approximately diffusive. Otherwise, if the second term dominates,618
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the evolution of the variance is driven by the effect of reaction. Inserting Eq. (B.11) into (B.12),619

the condition for diffusion-dominated growth is thus620

σ(t)3−βM(t)β−1 <

√
β − 1√
β

(2π)
β−1
2

2Da
. (B.13)

We start by evaluating this inequality at t = Da, which is the onset of this second regime.621

Since mass follows the batch dynamics in the first regime (Eq. (B.11)), at t = Da, it is given by622

M(Da) = [1 + (β − 1)Da]−
1

β−1 . (B.14)

We substitute Eq. (B.14) and σ(Da) = 1/12 (corresponding to the initial variance of a rectangular623

pulse, assumed not to change appreciably up to t = Da) in Eq. (B.13), which gives the condition624

for a dominant diffusive variance growth at t = Da,625

2Da

(2π)
β−1
2

√
β − 1√
β

12−
3−β
2

1 + (β − 1)Da
< 1. (B.15)

For a given β, the left hand side of Eq. (B.15) is largest for Da→∞. Therefore, if the criterion626

holds in this limit, it holds for all Da. In this limit, the condition is627

2
√
β(
√
β + 1)(2π)

β−1
2 12

3−β
2

< 1. (B.16)

This holds for β . 5, as verified numerically. We focus on such β since higher β are not commonly628

encountered. Therefore, at t = Da, the variance growth is dominated by diffusion for the range629

of β that we consider, leading to a variance equal to630

σ2(t) ≈ σ2(Da) +
t−Da

Da
, (B.17)

with σ2(Da) = 1/12, and a mass given by the same equation as for the low Da regime, with the631

initial mass Mi ≈ M(Da), see Eq. (B.2). To test whether the criterion of diffusion dominated632

variance holds true at larger times, we substitute Eq. (B.17) and Eq. (B.2) in Eq. (B.13). This633

gives the criterion634

2Da

(2π)
β−1
2

√
β − 1√
β

[
1
12 + t−Da

Da

] 3−β
2

M(Da)− 2√
β

1−β
3−β

(
2π
Da

) 1−β
2

[
(t+ Da)

3−β
2 −Da

3−β
2

] < 1. (B.18)

It can be verified numerically that this criterion holds true at all times. For t→∞, this simplifies635

into636

3− β√
β + 1

< 1, (B.19)

which is always true for β > 1. Hence, the variance evolves diffusively at t = Da and at all later637

times, and a regime with reaction-dominated variance growth is never observed. The accuracy638

of the growth of the variance according to Eq. (B.17) is discussed in Appendix C.639

The effective kinetics can thus be derived as follows for different β. For 1 < β < 3, the640

effective kinetics remain given by Eq. (B.9), and the average concentration by Eq. (B.6) with641

Mi = M(Da) (Eq. (B.14)). For β > 3, according to Eq. (B.11) after replacing the initial mass642

Mi by M(Da), the mass tends to an asymptotic constant value given by643

M∞ =

[
M(Da) + Da

2√
β

β − 1

β − 3
(2π)−

β−1
2

]− 1
β−1

. (B.20)
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At sufficiently large Da, we can neglect M(Da) according to Eq. (B.14) because Da−
1

β−1 � Da.644

Thus, we obtain the asymptotic value for the average concentration,645

c∞ ≈ Da−
1

β−1

√
2π

(√
β

2

β − 3

β − 1

) 1
β−1

. (B.21)

Appendix C Hypothesis validation646

In addition to the numerical validation of the analytical derivation for the effective kinetics,647

we further test the validity of the assumptions that we use in our analytical derivations. The648

Gaussian assumption and the variance growth assumptions are discussed separately below.649

C.1 Gaussian assumption650

Here we assess the validity of the Gaussian assumption for different Damköhler numbers at times651

corresponding to different regimes. As highlighted by Eq. (13), Gaussian distributions of different652

widths σ and maximum value cpeak collapse to a single curve when represented according to the653

normalized variables x/σ and c/cpeak. It is thus convenient to use this normalization to test the654

Gaussian assumption. Furthermore, Gaussian curves are uniquely characterized by the power655

law scaling656

log(c/cpeak) ∼ (x/σ)
−2
. (C.1)

Therefore, Gaussian distributions are characterized by a straight line of slope 2 when representing657

log(| log(c/cpeak)|) against log(|x/σ|). Hence, any deviation from this slope corresponds to a non-658

Gaussian profile.659

In Fig. C.1, we test the Gaussian assumption in the case of β = 2 for low and high Damköhler660

numbers, respectively Da = 10−3 and Da = 103. At low Da, diffusion acts over much smaller time661

scales than reaction, and the profiles are Gaussian at all times (Fig. C.1.a and c), consistently662

with the hypothesis of Appendix B.1. For high Da, the early time profiles are non Gaussian663

and close to the initial square injection (Fig. C.1.b and d). In this regime, we do not assume664

Gaussianity but instead the dominance of reaction over diffusion (Appendix B.2.1). At late665

times, t � Da, the profiles are very close to Gaussian (Fig. C.1.a and C.1.b) and closely follow666

the power law scaling of Eq. (C.1) (Fig. C.1.b and d), which is consistent with the assumption667

of Appendix B.2.2.668

In Fig. C.2, we test the Gaussian assumption for the case of β = 0.5 for low Damköhler669

number, Da = 10−3. We do not represent large Da in Figure C.2 because mass reaches zero670

before t = Da in this case and only the first regime where we do not assume Gaussianity671

(Appendix B.2.1) is relevant. Again, consistently with the assumption of Appendix B.1, for low672

Da, the profiles are very close to Gaussian at all times (Fig. C.2.a) and closely follows the power673

law scaling of Eq. (C.1) (Fig. C.2.b). Results are similar for other reaction orders β < 1.674

These results confirm the assumptions that we have made in Appendix B for deriving ap-675

proximated analytical solution for the evolution of concentration distributions. For t � Da, we676

dot not assume that profiles are Gaussian but we assume that diffusion plays no role and that677

the evolution of concentration profiles is dominated by reaction alone. For small Da, this regime678

is very short and not considered here. For large Da, this regime is discussed in Appendix B.2.1.679

For t� Da, we assume that profiles are Gaussian, which is consistent with numerical simulations680

for all values of Da and β. This regime is discussed in Appendix B.1 and B.2.2.681
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Figure C.1: Test of Gaussianity of reactive pulses from numerical simulations for β = 2. Comparison
of reactive profiles, normalized by their peak values cpeak along the y axis and their standard deviation
σ along the x axis, with Gaussian profiles at early and late times, respectively t ≈ 10−1 × Da and
t ≈ 10×Da for a) Da = 10−3 , and b) Da = 103. Test of Gaussian power law scaling (Eq. (C.1)) for the
same cases respectively for c) low Da and d) high Da.

C.2 Variance growth assumption682

Here, we assess the validity of the assumption that the evolution of the variance is dominated683

by the diffusion term in Eq. (B.12). This leads to the prediction that the variance is constant684

for t � Da and grows diffusively for t � Da following Eq. (B.1) for Da ≤ 1 and Eq. (B.17)685

for Da > 1. We compare the variance growth in time obtained from numerical simulations with686

these predictions for different Damköhler numbers and β in Fig. C.3.687

In all cases, simulations are found to be in good agreement with analytical solutions. Note688

that for β < 1, the variance computed from numerical simulations starts decreasing at the end689

of the simulations, which is not captured by our model (Fig. C.3, a). A short time before the690

whole profile reaches zero, concentrations on the sides are reacting faster than they diffuse so691

that the variance starts to decrease before the whole profile reaches zero. This regime of variance692

decay is thus very short.693

6 Research data694

Research Data associated with this article can be accessed at https://doi.org/10.5281/695

zenodo.4114532.696
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Figure C.2: Test of Gaussianity of reactive pulses from numerical simulations for β = 0.5. a) Com-
parison of reactive profiles, normalized by their peak values cpeak along the y axis and their standard
deviation σ along the x axis, with Gaussian profiles at early and late times, t ≈ 10−1×Da and t ≈ 10×Da
for Da = 10−3. The high Da profile is not represented because the mean concentration reaches zero before
the times at which we assume Gaussianity, t = Da. b) Test of Gaussian power law scaling represented
by Eq. (C.1).
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