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Dispersive ionospheric Alfvn resonator 

Oleg A. Pokhotelov, • D. Pokhotelov, 2 A. Streltsov, 2 
V. Khruschev, • and M. Parrot 3 

Abstract. A new model of the ionospheric Alfv•n resonator (IAR) including the 
effect of wave frequency dispersion is presented. It is shown that the shear Alfv•n 
waves in the IAR are coupled to the compressional mode through the boundary 
conditions at the ionosphere. This coupling results in the appearance of the Hall 
dispersion and subsequent shift of the IAR frequency spectrum. The excitation 
mechanism involving the IAR interaction with the magnetospheric convective flow 
is considered. It is shown that the Hall dispersion of the IAR eigenmode increases 
the growth rate of the feedback instability. However, for the observed values of 
ionospheric conductivity this effect is not very high. It is shown that the physical 
mechanism of the feedback instability is similar to the Cerenkov radiation in 
collisionless plasmas. The IAR eigenfrequencies and growth rates are evaluated for 
the case of exponential variation of the Alfv•n velocity with altitude in the topside 
ionosphere. 

1. Introduction 

The concept of the ionospheric Alfvdn resonator (IAR) 
has been the subject of a great deal of research during 
recent years. The IAR arises due to the strong increase 
in the Alfvdn velocity with altitude, which results in 
wave reflection from velocity gradients and formation of 
a resonance cavity in the topside ionosphere. The idea 
of IAR was originally suggested by Polyakov [1976] and 
has been extensively studied by a number of authors 
[e.g., Polyakov and Rapoport, 1981; Belyaev et al., 1987, 
1990; Lysak, 1991; Trakhtengertz and Feldstein, 1991]. 
The most peculiar features of IAR are observed in the 
auroral zone, where the structure of currents and elec- 
tric fields is controlled by interaction and propagation 
of ULF waves in the topside ionosphere. Recently, ex- 
perimental evidence for the existence of IAR at high 
latitudes was confirmed by Belyaev et al. [1999] by 
using highly sensitive, two-component induction mag- 
netometer measurements from Kilpisjgrvi Observatory 
(Finland). 

The principal mechanism of IAR destabilization is 
connected with the sudden enhancement of magneto- 
spheric convection during magnetic storms, which re- 
sults in an instability, called the "fast feedback insta- 
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bility" [Lysak, 1991] in order to distinguish it from 
the slow feedback instability of the global ionosphere- 
magnetosphere resonator studied by Atkir•son [1970], 
$ato and Holzer [1973], and $ato [1978]. As the in- 
stability develops, part of the energy of the convective 
flow is transferred to the IAR eigenmodes. The theory 
of fast feedback instability was substantially developed 
by Lysak [1991] and Trakhtengertz and Feldstein [1991]. 

In this paper we will generalize the previous analysis 
by incorporating the dispersion of shear Alfvdn waves in 
the ionosphere-magnetosphere coupled system. We will 
show that this dispersion is produced by the ionospheric 
Hall current which arises due to the coupling of shear 
Alfvdn and fast magnetosonic (compressional) waves in 
the ionosphere. The deceleration of the Alfvdn phase 
velocity due to the Hall dispersion may increase the 
rate of energy transfer from the convective flow to IAR 
eigenmodes and overcome the dissipation rate due to 
the leakage of energy through the IAR upper boundary. 
The physical mechanism of such an instability, which 
we will term below as "feedback instability", is similar 
to the usual (•erenkov radiation in collisionless plasma. 

The paper is organized as follows: Section 2 describes 
the boundary conditions of the resonant cavity at the 
ionospheric and magnetospheric ends. The analysis of 
the dispersive ionospheric Alfvdn resonator is given in 
section 3. The dispersion relation for the feedback insta- 
bility is presented in section 4. Excitation of dispersive 
eigenoscillations by the feedback instability in the low- 
conductivity ionosphere is considered in section 5. The 
case for a highly conductive ionosphere is analyzed in 
section 6. Our discussions and conclusions are found in 

section 7. 
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2. Boundary Conditions in Dispersive 
IAR 

It is known that the plasma density in the ionosphere 
and low-altitude magnetosphere varies strongly along 
the geomagnetic field lines. The typical scale for this 
variation is of the order of 10 a km. This parallel plasma 
inhomogeneity leads to a strong variation in the back- 
ground Alfvdn speed, which in turn results in the ap- 
pearance of a so-called ionospheric Alfvdn resonance 
cavity. This cavity modifies the propagation of low 
frequency ULF waves near the ionosphere. Since the 
ionospheric cavity is localized at low altitudes (below 
1 - 2 RE), a straight magnetic field line approximation 
is used. The reference frame used in this study assumes 
that the external magnetic field B is directed along the 
z axis. For simplicity, the plasma is considered to be 
homogeneous across magnetic field lines. 

The shear Alfvdn and compressional modes in our 
model are described by the parallel component of the 
vector potential A and two scalar potentials (I) and q•. In 
this notation the total vector potential can be written as 
A =A2 + V'ñ x (q•2), where the second term represents 
the perpendicular component of the vector potential. 

If all perturbed quantities vary as exp(-i•:t), then the 
electric and magnetic field perturbations can be written 
in the following form: 

6Eñ - -V'•_(I) + iwV'•_ x 

and 

5Bñ = V'ñA x 

- (a) 
where Oz = O/Oz, • is the wave fi-equency, and 2 is 
the unit vector along the external magnetic field. The 
parallel component of the vector potential A is related 
to the scalar potential (I) by 

OtA = -0z q). (4) 

Equation (4) represents the fact that the field-aligned 
electric field in our plasma is zero, that is, E• = 
-0• (I) 4- ic0A = 0. This is valid if the wavelengths of the 
considered waves are much larger then the collisionless 
electron skin depth. 

The field-aligned current can be obtained by taking 
the parallel component of Amp•re's law, V' x 5B -/•0j, 
given by 

(5) j• - _ i-•Y0 
To describe the plasma motion, we start with the 

linearized ideal MHD equation 

-iwpv - j x B, (6) 

where p is the plasma mass density, j is the plasma 
current density, and v is the fluid velocity. In ideal 
MHD the magnetic field is frozen into the plasma, and 
the hydrodynamic velocity v is defined by the relation 
v = (SEñ x•)/B. In equation (6) we neglected the ther- 
mal pressure gradient. The latter condition assumes the 
low-pressure approximation. Eliminating from (6) the 
plasma current density with the help of Amp•re's law 
and Faraday's laws and rearranging, we obtain 

- 5r,) + - 0, (7) 

where CA = B/(/uop) •/"" is the Alfvdn velocity and •o is 
the permeability of free space. 

With the help of Faraday's law and (1), equation (7) 
can be written in the form of two scalar equations 

and 

2 
(8) 

2 + - 0, (9) 
which describe the shear Alfvdn and compressional modes 
in the ionospheric plasma. 

These equations should be supplemented by the proper 
boundary conditions for the ionosphere (z: 0) and at 
infinity (z -+ oc). The boundary conditions for the 
ionosphere are obtained from Amp•re's law. Applying 
(V'.) and (V'x)• to this equation, we obtain 

V'.j- 0, (10) 

and 

= -0(v x 
Equation (10) represents the electric current continuity 
equation, while (11) gives the supplementary relation 
which provides the connection between the potentials 
q• and (I). 

Following Lysak [1991] we consider the ionosphere as 
a conductive slab extending from z - 0 to z - -Az. 
The neutral atmosphere (-d < z < -Az) is consid- 
ered as a vacuum region, and the solid Earth (z < -d) 
as a perfect conductor. Since the resistance between 
the ionosphere and ground is much higher than that 
of ionosphere, we may neglect the field-aligned current 
flowing from the ionosphere to the atmosphere, and at 
z = -Az (the boundary between the ionosphere and 
atmosphere) we set j•(z - -Az) - 0. Taking into 
account this condition, integration of (10) gives 

jz(z = O)=-Vñ .Jñ, (•2) 

where Jñ is the perpendicular ionospheric current inte- 
grated from z = -Az to z = 0. Positive j• corresponds 
to the current flowing out of the ionosphere. Note also 
that the perpendicular electric field, and thus the scalar 
potentials, must be continuous across the boundary at 
Z----0. 
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In the thin slab approximation the conductive layer 
may be characterized by the height-integrated Pedersen 
and Hall conductivities Up and .En, respectively. Thus 
Ohm's law integrated across the ionosphere with Eñ 
replaced by (1) can be written as 

J_L -- -E?Vj_(I) + EHVñ x (1)2 

+iwEHVñ • + iwEpVñ x •2, (13) 

For simplicity, the Hall and Pedersen conductivities are 
assumed to be uniform. Substituting (13)into (1:2)and 
using (5), we write the current continuity equation as 

C A O O z (I) + iW c• p (I) q- W 2 c• i • : 0, (14) 

where c•p = Ep/ E• and C•z = EH/ E• are the ratios 
of the height-integrated Pedersen and Hall conductiv- 
ities to the wave conductivity 52w = 1//•0cn0, and all 
the values are taken at z = O. 

Integration of equation (11) with the help of (3) and 
(13) gives 

40 e2 + exp(-2z/L)' 
where s << 1. Physically, s defines the ratio of the 
Alfv•n velocity cn• in the ionosphere to that in the 
outer magnetosphere cnM. According to (17) they are 
related to this parameter as CAI/CMI -- e/(1 + e2) •/2 _• 
•. Thus CAt '"' CAO and CAm '"' cAO/e. 

By substituting z - z0e -•'/• and z0 - wœ/cAO, (8) is 
transformed into the Bessel equation [e.g., œysak, 1991] 

The solution of this equation, which satisfies the ra- 
diation condition at infinity, is 

(I) ( x ) -- (I) o •J_ ixoe ( Z ) , (19) 

where (I)0 is a constant, x0s << 1, and J,,(x) is a Bessel 
function of complex index and complex argument. 

Similarly, the solution to equation (9) in the limit 
x0s << 1 is given by 

-1 
+ azV2, ß + + io:,e) - 

The right-hand side of (15) is defined at z = -Az. 
In the neutral atmosphere (-d < z < -Az), under 
the condition that • vanishes on the surface (z = 
-d) of the perfectly conducting Earth, it is given by 
ß = Csinh[-k_L(Z + d)]/sinh(-k_Ld)with C an arbi- 
trary constant [Yoshikawa and Itonaga, 1996]. If the 
wavelength is much smaller than the atmospheric depth 
( k_Ld >• 1), q• scales as exp(k_Lz), that is, falls off ex- 
ponentially toward the ground. Using this condition, 
we set 0z •(--Az) = kñ •, where k_L is the perpendicu- 
lar wave number. Replacing V•L with --k•L in (15) and 
using the thin slab approximation, Az -• 0, we obtain 

-1 

Oz• -- kñ • + cAo(O•nCI) + iwc•p•) -- O. (16) 

Finally, we have to specify the boundary conditions at 
the magnetospheric end, that is, at z -• oo. To simplify 
the problem, we follow the method suggested by Trakht- 
engertz and Feldstein [1991] and assume that at z -• oo 
only outgoing solution exists. This corresponds to the 
so-called radiation condition at the magnetospheric end 
of IAR. Equations (8) and (9) with boundary conditions 
(14) and (16) at the ionosphere and the radiation con- 
ditions for shear Alfv•n and compressional modes at 
infinity form a closed set of equations necessary for the 
study of IAR eigenmodes. 

3. Dispersive Ionospheric Alfv•n 
Resonator 

Following Lysak [1991] and Trakhtengertz and Feld- 
stein [1991] we choose the Alfvdn velocity profile in the 
resonator as 

ß (x)- (20) 

where •0 is constant and we choose the solution which 
decreases with the altitude. 

According to Meissnel's formula [e.g., Watson, 1948], 
in the region of the ionospheric sheet (x •_ x0) the Bessel 
function scales as J•_œ(x) oc exp(-kñz) in the kñL >> 
1 limit and c9z• = -kñ•. Therefore the first term in 
(16), involving the derivative of • with respect to z, is 
equal to the second term in our approximation. Thus 
the compressional mode falls off as exp(-kñ ]z]) on both 
sides of the ionospheric sheet. 

Thus boundary condition (16) reduces to 

-•Lc•u • = CAø •I,, (21) 
2kñ L - ixoap 

where all the values are taken at x = x0. 

From (19)-(21)it follows that 

(x) (22) - ' 

Substituting (21)into condition (14), we finally ob- 
tain 

x0b - 0. (23) O a: (I) + (iccp + 2 k _• L - i x o c• p 
Expression (23) without the Hall dispersion term co- 

incides with that obtained by Lysak [1991] and Trakht- 
engertz and Feldstein [1991]. This additional term de- 
scribes the coupling between the shear and compres- 
sional Alfv•n modes. According to (10) and (11) the 
inclusion of the Hall dispersion in the boundary condi- 
tion (23) is necessary in order to satisfy' Amp•re's law. 
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Substituting the solution (19) into boundary con- 
dition (23), we obtain the dispersion relation for IAR 
eigenfrequencies 

j' _ z0c•r (24) i•ø•(xø) = io•p + , 
J_ixo•(Xo) 2k•_L- ixoo•p 

where the prime denotes the derivative over the argu- 
ment of the Bessel function. 

In the low-conductivity case (a• << i and a• << 
1), decomposing the dimensionless frequency x0 into its 
real and imaginary parts, x0 = rl+iS, and assuming that 
the three quantities x0s, ap, and a•/k_cL are small, we 
obtain 

r/ -- r/lm(1 )' (25) 
and 

•---Ozp- j02(/]1m) , (26) 
where rh,• , m - 1, 2, 3,... are the zeroes of the J1 
function; for example, the first two roots of rhr• are 3.8 
and 7.0 [cf. Gradshteyn and Ryzhik, 1980]. Similarly, 
for J02(r/l,•) we have 0.2 and 0.1. 

It is seen from (25) that the inclusion in the model of 
the compressional mode leads to the small reduction in 
the resonant eigenfrequencies (red frequency shift) and 
provides dispersion for the shear Alfvdn waves. Expres- 
sion (26) describes the wave damping rate due to the 
Pedersen currents in a conductive layer (first term on 
the right-hand side of (26)) and wave energy leakage 
through the upper IAR wall (the second term). Terms 
describing the mode attenuation due to the Hall cur- 
rents are neglected here because they are small quan- 
tities of the higher order • 1/(k_cL) 2. Inspecting val- 
ues of J02(r/1,•), one may find that this attenuation is 
stronger for the higher harmonics. 

The schematic plot of the perpendicular electric field 
5Ex of the fundamental IAR eigenmode for a weakly 
conductive ionosphere is shown in Figure i (solid curve). 
We recall that 5Ex is defined by the relation (1), where 
the first term on the right-hand side gives the main 
contribution while the second one is considered as a 

small correction, that is, 5Ex _• -ikx (I) with (I) defined 
by (19). Owing to the low ionospheric conductivity it 
has antinodes both at the conductive layer and at the 
upper boundary of the IAR. 

From (3) and (22) the compressional component of 
the magnetic field for the case of low conductivity takes 
the value 

•Bll(2: --• 0) • O•Hk-l-Jø(/]lm)(I)0. (27) -- 2CAO 

As the altitude increases, it rapidly (cr exp(-kxz) ) 
decays toward the magnetospheric end. 

In the highly conductive ionosphere the IAR eigenfre- 
quencies are close to the roots of the zero order Bessel 

function, J0(r/0r•) = 0 [e.g., Trakhtengertz and Feld- 
stein, 1991]. The first two roots for r/0,• are 2.4 and 5.5 
[cf. Gradshteyn and Ryzhik, 1980]. From (27) it follows 
that the compression of the magnetic field in the highly 
conductive ionosphere vanishes and the Hall dispersion 
is not important. When the ionospheric conductivity is 
high the perpendicular component of the electric field of 
the fundamental eigenmode has nodes at both the lower 
and upper IAR boundaries. It is plotted schematically 
with a long-dashed curve in Figure 1. 

4. Dispersion Relation for Feedback 
Instability 

In this section we consider the generation of shear 
Alfvdn waves in the presence of magnetospheric convec- 
tion flow. We assume that the electric field E0, con- 
nected with this convection, penetrates the conductive 
ionospheric sheet and serves as the source of free energy 
necessary for the excitation of IAR eigenoscillations. 
For simplicity, we assume that the ionospheric conduc- 
tivity is directly proportional to the density. This is a 
reasonable assumption as long as the ionospheric tem- 
perature and the neutral density do not vary signifi- 
cantly due to the field-aligned currents or subsequent 

IAR upper wall 

/ 
! 

// 

IAR lower wall (ionospheric E layer) 

Figure 1. Perpendicular electric field 5Ex of the fun- 
damental eigenmode when the ionspheric conductivity 
is low (solid curve) and when it is high (long-dashed 
curve). 
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particle precipitation [cf. Lysak, 1991]. Thus the varia- 
tion of the height-integrated Pedersen and Hall conduc- 
tivities can be written as 

- - (28) 

where 5n is the perturbation of the ionospheric num- 
ber density and no is the equilibrium density due to 
the solar radiation. The ionospheric density satisfies 
a continuity equation which includes a source due to 
precipitation and losses due to recombination, 

atn q- Vñ. (rivE) -- S- R(n 2- n02), (29) 

where vE - B-•(E x i), E - 5Eñ + E0 is the total 
electric field, S is the source term due to precipitation, 
and R is the recombination coefficient, which is of the 
order of 2 x 10-7 cm a s- • [e.g., Brown, 1966]. Note 
that the recombination scales as the square of the den- 
sity since an electron and ion must meet to recombine. 
In this model the source term is due to the precipi- 
tation and is proportional to the field-aligned current 
density S- Qjz [cf. Atkinson, 1970; Sato and Holzer, 
1973; Sato, 1978] (here a positive current corresponds 
to precipitating electrons). The source term S depends, 
to lowest order, on the energy flux of the precipitating 
electrons [Rees, 1963]. 

In the steady state, the density is given by n - 
(no 2 + S/R) •/2, where for strong precipitation, the sec- 
ond term dominates. The density perturbation can 
be found from the linearized equation (29). In the 
reference Dame moving with the drift velocity v0 - 
B -• (E0 x i) it is given by 

an k}B-•(c•; • -•LOxo(I)- •) CAO 
_- 

no x0 + iv , (30) 
where 0xo(I) - 0•cI) I•=•o, v - 2LRno/cAo << 1 is the di- 
mensionless recombination frequency, cq - (Az/•pi)7•) • 
•pi - c/wpi is the collisionless ion skin length, wpi = 
(noe2/somi) •/2 is the ion plasma frequency, mi is the 
ion mass, e is the magnitude of the electronic charge, 
and 7Q - eAzQ represents the number of additional 
electron-ion pairs created per incident electron. Nor- 
mally, 7Q is a nearly linear function of the incom- 
ing electron energy. It is about 100 for 10 keV elec- 
trons [Rothwell et al., 1984]. According to Lysak [1991], 
Az •_ •pi •- 10- 30 kin. Therefore for the real iono- 
spheric conditions, c• is a small parameter of the order 
of 10 -• - 10 -•. 

In order to find the field-aligned current in the pres- 
ence of the convection electric field, we use equation 
(12), in which Jñ should be eliminated with the help of 
Ohm's law and E - 5Eñ + E0 with 5Eñ given by (1) 
and E0 being the large-scale electric field. After simple 
rearrangements with the help of (30) we obtain 

jz -ik•_Zw 

ß [ic•p• + + c•uc•t0z0L-•(1 - )•] 
x0 + iv x0 q- iv ' 

(31) 

where 

L 
ere = -•[c•p(kñ x V0)z + C•H(kñ. v0)]. (32) 

O•ICAO 

Substituting the explicit expression for jz from the 
parallel component of Amp•re's law into equation (31) 
in the moving system of reference, we obtain the follow- 
ing boundary condition' 

(1- cry, )O•, • - i•p• 
xo+ iv o 

•i•l ff • 

The connection between the • and ß potentials, which 
follows from equation (11), can be obtained similar to 
section 2 and now reads 

• = C;o•L[o•H(I)- i5•(xo + iv)-•Oxo •1 (a4) 
2kñL- ix0ap[1 + a•a•5•(x0 + iv)-•] ' 

where 

L 
8v = -•[c•m(kñ x V0)z - c•p(kñ. v0)]. (35) 

CAOOZI 

By introducing T as the angle between the wave vec- 
tor and the direction of the drift velocity, expressions 
(32) and (35)can be rewritten as 

kñ Lvoo•c 
c% = - cos[90- arctan(c•p/c•Z)], (36) 

O•ICAO 

and 

5• = - kñ Lvoac sin[•o - arctan(ap/aH)], (37) 
CAO0•I 

where c•c -(c•, + c•}) •/2. 
With the help of (19), (33), and (34), the dispersion 

equation for the feedback instability becomes 

{1- 
xo +iv 

+iXOaltd•(xo + iv)-•[1 - cqc•erv(x0 + iv)-•] } 
2kñL- ixoc•p[1 + O•IO•31(•qo (•0 q- iv) -•1 

= iozp 

x0c•/(1 - c•c•c%(x0 + iv) -•) 
+ - + + (a8) 

The dispersion equation (38) is rather complicated 
and can be solved in the general case only by numerical 
methods. However, we can simplify the problem and 
consider some limiting cases when the solution to this 
equation can be found analytically. 
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5. Feedback Instability in the 'Weakly 
Conductive Ionosphere 

The dispersion relation (38) can be analyzed in two 
limiting cases of high and low ionospheric conductiv- 
ities. In low-conductivity limit the solution to equa- 
tion (38) is localized in the vicinity of the roots of the 
equation J1(•/1,•) - 0. According to Lysak [1991] the 
maximum of the feedback instability growth rate in the 
absence of the Hall dispersion is found in the vicinity of 
•r½ •_ •hr• where 5½ is negligible. Since the Hall disper- 
sion in our problem is considered as a small correction, 
one should expect that in equation (38) the terms con- 
taining 5½ may be neglected. The rigorous treatment 
(which leads to rather lengthy calculations) shows that 
accounting for these terms results in only a negligible 
shift in the expression for the critical velocity. Neglect- 
ing the small terms in equation (38), we get 

i (1- •r½ _i?_•oœ(Xo) Xo + iF ) J-i•,oe(Xo) = iap+ 2kñL(1- ). x0 + iv 

Expanding the Bessel functions in equation (39) in 
the vicinity of x0 _ •h-•, we obtain 

(x0- + i.) = 

-- 

_xo(xo + _ + )(xo + 2k•L 

+i•½ •. (40) 
It follows from (40) that the appearance of the di- 

mensionless frequency •½ is equivalent to the adding 
of a convective mode x0 = •½ (pumping wave) in the 
system. The modes become close to each other when 
•½ 2 •. The schematic plot of the dimensionless fre- 
quency •0 as a function of dimensionless perpendicular 
wave number k xL is shown in Figure 2. It is seen that 
modes are separated due to the dispersion. For sim- 
plicity, we neglect the corrections due to recombination 
and leakage out of the upper boundary of the resonator 
and consider v = • = 0. Note that both of these effects 

should just provide damping. Then we get 

1+ - + 2kxL 

+•r•rll.• - O. 

Solving this equation gives 

1 OziOz H 

xo - •-•{o'•, + rll,• - iar + • 2k•L 

(41) 

where 

a- (ere- r/ira) 2- o•- kñL ' 
(43) 

b = --2o•p(rrqo q- r/lm), (44) 
and 

c• 0• 1 (45) I-l+2kñL_ ' 
In expressions (43) and (44) the small terms of the 

order of 1/(k ñ L) 2 are neglected. 
Using a formula for the square root of a complex num- 

ber [e.g., Abramowitz and Stegun, 1964] 

(a + bi) 1/2 - 4-2 -1/2. 

{ [(a2 + b2)l/2 + a] +isgnb (a 2+b2) 1/2-a , 
(46) 

we obtain 

Rex0 = (21) -1 

o•zo•u (a 2 + b2) 1/2 + a 
ß O'qø + l]lm-[-O'qø 2kñL •1• • 2 ' 

(47) 
and 

- -• . (48) 

Expressions (47) and (48) are still difficult to analyze 
because they depend on both kñ and •. We can further 
simplify the problem by considering only those wave an- 
gles at which the maximum growth occurs. Maximizing 
the growth rate (48) over •r½ in the leading order gives 

•r• = rh,• + a•, •- rh,•. (49) 

Eliminating er• from (47) and (48) with the help of 
(49), we get 

and 

2kñL ' (5o) 

(•p 
7_ • 

2 
2 2 1/2 . - + 

2kñL 

Ol l Ol H 

+[(o'•, + r/l.• - ia•, + o'•, 2k_LL )• -4•r•rh"•I]•/" 
1 

- 2kñL 
4-(a + (42) 

+ •/•,•c•H (c•H - c•,)}1/2, (51) 
2kñL 

where A•hr• is the frequency shift and the bottom sign 
gives an instability. 
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Figure 2. Modification of the IAR eigenmodes due to the Hall dispersion. 

Using the explicit expression for ere (36) and omitting 
the small term, we rewrite condition (49) in the form 

Ozp cr cos(99 - arctan ) - - v•--2, (52) 
C•H V0 

with 

cr _ cqrcA0V•r• (53) v•,• - kz Lc•c ' 

According to (52) the angle • corresponding to the 
maximum growth exists if v0 _> v• •, which defines the 
instability threshold. When v0 - v• " we have • - 
•max with 

ffmax 0'" 4-71' -4- arctan (54) 

Substituting • -- •9ma x -Jr- h•9 into equation (52) and 
using the expansion cos A• _• 1- (A•)2/2, we obtain 
that such an angle exists in the cone 

•max --[2(1 - Vir•)]i/2 < • < •max -Jr-[2(1- Vlm)] 1/2, 
V0 V0 

centered around •m•x. This situation is similar to the 
(•erenkov radiation in collisionless plasma. For the 
marginal instability (v0 _• vg") the growing waves prop- 
agate at an angle defined by equation (54). The growing 
mode has negative frequency shift (red shift). 

When a• >> •.•.(•.- a•)/kñL, the Pedersen 
term is dominant and equations (50) and (51) reduce 
to the result of Lysak [1991], 

and 

Ar/•m -- 4- (øzprhm) •/2 2 
(56) 

a.(57) 7- 2 q= 2 ' 

In the opposite case when •r•C•U(C•U- cL•)/k.t.L >> 
c•p, the Hall term is dominant. Thus (50) and (51) 
reduce to 

A?• -- 4-•? [kñL/2(1 - a•IaH)] •/2 , (58) 
•H 

and 

7 - q:?•r•C•U(1 -- Cq/C•U) •/2 _ C•p. (59) 
(2k.t.L)•-/2 2 

Comparing (51) and we noe that in general 
the inclusion of the Hall dispersion in the IAR model 
enhances the feedback instability growth rate. This 
is connected with the decrease of the phase velocity 
of IAR eigenmodes caused by the Hall dispersion fre- 
quency shift. In this case the wave moves more slowly 
and stays longer in resonance with the convective flow. 
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In general, the Hall conductivity in the ionosphere 
scales with the Pedersen conductivity. For example, 
for sunlight-produced conductivity, the ratio C•H/C•p 
2, while for precipitation-produced conductivity, their 
ratio scales as C•H/C•p -,• E 5/8 [e.g., Spiro et al., 1982], 
where E is energy of precipitating electrons in keV. This 
ratio is 6.5 for energy of 20 keV and 8.4 for energy of 
30 keV. Thus the conductivity c•c in equation (36) is 
related to the Pedersen conductivity c• by the relation 
crc - crp(1 q- E5/4) 1/2 Using this connection, we can 
estimate from (51) the relative contribution of the Hall 
and Pedersen terms in the feedback instability growth 
rate given by 

TlmO•H(O• H -- 0•I) TlrnO•pE 5/4 
•_ . (60) 

kñLc• kñL 

From (60) we obtain that the relative role of Hall dis- 
persion in the feedback instability increases with both 
the growth of the wavelength and the energy of precip- 
itating electrons. This contribution becomes stronger 
for the highest harmonics of IAR eigenmodes. How- 
ever, the actual role of the Hall dispersion corrections 
in the feedback instability growth rate is not very high. 
This is supported by the following estimations. The pa- 
rameter k_kL - 2•rL/A_k (Añ is the perpendicular wave- 
length) is 60 for a wavelength of 100 km, and 6000 for 
1 km. A reasonable value for the normalized night- 
time Pedersen conductivity c•p is 0.1 [e.g., Spiro et al., 
1982]. Substituting these values into (60), it is found 
that the Hall correction term only becomes significant 
in the long-wavelength limit. It should be noted that in 
this case the effects of finite k j_d which we omitted in 
the derivation of boundary condition (16) should also 
be accounted for. The importance of the Hall terms in 
the study of shear Alfv•n waves in the auroral region 
was also emphasized recently by Yoshikawa and Iton- 
aga [1996]. However, for most typical auroral structures 
with wavelengths of the order of 1- 10 km the Hall dis- 
persion effects are negligible, and the previous analysis 
of Lysak [1991] serves as a reasonable approach to the 
problem at hand. 

6. Feedback Instability in the Highly 
Conductive Ionosphere 

When the ionospheric conductivity is high, the IAR 
eigenfrequencies are localized near the roots of the zero 
order Bessel function J0(T0r•) - 0. Expansion of (38) 
in the vicinity of x0 •_ T0r• in the leading order gives 

Xo(Xo- TOrn) = (loop q- TOm--Ol5 )-1 (61) 
(xo - r%) 2kñL ' 

Here, as in the previous section, terms containing e and 
•, as well as the corrections of the order of 1/(kñL) 2, 
have been neglected. 

xo 2 Xo(To• - i 1 2 - --q-i - j; ) - i + i - o . • 2a•kxL 
(•) 

Solution of this equation can be obtained by a method 
presented in the previous section. However, the result 
can be obtained even easier if we simply analyze equa- 
tion (62). First, we note that contrary to the previous 
section, the feedback instability growth rate increases 
with the increase of rr• without approaching any max- 
imum value. Since we neglected the nonlinear terms, 
our theory is valid only in the vicinity of the instability 
threshold when the imaginary part of x0 vanishes. From 
equation (62) follows that the condition Imx0 = '/= 0 
corresponds to two solutions rr• - Toar•C•t/2c•pkñL and 
rr• = T0r•. Substituting these values into equation (62) 
we obtain x0 = 0 and x0 = T0r• ß The first root is un- 
physical and corresponds to zero frequency mode. The 
other solution is related to the IAR eigenmode. Thus 
we have to consider only the second case. Near the in- 
stability threshold we may introduce At% = rr•- T0r• 
and Xo = To-, + ATo.• + i7 with ATo., << T0-, and 
'/<< To.,. Substituting these values into equation (62) 
and neglecting the terms of the order 1/(k•_L) 2, we im- 
mediately obtain the expressions for the frequency shift 
and instability growth rate 

and 

ATom __ rr• - Tom 22 , (63) 
O•PT0m 

3' - rr• - T0,• (64) 
O•PT0m 

Equation (64) coincides with the corresponding ex- 
pression (9) of the paper by Trakhtengertz and Feld- 
stein [1991] (except for the numerical factor 3), which 
was obtained in the absence of the Hall dispersion. 
Thus in accordance with our preliminary considera- 
tions made in section 3, Hall corrections (at least of the 
first order) are not important in the high-conductivity 
limit. The maximum value of ere appears when cos[•- 
arctan(c•p/c•H)] = --1, that is, at T = •max • •w + 
arctan E -s/s, similar to the previous section. This an- 
gle depends only on the energy of precipitating elec- 
trons. 

Substituting • = •max into the equations (63) and 
(64), we finally get 

1 v0 
AT0r•- ( - 1) (65) c•, Tom •.-57-r , V0m 

and 
1 v0 

c•p ( - 1) (66) V0m 

where cr _ c•c• /k L V0m CAOTOm _L ß 

Instability occurs if 

cr __ CAOO•ITOm 

vø -> Vør• c•pkñL(1 + Es/4)•/2' (67) 
According to (65) the growing mode has a positive 

frequency shift (blue shift). At high conductivity the 
instability moves to a larger value of r%. For a given 
drift velocity v0, this just implies that the wavelength 
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becomes shorter. Only the product of k_cand v0 is 
specified by the instability conditions. Thus a modest 
drift velocity can give rise to the instability for a short 
enough wavelength. With the increase of c•? the growth 
rate vanishes as '7 cr o• 1 [cf. Lysak, 1991; Trakhtengertz 
and Feldstein, 1991]. 

7. Discussion and Conclusions 

The analysis presented in this paper shows that the 
IAR feedback instability may exist at both high and low 
ionospheric conductivities as was predicted by Lysak 
[1991] and Trakhtengertz and Feldstein [1991]. Cou- 
pling of the shear Alfvdn waves to the compressional 
mode, considered in our paper, leads to a weak disper- 
sion of IAR eigenmodes as shown in Figure 2. In the 
low-conductivity limit c•p << 1 the inclusion of the Hall 
conductivity terms leads to the increase in the feedback 
instability growth rate, which is caused by the reduction 
of the phase velocity of the IAR eigenmodes. However, 
for real ionospheric parameters this modification is not 
very strong. It should be noted that the ionospheric 
conductivity is low mainly during the nighttime condi- 
tions. In this case the ionospheric dissipation is small, 
and the electric field of magnetospheric convection can 
easily penetrate the conductive slab. Thus the convec- 
tion flow moves relatively• freely through the ionosphere, 
losing its energy due to Cerenkov radiation in the IAR. 
This situation is similar to one in the toroidal magneto- 
spheric waveguide, in which the ordinary mechanisms 
of energy dissipation (such as wave absorption at the 
ends of the geomagnetic field line tubes) are not present 
[Pokhotelov et al., 1997, 1998]. When ionospheric con- 
ductivity is high (daytime), the feedback instability may 
also arise, but the growing oscillations shift to shorter 
wavelengths. 

Recently, Newell et al. [1996] presented data from 
the DMSP satellite showing that the most intense auro- 
ral arcs (discrete aurora), which are usually attributed 
to the small-scale Alfvdnic structures, appear preferen- 
tially in the weakly conducting ionosphere when strong 
electron precipitation is observed. The analysis pre- 
sented here shows that the feedback instability growth 

rate scales with the ionospheric conductivity as 
during the nighttime (low conductivity) and as 
during daytime (high conductivity). Thus the prefer- 
able conditions for strongest deceleration of the convec- 
tive flow and subsequent excitation of IAR eigenmodes 
are probably realized during periods of low ionospheric 
conductivity, in accordance with the data of Newell et 
al. [1996]. These authors also came to the same con- 
clusions and considered that the model developed by 
Lysak [1991] is the most probable candidate to explain 
the appearance of discrete auroral arcs among other 22 
theories of auroral arcs discussed by Borovsky [1993]. 

For more comprehensive comparison with the obser- 
vational data our analysis should be supplemented by 
the numerical study of dispersion relation (38). Lysak 
[1991] has performed numerical investigation using 

similar dispersion relation that does not include the 
Hall dispersion corrections. This analysis revealed the 
appearance of the growth rate maximum at c•? __ 1, 
that is, when the IAR is optimally matched with the 
magnetospheric load. Results from the numerical anal- 
ysis of the IAR feedback instability using equation (38) 
with arbitrary values of ionospheric conductivity will be 
presented in a separate paper. 

The results of our study might be useful for a better 
understanding of the fundamental IAR properties, as 
well as for the interpretation of recent satellite observa- 
tions by Freja and Fast satellites [e.g., Stasiewicz and 
Potemra, 1998; Ergun et al., 1998]. 
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