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Highlights1

• We introduce the concept of inter-reaction times for quantifying trans-2

port limitations in fluid–solid reactions3

• We upscale this process using the chemical continuous time random4

walk framework5

• Results are compared to two- and three-dimensional particle tracking6

simulations7
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for upscaling transport limitations in fluid–solid9

reactions10
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Abstract13

Fluid-solid reactions play a key role in a large range of biogeochemical pro-
cesses. Transport limitations at the pore scale limit the amount of solute
available for reaction, so that reaction rates measured under well-mixed con-
ditions tend to strongly overestimate rates occurring in natural and engi-
neered systems. Although different models have been proposed to capture
this phenomenon, linking pore-scale structure, flow heterogeneity, and local
reaction kinetics to upscaled effective kinetics remains a challenging problem.
We present a new theoretical framework to quantify these dynamics based
on the chemical continuous time random walk framework. We study a fluid–
solid reaction with the fluid phase undergoing advective–diffusive transport.
We consider a catalytic degradation reaction, AF + BS → BS, where AF
is in fluid phase and BS is in solid phase and homogeneous over the fluid–
solid interface, allowing us to focus on the role of transport limitations and
medium structure. Our approach is based on the concept of inter-reaction
times, which result from the times between contacts of transported reactants
with the solid phase. We use this formulation to quantify the global kinetics
of fluid-reactant mass and test our predictions against numerical simulations
of advective–diffusive transport in stratified channel flow and Stokes flow
through a beadpack. The theory captures the decrease of effective reac-
tion rates compared to the well-mixed prediction with increasing Damköhler
number due to transport limitations. Although we consider simple kinetics
and media, these findings will contribute to the understanding and model-
ing of the effect of transport limitations in more complex reactive transport
problems.
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time random walk15

1. Introduction16

Biogeochemical reactions at the interface between fluid and solid medium17

phases play a central role in a large range of reactive transport problems,18

such as contaminant transport and degradation, soil remediation, mineral19

weathering, and carbon dioxide sequestration [5–7]. Biotic and abiotic re-20

actions at solid-fluid interfaces include dissolution/precipitation, adsorption,21

complexation and redox reactions. The kinetics of these reactions on solid22

surfaces depend directly on the concentration of solutes in the fluid phase,23

which evolve in time and space through flow and transport dynamics. There-24

fore, much effort has been invested into the development, setup, and choice25

of detailed reactive transport models to quantify these processes and their26

interaction with transport and medium geometry [1–3]. The basic quantifi-27

cation of the kinetics of such reactions is generally performed using well-28

mixed batch experiments. Yet, transport limitations at the pore scale lead29

to large deviations from these estimates by reducing access of solutes to reac-30

tive surfaces compared to fully-mixed systems. This phenomenon has been31

observed in resolved numerical simulations of carbonate mineral dissolution32

in porous media [8], numerical simulation and column experiments of calcite33

dissolution [9, 21, 22], numerical simulations of mineral dissolution in het-34

erogeneous porous media [11, 23], pore-scale reactive transport simulations35

in rough fractures [13], and batch experiments and field-scale modeling of36

biodegradation of dissolved organic carbon in aquifers [24]. Pore-scale flow37

and structure have also been found to significantly impact adsorption to min-38

eral surfaces in porous media, an effect which has been observed in detailed39

lattice-Boltzmann simulations [16–18].40

These studies have consistently found that reaction rates are significantly41

lower than expected from classical well-mixed theories, especially when re-42

action is fast compared to transport processes. Volume averaging tech-43

niques [14, 15] have been employed to identify general conditions under44

which classical macroscopic models of reactive transport break down, and45

transport limitations lead to decreased global reaction rates and/or modified46

rate laws. Random walk models have been used to investigate the impact47

of transport on surface reactions for simple geometries, such as sinusoidal48

channels [19, 20]. The role of available reactive surface area [10, 12] and49

surface roughness [13] in mineral dissolution in porous and fractured media50
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has been analyzed and quantified through experiments and numerical simu-51

lations. However, a quantitative link between pore-scale transport dynamics52

and effective fluid–solid reaction kinetics remains unavailable. Furthermore,53

in practice, highly-resolved numerical simulations can be prohibitively ex-54

pensive, and detailed knowledge of the dynamics and spatial distribution55

of physico-chemical properties is often not available, stressing the need for56

upscaled models of reactive transport [26].57

In well-mixed batch reactors, reactant concentrations are spatially ho-58

mogeneous. In the Lagrangian particle picture, this corresponds to every59

particle being instantaneously available to participate in a reaction with ev-60

ery other particle. This deterministic picture can be extended to account61

for stochastic variability for small particle numbers, while retaining the well-62

mixed assumption [28]. This is achieved through the concept of inter-reaction63

times, which represent the time between the occurrence of sequential reaction64

events amongst sets of reactants in accordance with the chemical reactions.65

In the classical stochastic theory, reactants are assumed to be fully-mixed,66

in the sense that all sets of reactants allowed by the chemistry have the67

same probability of reacting. This leads to exponentially-distributed inter-68

reaction times, representing a probability per unit time of reaction that is69

fully determined by the thermodynamic reaction rate and the available re-70

actant numbers at a given time. The classical well-mixed rate laws, under71

which reaction rates correspond to products of reactant concentrations with72

powers determined by the reaction stoichiometry, are recovered in the limit73

of large particle numbers [29]. In practice, this picture holds only if diffusion74

is sufficiently fast to locally homogenize reactants, so that the limiting factor75

in determining reaction rates lies in the thermodynamic properties of the76

reaction rather than transport.77

Fluid–solid reactions involve transported and immobile reactants. Solid-78

phase reactants are located at the interface between a fluid phase, in which79

fluid-phase reactants are transported, and a solid phase of the underlying80

medium. The first explicit model of the impact of transport on reaction81

is due to von Smoluchowski [30]. It quantifies contact reactions between82

a hard sphere and a sea of diffusing particles, and it leads to an effective,83

time-dependent reaction rate which depends on transport properties, namely84

the diffusion coefficient. Because there is no fluid flow into or out of the85

solid interface, mass flux of fluid reactants allowing contact with solid-phase86

reactants is ultimately governed by diffusion. On the other hand, advective87

transport along streamlines may bring reactants closer or farther from the88
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solid phase. Thus, in the inter-reaction time picture discussed above, the89

combined effect of medium heterogeneity, advective variability, and diffusion90

introduces reaction delays in terms of the first passage times of reactants91

to the solid phase. Quantifying this effect and its impact on reaction rates92

is therefore fundamental for modeling fluid–solid reactions in porous and93

fractured media.94

Recently, the chemical continuous time random walk (chCTRW) frame-95

work was developed in order to relax the well-mixed assumption in stochastic96

reaction modeling, leading to inter-reaction times which encode the effect of97

local transport limitations through additional reaction delays due to trans-98

port limitations [31]. The chCTRW hence quantifies the effect of broader99

distributions of the times required for sequential reaction events to occur.100

Despite the formal similarities, this differs conceptually from the classical101

CTRW framework, which quantifies the effect of broadly distributed times102

or distances associated with particle displacements [32]. Such reaction de-103

lays can be quantified in terms of the first passage times of reactant particles104

across each other [33–37]. In the case of fluid–solid reactions, these are related105

to the duration of excursions between visits to the solid interface. The latter106

are closely related to the time spent near the interface, which can be formally107

quantified through the so-called local time at the boundary, which represents108

the amount of time spent in a thin region near the interface divided by the109

region thickness, in the limit of vanishing thickness [38–41]. The concept110

of modeling reactive transport in terms of exposure time, that is, the time111

that reactants spend in close proximity and so are available for reaction, has112

received some attention over the past decade [42–46]. Nonetheless, the rela-113

tionship between exposure time and flow and medium heterogeneity remains114

little understood. The central goal of the present work is to formalize the115

notion of inter-reaction times and their impact on reaction dynamics in the116

context of fluid–solid reactions under advective–diffusive transport, in order117

to better undertand and upscale the impact of flow, transport, and medium118

structure on global reaction rates.119

We consider here a catalytic degradation reaction, AF + BS → BS, a120

simplified chemical setup which allows us to focus on the role of transport121

limitations. The reactant species BS is taken to be in solid phase, immobile,122

and homogeneously distributed over the fluid-solid interface, whereas the re-123

actant species AF is in fluid phase and undergoes advective–diffusive trans-124

port. The impact of disordered (i.e., random and uncorrelated at different125

spatial locations) distributions of solid-phase reactants and residence times126
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on this type of reaction has been studied for diffusive and subdiffusive trans-127

port (i.e., transport phenomena where plume variance grows sublinearly in128

time) and trapping using random walk models [48–55], and purely-advective129

transport in a streamtube model using the chCTRW framework [47]. How-130

ever, these models did not consider the joint effect of flow variability and131

diffusion. In porous media, the interplay between these processes controls132

mass fluxes towards the fluid-solid interface, and therefore the amount of re-133

actant available for reaction. As shown here, the interplay between medium134

geometry and transport limitations can lead to effective reaction kinetics that135

differ from their well-mixed counterparts, even for this simple chemical setup.136

It should be noted that we disregard for the present more complex effects137

which may play an important role in reactive transport dynamics, such as138

the coupling of transport and medium evolution due to reaction-induced pre-139

cipitation and dissolution [56–60]. Our simplified setup allows for in-depth140

understanding and quantification of the specific role of transport limitations141

and medium geometry regarding global reaction dynamics, and provides a142

rigorous upscaling approach to be later extended to more complex reaction143

chemistry.144

The paper is structured as follows. We first formalize fluid–solid reaction145

dynamics under diffusive transport near an interface in Section 2. This is146

followed by a brief review of the fundamental concepts behind inter-reaction147

times and the chCTRW formulation in Section 3. In Section 4, we develop the148

relationship between return times to the interface and inter-reaction times,149

and use this formulation to quantify the time evolution of total fluid-reactant150

mass. Next, in Section 5, we illustrate these results by obtaining an analyti-151

cal formulation of the mass dynamics for advection–diffusion under stratified152

flow in a two-dimensional channel. Section 6 shows how the framework thus153

developed may be applied to compute the time evolution of total mass from154

numerical determination of first passage and return times in more general set-155

tings. In particular, we consider advection–diffusion under stratified flow in156

a three-dimensional channel and Stokes flow in an idealized porous medium,157

specifically a body centered cubic beadpack. An overall discussion and con-158

clusions are presented in Section 7, and some additional technical details and159

derivations may be found in appendix.160
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2. Fluid–solid reaction model161

We consider a mobile reactant species AF , transported by the fluid phase,162

and an immobile, solid-phase reactant species BS, distributed over the fluid–163

solid interface of the medium. In order to focus on the effects of transport164

limitations, we assume for simplicity that the distribution of the latter over165

the interface is homogeneous, and that its concentration at a given spatial166

location does not change appreciably due to reaction. Assuming further that167

the reaction is irreversible at the timescale of interest and ignoring the reac-168

tion products, this corresponds locally to the reaction AF + BS → BS. We169

thus consider a far-from-equilibrium situation where the reverse reaction can170

be neglected. Mass conservation requires this reaction to give rise to addi-171

tional products, which are ignored here. We consider also that the available172

reactant BS is homogeneous across the solid phase. While this assumption173

should not be expected to hold over large scales, it is directly relevant for rel-174

atively chemically-homogeneous column experiments, or over certain regions175

of larger media. The assumption that BS is not consumed holds directly176

for truly catalytic reactions, but, along with homogeneity, it is also a rele-177

vant approximation if BS is locally not consumed appreciably, for example178

under large flow rates and short injections, where the fluid phase may be179

significantly consumed throughout the column, but consumption of the solid180

phase at a particular location is small. As mentioned in the introduction, the181

assumption of no consumption of the solid phase also implies that we also182

disregard more complex effects such as coupling of transport and medium183

evolution, which can occur due to precipitation and/or dissolution.184

The resolved simulation method developed in this work can in principle185

handle more complex chemical setups, including multiple reactions and/or186

multicomponent reactions. However, the theoretical developments become187

substantially more complex, because it is necessary to account for the si-188

multaneous presence and amount of different reactants near the interface.189

The simple chemical reaction AF +BS → BS, along with the assumption of190

chemical homogeneity of the solid-phase reactant, allows us to focus on the191

impact of transport mechanisms and medium geometry on reaction dynam-192

ics. Despite the fact that the chemical kinetics are linear at the fluid–solid193

interface, reaction is limited by the available fluid-reactant flux toward the194

latter, and transport limitations can lead to modified effective reaction kinet-195

ics and significant reaction slowdown. While it is important to note that the196

theory developed here cannot at present be directly applied to multicompo-197
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nent chemical reactions, it provides the first direct link between first passage198

and return time statistics, inter-reaction times, and fluid-solid reaction dy-199

namics, and sets the stage for later generalizations.200

In order for reaction to occur, physical reactant molecules of the trans-201

ported phase AF must be in reactive contact with the solid-phase component202

BS. This occurs within some distance `s of the fluid–solid interface. We as-203

sume that `s is much smaller than the scale at which transport of reactant204

AF within the fluid phase may be described through continuous advection–205

diffusion, and that reaction then occurs when reactant AF is transported206

sufficiently close to the interface. As we will see, this corresponds to the207

usual concept of surface (as opposed to bulk) reactions. It should be noted208

that if this spatial scale separation between transport and reaction does not209

hold, a more detailed reaction model is necessary. For example, if attach-210

ment or transport times within a physical reactive layer play a significant role,211

sorption or microporosity models may be needed, which we do not consider212

here.213

From both a theoretical and a numerical perspective, it is convenient to214

adopt a conceptualization of transport in terms of Lagrangian tracer parti-215

cles. Each Lagrangian particle represents a macroscopic number of physical216

reactant particles undergoing advection–diffusion [61, 62] and subject to re-217

action near the interface. Disregarding reaction for the moment, particle218

positions X(t) as a function of time t are described by the Langevin equa-219

tion (see, e.g., [63])220

dX(t) = v[X(t)]dt+
√

2Ddt ξ(t), (1)

where D is the diffusion coefficient, v(·) is the velocity field as a function of221

position, and, for each time t, ξ(t) are independent random vectors whose222

components are independent unit Gaussian random variables.223

Under the assumed scale separation between reaction and transport, re-224

action dynamics are controlled by the concentration of fluid reactant AF225

near the interface, subject to both advective–diffusive transport and reac-226

tion. When a discretization is considered, for a given time step ∆t, the227

support scale `d over which concentrations are well defined must be large228

compared to the spatial resolution of the model description, which is of or-229

der
√

2D∆t (see Appendix A for further details). It is important to note230

that `d is not a parameter of the theoretical model, but rather a property of231

the discretization. In this sense, the dynamics will be shown to converge to a232
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well-defined limit when `d → 0, which corresponds to taking the continuum233

limit ∆t→ 0.234

For a given discretization, below the support scale `d, the mass repre-235

sented by a Lagrangian particle is taken to be well-mixed. Particles within236

a region comprising a distance up to `d from the interface are subject to237

reaction, as we will formalize below. In what follows, we will refer to this238

region as the reactive region for convenience, although it should be remem-239

bered that it is associated with a given discretization and different from the240

physical reactive region, associated with the subscale length `s. In Section 4,241

we will employ the chCTRW inter-reaction times to show that the contin-242

uum limit `d → 0 (or, equivalently, ∆t→ 0) of this conceptualization is well243

defined and leads to a consistent description of the full reactive transport244

problem. This approach is conceptually convenient for the derivations that245

follow. From a computational standpoint, it converges to the correct results,246

as will be discussed in detail below. Nonetheless, we expect that it will prove247

useful in the future to explore equivalent but computationally more efficient248

approaches for direct numerical simulations, such as kernel-smoothing [64, 65]249

to determine concentrations near the interface. We note that any method for250

estimating local mass fluxes to the interface from Lagrangian particle colli-251

sions must address the same conceptual issues, since, as discussed in detail252

in what follows, the number of collisions with the interface within a given253

time period is also discretization-dependent.254

According to the previous considerations, while a Lagrangian particle is255

in the reactive region, a fraction `s/`d of its mass Mp is physically available256

for reaction. Assuming the law of mass action holds locally, we have257

dMp

dt
= −kcs

`sMp

`d
, (2)

where k is the usual well-mixed reaction rate, in units of inverse concentration258

per time, and cs is the solid-phase concentration within the reactive region.259

Thus,260

dMp

dt
= −kdMp, kd = k

cA
`d
, (3)

where kd is the effective particle reaction rate in units of inverse time, and261

cA = cs`s is the solid-phase surface concentration, i.e., mass of solid reactant262

per unit interface area. Note that, under the scale separation assumption,263
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`s is small compared to the scale at which transport can be described by264

continuous advection–diffusion. This means that, formally, the continuum265

description then corresponds to the scaling limit `d → 0 with the physical266

concentration cA remaining finite, whereas `s/`d remains small due to the267

scale separation. This scale separation corresponds to the situation where268

the fluid–solid mass-action reaction can be treated as a surface reaction: the269

reaction rate kd, describing particle mass decay per unit time in the reactive270

region, is independent of `s, and kcA is the usual surface reaction rate (units271

of length per time), which depends only on the surface concentration cA. As272

will be shown in Section 4, this leads to a well-defined continuum limit for273

the evolution of total fluid reactant mass, where the results are independent274

of both the discretization length `d and the subscale length `s. Similarly, we275

assume here that molecular-scale attachment/detachment at the interface is276

fast compared to diffusion near the interface, so that it can be considered277

instantaneous. Specifically, this corresponds to assuming that τa/τd, where278

τa is the average duration of an attachment event and τd = `2
d/(2D) is the279

diffusion time associated with the discretization lengthscale, remains small.280

We note that the concept of scale separation, where a continuum limit is281

taken while maintaining a subscale length or timescale small, is commonly282

employed in volume averaging, see, e.g., [66].283

Numerically, we implement these dynamics using particle tracking ran-284

dom walk (PTRW) simulations, which discretize the Langevin equation (1)285

(see, e.g., [61, 62] and Appendix A for further details). If a fluid-reactant286

particle is in the reactive region during a time step of duration ∆t, its mass287

evolves according to288

Mp(t+ ∆t) = Mp(t)e
−kd∆t. (4)

Otherwise, if the particle is farther from the interface, no reaction occurs.289

3. Inter-reaction times and the chemical continuous time random290

walk291

In this section, we provide a brief description of the chCTRW framework292

and the associated concept of inter-reaction times, which will be used in what293

follows to obtain a quantitative description of total fluid reactant mass. In294

this framework, the inter-reaction time is the sum of the delay time due to295

transport limitations and the intrinsic reaction time necessary for the reaction296
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Figure 1: (a): Illustration of the concepts of first passage, return, and interface visit
times. The overall fluid-solid reaction rate is decreased due to the time spent by the fluid
reactants away from the interface. Points in the initial condition (cyan blob) take different
paths towards the interface (purple line). After the interface is reached for the first time,
additional excursions away from and back to the interface (blue lines) also depend on
medium geometry and transport. Obtaining a consistent description of the effect of the
excursion times on reaction slowdown requires resolving the return excursions and interface
visits (orange line) at the support scale of a discretized transport description before taking
the continuum limit. (b): We apply the general framework to analyze reaction dynamics
under advective–diffusive transport in two- and three dimensional media: (i) Laminar flow
in a straight 2D channel; (ii) Laminar flow in a cylindrical 3D channel; and (iii) Stokes
flow in a body centered cubic beadpack, composed of a periodic array of the conventional
cubic cells shown (the spherical solid bead at the cell center is shown in red, and the corner
beads in green).

11

                  



to occur under well-mixed conditions. For the present application, these297

correspond to the times between visits of the particle to the reactive region,298

and the time spent in the reactive region. These concepts are illustrated in299

Fig. 1a. In the sections that follow, we will develop a theory of fluid–solid300

reaction under advective–diffusive transport, and apply it to analyze different301

two- and three-dimensional example media (Fig. 1b).302

The chemical CTRW framework treats the inter-reaction time τ , i.e., the303

time between successive reaction events, as a stochastic quantity incorporat-304

ing variability from the chemical kinetics on the one hand, and transport305

and medium structure on the other. In what follows, we will obtain the PDF306

φ of inter-reaction times for our fluid-solid reaction. Disregarding for the307

moment the first excursion to the interface (purple excursion in Fig. 1), the308

total inter-reaction time in the chCTRW formulation can be written as [31]309

τ = τr + τg(τr), (5)

where τr is the time it would take for a reaction to occur if a particle were310

confined to the reactive region, and τg is the additional time spent in excur-311

sions away from the latter (blue excursions in Fig. 1). The total time τr that312

must be spent in the reactive region before the next reaction event impacts313

the delay time τg, because a longer τr typically requires more visits to the314

reactive region (corresponding to orange excursions in Fig. 1), punctuated315

by excursions.316

When small numbers of reactant particles (molecules) are considered,317

the inter-reaction time refers to the time between two successive reaction318

events between reactant molecules, allowing for capturing fluctuations due319

to finite particle numbers [28]. Recall that here we consider Lagrangian320

particles representing a certain amount of fluid reactant mass undergoing321

continuous advection-diffusion, and corresponding to a macroscopic number322

of molecules. In that case, fluctuations due to molecule numbers are not sig-323

nificant [28, 31]. For conceptual and computational reasons, it is then more324

convenient to consider a fixed number of Lagrangian particles whose masses325

evolve in time [67]. In this case, the rate equation (3) for the evolution of the326

mass carried by a Lagrangian particle within the reactive region corresponds327

to a constant reaction rate kd = kcA/`d (with units of inverse time). Accord-328

ing to the classical well-mixed theory for stochastic inter-reaction times, this329

reaction rate may be interpreted as a constant probability of reaction per330

unit time, which translates into an exponential inter-reaction time distribu-331

tion [28]. Specifically, the probability that τr takes a value in [u, u + du) is332
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given by φr(u) du, such that its probability density function (PDF) is given333

by334

φr(u) = kde
−kdu. (6)

For a given τr = u, τg(u) is also a random variable, whose PDF φg(·;u)335

reflects the underlying medium heterogeneity and the stochasticity inherent336

in diffusive motion. In the next section, we will explicitly relate this PDF to337

the statistics of excursions away from the interface. As we will see, although338

τr and τg are discretization-dependent, τ is well defined in the continuum339

limit.340

The impact of delay due to return excursions on reaction dynamics is341

captured by a memory function, given in terms of the PDF φ of inter-reaction342

times τ as [31]343

K̃φ(λ) =
λφ̃(λ)

1− φ̃(λ)
. (7)

Here and throughout, we denote Laplace transforms (with respect to time) by344

a tilde and the corresponding Laplace variable by λ. For the AF +BS → BS345

reaction considered here, the total mass obeys346

dMφ

dt
= −Kφ ∗Mφ, (8)

where ∗ denotes the convolution product, (Kφ ∗Mφ)(t) =
∫∞

0
dt′Kφ(t)Mφ(t−347

t′), and the subscript φ in the total mass indicates that the first delay time348

to reach the interface (see Fig. 1) has not yet been considered, so that these349

dynamics incorporate the impact of the inter-reaction time PDF φ only. This350

equation may be seen as a generalized rate law governing the time evolution351

of the total mass under the impact of reaction delay caused by transport limi-352

tations. In contrast to the classical well-mixed rate laws, where reaction rates353

depend only on the current mass in a batch reactor, the presence of the con-354

volution with a memory function renders this equation integro–differential.355

Physically, this arises because the reaction rate at a given time depends on356

past history through the statistics of past excursions. Excursions away from357

and back to the reactive interface, controlled by transport and medium ge-358

ometry, take the form of reaction delays, which lead to memory effects in the359

large-scale mass dynamics. Broad distributions of excursion times translate360

into long-range memory effects.361

Applying these results to fluid-solid reactions requires relating the inter-362

reaction times to the statistics of excursions away from and back to the solid363
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interface, as well as including the role of the first excursion to the interface364

(Fig. 1), representing the impact of the initial condition. This is the subject365

of the next section.366

4. Mass dynamics and inter-reaction times367

In this section, we first quantify the impact of diffusion near the reactive368

interface on the distribution of return times to the reactive region and the369

duration of each visit. Based on these concepts and the first passage time370

to the interface from the initial condition, we then obtain the inter-reaction371

times and the evolution of total fluid reactant mass based on the chCTRW372

formulation of the previous section.373

4.1. Return and visit times374

The dominant transport mechanism that controls local reactant mass flux375

towards the interface is diffusive, because there is no fluid flow into or out376

of the solid phase. We assume the interface to be locally flat at the scale377

of the transport model, so that, close to the interface, it is sufficient to con-378

sider one-dimensional diffusion in the transverse direction. We note that379

this local flatness assumption may be inappropriate in some systems, such380

as rough fractures, where the surface may exhibit fractal (i.e., self-similar381

across scales) properties (see, e.g., [68]). Such pronounced surface roughness382

is known to impact reaction rates [13]. A one-dimensional conceptualization383

of diffusion perpendicular to the surface may then be inaccurate, and more384

detailed modeling of transport and reaction near the interface may be neces-385

sary. This scenario, although important, is beyond the scope of the present386

work, and we do not explore it further here.387

For a diffusing particle, characterized by the diffusion coefficient D, in an388

unbounded domain in one dimension, the PDF of the time to first reach a389

target located at a distance ` to one side of the initial position is given by390

the Lévy 1/2-stable density (see, e.g., [69]),391

ψD(t; `) =
`√

4πDt3
e−

`2

4Dt . (9)

That is, ψD(t; `) dt is the probability that the first passage time to the target392

is in the interval [t, t+ dt). We have393

ψ̃D(λ; `) = e−
√
`2λ/D. (10)
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In order to apply the chCTRW formulation, we require the time to return394

to a target, which sets the time between successive visits to the reactive395

interface, and therefore controls the inter-reaction times (see Fig. 1). This396

concept must be treated with care, because a particle undergoing continuous397

diffusive motion in one dimension crosses its original position infinitely many398

times in any given finite time interval. This is reflected in the fact that the399

limit `→ 0 of ψD(t; `) is not well define (see also [38, 40, 41, 70]). To avoid400

this problem, we will obtain the inter-reaction times in the scaling limit401

of an appropriate discretization, associated with the support scale `d (see402

Section 2). Consider a regular one-dimensional discretization into intervals,403

or cells, of equal length `d. The return times to the interface associated404

with the discretization are then the first passage times to the center of the405

cell touching the interface, from the center of the adjacent cell. The cell406

centers are a distance `d apart, so that the corresponding first passage time407

PDF is given by ψd(·) = ψD(·; `d). Note that the same result is obtained408

by considering the first passage times to a distance `d from the interface,409

starting from a distance 2`d. This is convenient for numerical determination410

from particle tracking simulations, where particles can be placed at distance411

2`d from the interface and the first passage time determined as the time when412

distance `d from the interface is crossed.413

Before proceeding, we may relax the assumption of an unbounded do-414

main, and the requirement of one-dimensional diffusive transport far from415

the reactive region. First, we denote the timescale associated with the dis-416

cretization support scale `d by417

τd =
`2
d

2D
. (11)

In order to allow for different effects away from the interface while retaining418

the diffusive behavior near it, we write the return time PDF in the form419

ψ̃d(λ) = ψ̃D(λ; `d) = e−f̃(λ)
√

2τdλ, (12)

see Eq. (10). The discretized description can only resolve times t � τd,420

corresponding to λ � 1/τd. Thus, with a view to taking the continuum421

limit, it is sufficient to consider the limit of λ � 1/τd, corresponding for a422

given discretization to times large compared to the discretization time. We423

then find424

ψ̃d(λ) ≈ 1− f̃(λ)
√

2τdλ. (13)
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It is important to note that this and similar results below do not represent425

late-time expansions, but rather lead to results valid for all times (or all λ)426

in the continuum limit `d → 0. In other words, finite-`d effects are a product427

of the discretization, which disappear in the continuum-limit description of428

total mass obtained in what follows.429

The form factor f̃(λ), which depends on the geometry of the domain430

and the transport mechanisms involved up to the timescale 1/λ, must ap-431

proach unity for large λ, so that the behavior of the return time is dominated432

by the
√

2τdλ term characterizing the diffusive behavior near the fluid-solid433

interface at short times. For small λ, corresponding to large times, f̃(λ)434

encodes information about transport excursions far from the reactive region.435

As before, in an arbitrarily small time interval, continuous diffusion in one436

dimension crosses the origin infinitely many times. The factor
√

2τdλ, which437

approaches zero as `d → 0, captures the resulting singular character of the re-438

turn time distribution in this limit, whereas the factor f̃(λ), whose departure439

from unity represents additional effects from transport excursions unrelated440

to the discretization, remains finite and nonzero in the continuum limit.441

Let `c be a characteristic lengthscale of the medium, such as the aver-442

age pore size. Note that the choice of `c is arbitrary and simply provides443

a reference scale based on which nondimensional quantities characterizing444

the relationship between reaction, diffusion, and advection processes will be445

introduced below. We denote the corresponding diffusion time as446

τD =
`2
c

2D
(14)

and define the Damköhler number447

Da =
kcAτD
`c

. (15)

The latter quantifies the relative importance of reaction and diffusive trans-448

port at this scale. It is convenient to define the rescaled return time tail449

probability450

g(t) =
`cΨd(t)

2τD`d
, (16)

where451

Ψd(t) =

∞∫

t

dt′ ψd(t
′) (17)
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is the probability that the return times are greater than a given time t. In452

terms of the rescaled tail probability, the return times obey453

ψ̃d(λ) ≈ e−2τDλg̃(λ)`d/`c , (18)

so that, comparing to Eq. (12), we have the relation g̃(λ) = f̃(λ)/
√

2τDλ.454

Since f̃(λ) remains finite and nonzero in the limit `d → 0, so does g̃(λ).455

Note that for large λ we have g̃(λ) ≈ 1/
√

2τDλ, because f̃(λ) ≈ 1 as dis-456

cussed above. For small λ, corresponding to large times, g̃(λ) again encodes457

the behavior of excursions away from the interface. These quantities are ob-458

tained analytically for the example of diffusion in a bounded one-dimensional459

domain in Section 5.460

Note that the statistics of the excursions back to an arbitrary point along461

the interface may differ depending on the starting point, corresponding to462

different form factors and rescaled tail probabilities depending on the lat-463

ter. Here, in order to obtain a stationary description where successive return464

times to the wall have the same statistics, we treat any such variability sta-465

tistically. That is, the same rescaled tail probability is used to characterize466

the return time statistics associated with each point on the interface and at467

all times. In other words, this method disregards possible non-stationarity of468

the return times, as well as possible correlations between subsequent return469

times arising from different transport and geometry properties at different470

interface points. Nonetheless, we believe such a statistical description to be471

appropriate, as long as the flow is statistically stationary and the structural472

characteristics of the medium are statistically homogeneous within the region473

being considered. Note that this assumption is similar to that employed in474

the standard CTRW for transport [32], where variability in particle jump475

sizes and/or transit times is treated stochastically but assumed statistically476

homogeneous and stationary, that is, the PDFs associated with these quan-477

tities do not depend on the current time or particle position. In Section 6,478

we show that this approach leads to accurate predictions of mass dynamics479

in a regular beadpack, despite different points on the bead surfaces hav-480

ing different characteristics in terms of the distance to other nearby surface481

points.482

Next, we turn to the statistics of the time spent in the reactive region in483

each visit. As shown in Appendix B, the corresponding PDF is given by484

ψv(t) =
e
− t

2τd

2τd
, (19)

17

                  



so that the single-visit times are exponentially distributed with mean 2τd.485

4.2. Inter-reaction times486

We are now in a position to compute the PDF of global delay times τg,487

which will allow us to obtain the PDF φ of the inter-reaction time τ , see488

Eq. (5). Given a well-mixed reactive time τr = u, the delay time due to489

excursions away from the reactive region is given by490

τg(u) =

NU (u)∑

i=1

Wi, (20)

where the Wi are independent and identically distributed return times with491

PDF ψd and NU(u) is the (random) number of visits to the reactive region492

given well-mixed reactive time u. For sufficiently fine discretization, the493

residence times per visit to the reactive region are approximately exponential494

with mean 2τd, Eq. (19). This implies that NU(u) is approximately Poisson495

with mean u/(2τd) (see, e.g., [63]). Thus, the global delay (20) is a compound496

Poisson process, so that its PDF has Laplace transform [72–74]497

ψ̃g(λ;u) = exp

[
−λΨ̃d(λ)u

2τd

]
. (21)

The PDF φ of the total inter-reaction time τ resulting from a well-mixed498

reaction time τr with PDF given by Eq. (6) and a compound Poisson delay499

has been obtained in [31]. With the form (21) of the delay PDF, it reads500

φ̃(λ) = φ̃r

[
λ

(
1 +

Ψ̃d(λ)

2τd

)]
. (22)

In the continuum limit `d → 0, using Eqs. (6) and (12), we obtain501

φ̃(λ) =
Da

Da +τDλg̃(λ)
. (23)

In this form, the inter-reaction times are manifestly well defined in the con-502

tinuum limit. The effect of diffusion near the interface is implicit in the form503

of Eq. (23), and additional effects arising from domain geometry and/or ve-504

locity variability are encoded in the rescaled tail probability g, see Eq. (16).505
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4.3. Dynamics of reactant mass506

The chCTRW formulation can now be used to obtain the evolution of507

total mass given the inter-reaction time PDF together with the additional508

delay time to first reach the interface (see Fig. 1). This delay is distributed509

according to a PDF ψ0, which depends on the transport mechanism and the510

initial reactant distribution. Defining511

Ψ0(t) =

∞∫

t

dt′ ψ0(t′), (24)

the tail probability of the first passage time to the interface, we obtain, as512

shown in Appendix C,513

dM

dt
= −Kφ ∗ (M −M0Ψ0). (25)

This generalized, integro-differential rate law encodes the impact of transport514

and heterogeneity on the effective reaction kinetics through the inter-reaction515

times and the first passage time to the interface. In the standard CTRW de-516

scription of transport, advection–dispersion at the small scales in the presence517

of heterogeneity leads to the emergence of memory kernels at larger scales518

in the advection–dispersion equation, accounting for statistical variability in519

particle jump sizes and/or transit times [32]. Analogously, the chCTRW520

leads to a description of total mass which incorporates the impact of trans-521

port limitations through a memory kernel representing statistical variability522

in first passage and inter-reaction times.523

Taking the Laplace transform of Eq. (25), we obtain the Laplace-space524

solution for the evolution of total mass as525

M̃(λ)

M0

=
Da Ψ̃0(λ) + τDg̃(λ)

Da +τDλg̃(λ)
. (26)

While the number of visits to the reactive region within a given time window526

increases when the discretization is refined, the residence time associated with527

each visit decreases accordingly, and the total mass change due to reaction528

in the actual, subscale reactive region is well defined. These results connect529

the effect of transport limitations on mass dynamics to the inter-reaction530

times of the chCTRW under a transport mechanism for which mass exchange531

near a locally-flat interface is controlled by diffusion. In particular, this is532
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the case for advection–diffusion: since there is no flux into or out of the533

solid interface, diffusion always dominates returns at sufficiently short times,534

when particles are close to the interface. This fact is incorporated into the535

form of Eq. (26). The rescaled tail probability g̃(λ) captures further effects536

controlling the statistical variability of the excursion times, such as transverse537

velocity variations across the domain and the size of the latter, as will be538

discussed in more detail and illustrated in the following sections. Note that539

this description does not require zero- or low-velocity regions to occur only540

near the interface. The presence of stagnation regions affects g̃(λ), and may541

lead to broader variability of the return times and therefore of the inter-542

reaction times.543

We note that Eq. (26) can also be obtained in terms of the statistics of544

times spent near the interface, rather than the statistics of the inter-reaction545

times. This alternative formulation is discussed in Appendix D.546

5. Reactive transport in a 2D channel547

In order to illustrate the results of the previous section, we consider first548

the simple example of transport in an infinite two-dimensional channel with549

stratified flow and reactive walls (Fig. 1b, (i)), for which fully-analytical550

results can be obtained in Laplace space. We take the characteristic length551

`c as the channel half-width.552

5.1. Analytical first passage/return times and mass dynamics553

The distribution of times to reach either wall from a given point along the554

channel cross-section depends in this case only on transverse diffusion and555

not on the velocity profile. It is thus sufficient to consider one-dimensional556

diffusive transport along the channel cross-section. The corresponding PDF557

in a bounded domain of size L, starting from a distance ` from one wall, has558

Laplace transform [71]559

ψ̃(λ; `, L) =
csch[

√
`2λ/D] + csch[

√
(L− `)2λ/D]

coth[
√
`2λ/D] + coth[

√
(L− `)2λ/D]

. (27)

In order to determine the first return time PDF, in the sense discussed in560

the previous section, we take ` = `d and L = 2`c. In preparation for taking561

the continuum limit `d → 0, we expand for small `d � `c to obtain562

ψ̃d(λ) ≈ exp[− tanh(
√

2τDλ)
√

2τdλ] ≈ 1− tanh(
√

2τDλ)
√

2τdλ, (28)
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which, according to Eqs. (12) and (18), corresponds to the form factor and563

rescaled tail probability564

f̃(λ) = tanh(
√

2τDλ), g̃(λ) =
tanh(

√
2τDλ)√

2τDλ
. (29)

Substituting g̃(λ) in Eq. (26), the total mass as a function of time has Laplace565

transform566

M̃(λ)

M0

=
2 Da Ψ̃0(λ) + tanh(

√
2τDλ)

√
2τD/λ

2 Da + tanh(
√

2τDλ)
√

2τDλ
. (30)

For small Da, we can expand this result for small λ � 1/τD (time t �567

1/τD) before appreciable reaction occurs, and we obtain568

M̃(λ) ≈ M0

Da /τD + λ
, M(t) ≈M0 e

−Da t/τD . (31)

Hence, the reaction kinetics correspond to a fully-mixed cross-section. This569

arises because, for slow reaction compared to the diffusive time scale, diffusion570

homogenizes the fluid reactant to a mass per cross-section length 1/(2`c)571

before appreciable reaction occurs. Since there are two reaction interfaces,572

the fraction of mass in the reactive region is 2`d/(2`c) = `d/`c. The effective573

reaction rate is thus kd`d/`c = Da /τD = kcA/`c, independent of the diffusion574

coefficient.575

For large Da and an initial condition not fully concentrated at the channel576

walls, so that Ψ̃0(λ) 6= 0, the initial condition dominates, and we have577

M(t) ≈M0Ψ0(t). (32)

This result can be interpreted as follows. In the limit of fast reaction, the sur-578

viving mass is that which has never reached the channel walls. The fraction579

of the initial mass that has not reached the walls is given by the probabil-580

ity Ψ0(t) that the first passage time to the walls from the initial position is581

greater than t.582

In the particular case where all the mass starts at the channel walls,583

Ψ̃0(λ) = 0, the dynamics are fully controlled by the return times. For large584

Da and λ & 1/τD (early times), we obtain585

M̃(λ) ≈ M0

Da

√
τD
2λ
, M(t) ≈ M0

Da

√
τD
2πt

. (33)
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For λ . 1/τD (late times), we find586

M̃(λ) ≈ M0

Da

τD
1 + 2τDλ/3

, M(t) ≈ 3M0

2 Da
e
− 3t

2τD . (34)

This means that diffusive excursions far from the walls control reaction until587

the channel cross-section is homogenized by diffusion, after which we recover588

exponential behavior, but diffusion- rather than reaction-limited: the expo-589

nent of the exponential decay in (34) depends only on the diffusion coefficient,590

while that of (31) depends only on the reaction rate.591

While the form of the mass dynamics, Eq. (30), is flow-profile-independent,592

the actual mass evolution can depend on the profile through the initial con-593

dition, such as for a flux-weighted condition. In the low-Da limit discussed594

above, the initial delay does not play a relevant role and this dependence595

disappears. For definiteness, consider two-dimensional Poiseuille flow, with596

the velocity profile597

v(y) = vM

(
1− y2

`2
c

)
, (35)

for y ∈ [−`c, `c] along the one-dimensional cross-section, with vM the max-598

imum velocity, attained at the channel center, y = 0. The corresponding599

Eulerian mean velocity is given by v = 2vM/3.600

Different initial conditions affect the initial first passage time until the601

interface is first reached. We consider four examples of instantaneous injec-602

tion, with the fluid reactant mass placed: (a) at the middle of the channel,603

(b) homogeneously along the channel cross section, (c) flux-weighted along604

the channel width, and (d) at the channel walls; the Laplace transforms of605

the corresponding first passage time PDFs ψ0 are given in Appendix E.606

5.2. Numerical simulations of reactive transport607

We performed PTRW simulations of the two-dimensional reactive trans-608

port problem, as described in Section 2 and Appendix A. We nondimension-609

alize distances by `c, time by the diffusion time τD, and mass by the initial610

mass M0. Note that, numerically, this can be conveniently achieved by set-611

ting the diffusion coefficient to D = 1/2, the channel half-width to `c = 1,612

and the initial mass to M0 = 1, in arbitrary units. Each of N particles ini-613

tially carries a fraction M0/N of the initial mass. In order to obtain good614

statistics, the number N of particles used must be such as to permit re-615

solving the transverse direction to within the discretization length, meaning616
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Figure 2: Reactant mass as a function of time for Poiseuille flow in a two-dimensional
channel, for different Damköhler numbers Da (colors) and initial conditions (a)-(d). Solid
lines show numerical inversion of Eq. (30) and square markers represent reactive PTRW
simulations. Circles correspond to the analytical solution (31) for a well-mixed cross-
section. (a): Channel middle. (b): Uniform. (c): Flux-weighted. (d): Channel walls.
Asterisks in (d) correspond to the analytical solutions (33) for t/τD 6 1 and (34) for
t/τD > 1. PTRW simulations for Da = 100, 102 use a time step ∆t = 10−4τD and N = 103

particles. For Da = 102, N = 104, with ∆t = 10−6τD for (a)-(c) and ∆t = 10−7τD for (d).

N & `c/`d =
√
τD/τd. Aside from setting the spatial resolution through `d,617

the time step must be sufficiently small to resolve reaction. Since the average618

residence time per visit to the reactive region is 2τd, this requires 2kdτd . 1.619

Note that, even though the initial condition (c) depends on the velocity pro-620

file, the first passage time (E.3) is independent of the mean velocity, so that621

we can arbitrarily set v = 1.622

The evolution of total mass under the different initial conditions (a)-(d)623

is shown in Fig. 2. Good agreement is observed between simulations and nu-624

merical inversion of Eq. (30). Note how the Da = 10−2 case is identical for all625

initial conditions; it corresponds to the low-Da limit, Eq. (31), characterized626
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Figure 3: Reaction efficiency ε(t), comparing the observed overall reaction rate as a func-
tion of time to the rate for a well-mixed two-dimensional channel cross-section. The initial
condition is concentrated at the middle of the channel. (a): Reaction efficiency computed
from the data in Figure 2a (symbols). The theoretical asymptotic value ε∞ is shown as
a dashed line for each value of the Damköhler number Da. (b): Theoretical assymptotic
reaction efficiency ε∞ as a function of Da. The well-mixed (low-Da) and fully transported-
limited (high-Da) limits are shown as dashed and dash-dotted lines, respectively.

by purely exponential decay and fully controlled by the reaction rate, i.e.,627

independent of the diffusion coefficient. In (a)-(c), the Da = 102 curves have628

converged to the Da-independent fast reaction limit, Eq. (32). This regime629

is the most affected by the initial condition, because it is controlled by the630

initial first passage time to the interface. However, the characteristic first631

passage times associated with conditions (a)-(c) are all on the order of the632

diffusion time τD, and thus lead to qualitatively similar mass decay. For (d),633

the evolution of the total mass is fully controlled by the return times to the634

reactive region, Eqs. (33) and (34). The late-time behavior in this case is635

also exponential, but fully controlled by the diffusion coefficient, i.e., indepen-636

dent of the reaction rate constant k and the solid-phase surface concentration637

cA. Note how, for moderate to high Damköhler number, Da & 1, the solu-638

tion (31) corresponding to a well-mixed cross-section tends to overestimate639

reaction. This is the case even for the uniform initial condition (a), because640

fast consumption of solute at the interface inhibits transverse homogeneity.641

At early times in (d), reaction is faster than the well-mixed-channel predic-642

tion in these regimes due to solute starting in the reactive region, but slower643

at later times as the surviving solute explores the channel cross-section.644
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5.3. Reaction efficiency645

These results show that, while reaction rates tend to increase with the646

Damköhler number as would be expected, the reaction efficiency compared647

to a well-mixed channel cross-section characterized by the same Da decreases648

due to transport limitations. In order to better understand this phenomenon,649

consider the global, or effective, reaction rate650

ke(t) =

∣∣∣∣
d lnM(t)/M0

dt

∣∣∣∣ . (36)

In other words, the effective rate ke(t) is defined so that dM(t)/dt = −ke(t)M(t).651

Note that, for pure exponential decay at constant rate, M(t) = M0 exp(−ket),652

this definition recovers ke(t) = ke as expected. We define the reaction effi-653

ciency by comparing ke(t) to the reaction rate kwm
e associated with well-mixed654

conditions in the domain,655

ε(t) =
ke(t)

kwm
e

. (37)

According to Eq. (31), the well-mixed reaction rate for the two-dimensional656

channel is kwm
e = Da /τD. It is important to keep in mind the different phys-657

ical meanings of the effective well-mixed rate kwm
e and the thermodynamic658

well-mixed rate k in Eq. (2). The latter, defined in units of inverse concentra-659

tion per time, is the usual batch-reactor rate, which governs fully well-mixed660

reaction. The former, defined in units of inverse time, represents the effec-661

tive reaction rate occurring when the (fluid-phase) domain is well-mixed. It662

is impacted by medium geometry, as it accounts for the fact that part of the663

fluid reactant remains far from the interface.664

We now obtain a theoretical expression for the asymptotic rate k∞e =665

limt→∞ ke(t) and the corresponding asymptotic reaction efficiency ε∞ = k∞e /k
wm
e .666

To this end, we introduce the mean first passage time to the wall w0 and the667

corresponding second moment,668

w0 =

∞∫

0

dt tψ0(t), s0 =

∞∫

0

dt t2ψ0(t). (38)

We define also669

α0 =
s0

2τDw0

, (39)
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which represents a dimensionless measure of the variability in the first passage670

times, compared to the diffusion time τD. Expanding Eq. (30) for small671

λ . 1/τD, and inverting the Laplace transform, we find the late-time behavior672

M(t)

M0

≈
(
w0 +

τD
Da

)
k∞e e

−k∞e t,

k∞e =
2 Da(Daw0 + τD)

Da2 s0 + Da τD(2w0 + 4τD/3) + 2τ 2
D

, (40)

so that673

ε∞ =

(
1 +

τD
w0 Da

)(
1 +

2τD
3w0

+ α0 Da +
τD

w0 Da

)−1

. (41)

Thus, for small Da, we recover the well-mixed rate as predicted by Eq. (31),674

and ε∞ ≈ 1. For high Da and an initial condition not concentrated at the675

channel walls, the asymptotic reaction rate is limited by the first passage676

times to the interface, and k∞e ≈ 1/(α0τD). For a given initial condition,677

this asymptotic rate cannot exceed a constant value. Since the well-mixed678

rate is linear in Da, the asymptotic efficiency ε∞ ≈ 1/(α0 Da) is inversely679

proportional to Da. In the special case of the initial condition at the channel680

walls, we recover Eq. (34), and ε∞ ≈ 3/(2 Da). In this case, reaction is681

limited by the return times to the wall, and the asymptotic efficiency remains682

inversely proportional to Da.683

These results are illustrated for the case of a mid-channel injection, initial684

condition (a), in Fig. 3. From Eq. (E.1), we find in this case w0 = τD, s0 =685

5τ 2
D/3, and α0 = 5/6. As predicted, the reaction rate becomes asymptotically686

constant for all Damköhler, corresponding to exponential decay. However,687

the reaction rate is initially variable as the fluid reactant explores the channel688

cross-section. For this choice of initial condition, the reaction efficiency is689

initially zero because the solute is far from the interface, and subsequently690

increases to the asymptotic value.691

6. Generalization to other media692

In this section, we will discuss the generalization of our approach to more693

complex scenarios, where fully analytical results for the inter-reaction times694

are not available. As long as diffusion is the dominant transport mechanism695

near the reactive interface, and the latter can be assumed flat at the scale696
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of the transport model, Eq. (26) may be used to predict the time evolu-697

tion of total mass for arbitrary Damköhler number, given knowledge of the698

tails Ψ0 and Ψd of the first passage and return times. In general, analytical699

expressions for these quantities are not available, and they must therefore700

be determined numerically. However, some general results about the mean701

return time, if it exists, may be obtained and employed to determine asymp-702

totic reaction rates. Note that the existence of a mean inter-reaction time is703

directly related to the existence of a mean return time to the interface. If the704

excursions away from and back to the interface (see Fig. 1) have sufficiently705

heavy-tailed duration statistics, the chCTRW framework predicts a similar706

effect on reaction dynamics [31]. Such situations, which we do not consider707

further here but can be captured in our framework, can be important when708

modeling scenarios where solute may be retained in large regions of low ve-709

locity away from the reactive interface, or where the distribution of distances710

between separate reactive regions is very broad and not well characterized711

by a mean value [47].712

6.1. Mean return times and effective reaction rate713

The asymptotic reaction rate for stratified flow in a 2D channel was ob-714

tained in Section 5 , Eq. (41). In that case, the limit of low Da, corresponding715

to slow reaction, leads to an effective reaction rate of Da /τD, Eq. (31). We716

begin by generalizing this result by considering the mean return time to the717

interface,718

wd =

∞∫

0

dt tψd(t). (42)

We have for the return time PDF ψ̃d(λ) ≈ 1 − wdλ, for λ � 1/wd, so that719

the rescaled tail probability, Eq. (16), obeys720

g̃(0) =

∞∫

0

dt g(t) =
wd`c
2τD`d

. (43)

Taylor-expanding Eq. (26) for small λ and inverting the Laplace transform,721

M(t) = M0e
−ket, (44)

with the effective reaction rate722

ke =
2 Da `d
wd`c

. (45)
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In order to relate the mean return time wd to medium structure, we723

now determine the effective rate in a well-mixed domain. Consider that the724

solute is well-mixed over a region of volume V , within which the volume of725

the reactive region is Vd. The reactive region comprises a layer of height `d726

immediately adjacent to the interface, so that Vd ≈ AI`d, where AI is the727

interface area. The mass in the reactive region is then M(t)Vd/V , and reacts728

at rate kd, see Eq. (3), so that729

dM(t)

dt
= −kwm

e M(t), (46)

with the well-mixed effective reaction rate given by730

kwm
e =

Vd
V
kd =

ρDa

τD
, (47)

where we have introduced the dimensionless interface-extent coefficient731

ρ =
AI`c
V

, (48)

encoding the amount of interface area per unit volume. Note that, if a732

representative elementary volume for interface area exists, and the solute is733

well-mixed over a larger volume, ρ is given by this ratio over the represen-734

tative volume. Note also that for an empty channel of cross-section A, we735

have736

ρ =
`I`c
A
, (49)

where `I is the total interface length intersecting the cross-section. If the737

medium is statistically homogeneous along the flow direction, this formula738

may also be used to compute ρ given information about the interface extent739

over a cross-section, taking A as the fluid-phase area over the latter.740

If the concentration becomes well-mixed due to transport before appre-741

ciable reaction occurs, the effective reaction rates associated with the re-742

turn time and well-mixed-domain pictures must coincide, ke = kwm
e . Using743

Eqs. (45) and (47), we find the mean return time and associated effective744

reaction rate as745

wd =
2τD`d
ρ`c

, ke =
ρDa

τD
. (50)
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Note that these results agree with the example considered in Section 5. In746

that case, `I = 2, A = 2`c, ρ = 1, and ke = Da /τD. Note also that wd is747

independent of the Damköhler number, so that, according to Eq. (43),748

g̃(0) = ρ−1, (51)

independent of Da, so long as the transport mechanism leads to a well-749

mixed state in the absence of reaction. We note that, as before, for large Da750

(fast reaction) and an initial condition not concentrated along the interface,751

reaction is controlled by the first passage times to the interface, and M(t) =752

M0Ψ0(t). In that case, the reaction dynamics are thus controlled by the753

initial reactant distribution.754

6.2. Reaction efficiency755

We can now generalize the results for the asymptotic reaction efficiency.756

Using Eqs. (16) and (51), we find the small-λ . 1/τD expansion for the757

rescaled tail probability:758

g̃(λ) ≈ ρ−1 (1− αλ/2) , (52)

where α is defined by759

α =
sd

2τDwd
, sd =

∞∫

0

dt t2ψd(t), (53)

quantifying the variability in the return times to the interface relative to760

the diffusion time. Using this result to expand Eq. (26) for λ . 1/τD, and761

inverting the Laplace transform, we find the late-time behavior762

M(t)

M0

≈ ρDaw0 + τD
Da

k∞e e
−k∞e t,

k∞e =
2ρDa(Daw0 + τD)

ρ2 Da2 s0 + ρDa τD(2w0 + α) + 2τ 2
D

. (54)

We thus conclude that, as long as the transport mechanism leads to a well-763

mixed state in the absence of reaction, the reaction rate always asymptotes764

to a constant at late times, for arbitrary Da. Using Eqs. (37) and (47), the765

corresponding asymptotic reaction efficiency is766

ε∞ =

(
1 +

τD
w0ρDa

)(
1 + α + α0ρDa +

τD
w0ρDa

)−1

, (55)
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see also Eqs. (38) and (39). For the 2D channel case, ρ = 1 and α = 2/3767

from Eq. (28), so that this result reduces to Eq. (41). In the low-Da limit of768

slow reaction, we recover Eq. (47) for the well-mixed reaction rate and obtain769

ε∞ ≈ 1 as expected. For high Da and an initial condition not concentrated at770

the channel walls, we have the initial-condition-limited results k∞e ≈ 1/(α0τD)771

and ε∞ ≈ 1/(α0ρDa). In the special case of an initial condition distributed772

over the interface, for which w0 = s0 = 0, we find k∞e ≈ 1/(ατD), emphasizing773

that in this case the transport limitations come into play through the return774

times rather than the first passage times. As before, ε∞ ≈ 1/(αρDa) remains775

inversely proportional to Da.776

6.3. Mass dynamics from numerical first passage and return statistics777

According to Eq. (16), g̃(λ) is proportional to Ψ̃d(λ). Thus, mass dynam-778

ics can be quantified through Eq. (26) by numerically sampling first passage779

and first return times in PTRW simulations of the transport. For a given780

initial condition, the Laplace transform Ψ̃0(λ) can be found directly from the781

fraction of first passage time samples to the interface above a given time. To782

determine the first return times associated with discretization length `d for783

a given medium and flow, we take a single-particle initial condition chosen784

uniformly randomly over the surface at (perpendicular) distance 2`d from the785

interface, corresponding to a distance `d from the reactive region. Once the786

reactive region is reached, we record the duration of the excursion, place the787

particle at the closest point at distance 2`d from the interface, and repeat788

the process for the next excursion a prescribed number of times. Note that,789

in the cases considered here, the system is asymptotically well-mixed over a790

representative region, so that different points along the interface are revis-791

ited with the same probability. This means that equivalent results would be792

obtained by considering the first passage time to within `d of the interface793

for a set of particles initially distributed uniformly over the latter.794

A comparison of the rescaled tail probabilities g(t) obtained in this man-795

ner for one-dimensional diffusion in a bounded domain of half-width `c, along796

with the rescaled first return time PDF ψd(t)`c/`d, with those obtained from797

numerical inversion of the analytical Laplace transform of Ψ̃d(λ), Eq. (27)798

with ` = `d and L = 2`c , is shown in Fig. 4 for two different values of `d. We799

nondimensionalize distances by `c and times by τD as before. For t � ∆t,800

the return time statistics converge to the same discretization-independent801

behavior. Above the discretization timescale τd, the late-time scalings follow802

those of pure diffusion in an semi-infinite domain, Eq. (9), until the effect of803
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Figure 4: Rescaled first return time PDF (a) and return time tail probabilities (b) for
one-dimensional diffusion in a bounded domain, obtained from 104 return time samples
from PTRW simulations (symbols) and numerical inversion according to the analytical
Laplace transform (27) (lines). The large-time scalings associated with pure diffusion in
a semi-infinite domain, which here hold below the characteristic diffusion time τD for
sampling the full domain and above the discretization timescale τd = `2d/(2D) = τD`

2
d/`

2
c ,

are shown as dashed lines.

the far boundary is felt, leading to a cutoff on a characteristic timescale of804

order τD, corresponding to exploring the full domain.805

6.3.1. Reactive transport in a 3D channel806

As a first example to verify the results for the mass dynamics using nu-807

merical estimation of the first passage and return times, consider transport808

in a three-dimensional, cylindrical channel, with the characteristic length `c809

given by the channel radius (Fig. 1b, (ii)). We take a point injection at the810

center of the channel as the initial condition. As before, it suffices to con-811

sider diffusion along a cross-section in order to determine the evolution of812

total mass, independent of the flow field as long as it is assumed to be strat-813

ified. We again nondimensionalize distances by `c, time by τD, and initial814

mass by M0.815

The results obtained from numerical inversion of Eq. (26), given numeri-816

cal determination of the first passage and return times, are in good agreement817

with reactive PTRW simulations, as shown in Fig. 5a. In this case, the cross-818

section area is given by A = π`2
c , and the interface length intersecting a cross-819

section by `I = 2π`c, so that the interface-extent coefficient is ρ = 2, Eq. (49).820

For Da = 10−2, we find good agreement between the numerical simulations821

and exponential decay according to the effective well-mixed reaction rate,822
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Figure 5: (a): Total mass as a function of time in a three-dimensional, cylindrical
channel, for different Damköhler numbers Da (colors). The initial condition is concentrated
at the channel center. Solid lines show numerical inversion of Eq. (30) given numerical
computation of the first passage and return times, and square markers represent reactive
PTRW simulations. Circles correspond to the analytical solution with the effective well-
mixed reaction rate (45) for ρ = 2. Asterisks represent the fully transport-limited solution
M(t) = M0Ψ0(t). First passage and return statistics are computed from 104 samples,
using a time step ∆t = 10−6τD. Reactive PTRW simulations use ∆t = 10−4τD and
N = 103 particles for Da = 10−2, 100, and ∆t = 10−6τD and N = 104 particles for Da =
102. (b): For each value of Da, the reaction efficiency computed according to numerical
differentiation of the data in (a) is shown as markers, and the theoretical asymptotic value
ε∞, computed based on the same first passage and return data, is shown as a dashed line.
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Figure 6: (a): Total mass as a function of time in a body centered cubic beadpack,
for different Damköhler numbers Da (colors). The Péclet number is Pe = 103, and the
initial condition is homogeneous in the conventional unit cell. Solid lines show numerical
inversion of Eq. (30) given numerical computation of the first passage and return times, and
square markers represent reactive PTRW simulations. Circles correspond to the analytical
solution with the well-mixed reaction rate (45). First passage statistics are computed from
104 samples and return statistics from 105 samples, both using a time step ∆t = 10−7τD.
Reactive PTRW simulations use N = 103 particles, with ∆t = 10−7τD for Da = 100, 101

and ∆t = 10−8τD for Da = 102. (b): For each value of Da, the reaction efficiency
computed according to numerical differentiation of the data in (a) is shown by markers,
and the theoretical asymptotic value ε∞, computed based on the first and second moments
of the same first passage and return data, is shown as a dashed line.

Eq. (47) with ρ = 2, whereas for higher Da deviations from the well-mixed823

behavior are observed because transverse diffusion is incapable of homoge-824

nizing the cross-section under fast reaction. For Da = 102, the numerical825

simulations agree with the fully-transport-limited solution M(t) = M0Ψ0(t).826

The reaction efficiency ε(t) corresponding to these dynamics is shown in827

Fig. 5b. The theoretical asymptotic efficiency ε∞, Eq. (55), evaluated using828

the first and second moments of the numerically-determined first passage829

and return times, is in good agreement with the simulations. Although some830

quantitative differences are discernible in the mass decay, compare Figures 5a831

and 2a, the reaction dynamics are remarkably similar to the two-dimensional832

channel case, especially regarding the reaction efficiency, compare Figures 5b833

and 3a.834

6.3.2. Reactive transport in a body centered cubic beadpack835

We now investigate the application of our approach to the case of reactive836

transport in a crystalline porous medium. Recall that the inter-reaction time837
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approach presented here relies on the assumption that a statistical description838

of the return times, with stochastic return times but with the same statistics839

applying to each return to the interface, is sufficient to characterize reaction.840

We assess this hypothesis for advective–diffusive transport in a body centered841

cubic beadpack [75], where the structure of the medium is periodic but not842

all points on the interface within a unit cell are equivalent in their positioning843

relative to the rest of the interface (Fig. 1b, (iii)). For details on the numerical844

simulations, see Appendix A. As shown in Appendix F, the interface-extent845

coefficient for this system is given by846

ρ =
3π

2

(
1−
√

3π

8

)−1

≈ 14.7. (56)

The relative importance of advection compared to diffusion can be quan-847

tified through the Péclet number, which we define in terms of the absolute848

value v of the Eulerian mean velocity vector and the characteristic lengthscale849

`c as850

Pe =
`cv

D
. (57)

The total mass as a function of time for different Damköhler numbers and851

Pe = 103 is shown in Fig. 6a, for an initial condition uniformly distributed852

over a conventional unit cell (see Fig. 1b, (iii)). The inter-reaction time ap-853

proach, parameterized according to the numerically-determined first passage854

and return tails Ψ0 and Ψd as discussed above, is in good agreement with the855

reactive PTRW simulations. For low Da, the mass evolution agrees with the856

effective well-mixed decay, Eq. (46). This happens because, for low reaction857

rates, the fluid reactant remains homogeneous over a representative region of858

pore volume. As for the channel examples, deviations from the well-mixed859

behavior become more pronounced as the Damköhler number increases and860

transport is unable to efficiently homogenize the fluid-phase concentration.861

The corresponding reaction efficiency ε(t) is shown in Fig. 5b. The theoret-862

ical asymptotic efficiency ε∞, Eq. (55), evaluated using the first and second863

moments of the numerically-determined first passage and return times, is864

again in good agreement with the simulations. In this case, the homoge-865

neous character of the initial condition results in a reaction efficiency that is866

initially unity. For high Damköhler, reaction tends to destroy homogeneity,867

which results in a decrease of the reaction efficiency towards the asymptotic868

value.869
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Figure 7: Total mass as a function of time in a body centered cubic beadpack, for different
Damköhler numbers Da (colors) and Péclet numbers Pe (symbols). The initial condition is
homogeneous in a conventional unit cell. Results are computed from numerical inversion of
Eq. (30) given numerical computation of the first passage and return times. Dashed lines
correspond to the analytical solution with the effective well-mixed reaction rate (45). First
passage statistics are computed from 104 samples and return statistics from 105 samples,
both using a time step ∆t = 10−7τD.
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Figure 8: Rescaled first return time PDF (a) and first passage time PDF (b) for a
homogeneous initial condition in a conventional unit cell for advective–diffusive transport
in a body centered cubic beadpack for different Péclet numbers (colors). Return time
statistics are computed from 105 return time samples and first passage time statistics from
104 samples, both using a time step ∆t = 10−7τD. The inset shows the rescaled return time
tail probability, computed from the same data. The large-time scalings associated with
pure diffusion in a semi-infinite domain, which here hold below the characteristic time to
encounter a different bead and above the discretization timescale τd = `2d/(2D) = τD`

2
d/`

2
c ,

are shown as dashed lines.
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In Fig. 7, we show the total mass as a function of time for the same870

Damköhler numbers as in Fig. 6 and different values of Péclet number, com-871

puted using the inter-reaction time approach. Although we refrain from872

showing these results in Fig. 6 to avoid clutter, we verified that PTRW873

simulations show similar very good agreement as for Fig. 6a across Péclet874

numbers. For sufficiently high Da, the reaction is slower than the effective875

well-mixed prediction, but approaches the latter when the Péclet number876

becomes sufficiently high, as advection-induced transverse dispersion effects877

become important compared to diffusive mixing. In order to better under-878

stand the role of the Péclet number in the reaction dynamics, we examine879

the first passage and return time statistics arising under different transport880

regimes, see Fig. 8. The flow considered here is known to induce chaotic881

mixing [75, 77–79]. This means that the flow efficiently homogenizes the882

concentration on the cross-section of the pore space transverse to the mean883

flow direction, over a characteristic advective mixing timescale. For suffi-884

ciently low Péclet number, as long as the advective mixing timescale is large885

compared to the typical diffusive first passage and return times, transverse886

mixing is carried out by diffusion and advection does not have an appreciable887

effect on reaction. Thus, the first passage and return times, along with the888

mass dynamics, are similar for Pe up to 102. When advective effects become889

important, particles far from the interface are brought towards it faster than890

by diffusion alone. On the other hand, particles at intermediate distances891

can take longer to reach the interface than they would have by diffusion.892

Lastly, very low return times remain controlled by diffusion. This effect on893

the first passage and return times can be clearly seen for Pe = 103.894

Whichever effect is dominant, the average return time reflects the fact895

that at sufficiently late times concentration is well mixed, and remains given896

by Eq. (50). Thus, the low-Da reaction behavior, which depends only on897

the average return time, is unaffected by the mixing mechanism and remains898

unchanged, see Fig. 7. However, the distributions of first passage and return899

times become less broad with increasing Péclet (Fig. 8), and the effective900

well-mixed regime is reached faster. For this reason, the reaction dynamics901

approach the effective well-mixed behavior at higher values of the Damköhler902

number; the strength of this effect increases with increasing Pe (Fig. 7). We903

note that for higher Péclet numbers, Pe & 104, the corresponding strongly-904

advection-dominated transport simulations become particularly sensitive to905

the underlying flow velocities. Accurate results for such cases would require906

more finely-resolved flow fields, and we refrain from simulating them here.907
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The first passage and return time dynamics in the two- and three-dimensional908

channel and beadpack examples exhibit some qualitative similarities, due to909

the role of diffusion in transverse mixing and its dominant role near the910

fluid–solid interface. Indeed, the corresponding distributions exhibit clear911

diffusive scalings, followed for long times by cutoffs, see Figs. 4 and 8. The912

characteristic timescale associated with the cutoff, and therefore the charac-913

teristic variability in inter-reaction times, depends on medium geometry, and914

in the case of the beadpack is also impacted by advective mixing for large915

Péclet number. Correspondingly, the reactant mass dynamics in these differ-916

ent systems exhibit similarities, such as late-time exponential decay, but also917

differences in the onset of transport limitations with Damköhler number and918

the effective reaction rates associated with a well-mixed system, see Figs. 2,919

5, 6, and 7. In particular, the interface extent coefficient ρ, quantifying the920

available surface area per unit volume, increases compared to the 2d channel921

by a factor of 2 in the 3d channel and about 15 in the beadpack, effectively922

increasing the well-mixed reaction rate in these systems for a given value923

of the Damköhler number. Transport limitation effects become important924

for ρDa & 1, although they are mitigated in the beadpack when the Péclet925

number is large and advection-induced mixing plays a role.926

7. Discussion and conclusions927

In this work, we have developed a new framework to quantify the effect of928

transport limitations on fluid–solid reaction dynamics in porous media. Our929

approach, based on the chemical continuous time random walk theory of930

inter-reaction times, relates the statistics of solute excursions away from and931

back to the fluid–solid interface to reaction times. We have shown that the932

dynamics of effective reaction rates relate to the statistics of inter-reaction933

times, which are in turn controlled by transport and medium geometry. We934

have illustrated the approach analytically for advection–diffusion–reaction in935

stratified flow through a two-dimensional channel, and provided a generic nu-936

merical approach to determine the corresponding dynamics in more complex937

media and flow fields. For fast reactions, reactant mass is controlled by the938

first passage time of solute to the reactive solid interface. For slow reactions,939

multiple excursions to the interface are necessary before reaction occurs. In940

the latter case, the statistics of the durations of these excursions, which are941

sensitive to diffusive mass transfer near the interface, become a dominant con-942

trol on mass dynamics. Consistently with numerical simulations, our theory943
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predicts that, for intermediate and high Damköhler number, these effects can944

lead to significant reaction slowdown due to transport limitations, even for945

the simple reaction studied here, and even in simple geometries. We provide946

analytical expressions for the late-time effective reaction rate as a function947

of Damköhler number, which exhibits a transition from the well-mixed reac-948

tion rate at low Da to the inverse of the diffusion time at large Da, a direct949

consequence of transport limitations.950

The theory presented here also leads to a useful numerical framework.951

Fluid–solid reactions pose unique computational and theoretical challenges,952

as they require resolving transport dynamics close to the interface in a con-953

sistent manner. Here, we have analyzed a simple fluid–solid reaction in de-954

tail, and shown how the assumption of scale separation between reaction955

and transport dynamics near the interface leads to a consistent continuum956

model of surface reaction. Resolved numerical simulations of these dynamics957

are computationally demanding. The inter-reaction time approach presented958

here opens up new possibilities for efficient numerical computation of mass959

dynamics by extending existing theoretical frameworks for the determination960

of first passage times [34, 47, 55, 80] and/or numerical techniques for efficient961

first passage time computation [81–83].962

This work has been mainly concerned with introducing the concepts and963

methodology underlying a new approach to upscaling fluid–solid reaction964

dynamics. As such, we have made significant simplifications regarding the965

reaction chemistry and porous medium structure. The framework developed966

here brings new perspectives to link the statistical characteristics of medium967

geometry and flow to reaction dynamics in a broad range of porous media,968

which will be the subject of future work. Furthermore, we expect an approach969

similar to that presented here to be applicable to the dynamics of mass970

breakthrough as a function of distance, in terms of the statistics of inter-971

reaction distances. Future work will also aim to generalize the approach to972

higher-order reactions involving multiple transported components, multiple973

simultaneous reactions, and heterogeneity (spatial and temporal variability)974

in the solid-phase reactant distribution along the interface.975
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Appendix A. Particle tracking simulations987

In this appendix, we discuss some details of the PTRW (particle track-988

ing random walk) simulation method used in this work. Lagrangian particle989

tracking methods, which simulate particle trajectories based on a random990

walk, have been found to mitigate numerical dispersion issues, typically as-991

sociated with more traditional Eulerian methods, and their impact on fluid–992

fluid reactions [84]. However, particle tracking methods are less developed993

and widespread than Eulerian methods, and we are not aware of an avail-994

able tool for Lagrangian simulation of fluid–solid reaction dynamics. In the995

present work, a PTRW approach has the added benefit of directly simulating996

Lagrangian trajectories, the properties of which are the basis for the the-997

oretical developments. This allows us to employ the same methodology to998

simulate the conservative component of the reactive transport problem and999

to determine first passage and return times (see Sections 5 and 6 of the main1000

text).1001

The PTRW method used here is based on that employed in [85] to sim-1002

ulate conservative transport in a number of stratified flows, where it was1003

validated against theoretical predictions for dispersion, concentration distri-1004

butions, breakthrough curves (first passage times across a plane), and La-1005

grangian velocity distributions. The conservative transport algorithm con-1006

sists in discretizing the Langevin equation (1) for a set of Lagrangian par-1007

ticles, or trajectories, with prescribed initial conditions. The displacement1008

∆X(t) of a particle in a time step of duration ∆t starting at time t is com-1009

puted as the sum of the advective and diffusive contributions to the change1010

in particle position X(t),1011

∆X(t) = X(t+ ∆t)−X(t) = ∆XA(t) + ∆XD(t). (A.1)

Boundary conditions at the solid interface are implemented as elastic colli-1012

sions based on the full displacement ∆X(t). The diffusive contribution is1013
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obtained from a stochastic forward-Euler scheme as ∆XD(t) =
√

2D∆t ξ(t),1014

where the component of ξ(t) along each Cartesian axis and at each time t is1015

sampled independently from a unit (zero mean and unit variance) Gaussian1016

distribution. For the two-dimensional channel simulations of Section 5, the1017

advective contribution is also computed based on a forward-Euler scheme,1018

∆XA(t) = v[X(t)], where the velocity field v is evaluated at particle posi-1019

tions according to the analytical flow field, Eq. (35).1020

Here, we have extended the algorithm to account for: (i) elastic reflections1021

on bead surfaces, representing reflecting boundary conditions; (ii) advection1022

due to an arbitrary velocity field, previously obtained and provided at a num-1023

ber of points on an arbitrary (possibly unstructured) grid; and (iii) fluid–solid1024

reaction. Regarding (i), we implemented and independently verified a simple1025

trigonometry-based computation of perfectly elastic collisions on spherical1026

surfaces, valid in arbitrary dimension (for circles in the plane, etc.). Regard-1027

ing (ii), the flow field at a given position is obtained from linear interpolation1028

based on Delaunay triangulation and Sibson natural neighbor coordinates1029

on an arbitrary grid, based on the well-established CGAL C++ library [86].1030

For the beadpack simulations, the advective particle displacement associated1031

with the interpolated flow is computed according to a fourth-order explicit1032

Runge–Kutta scheme. Finally, (iii) is implemented according to the consider-1033

ations of Section 2. As discussed therein, the spatial support scale `d should1034

be large compared to
√

2D∆t, in order to permit resolving fluid-reactant1035

concentrations near the interface and the resulting reaction rates. We set1036

the support scale1037

`d = 10
√

2D∆t. (A.2)

It is important to note that `d is not a parameter of the theoretical model,1038

but is rather associated with the discretization. In this sense, taking `d =1039

a
√

2D∆ with a > 10 leads to the same results in the continuum limit ∆t→1040

0. It is, however, necessary to take a & 10, in order to guarantee that1041

reactant concentrations near the interface are resolved correctly and converge1042

for ∆t → 0. The diffusion time associated with the support scale `d is τd =1043

`2
d/2D; thus, our choice corresponds for a given `d to setting ∆t = τd/100.1044

The algorithm employed to compute first passage and return times is val-1045

idated here by the agreement with theoretical results for the one-dimensional1046

channel, see Section 5. Similarly, the agreement between theory and simula-1047

tions found for the dynamics of total mass, especially regarding the theoreti-1048

cal results for low and high Damköhler number and the assymptotic reaction1049
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rates for arbitrary Damköhler number, discussed in Sections 5 and 6, pro-1050

vides validation for the reactive transport algorithm. We note that we have1051

implemented only the AF +BS → BS reaction studied here, but the reaction1052

algorithm can be direclty extended to other reactions and heterogeneous dis-1053

tributions of solid-phase reactants at the expense of explicitly keeping track1054

of the surface concentrations of the latter across the fluid–solid interface. A1055

github repository where the code is available under an open-source license1056

and regularly updated can be found at github.com/tcAquino/BeadPack.1057

Further benchmarks and extensions to the fluid–solid reaction algorithm will1058

be included and discussed thereat. The version of the code used in the present1059

work can be found at the DOI 10.5281/zenodo.4392882. Additional doc-1060

umentation addressing further technical details may also be found in both1061

these repositories.1062

In order to simulate reactive transport and determine first passage and1063

return times using the PTRW algorithm, we first require the flow field, which1064

may be given at a set of points on an arbitrary grid. For the beadpack sim-1065

ulations of Section 6, the flow field was obtained numerically from Stokes1066

flow simulations using a finite volume discretization in openFOAM [87], with1067

Nc = 1572138 hexahedral cells. The flow was computed in a conventional1068

(cubic) unit cell, of side `c = 1 cm, of the body centered cubic packing consid-1069

ered. The associated body cubic centered bead diameter is d =
√

3`c/2 [76],1070

corresponding to a spatial resolution of about `c/N
1/3
c ≈ 10−2d. Periodic1071

boundary conditions were imposed on the cell faces and no-slip boundaries at1072

the spherical bead interfaces. The flow had kinematic viscosity 5 · 10−7 m2/s1073

and was driven by a pressure gradient of 1 Pa/m, obtained by applying a1074

body force. In terms of Cartesian axes perpendicular to the unit cell faces,1075

the mean velocity vector had an orientation corresponding to an angle 5π/401076

with the x axis on the x–y plane and an angle π/40 with the z axis. This flow1077

configuration has been analyzed in [75], and it is known to induce chaotic1078

mixing. As discussed in the same reference, the contact points between beads1079

can cause numerical instabilities in the numerical determination of the flow1080

field. This issue can be addressed by placing small spheres or cylinders, with1081

no-slip boundary conditions on the exposed surface, at the contact points1082

between beads to avoid numerical issues near the contact points. These1083

structures do not have an appreciable impact on flow and transport prop-1084

erties [75]. In the present simulations, spheres of 20% the bead diameter1085

were employed in this manner. These contact spheres are not needed for sta-1086
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Figure B.9: Schematic illustrating the equivalence of the first passage time by diffusion
in one dimension from the center of cell A to the center of cell B, in the presence of a
reflecting boundary and in an equivalent bounded domain. If the boundary, at distance
`d/2 from the starting point, is reached before the center of cell B, at a distance `d, the
first passage time to the latter is the same as to its reflection. Thus, the first passage time
in the presence of the boundary is the same as the first passage time to either boundary
in the equivalent domain of length 3`d.

bility of the PTRW simulations; in the conservative and reactive transport1087

simulations, no boundary conditions were enforced on their surface, and zero-1088

velocity points were added at the contact points instead. Particle positions1089

undergoing advection–diffusion were mapped onto the unit cell according to1090

the periodic boundary conditions.1091

Appendix B. Statistics of single interface visit times1092

Here, we obtain the PDF of the time spent in the reactive region in1093

each visit. Consider again one-dimensional diffusion close to the interface.1094

The first passage time from the middle of the discretization cell nearest the1095

interface to the middle of the adjacent cell corresponds to the duration of1096

a visit to the reactive region. It can be obtained by considering the first1097

passage time to either boundary in a domain of length 3`d and starting from1098

a distance `d from one boundary, as illustrated in Fig. B.9. The first passage1099

time PDF to reach either boundary in a domain of length L, starting from a1100

distance ` from one and L− ` from the other, has Laplace transform [71]1101

ψ̃(λ; `, L) =
csch[

√
`2λ/D] + csch[

√
(L− `)2λ/D]

coth[
√
`2λ/D] + coth[

√
(L− `)2λ/D]

. (B.1)

Setting L = 3`d and ` = `d yields the single-visit PDF1102

ψ̃v(λ) =
[
2 cosh(

√
2τdλ)− 1

]−1

. (B.2)
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Expanding for λ� 1/τd and inverting the resulting Laplace transform leads1103

to Eq. (19). Recall that λ � 1/τd represents large times compared to the1104

discretization time, so that this result constitutes a step in taking the con-1105

tinuum limit rather than a large-time approximation. As before, the same1106

conclusion is reached if we consider the first passage times to within `d of the1107

interface starting from a distance 2`d from the latter. This result remains1108

valid in higher dimensions under the assumption that interface is locally flat1109

at the scale of the transport model.1110

Appendix C. Impact of first passage time to the interface on reac-1111

tion dynamics1112

According to the chCTRW framework, in the absence of the delay associ-1113

ated with first reaching the interface, the generalized rate law governing the1114

evolution of total fluid reactant mass is given by Eq. (8). When this delay1115

is added, the mass is equal to the initial mass for times smaller than the1116

delay, and evolves according to the previous equation for later times. That1117

is, averaging over initial delays (i.e., over an ensemble of Lagrangian particles1118

distributed according to the initial condition),1119

M(t) = M0

t∫

0

dt′ ψ0(t′) +

t∫

0

dt′ ψ0(t′)Mφ(t− t′). (C.1)

The first term represents the fact that, if the interface has not been reached1120

for the first time by time t, which happens with probability
∫ t

0
dt′ψ0(t′) over1121

the ensemble of Lagrangian particles, the fluid mass is equal to its initial1122

value M(0) = M0. Regarding the second term, if the interface is reached for1123

the first time at time t′ < t, which happens with probability density ψ0(t′),1124

the mass at time t is equal to Mφ(t − t′). Note that, given a first arrival at1125

the interface at time t = t′, M(t = t′) = Mφ(0) = M0. Then, for times t > t′,1126

the mass dynamics proceed according to the inter-reaction times, with Mφ1127

obeying the chCTRW equation (8). This result may be written in terms of1128

the first passage time tail probability Ψ0 as1129

M = M0Ψ0 +Mφ ∗ ψ0. (C.2)

Substituting Eq. (8) for the dynamics of mass Mφ resulting from the inter-1130

reaction times, we obtain Eq. (25).1131
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Appendix D. Mass dynamics and reactive time1132

The dynamics of reactant mass may be formulated in terms of the statis-1133

tics of the total time spent in the reactive region rather than the statistics of1134

the inter-reaction times. In this appendix, we show that the former approach1135

leads to the same results as the latter, which is developed in the main text.1136

Consider the reactive time Ud(t), representing the total time spent within dis-1137

tance `d of the interface. We denote its PDF by pU(·; t), that is, pU(u; t) du1138

is the probability that, given total elapsed time t, a particle has spent a time1139

in the interval [u, u+ du) within distance `d of the reactive interface.1140

For small `d, in preparation for taking the continuum limit `d → 0, we1141

approximate1142

Ud(t) ≈ 2τdNd(t), (D.1)

where Nd(t) is the (random) number of visits to the reactive region by time t,1143

each of which contributes the mean residence time per visit 2τd, see Eq. (19).1144

Since Ud(t) is proportional to Nd(t), denoting by pN(n; t) the probability that1145

Nd(t) = n, we have1146

pU(u; t) ≈ pN(0; t)δ(u) + (2τd)
−1 pN

(
u

2τd
; t

)
, (D.2)

where δ(·) is the Dirac delta.1147

The number of visits to the reactive region by a given time depends on1148

the PDF of inter-visit delay times ψd, as well as on the PDF ψ0 of the time1149

of the first visit. Adapting the results of [72], the Laplace transform of the1150

distribution of the number of visits to the reactive region with respect to1151

time t in terms of these quantities is given by1152

p̃N(n;λ) =

{
Ψ̃0(λ), n = 0

Ψ̃d(λ)ψ̃0(λ)ψ̃d(λ)n−1, n > 0
. (D.3)

In the limit of small `d, we obtain, according to Eq. (D.2),1153

p̃U(u;λ) = Ψ̃0δ(u) + λ−1ψ̃0(λ)Ed(u, λ), (D.4)

where1154

Ed(u, λ) =
λg̃(λ)`c
`d

exp

[
−λg̃(λ)`c

`d
u

]
, (D.5)
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with the rescaled tail probability g defined in terms of the return time tail1155

Ψd according to Eq. (16).1156

To quantify the dynamics of total mass in terms of the reactive time Ud(t),1157

we make use of a subordination-type description [31, 69, 73, 74]. Within the1158

reactive region, reaction is well-mixed in the sense described in Section 2.1159

The overall reaction then proceeds according to the time particles spend1160

within this region. The amount of mass left by time t is the average of the1161

surviving mass M0 exp[−kdUd(t)] over all possible times Ud(t) spent within1162

`d of the interface up to time t, which are distributed according to pU(·; t).1163

That is,1164

M(t) = M0

∞∫

0

du e−kdupU(u; t). (D.6)

The Laplace transform of the total mass (26) obtained using the inter-1165

reaction time formulation is then recovered by direct computation in the1166

limit `d → 0.1167

In terms of a Laplace transform with respect to operational time (denoted1168

by a hat), keeping time t fixed, we may write Eq. (D.6) as1169

M(t)

M0

= p̂U(kd; t), (D.7)

which can also be interpreted as the Laplace transform of the stochastic pro-1170

cess Ud/`d, evaluated at the rate `dkd = kcA. In the limit `d → 0 of fine1171

discretization, the stochastic process Ud/`d is the local time at the bound-1172

ary mentioned in the introduction [38–41] (note that, in accordance with1173

the standard terminology used in the literature, the so-called local time has1174

units of time per length). It is this quantity, rather than Ud itself, that is1175

well defined in the continuum limit. This is directly related to the fact that a1176

particle undergoing continuous diffusion in one dimension returns to the ini-1177

tial position infinitely many times within an arbitrarily small time interval.1178

Despite the fact that this represents a mathematical abstraction, it corre-1179

sponds to the correct behavior when transport is adequately described by1180

continuous diffusion at the scale of interest.1181

Appendix E. First passage times to the wall in a 2D channel1182

In this appendix, we provide the Laplace transforms of the first passage1183

time PDFs of solute to the channel walls for transport in stratified flow1184
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through a two-dimensional straight channel. As discussed in Section 5, these1185

are controlled by diffusion in the transverse direction, although the veloc-1186

ity profile can impact the result due to its role in determining the initial1187

distribution, for example for flux-weighted injections.1188

The different first passage times are obtained by using Eq. (27) for a1189

point injection, and weighting according each initial condition. Thus, the1190

mid-channel injection (a) leads to1191

ψ̃0(λ) = ψ̃(λ; `c, 2`c) = sech(
√

2τDλ). (E.1)

For the homogeneous injection (b), we have1192

ψ̃0(λ) =
1

2`c

2`c∫

0

d` ψ̃(λ; `, 2`c) =
tanh(

√
2τDλ)√

2τDλ
. (E.2)

For the flux-weighted case (c), we find1193

ψ̃0(λ) =
1

2`c

2`c∫

0

d`
v(`− `c)

v
ψ̃(λ; `, 2`c) =

3

2τDλ

[
1− tanh(

√
2τDλ)√

2τDλ

]
, (E.3)

and for all mass starting at the channel walls (d),1194

ψ̃0(λ) = 1. (E.4)

Appendix F. Interface-extent coefficient for the body centered cu-1195

bic beadpack1196

In order to compute the interface-extent coefficient ρ for a body centered1197

cubic beadpack, first note that the bead radius is related to the conventional1198

(cubic) unit cell side by r =
√

3`c/4, where we have taken the cell side1199

`c as the characteristic length (see, e.g., [76] on the theory of crystalline1200

structures). Within a unit cell, there is a full bead at the center, and eight1201

bead quarters at each cell corner, totaling a solid volume of two full beads.1202

Since the volume of a bead is Vb = 4πr3/3, the porosity is given by1203

ϕ = 1− 2Vb
`3
c

= 1−
√

3π

8
≈ 0.320. (F.1)
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The surface area of a bead is Ab = 4πr2, so that, according to Eq. (48), we1204

have1205

ρ =
2Ab`c
ϕ`3

c

=
3π

2

(
1−
√

3π

8

)−1

. (F.2)
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Chaotic mixing in crystalline granular media, J. Fluid Mech. 871 (2019)1423

562–594.1424

[76] S. H. Simon, The Oxford solid state basics, OUP Oxford, 2013.1425

[77] D. R. Lester, M. Dentz, T. Le Borgne, Chaotic mixing in three-1426

dimensional porous media, J. Fluid Mech. 803 (2016) 144–174.1427

[78] J. Heyman, D. R. Lester, R. Turuban, Y. Méheust, T. Le Borgne,1428
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