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1 Highlights

2 e We introduce the concept of inter-reaction times for quantifying trans-
3 port limitations in fluid—solid reactions

4 e We upscale this process using the chemical continuous time random
5 walk framework

6 e Results are compared to two- and three-dimensional particle tracking
7 simulations
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. The chemical continuous time random walk framework

0 for upscaling transport limitations in fluid—solid
10 reactions

1 Tomés Aquino*, Tanguy Le Borgne

12 Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France

13 Abstract

Fluid-solid reactions play a key role in a large range of biogeochemical pro-
cesses. Transport limitations at the pore secale limit the amount of solute
available for reaction, so that reaction rates measured under well-mixed con-
ditions tend to strongly overestimate rates occurring in natural and engi-
neered systems. Although different models have been proposed to capture
this phenomenon, linking pore-scale structure, flow heterogeneity, and local
reaction kinetics to upscaled effective kinetics remains a challenging problem.
We present a new theoretical framework to quantify these dynamics based
on the chemical continuous time random walk framework. We study a fluid—-
solid reaction with the fluid phase undergoing advective—diffusive transport.
We consider a catalytic degradation reaction, Ar + Bs — Byg, where Ap
is in fluid phase and By is in solid phase and homogeneous over the fluid—
solid interface, allowing us to focus on the role of transport limitations and
medium structure. Our approach is based on the concept of inter-reaction
times, which result from the times between contacts of transported reactants
with the solid phase. We use this formulation to quantify the global kinetics
of fluid-reactant mass and test our predictions against numerical simulations
of advective—diffusive transport in stratified channel flow and Stokes flow
through a beadpack. The theory captures the decrease of effective reac-
tion rates compared to the well-mixed prediction with increasing Damkohler
number due to transport limitations. Although we consider simple kinetics
and media, these findings will contribute to the understanding and model-
ing of the effect of transport limitations in more complex reactive transport
problems.

1 Keywords: Reactive transport, Stochastic modeling, Chemical continuous
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15 time random walk

1 1. Introduction

17 Biogeochemical reactions at the interface between fluid and solid medium
18 phases play a central role in a large range of reactive transport problems,
19 such as contaminant transport and degradation, soil remediation, mineral
20 weathering, and carbon dioxide sequestration [5-7]. Biotic and abiotic re-
2 actions at solid-fluid interfaces include dissolution/precipitation, adsorption,
»» complexation and redox reactions. The kinetics of these reactions on solid
23 surfaces depend directly on the concentration of solutes in the fluid phase,
2« which evolve in time and space through flow and transport dynamics. There-
s fore, much effort has been invested into the development, setup, and choice
s of detailed reactive transport models to quantify these processes and their
z interaction with transport and medium geometry [1-3]. The basic quantifi-
s cation of the kinetics of such reactions is generally performed using well-
2 mixed batch experiments. Yet, transport limitations at the pore scale lead
% to large deviations from these estimates by reducing access of solutes to reac-
a1 tive surfaces compared to fully-mixed systems. This phenomenon has been
2 observed in resolved numerical simulations of carbonate mineral dissolution
1 in porous media [8], numerical simulation and column experiments of calcite
3¢ dissolution [9, 21, 22|, numerical simulations of mineral dissolution in het-
35 erogeneous porous media [11, 23], pore-scale reactive transport simulations
s in rough fractures [13], and batch experiments and field-scale modeling of
w biodegradation of dissolved organic carbon in aquifers [24]. Pore-scale flow
;s and structure have also been found to significantly impact adsorption to min-
50 eral surfaces in porous media, an effect which has been observed in detailed
w0 lattice-Boltzmann simulations [16-18].

a These studies have consistently found that reaction rates are significantly
« lower than expected from classical well-mixed theories, especially when re-
s action is fast compared to transport processes. Volume averaging tech-
w4 mniques [14, 15] have been employed to identify general conditions under
s which classical macroscopic models of reactive transport break down, and
s transport limitations lead to decreased global reaction rates and /or modified
« rate laws. Random walk models have been used to investigate the impact
s of transport on surface reactions for simple geometries, such as sinusoidal
w channels [19, 20]. The role of available reactive surface area [10, 12] and
o surface roughness [13] in mineral dissolution in porous and fractured media

3
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s1 has been analyzed and quantified through experiments and numerical simu-
52 lations. However, a quantitative link between pore-scale transport dynamics
53 and effective fluid—solid reaction kinetics remains unavailable. Furthermore,
s« in practice, highly-resolved numerical simulations can be prohibitively ex-
55 pensive, and detailed knowledge of the dynamics and spatial distribution
ss of physico-chemical properties is often not available, stressing the need for
57 upscaled models of reactive transport [26].

58 In well-mixed batch reactors, reactant concentrations are spatially ho-
so  mogeneous. In the Lagrangian particle picture, this corresponds to every
o particle being instantaneously available to participate in a reaction with ev-
s ery other particle. This deterministic picture can be extended to account
2 for stochastic variability for small particle numbers, while retaining the well-
3 mixed assumption [28]. This is achieved through the concept of inter-reaction
s« times, which represent the time between the occurrence of sequential reaction
s events amongst sets of reactants in accordance with the chemical reactions.
s In the classical stochastic theory, reactants are assumed to be fully-mixed,
s in the sense that all sets of reactants allowed by the chemistry have the
s same probability of reacting. This leads to exponentially-distributed inter-
so reaction times, representing a probability per unit time of reaction that is
70 fully determined by the thermodynamic reaction rate and the available re-
7 actant numbers at a given time. The classical well-mixed rate laws, under
72 which reaction rates correspond to products of reactant concentrations with
73 powers determined by the reaction stoichiometry, are recovered in the limit
74 of large particle numbers [29]. In practice, this picture holds only if diffusion
75 is sufficiently fast to locally homogenize reactants, so that the limiting factor
7 in determining reaction rates lies in the thermodynamic properties of the
7z reaction rather than transport.

78 Fluid—solid reactions involve transported and immobile reactants. Solid-
7o phase reactants are located at the interface between a fluid phase, in which
so fluid-phase reactants are transported, and a solid phase of the underlying
s medium. The first explicit model of the impact of transport on reaction
22 is due to von Smoluchowski [30]. It quantifies contact reactions between
&3 a hard sphere and a sea of diffusing particles, and it leads to an effective,
s« time-dependent reaction rate which depends on transport properties, namely
s the diffusion coefficient. Because there is no fluid flow into or out of the
s solid interface, mass flux of fluid reactants allowing contact with solid-phase
ez reactants is ultimately governed by diffusion. On the other hand, advective
ss transport along streamlines may bring reactants closer or farther from the

4
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s solid phase. Thus, in the inter-reaction time picture discussed above, the
o combined effect of medium heterogeneity, advective variability, and diffusion
a1 introduces reaction delays in terms of the first passage times of reactants
e to the solid phase. Quantifying this effect and its impact on reaction rates
o3 is therefore fundamental for modeling fluid-solid reactions in porous and
w fractured media.

% Recently, the chemical continuous time random walk (chCTRW) frame-
o work was developed in order to relax the well-mixed assumption in stochastic
o reaction modeling, leading to inter-reaction times which encode the effect of
e local transport limitations through additional reaction delays due to trans-
o port limitations [31]. The chCTRW hence quantifies the effect of broader
o distributions of the times required for sequential reaction events to occur.
w1 Despite the formal similarities, this differs conceptually from the classical
w2 CTRW framework, which quantifies the effect of broadly distributed times
103 or distances associated with particle displacements [32]. Such reaction de-
14 lays can be quantified in terms of the first passage times of reactant particles
105 across each other [33-37]. In the case of fluid—solid reactions, these are related
s to the duration of excursions between visits to the solid interface. The latter
w7 are closely related to the time spent near the interface, which can be formally
s quantified through the so-called local time at the boundary, which represents
w0 the amount of time spent in a thin region near the interface divided by the
1o region thickness, in the limit of vanishing thickness [38-41]. The concept
m  of modeling reactive transport in terms of exposure time, that is, the time
2 that reactants spend in close proximity and so are available for reaction, has
us  received some attention over the past decade [42-46]. Nonetheless, the rela-
us tionship between exposure time and flow and medium heterogeneity remains
us little understood. The central goal of the present work is to formalize the
us notion of inter-reaction times and their impact on reaction dynamics in the
7 context of fluid—solid reactions under advective—diffusive transport, in order
us to better undertand and upscale the impact of flow, transport, and medium
ne structure on global reaction rates.

120 We consider here a catalytic degradation reaction, Ar + Bs — Bg, a
21 simplified chemical setup which allows us to focus on the role of transport
122 limitations. The reactant species By is taken to be in solid phase, immobile,
123 and homogeneously distributed over the fluid-solid interface, whereas the re-
124 actant species A is in fluid phase and undergoes advective—diffusive trans-
s port. The impact of disordered (i.e., random and uncorrelated at different
s spatial locations) distributions of solid-phase reactants and residence times
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127 on this type of reaction has been studied for diffusive and subdiffusive trans-
s port (i.e., transport phenomena where plume variance grows sublinearly in
1o time) and trapping using random walk models [48-55], and purely-advective
10 transport in a streamtube model using the chCTRW framework [47]. How-
1 ever, these models did not consider the joint effect of flow variability and
12 diffusion. In porous media, the interplay between these processes controls
133 mass fluxes towards the fluid-solid interface, and therefore the amount of re-
134 actant available for reaction. As shown here, the interplay between medium
135 geometry and transport limitations can lead to effective reaction kinetics that
16 differ from their well-mixed counterparts, even for this simple chemical setup.
137 It should be noted that we disregard for the present more complex effects
s which may play an important role in reactive transport dynamics, such as
139 the coupling of transport and medium evolution due to reaction-induced pre-
1o cipitation and dissolution [56-60]. Our simplified setup allows for in-depth
w1 understanding and quantification of the specific role of transport limitations
12 and medium geometry regarding global reaction dynamics, and provides a
3 rigorous upscaling approach to be later extended to more complex reaction
us  chemistry.

145 The paper is structured as follows. We first formalize fluid—solid reaction
us dynamics under diffusive transport near an interface in Section 2. This is
7 followed by a brief review of the fundamental concepts behind inter-reaction
us times and the chCTRW formulation in Section 3. In Section 4, we develop the
1o relationship between return times to the interface and inter-reaction times,
150 and use this formulation to quantify the time evolution of total fluid-reactant
151 mass. Next, in Section 5, we illustrate these results by obtaining an analyti-
12 cal formulation of the mass dynamics for advection—diffusion under stratified
153 flow in a two-dimensional channel. Section 6 shows how the framework thus
15« developed may be applied to compute the time evolution of total mass from
155 numerical determination of first passage and return times in more general set-
16 tings. In particular, we consider advection—diffusion under stratified flow in
157 a three-dimensional channel and Stokes flow in an idealized porous medium,
18 specifically a body centered cubic beadpack. An overall discussion and con-
159 clusions are presented in Section 7, and some additional technical details and
10 derivations may be found in appendix.
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161 2. Fluid—solid reaction model

162 We consider a mobile reactant species Ap, transported by the fluid phase,
13 and an immobile, solid-phase reactant species Bg, distributed over the fluid—
16« solid interface of the medium. In order to focus on the effects of transport
165 limitations, we assume for simplicity that the distribution of the latter over
166 the interface is homogeneous, and that its concentration at a given spatial
17 location does not change appreciably due to reaction. Assuming further that
18 the reaction is irreversible at the timescale of interest and ignoring the reac-
1o tion products, this corresponds locally to the reaction Arp + Bg — Bg. We
o thus consider a far-from-equilibrium situation where the reverse reaction can
i1 be neglected. Mass conservation requires this reaction to give rise to addi-
12 tional products, which are ignored here. We consider also that the available
113 reactant Bg is homogeneous across the solid phase. While this assumption
17 should not be expected to hold over large scales, it is directly relevant for rel-
175 atively chemically-homogeneous column experiments, or over certain regions
e of larger media. The assumption that Bg is not consumed holds directly
w7 for truly catalytic reactions, but, along with homogeneity, it is also a rele-
s vant approximation if Bg is locally not consumed appreciably, for example
9 under large flow rates and short injections, where the fluid phase may be
180 significantly consumed throughout the column, but consumption of the solid
11 phase at a particular location is small. As mentioned in the introduction, the
12 assumption of no consumption of the solid phase also implies that we also
183 disregard more complex effects such as coupling of transport and medium
18 evolution, which can occur due to precipitation and/or dissolution.

185 The resolved simulation method developed in this work can in principle
18 handle more complex chemical setups, including multiple reactions and/or
17 multiconiponent reactions. However, the theoretical developments become
188 substantially more complex, because it is necessary to account for the si-
189 multaneous presence and amount of different reactants near the interface.
1o The simple chemical reaction Ar + Bg — Bg, along with the assumption of
11 chemical homogeneity of the solid-phase reactant, allows us to focus on the
12 impact of transport mechanisms and medium geometry on reaction dynam-
13 ics. Despite the fact that the chemical kinetics are linear at the fluid—solid
104 interface, reaction is limited by the available fluid-reactant flux toward the
105 latter, and transport limitations can lead to modified effective reaction kinet-
s ics and significant reaction slowdown. While it is important to note that the
17 theory developed here cannot at present be directly applied to multicompo-



Journal Pre-proof

108 nent chemical reactions, it provides the first direct link between first passage
199 and return time statistics, inter-reaction times, and fluid-solid reaction dy-
20 namics, and sets the stage for later generalizations.

201 In order for reaction to occur, physical reactant molecules of the trans-
22 ported phase Ar must be in reactive contact with the solid-phase component
203 Bg. This occurs within some distance ¢, of the fluid—solid interface. We as-
204 sume that ¢, is much smaller than the scale at which transport of reactant
20s  Ap within the fluid phase may be described through continuous advection—
206 diffusion, and that reaction then occurs when reactant Ap is transported
207 sufficiently close to the interface. As we will see, this corresponds to the
208 usual concept of surface (as opposed to bulk) reactions. It should be noted
200 that if this spatial scale separation between transport and reaction does not
210 hold, a more detailed reaction model is necessary. For example, if attach-
ou ment or transport times within a physical reactive layer play a significant role,
212 sorption or microporosity models may be needed, which we do not consider
a3 here.

214 From both a theoretical and a nuinerical perspective, it is convenient to
25 adopt a conceptualization of transport in terms of Lagrangian tracer parti-
a6 cles. Each Lagrangian particle represents a macroscopic number of physical
27 reactant particles undergoing advection—diffusion [61, 62] and subject to re-
218 action near the interface. Disregarding reaction for the moment, particle
20 positions X (t) as a function of time t are described by the Langevin equa-
20 tion (see, e.g., [63])

dX (t) = v[ X (t)]dt + V2Dt £(t), (1)

21 where D is the diffusion coefficient, v(-) is the velocity field as a function of
22 position; and, for each time ¢, £(t) are independent random vectors whose
23 components are independent unit Gaussian random variables.

22 Under the assumed scale separation between reaction and transport, re-
»s action dynamics are controlled by the concentration of fluid reactant Ag
26 near the interface, subject to both advective—diffusive transport and reac-
27 tion. When a discretization is considered, for a given time step At, the
28 support scale ¢; over which concentrations are well defined must be large
29 compared to the spatial resolution of the model description, which is of or-
20 der vV2DAL (see Appendix A for further details). It is important to note
21 that /4 is not a parameter of the theoretical model, but rather a property of
2 the discretization. In this sense, the dynamics will be shown to converge to a
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213 well-defined limit when ¢; — 0, which corresponds to taking the continuum
2 limit At — 0.

235 For a given discretization, below the support scale ¢4, the mass repre-
26 sented by a Lagrangian particle is taken to be well-mixed. Particles within
237 & region comprising a distance up to ¢; from the interface are subject to
2 reaction, as we will formalize below. In what follows, we will refer to this
239 region as the reactive region for convenience, although it should be remem-
20 bered that it is associated with a given discretization and different from the
a1 physical reactive region, associated with the subscale length ¢,. In Section 4,
22 we will employ the chCTRW inter-reaction times to show that the contin-
23 uum limit £; — 0 (or, equivalently, At — 0) of this coneeptualization is well
24 defined and leads to a consistent description of the full reactive transport
25 problem. This approach is conceptually convenient for the derivations that
as  follow. From a computational standpoint, it converges to the correct results,
27 as will be discussed in detail below. Nonetheless, we expect that it will prove
as  useful in the future to explore equivalent but computationally more efficient
210 approaches for direct numerical simulations, such as kernel-smoothing [64, 65]
0 to determine concentrations near the interface. We note that any method for
51 estimating local mass fluxes to the interface from Lagrangian particle colli-
2 sions must address the same conceptual issues, since, as discussed in detail
3 in what follows, the number of collisions with the interface within a given
4 time period is also discretization-dependent.

255 According to the previous considerations, while a Lagrangian particle is
256 in the reactive region; a fraction fs/¢,; of its mass M, is physically available
57 for reaction. Assuming the law of mass action holds locally, we have

dM, _ LM,

= 2
7 o (2)

8 where k is the usual well-mixed reaction rate, in units of inverse concentration
;50 per time, and ¢, is the solid-phase concentration within the reactive region.
260 Thus,

dM, ca
= —kqyM,, kg =k—, 3
dt “r T, 3)
261 where kg is the effective particle reaction rate in units of inverse time, and
w2y = Cgl, is the solid-phase surface concentration, i.e., mass of solid reactant
%3 per unit interface area. Note that, under the scale separation assumption,
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wa Ug is small compared to the scale at which transport can be described by
x5 continuous advection—diffusion. This means that, formally, the continuum
s6 description then corresponds to the scaling limit /; — 0 with the physical
27 concentration cy remaining finite, whereas /;/¢; remains small due to the
s  scale separation. This scale separation corresponds to the situation where
x0 the fluid—solid mass-action reaction can be treated as a surface reaction: the
o0 reaction rate kg, describing particle mass decay per unit time in the reactive
o region, is independent of /;, and kcy4 is the usual surface reaction rate (units
o2 of length per time), which depends only on the surface concentration c4. As
o3 will be shown in Section 4, this leads to a well-defined continuum limit for
o the evolution of total fluid reactant mass, where the results are independent
s of both the discretization length ¢; and the subscale length ¢;. Similarly, we
26 assume here that molecular-scale attachment/detachment at the interface is
arr fast compared to diffusion near the interface, so that it can be considered
s instantaneous. Specifically, this corresponds to assuming that 7,/74, where
2 T, i the average duration of an attachment event and 745 = ¢3/(2D) is the
0 diffusion time associated with the discretization lengthscale, remains small.
21 We note that the concept of scale separation, where a continuum limit is
2 taken while maintaining a subscale length or timescale small, is commonly
3 employed in volume averaging; see, e.g., [66].

284 Numerically, we implement these dynamics using particle tracking ran-
25 dom walk (PTRW) simulations, which discretize the Langevin equation (1)
2 (see, e.g., [61, 62] and Appendix A for further details). If a fluid-reactant
7 particle is in the reactive region during a time step of duration At, its mass
28 evolves according to

M, (t + At) = M, (t)e A, (4)
20 Otherwise, if the particle is farther from the interface, no reaction occurs.
20 3. Inter-reaction times and the chemical continuous time random

291 walk

20 In this section, we provide a brief description of the chCTRW framework
203 and the associated concept of inter-reaction times, which will be used in what
20 follows to obtain a quantitative description of total fluid reactant mass. In
205 this framework, the inter-reaction time is the sum of the delay time due to
206 transport limitations and the intrinsic reaction time necessary for the reaction

10
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Figure 1: (a): Illustration of the concepts of first passage, return, and interface visit
times. The overall fluid-solid reaction rate is decreased due to the time spent by the fluid
reactants away from the interface. Points in the initial condition (cyan blob) take different
paths towards the interface (purple line). After the interface is reached for the first time,
additional excursions away from and back to the interface (blue lines) also depend on
medium geometry and transport. Obtaining a consistent description of the effect of the
excursion times on reaction slowdown requires resolving the return excursions and interface
visits (orange line) at the support scale of a discretized transport description before taking
the continuum limit. (b): We apply the general framework to analyze reaction dynamics
under advective—diffusive transport in two- and three dimensional media: (i) Laminar flow
in a straight 2D channel; (ii) Laminar flow in a cylindrical 3D channel; and (iii) Stokes
flow in a body centered cubic beadpack, composed of a periodic array of the conventional
cubic cells shown (the spherical solid bead at the cell center is shown in red, and the corner
beads in green).
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27 to occur under well-mixed conditions. For the present application, these
208 correspond to the times between visits of the particle to the reactive region,
200 and the time spent in the reactive region. These concepts are illustrated in
s0 Fig. la. In the sections that follow, we will develop a theory of fluid—solid
s reaction under advective—diffusive transport, and apply it to analyze different
32 two- and three-dimensional example media (Fig. 1b).

303 The chemical CTRW framework treats the inter-reaction time 7, i.e., the
se  time between successive reaction events, as a stochastic quantity incorporat-
35 ing variability from the chemical kinetics on the one hand, and transport
36 and medium structure on the other. In what follows, we will obtain the PDF
sor ¢ of inter-reaction times for our fluid-solid reaction. Disregarding for the
s moment the first excursion to the interface (purple excursion in Fig. 1), the
30 total inter-reaction time in the chCTRW formulation can be written as [31]

T =T, + 74(7), (5)

310 where 7, is the time it would take for a reaction to occur if a particle were
su confined to the reactive region, and 7, is the additional time spent in excur-
sz sions away from the latter (blue excursions in Fig. 1). The total time 7, that
a3 must be spent in the reactive region before the next reaction event impacts
ss the delay time 7,, because a longer 7, typically requires more visits to the
us  reactive region (corresponding to orange excursions in Fig. 1), punctuated
316 by excursions.

317 When small numbers of reactant particles (molecules) are considered,
as the inter-reaction time refers to the time between two successive reaction
;9 events between reactant molecules, allowing for capturing fluctuations due
20 to finite particle numbers [28]. Recall that here we consider Lagrangian
;1 particles representing a certain amount of fluid reactant mass undergoing
322 continuous advection-diffusion, and corresponding to a macroscopic number
23 of molecules. In that case, fluctuations due to molecule numbers are not sig-
2 nificant |28, 31]. For conceptual and computational reasons, it is then more
15 convenient to consider a fixed number of Lagrangian particles whose masses
26 evolve in time [67]. In this case, the rate equation (3) for the evolution of the
w27 mass carried by a Lagrangian particle within the reactive region corresponds
»s  t0 a constant reaction rate kg = kca/lq (with units of inverse time). Accord-
19 ing to the classical well-mixed theory for stochastic inter-reaction times, this
;0 reaction rate may be interpreted as a constant probability of reaction per
s unit time, which translates into an exponential inter-reaction time distribu-
3 tion [28]. Specifically, the probability that 7, takes a value in [u,u + du) is

12
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s given by ¢,.(u) du, such that its probability density function (PDF) is given
334 by

bp(u) = kge v, (6)
s For a given 7, = u, 7,(u) is also a random variable, whose PDF ¢,(-;u)
a6 reflects the underlying medium heterogeneity and the stochasticity inherent
337 in diffusive motion. In the next section, we will explicitly relate this PDF to
138 the statistics of excursions away from the interface. As we will see, although
s 7, and 7, are discretization-dependent, 7 is well defined in the continuum
0 limit.
341 The impact of delay due to return excursions on reaction dynamics is
s captured by a memory function, given in terms of the PDF ¢ of inter-reaction
13 times 7 as [31]

() = 2201 )
1—o(\)
se  Here and throughout, we denote Laplace transforms (with respect to time) by
us  a tilde and the corresponding Laplace variable by . For the Ap + Bg — Bg
us reaction considered here, the total mass obeys
M,

ur - where  denotes the convolution product, (Ky* My)(t) = [ dt' Ky (t) My(t —
s t'), and the subscript ¢ in the total mass indicates that the first delay time
10 to reach the interface (see Fig. 1) has not yet been considered, so that these
0 dynamics incorporate the impact of the inter-reaction time PDF ¢ only. This
1 equation may be seen as a generalized rate law governing the time evolution
2 of the total mass under the impact of reaction delay caused by transport limi-
;3 tations. In contrast to the classical well-mixed rate laws, where reaction rates
s depend only on the current mass in a batch reactor, the presence of the con-
35 volution with a memory function renders this equation integro—differential.
16 Physically, this arises because the reaction rate at a given time depends on
57 past history through the statistics of past excursions. Excursions away from
s and back to the reactive interface, controlled by transport and medium ge-
10 ometry, take the form of reaction delays, which lead to memory effects in the
w0 large-scale mass dynamics. Broad distributions of excursion times translate
1 into long-range memory effects.
362 Applying these results to fluid-solid reactions requires relating the inter-
33 reaction times to the statistics of excursions away from and back to the solid

13
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s interface, as well as including the role of the first excursion to the interface
35 (Fig. 1), representing the impact of the initial condition. This is the subject
w6 Of the next section.

7 4. Mass dynamics and inter-reaction times

368 In this section, we first quantify the impact of diffusion near the reactive
w0 interface on the distribution of return times to the reactive region and the
s duration of each visit. Based on these concepts and the first passage time
sn to the interface from the initial condition, we then obtain the inter-reaction
sz times and the evolution of total fluid reactant mass based on the chCTRW
sz formulation of the previous section.

sta 4.1. Return and visit times

315 The dominant transport mechanism that controls local reactant mass flux
s towards the interface is diffusive, because there is no fluid flow into or out
sz of the solid phase. We assume the interface to be locally flat at the scale
sis of the transport model, so that, close to the interface, it is sufficient to con-
s9 sider one-dimensional diffusion in the transverse direction. We note that
;0 this local flatness assumption may be inappropriate in some systems, such
s as rough fractures, where the surface may exhibit fractal (i.e., self-similar
32 across scales) properties (see, e.g., [68]). Such pronounced surface roughness
33 is known to impact reaction rates [13]. A one-dimensional conceptualization
;s of diffusion perpendicular to the surface may then be inaccurate, and more
s detailed modeling of transport and reaction near the interface may be neces-
s sary. This scenario, although important, is beyond the scope of the present
;7 work, and we do not explore it further here.
388 For a diffusing particle, characterized by the diffusion coefficient D, in an
;0 unbounded domain in one dimension, the PDF of the time to first reach a
w0 target located at a distance ¢ to one side of the initial position is given by
s the Lévy 1/2-stable density (see, e.g., [69)),

Uplt:0) =~ ©

PAn VarDt3 '

32 That is, ¥p(t; €) dt is the probability that the first passage time to the target
3 is in the interval [t, ¢ 4 dt). We have

Up(A; ) = e VEND, (10)
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s In order to apply the chCTRW formulation, we require the time to return
s to a target, which sets the time between successive visits to the reactive
w6 interface, and therefore controls the inter-reaction times (see Fig. 1). This
;7 concept must be treated with care, because a particle undergoing continuous
ss  diffusive motion in one dimension crosses its original position infinitely many
30 times in any given finite time interval. This is reflected in the fact that the
w0 limit ¢ — 0 of ¥p(t; £) is not well define (see also [38, 40, 41, 70]). To avoid
s1 this problem, we will obtain the inter-reaction times in the scaling limit
w2 of an appropriate discretization, associated with the support scale ¢, (see
w3 Section 2). Consider a regular one-dimensional discretization into intervals,
ws or cells, of equal length ¢;. The return times to the interface associated
ws with the discretization are then the first passage times to the center of the
ws cell touching the interface, from the center of the adjacent cell. The cell
w7 centers are a distance £y apart, so that the corresponding first passage time
ws PDF is given by 14(-) = ¥p(-;€q). Note that the same result is obtained
w0 by considering the first passage times to a distance ¢; from the interface,
a0 starting from a distance 2¢4. This is convenient for numerical determination
a1 from particle tracking simulations, where particles can be placed at distance
a2 204 from the interface and the first passage time determined as the time when
a3 distance £y from the interface is crossed.
a14 Before proceeding, we may relax the assumption of an unbounded do-
a5 main, and the requirement of one-dimensional diffusive transport far from
a6 the reactive region. First, we denote the timescale associated with the dis-
a7 cretization support scale ¢4 by
la
Td — ﬁ (].].)

ais In order to allow for different effects away from the interface while retaining
a0 the diffusive behavior near it, we write the return time PDF in the form

Ga(A) = Dp(A; €g) = e TOVZA (12)

w20 see Eq. (10). The discretized description can only resolve times ¢t > 74,
a1 corresponding to A < 1/74. Thus, with a view to taking the continuum
w2 limit, it is sufficient to consider the limit of A < 1/74, corresponding for a
w3 given discretization to times large compared to the discretization time. We

a4 then ﬁnd B B
a(N) = 1 — f(A)\/21g\. (13)
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s It is important to note that this and similar results below do not represent
26 late-time expansions, but rather lead to results valid for all times (or all \)
w27 in the continuum limit £; — 0. In other words, finite-¢; effects are a product
w8 of the discretization, which disappear in the continuum-limit description of
220 total mass obtained in what follows.

430 The form factor f (M), which depends on the geometry of the domain
s and the transport mechanisms involved up to the timescale 1/\, must ap-
a2 proach unity for large A, so that the behavior of the return time is dominated
a3 by the /274 term characterizing the diffusive behavior near the fluid-solid
s interface at short times. For small A\, corresponding to large times, f (A)
a5 encodes information about transport excursions far from the reactive region.
as  As before, in an arbitrarily small time interval, continuous diffusion in one
a7 dimension crosses the origin infinitely many times. The factor v/27;A, which
a3 approaches zero as £; — 0, captures the resulting sitigular character of the re-
s turn time distribution in this limit, whereas the factor f(\), whose departure
wo from unity represents additional effects from transport excursions unrelated
a1 to the discretization, remains finite and nonzero in the continuum limit.

a2 Let /. be a characteristic lengthscale of the medium, such as the aver-
w3 age pore size. Note that the choice of /. is arbitrary and simply provides
as  a reference scale based on which nondimensional quantities characterizing
ws  the relationship between reaction, diffusion, and advection processes will be
ws introduced below. We denote the corresponding diffusion time as

52
= = 14
™D 5D ( )
w7 and define the Damkohler number
Da = kCZTD. (15)

ws  The latter quantifies the relative importance of reaction and diffusive trans-
a9 port at this scale. It is convenient to define the rescaled return time tail

w0 probability
0.V ,4(t)
= — 1
g(t) oty (16)

s1 where
oo

vt = [t vatt) (17)

t
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s2 is the probability that the return times are greater than a given time ¢. In
»s3 terms of the rescaled tail probability, the return times obey

f&doo ~ e—QTpkg(A)Ed/fc’ (18)

¢ so that, comparing to Eq. (12), we have the relation g(\) = f()\)/\/2TD)\.
w5 Since f(\) remains finite and nonzero in the limit £; — 0, so does G(\).
ss Note that for large A we have §(\) ~ 1/v/27pX, because f(A) ~ 1 as dis-
ss7 cussed above. For small A, corresponding to large times, g(\) again encodes
s the behavior of excursions away from the interface. These quantities are ob-
w0 tained analytically for the example of diffusion in a bounded one-dimensional
wo domain in Section 5.

a61 Note that the statistics of the excursions back to an arbitrary point along
w2 the interface may differ depending on the starting point, corresponding to
w3 different form factors and rescaled tail probabilities depending on the lat-
we ter. Here, in order to obtain a stationary description where successive return
w5 times to the wall have the same statistics, we treat any such variability sta-
w6 tistically. That is, the same rescaled tail probability is used to characterize
w7 the return time statistics associated with each point on the interface and at
ss  all times. In other words, this method disregards possible non-stationarity of
w0 the return times, as well as possible correlations between subsequent return
a0 times arising from different transport and geometry properties at different
«n interface points. Nonetheless, we believe such a statistical description to be
a2 appropriate, as long as the flow is statistically stationary and the structural
a3 characteristics of the medium are statistically homogeneous within the region
s being considered. Note that this assumption is similar to that employed in
a5 the standard CTRW for transport [32], where variability in particle jump
w6 sizes and/or transit times is treated stochastically but assumed statistically
a7 homogeneous and stationary, that is, the PDFs associated with these quan-
as tities do not depend on the current time or particle position. In Section 6,
a0 we show that this approach leads to accurate predictions of mass dynamics
w0 in a regular beadpack, despite different points on the bead surfaces hav-
w1 ing different characteristics in terms of the distance to other nearby surface
a2 points.

483 Next, we turn to the statistics of the time spent in the reactive region in
ss  each visit. As shown in Appendix B, the corresponding PDF is given by

(t) = (19)

27—d ’
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a5 so that the single-visit times are exponentially distributed with mean 27,.

ws  4.2. Inter-reaction times

a87 We are now in a position to compute the PDF of global delay times 7,
s which will allow us to obtain the PDF ¢ of the inter-reaction time 7, see
w0 Eq. (5). Given a well-mixed reactive time 7, = u, the delay time due to
wo excursions away from the reactive region is given by

Ny (u)

W= > Wi (20)

a1 where the W; are independent and identically distributed return times with
w2 PDF 1)y and Ny(u) is the (random) number of visits to the reactive region
w03 given well-mixed reactive time u. For sufficiently fine discretization, the
ss  Tesidence times per visit to the reactive region are approximately exponential
45 with mean 274, Eq. (19). This implies that Ny (u) is approximately Poisson
w6 with mean u/(27,) (see, e.g., [63]). Thus, the global delay (20) is a compound
w7 Poisson process, so that its PDF has Laplace transform [72-74]

_)\\ifd()\)u] | o

2Td

hg(N;u) = exp

408 The PDF ¢ of the total inter-reaction time 7 resulting from a well-mixed
s reaction time 7, with PDF given by Eq. (6) and a compound Poisson delay
so has been obtained in [31]. With the form (21) of the delay PDF, it reads

(5] »

s In the continuum limit ¢; — 0, using Egs. (6) and (12), we obtain

P(\) = ér

~ Da

N = S )

s2  In this form, the inter-reaction times are manifestly well defined in the con-
so3  tinuum limit. The effect of diffusion near the interface is implicit in the form
0 of Eq. (23), and additional effects arising from domain geometry and/or ve-
s locity variability are encoded in the rescaled tail probability g, see Eq. (16).
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o6 4.3. Dynamics of reactant mass

507 The chCTRW formulation can now be used to obtain the evolution of
sos total mass given the inter-reaction time PDF together with the additional
s00 delay time to first reach the interface (see Fig. 1). This delay is distributed
si0  according to a PDF 1)y, which depends on the transport mechanism and the
su initial reactant distribution. Defining

o

%wszww, (24)

t

sz the tail probability of the first passage time to the interface, we obtain, as
s13 shown in Appendix C,

% = —K,* (M~ MyWy). (25)
siu This generalized, integro-differential rate law encodes the impact of transport
si5 and heterogeneity on the effective reaction kinetics through the inter-reaction
si6 times and the first passage time to the interface. In the standard CTRW de-
si7 - scription of transport, advection-dispersion at the small scales in the presence
si8 of heterogeneity leads to the emergence of memory kernels at larger scales
si9 in the advection—dispersion equation, accounting for statistical variability in
s0 particle jump sizes and/or transit times [32]. Analogously, the chCTRW
s21 leads to a description of total mass which incorporates the impact of trans-
s2 port limitations through a memory kernel representing statistical variability
23 in first passage and inter-reaction times.

524 Taking the Laplace transform of Eq. (25), we obtain the Laplace-space
s»s  solution for the evolution of total mass as

M(\)  DaWy(\) + mpg(A)
M B Da +TD)\.§()‘)

(26)

26 While the number of visits to the reactive region within a given time window
s27  increases when the discretization is refined, the residence time associated with
sss  each visit decreases accordingly, and the total mass change due to reaction
s20 in the actual, subscale reactive region is well defined. These results connect
s the effect of transport limitations on mass dynamics to the inter-reaction
s times of the chCTRW under a transport mechanism for which mass exchange
s2 near a locally-flat interface is controlled by diffusion. In particular, this is
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513 the case for advection—diffusion: since there is no flux into or out of the
s solid interface, diffusion always dominates returns at sufficiently short times,
s when particles are close to the interface. This fact is incorporated into the
s3 form of Eq. (26). The rescaled tail probability g(A) captures further effects
s37 - controlling the statistical variability of the excursion times, such as transverse
s3s  velocity variations across the domain and the size of the latter, as will be
s39  discussed in more detail and illustrated in the following sections. Note that
ss0  this description does not require zero- or low-velocity regions to occur only
s near the interface. The presence of stagnation regions affects (), and may
s2 lead to broader variability of the return times and therefore of the inter-
se3 Teaction times.

544 We note that Eq. (26) can also be obtained in terms of the statistics of
sss  times spent near the interface, rather than the statistics of the inter-reaction
sas  times. This alternative formulation is discussed in Appendix D.

s«7 5. Reactive transport in a 2D channel

548 In order to illustrate the results of the previous section, we consider first
se0  the simple example of transport in an infinite two-dimensional channel with
ss0 stratified flow and reactive walls (Fig. 1b, (i)), for which fully-analytical
ss1 results can be obtained. in Laplace space. We take the characteristic length
ss2 £, as the channel half-width.

5 0.1, Analytical first passage/return times and mass dynamics

554 The distribution of times to reach either wall from a given point along the
ss5 channel cross-section depends in this case only on transverse diffusion and
ss6 not on the welocity profile. It is thus sufficient to consider one-dimensional
ss7 - diffusive transport along the channel cross-section. The corresponding PDF
s in a bounded domain of size L, starting from a distance ¢ from one wall, has
ss0  Laplace transform [71]

DL L) = csch[y/0?\/ D] + csch[\/(L — £)?\/ D] (27)
o coth[\/£2\/ D] + coth[\/(L — £)2\/D]’

ss0o In order to determine the first return time PDF, in the sense discussed in
ss1  the previous section, we take ¢ = ¢; and L = 2/.. In preparation for taking
se2  the continuum limit £; — 0, we expand for small /; < /. to obtain

Ya(N) & exp|— tanh(v/27p\)V/273A] & 1 — tanh(v/27p0) /274, (28)
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ses  which, according to Egs. (12) and (18), corresponds to the form factor and
sea  rescaled tail probability

_ tanh(y/27pA)
N AV 27'D)\ .

ses  Substituting g(A) in Eq. (26), the total mass as a function of time has Laplace

se6  transform _ ~
M(X\)  2DaWg(A) + tanh(v/27pA)\/27p/A
My  2Da+tanh(v27pA\)V2m0N

567 For small Da, we can expand this result for small A <« 1/7p (time t >
ss 1/7p) before appreciable reaction occurs, and we obtain

f(\) = tanh(y/2mp ), g\ (29)

(30)

. M,

M\~ —2 M(t) ~ M, e P2t/ 31
() DaJrp + X () o€ (31)

ss0 Hence, the reaction kinetics correspond to a fully-mixed cross-section. This
s arises because, for slow reaction compared to the diffusive time scale, diffusion
sn homogenizes the fluid reactant to a mass per cross-section length 1/(2¢,)
sz before appreciable reaction occurs. Since there are two reaction interfaces,
s the fraction of mass in the reactive region is 204/(2(.) = £4/(.. The effective
s reaction rate is thus kgs0q/¢. = Da /T7p = kca /L., independent of the diffusion
sis - coefficient.

576 For large Da and an initial condition not fully concentrated at the channel
sz walls, so that \TJO()\) 20, the initial condition dominates, and we have

M(t) = MyWy(t). (32)

sts  This result can be interpreted as follows. In the limit of fast reaction, the sur-
s79  viving mass is that which has never reached the channel walls. The fraction
ss0  Of the initial mass that has not reached the walls is given by the probabil-
se ity Wo(t) that the first passage time to the walls from the initial position is
s greater than .

583 In the particular case where all the mass starts at the channel walls,
584 \Ilo()\) = 0, the dynamics are fully controlled by the return times. For large
sss Da and A 2 1/7p (early times), we obtain

- M, T M, T
M(\) ~ D—;’, /ﬁ, M(t) ~ D—;’, /2—;. (33)
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sss For A < 1/7p (late times), we find

~ MO D

3M, 3t
MN~——F—73 R~
( ) Da1+27'D)\/3’

~ _27— . 4
2Dae K (34)

M(t)

ss7This means that diffusive excursions far from the walls control reaction until
sss the channel cross-section is homogenized by diffusion, after which we recover
ss0  exponential behavior, but diffusion- rather than reaction-limited: the expo-
s0 nent of the exponential decay in (34) depends only on the diffusion coefficient,
so0 - while that of (31) depends only on the reaction rate.

502 While the form of the mass dynamics, Eq. (30), is flow-profile-independent,
se3  the actual mass evolution can depend on the profile through the initial con-
s dition, such as for a flux-weighted condition. In the low-Da limit discussed
ss above, the initial delay does not play a relevant role and this dependence
sos disappears. For definiteness, consider two-dimensional Poiseuille flow, with
so7 the velocity profile

v(y) = vu (1 - g—z) : (35)

sos for y € [—{., (.| along the one-dimensional cross-section, with vy, the max-
so0 imum velocity, attained at the channel center, y = 0. The corresponding
0 Fulerian mean velocity is given by v = 2v,,/3.

601 Different initial conditions affect the initial first passage time until the
02 interface is first reached. We consider four examples of instantaneous injec-
s03 tion, with the fluid reactant mass placed: (a) at the middle of the channel,
s0s (b) homogeneously along the channel cross section, (c) flux-weighted along
o5 the channel width, and (d) at the channel walls; the Laplace transforms of
s0s the corresponding first passage time PDFs 1y are given in Appendix E.

v 5.2. Numerical simulations of reactive transport

608 We performed PTRW simulations of the two-dimensional reactive trans-
s00 port problem, as described in Section 2 and Appendix A. We nondimension-
s10 alize distances by /., time by the diffusion time 7p, and mass by the initial
s mass My. Note that, numerically, this can be conveniently achieved by set-
sz ting the diffusion coefficient to D = 1/2, the channel half-width to ¢, = 1,
sz and the initial mass to My = 1, in arbitrary units. Each of N particles ini-
ee  tially carries a fraction My/N of the initial mass. In order to obtain good
s statistics, the number N of particles used must be such as to permit re-
s16 solving the transverse direction to within the discretization length, meaning

22



Journal Pre-proof

f — Da =10
—Da=10?
- Well-mixed

Mass M (t) /My

Figure 2: Reactant mass as a function of time for Poiseuille flow in a two-dimensional
channel, for different Damké&hler numbers Da (colors) and initial conditions (a)-(d). Solid
lines show numerical inversion of Eq. (30) and square markers represent reactive PTRW
simulations. Circles correspond to the analytical solution (31) for a well-mixed cross-
section. (a): Channel middle. (b): Uniform. (c): Flux-weighted. (d): Channel walls.
Asterisks in (d) correspond to the analytical solutions (33) for ¢/7p < 1 and (34) for
t/tp > 1. PTRW simulations for Da = 10°, 102 use a time step At = 10~*7p and N = 103
particles. For Da = 102, N = 10%, with At = 10=%7p, for (a)-(c) and At = 10~ "7p for (d).

or N 20./0; = \/Tp/7Td. Aside from setting the spatial resolution through ¢4,
s the time step must be sufficiently small to resolve reaction. Since the average
s10  Tesidence time per visit to the reactive region is 27y, this requires 2k,;7; < 1.
20 Note that, even though the initial condition (c¢) depends on the velocity pro-
ez file, the first passage time (E.3) is independent of the mean velocity, so that
622 we can arbitrarily set v = 1.

623 The evolution of total mass under the different initial conditions (a)-(d)
24 1s shown in Fig. 2. Good agreement is observed between simulations and nu-
es merical inversion of Eq. (30). Note how the Da = 1072 case is identical for all
e26 1initial conditions; it corresponds to the low-Da limit, Eq. (31), characterized
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Figure 3: Reaction efficiency £(t), comparing the observed overall reaction rate as a func-
tion of time to the rate for a well-mixed two-dimensional channel cross-section. The initial
condition is concentrated at the middle of the channel! (a): Reaction efficiency computed
from the data in Figure 2a (symbols). The theoretical asymptotic value e is shown as
a dashed line for each value of the Damkohler number Da. (b): Theoretical assymptotic
reaction efficiency €., as a function of Da. The well-mixed (low-Da) and fully transported-
limited (high-Da) limits are shown as dashed and dash-dotted lines, respectively.

sz by purely exponential decay and fully controlled by the reaction rate, i.e.,
s independent of the diffusion coefficient. In (a)-(c), the Da = 10% curves have
620 converged to the Da-independent fast reaction limit, Eq. (32). This regime
s30 18 the most affected by the initial condition, because it is controlled by the
a1 initial first passage time to the interface. However, the characteristic first
e passage times associated with conditions (a)-(c) are all on the order of the
633 diffusion time 7, and thus lead to qualitatively similar mass decay. For (d),
s34 the evolution of the total mass is fully controlled by the return times to the
635 reactive region, Eqs. (33) and (34). The late-time behavior in this case is
s3s  alsoexponential, but fully controlled by the diffusion coefficient, i.e., indepen-
37 dent of the reaction rate constant k and the solid-phase surface concentration
s C4. Note how, for moderate to high Damkéhler number, Da 2 1, the solu-
s30 tion (31) corresponding to a well-mixed cross-section tends to overestimate
se0 reaction. This is the case even for the uniform initial condition (a), because
s fast consumption of solute at the interface inhibits transverse homogeneity.
s2 At early times in (d), reaction is faster than the well-mixed-channel predic-
&3 tion in these regimes due to solute starting in the reactive region, but slower
saa  at later times as the surviving solute explores the channel cross-section.
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w5 5.3. Reaction efficiency

646 These results show that, while reaction rates tend to increase with the
sav  Damkohler number as would be expected, the reaction efficiency compared
ss  to a well-mixed channel cross-section characterized by the same Da decreases
s0  due to transport limitations. In order to better understand this phenomenon,
sso consider the global, or effective, reaction rate

dln M(t) /M,

(0 = |7

. (36)

e In other words, the effective rate k. (t) is defined so that dV/(t)/dt = —k.(t) M (t).
s> Note that, for pure exponential decay at constant rate, M(t) = My exp(—k.t),

653 this definition recovers k.(t) = k. as expected. We define the reaction effi-
ss¢ ciency by comparing k. (t) to the reaction rate £ associated with well-mixed

ess conditions in the domain, o
ke(t
e(t) = o
s According to Eq. (31), the well-mixed reaction rate for the two-dimensional

es7 channel is kY™ = Da /7p. It is important to keep in mind the different phys-

s ical meanings of the effective well-mixed rate kY™ and the thermodynamic

ss0 well-mixed rate k in Eq. (2). The latter, defined in units of inverse concentra-

o tion per time, is the usnal batch-reactor rate, which governs fully well-mixed

ss1 reaction. The former, defined in units of inverse time, represents the effec-

2 tive reaction rate occurring when the (fluid-phase) domain is well-mixed. It

63 1S impacted by medium geometry, as it accounts for the fact that part of the

s fluid reactant remains far from the interface.

665 We now obtain a theoretical expression for the asymptotic rate k2° =

o6  limy ke (t) and the corresponding asymptotic reaction efficiency €., = k2°/kY™.
ss7 10 this end, we introduce the mean first passage time to the wall wy and the

s corresponding second moment,

(37)

wy = / dt tihy(t), S0 = / dt *1ho(t). (38)
0 0
ess  We define also
S0
= 9
%o 27'DUJ07 (3 )
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s7o  which represents a dimensionless measure of the variability in the first passage
e times, compared to the diffusion time 7p. Expanding Eq. (30) for small
ez A < 1/7p, and inverting the Laplace transform, we find the late-time behavior

M(t> ™D oo —kS°t
MO N(w0+D—a>k66 s

2Da(Dawg + mp)

ke = , 40
c Da? sy + Datp(2wg + 47p/3) + 273, (40)
673 SO that
D 2TD D -1
w=11 14+ —= D ) 41
c < +w0Da> ( +3w0 a0 a+w0Da> (41)

s+ Thus, for small Da, we recover the well-mixed rate as predicted by Eq. (31),
o5 and e, ~ 1. For high Da and an initial condition not concentrated at the
s7s channel walls, the asymptotic reaction rate is limited by the first passage
o7 times to the interface, and k2° ~ 1/(ag7p). For a given initial condition,
es  this asymptotic rate cannot exceed a constant value. Since the well-mixed
oo Tate is linear in Da, the asymptotic efficiency e, &~ 1/(apDa) is inversely
ss0 proportional to Da. In the special case of the initial condition at the channel
1 walls, we recover Eq. (34), and £, =~ 3/(2Da). In this case, reaction is
2 limited by the return times to the wall, and the asymptotic efficiency remains
se3 inversely proportional to Da.

684 These results are illustrated for the case of a mid-channel injection, initial
ess condition (a), in Fig. 3. From Eq. (E.1), we find in this case wg = 7p, so =
e H7H/3, and ay = 5/6. As predicted, the reaction rate becomes asymptotically
7 constant for all Damkohler, corresponding to exponential decay. However,
s the reaction rate is initially variable as the fluid reactant explores the channel
ss0 cross-section. For this choice of initial condition, the reaction efficiency is
oo initially zero because the solute is far from the interface, and subsequently
s1 increases to the asymptotic value.

62 6. Generalization to other media

693 In this section, we will discuss the generalization of our approach to more
s0a complex scenarios, where fully analytical results for the inter-reaction times
s are not available. As long as diffusion is the dominant transport mechanism
s near the reactive interface, and the latter can be assumed flat at the scale
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e of the transport model, Eq. (26) may be used to predict the time evolu-
s tion of total mass for arbitrary Damkdhler number, given knowledge of the
s0o  tails Uy and Wy of the first passage and return times. In general, analytical
70 expressions for these quantities are not available, and they must therefore
71 be determined numerically. However, some general results about the mean
72 return time, if it exists, may be obtained and employed to determine asymp-
703 totic reaction rates. Note that the existence of a mean inter-reaction time is
74 directly related to the existence of a mean return time to the interface. If the
705 excursions away from and back to the interface (see Fig. 1) have sufficiently
76 heavy-tailed duration statistics, the chCTRW framework predicts a similar
w7 effect on reaction dynamics [31]. Such situations, which we do not consider
78 further here but can be captured in our framework, can be important when
70 modeling scenarios where solute may be retained in large regions of low ve-
70 locity away from the reactive interface, or where the distribution of distances
m  between separate reactive regions is very broad and not well characterized
72 by a mean value [47].

m3 0.1. Mean return times and effective reaction rate

714 The asymptotic reaction rate for stratified flow in a 2D channel was ob-
75 tained in Section 5 , Eq. (41). In that case, the limit of low Da, corresponding
76 to slow reaction, leads to an effective reaction rate of Da /7p, Eq. (31). We
77 begin by generalizing this result by considering the mean return time to the

ns interface,
(o0

Wq = /dtt@/)d(t). (42)

no We have for the return time PDF 1)4(\) & 1 — wg), for A < 1/wy, so that
720 the rescaled tail probability, Eq. (16), obeys

30) = [ drglt) = 72 (43)
0
1 Taylor-expanding Eq. (26) for small A and inverting the Laplace transform,
M(t) = Mye "<t (44)
722 with the effective reaction rate
2Da’
b= = ch' (45)
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723 In order to relate the mean return time wy to medium structure, we
72« now determine the effective rate in a well-mixed domain. Consider that the
725 solute is well-mixed over a region of volume V| within which the volume of
76 the reactive region is V. The reactive region comprises a layer of height ¢4
7z immediately adjacent to the interface, so that V; ~ Ayl,;, where A; is the
78 interface area. The mass in the reactive region is then M (¢)V,;/V, and reacts
70 at rate kq, see Eq. (3), so that
dM (t)

- —k™MM (1), (46)

720 with the well-mixed effective reaction rate given by

EV = —kyg = ——, (47)
7 where we have introduced the dimensionless interface-extent coefficient
(48)

72 encoding the amount of interface area per unit volume. Note that, if a
733 representative elementary volume for interface area exists, and the solute is
74 well-mixed over a larger volume, p is given by this ratio over the represen-
75 tative volume. Note also that for an empty channel of cross-section A, we
736 have

gl‘gc
=
7w where /7 is the total interface length intersecting the cross-section. If the
¢ medium is statistically homogeneous along the flow direction, this formula
739 may also be used to compute p given information about the interface extent
740 OVer a cross-section, taking A as the fluid-phase area over the latter.
741 If the concentration becomes well-mixed due to transport before appre-
n2 clable reaction occurs, the effective reaction rates associated with the re-
723 turn time and well-mixed-domain pictures must coincide, k. = k}™. Using
74 Eqgs. (45) and (47), we find the mean return time and associated effective
75 Teaction rate as

(49)

pDa

27—D€d
Wq =
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76 Note that these results agree with the example considered in Section 5. In
7 that case, 1 = 2, A = 2(., p =1, and k. = Da /7p. Note also that wy is
72s independent of the Damkéhler number, so that, according to Eq. (43),

g0y =p71, (51)

9 independent of Da, so long as the transport mechanism leads to a well-
70 mixed state in the absence of reaction. We note that, as before, for large Da
751 (fast reaction) and an initial condition not concentrated along the interface,
72 reaction is controlled by the first passage times to the interface, and M(t) =
55 MoWo(t). In that case, the reaction dynamics are thus controlled by the
74 initial reactant distribution.

s 0.2. Reaction efficiency
756 We can now generalize the results for the asymptotic reaction efficiency.
7 Using Egs. (16) and (51), we find the small-A < 1/7p expansion for the
78 rescaled tail probability:

gN) = pT (L= ar/2), (52)

750 where « is defined by

o0

50 = / dt Paal2), (53)

0

Sd

o =
27‘D’wd’

w0 quantifying the variability in the return times to the interface relative to
e1 the diffusion tinie. Using this result to expand Eq. (26) for A < 1/7p, and
w2 inverting the Laplace transform, we find the late-time behavior

M(t) _ pDawg+7p 0 et
M, Da ¢ ’
2p Da(D
ko — pDa(Dawy + 1p) (54)

p2Da’ sy + pDatp(2wy + @) + 273

73 We thus conclude that, as long as the transport mechanism leads to a well-
7 mixed state in the absence of reaction, the reaction rate always asymptotes
765 to a constant at late times, for arbitrary Da. Using Eqs. (37) and (47), the
w6 corresponding asymptotic reaction efficiency is

-1
6002(1—1— D )(1+a+a0pDa+ D )
wop Da wop Da

29
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7 see also Egs. (38) and (39). For the 2D channel case, p = 1 and a = 2/3
76 from Eq. (28), so that this result reduces to Eq. (41). In the low-Da limit of
60 slow reaction, we recover Eq. (47) for the well-mixed reaction rate and obtain
m  Es & 1 as expected. For high Da and an initial condition not concentrated at
m  the channel walls, we have the initial-condition-limited results k2° =~ 1/(ag7p)
m and g5 = 1/(agpDa). In the special case of an initial condition distributed
773 over the interface, for which wy = so = 0, we find £2° ~ 1/(a7p), emphasizing
772 that in this case the transport limitations come into play through the return
775 times rather than the first passage times. As before, e, ~ 1/(apDa) remains
76 inversely proportional to Da.

o 6.3. Mass dynamics from numerical first passage and return statistics

778 According to Eq. (16), §()) is proportional to Wy(\). Thus, mass dynam-
7o ics can be quantified through Eq. (26) by numerically sampling first passage
70 and first return times in PTRW simulations of the transport. For a given
1 initial condition, the Laplace transform ¥y()\) can be found directly from the
72 fraction of first passage time samples to the interface above a given time. To
783 determine the first return times associated with discretization length ¢, for
7 a given medium and flow, we take a single-particle initial condition chosen
75 uniformly randomly over the surface at (perpendicular) distance 2¢;4 from the
76 interface, corresponding to a distance ¢4 from the reactive region. Once the
77 reactive region is reached, we record the duration of the excursion, place the
s particle at the closest point at distance 2¢; from the interface, and repeat
70 the process for the next excursion a prescribed number of times. Note that,
70 in the cases considered here, the system is asymptotically well-mixed over a
71 representative region, so that different points along the interface are revis-
792 ited with the same probability. This means that equivalent results would be
73 obtained by considering the first passage time to within ¢; of the interface
s for a set of particles initially distributed uniformly over the latter.

795 A comparison of the rescaled tail probabilities g(¢) obtained in this man-
76 ner for one-dimensional diffusion in a bounded domain of half-width /., along
707 with the rescaled first return time PDF v,(t)¢./{4, with those obtained from
s numerical inversion of the analytical Laplace transform of Wq()\), Eq. (27)
799 with £ = ¢4 and L = 2/, , is shown in Fig. 4 for two different values of ¢;. We
g0 nondimensionalize distances by /. and times by 7p as before. For ¢ > At,
so1 the return time statistics converge to the same discretization-independent
sz behavior. Above the discretization timescale 74, the late-time scalings follow
so3 those of pure diffusion in an semi-infinite domain, Eq. (9), until the effect of
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Figure 4: Rescaled first return time PDF (a) and return time tail probabilities (b) for
one-dimensional diffusion in a bounded domain, obtained from 10* return time samples
from PTRW simulations (symbols) and numerical inversion according to the analytical
Laplace transform (27) (lines). The large-time scalings associated with pure diffusion in
a semi-infinite domain, which here hold below the characteristic diffusion time 7p for
sampling the full domain and above the discretization timescale 74 = ¢2/(2D) = Tpt? /{2,
are shown as dashed lines.

soa the far boundary is felt, leading to a cutoff on a characteristic timescale of
s order Tp, corresponding to exploring the full domain.

ss  0.3.1. Reactive transport in a 3D channel

807 As a first example to verify the results for the mass dynamics using nu-
ss merical estimation of the first passage and return times, consider transport
oo in a three-dimensional, cylindrical channel, with the characteristic length £,
g0 given by the channel radius (Fig. 1b, (ii)). We take a point injection at the
sn  center of the channel as the initial condition. As before, it suffices to con-
sz sider diffusion along a cross-section in order to determine the evolution of
sz total mass; independent of the flow field as long as it is assumed to be strat-
sia ified. We again nondimensionalize distances by /., time by 7p, and initial
s1s mass by M.

816 The results obtained from numerical inversion of Eq. (26), given numeri-
g1z cal determination of the first passage and return times, are in good agreement
sis with reactive PTRW simulations, as shown in Fig. ba. In this case, the cross-
s10 section area is given by A = 7/, and the interface length intersecting a cross-
20 section by ¢; = 27/, so that the interface-extent coefficient is p = 2, Eq. (49).
e22 For Da = 1072, we find good agreement between the numerical simulations
s2 and exponential decay according to the effective well-mixed reaction rate,
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Figure 5: (a): Total mass as a function of time in a three-dimensional, cylindrical

channel, for different Damkohler numbers Da (colors). The initial condition is concentrated
at the channel center. Solid lines show numerical inversion of Eq. (30) given numerical
computation of the first passage and return times, and square markers represent reactive
PTRW simulations. Circles correspond to the analytical solution with the effective well-
mixed reaction rate (45) for p = 2. Asterisks represent the fully transport-limited solution
M(t) = Mo%¥o(t). First passage and return statistics are computed from 10% samples,
using a time step At = 107 %7p. Reactive PTRW simulations use At = 10~*rp and
N = 103 particles for Da = 1072,10°, and At = 10~%7p and N = 10* particles for Da =
10%2. (b): For each value of Da, the reaction efficiency computed according to numerical
differentiation of the data in (a) is shown as markers, and the theoretical asymptotic value
€00, computed based on the same first passage and return data, is shown as a dashed line.
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Figure 6: (a): Total mass as a function of time in a body centered cubic beadpack,
for different Damkohler numbers Da (colors). The Péclet number is Pe = 103, and the
initial condition is homogeneous in the conventional unit cell. Solid lines show numerical
inversion of Eq. (30) given numerical computation of the first passage and return times, and
square markers represent reactive PTRW simulations. Circles correspond to the analytical
solution with the well-mixed reaction rate (45). First passage statistics are computed from
10* samples and return statistics from 10° samples, both using a time step At = 10~ "7p.
Reactive PTRW simulations use N = 102 particles, with At = 10~"7p for Da = 10°, 10!
and At = 10787p for Da = 10%2. (b): For each value of Da, the reaction efficiency
computed according to numerical differentiation of the data in (a) is shown by markers,
and the theoretical asymptotic value €., computed based on the first and second moments
of the same first passage and return data, is shown as a dashed line.

23 Eq. (47) with p = 2, whereas for higher Da deviations from the well-mixed
g2« behavior are observed because transverse diffusion is incapable of homoge-
g5 nizing the cross-section under fast reaction. For Da = 102, the numerical
26 simulations agree with the fully-transport-limited solution M (t) = MyWo(t).
827 The reaction efficiency e(t) corresponding to these dynamics is shown in
w8 Fig..bb. The theoretical asymptotic efficiency e, Eq. (55), evaluated using
20 the first and second moments of the numerically-determined first passage
30 and return times, is in good agreement with the simulations. Although some
sa1  quantitative differences are discernible in the mass decay, compare Figures ba
sz and 2a, the reaction dynamics are remarkably similar to the two-dimensional
s33  channel case, especially regarding the reaction efficiency, compare Figures 5b
ssa  and 3a.

ss 0.3.2. Reactive transport in a body centered cubic beadpack
836 We now investigate the application of our approach to the case of reactive
37 transport in a crystalline porous medium. Recall that the inter-reaction time
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a8 approach presented here relies on the assumption that a statistical description
g0 of the return times, with stochastic return times but with the same statistics
sa0 - applying to each return to the interface, is sufficient to characterize reaction.
a1 We assess this hypothesis for advective—diffusive transport in a body centered
s> cubic beadpack [75], where the structure of the medium is periodic but not
sa3  all points on the interface within a unit cell are equivalent in their positioning
sas  relative to the rest of the interface (Fig. 1b, (iii)). For details on the numerical
a5 simulations, see Appendix A. As shown in Appendix F, the interface-extent
sas  coefficient for this system is given by

-1
P 37” <1 - %) ~ 147 (56)

847 The relative importance of advection compared to diffusion can be quan-
sas  tified through the Péclet number, which we define in terms of the absolute
a9 value v of the Eulerian mean velocity vector and the characteristic lengthscale
850 gc as
(o
Pe =—. 57
- (57)

sst The total mass as a function of time for different Damkohler numbers and
sz Pe = 10? is shown in Fig. 6a, for an initial condition uniformly distributed
g3 over a conventional unit cell (see Fig. 1b, (iii)). The inter-reaction time ap-
ssa  proach, parameterized according to the numerically-determined first passage
55 and return tails Uy and W, as discussed above, is in good agreement with the
sss  reactive PTRW simulations. For low Da, the mass evolution agrees with the
ss7  effective well-mixed decay, Eq. (46). This happens because, for low reaction
s rates, the fluid reactant remains homogeneous over a representative region of
g0 pore volume. As for the channel examples, deviations from the well-mixed
so behavior become more pronounced as the Damkohler number increases and
g1 transport is unable to efficiently homogenize the fluid-phase concentration.
sz The corresponding reaction efficiency &(t) is shown in Fig. 5b. The theoret-
se3  ical asymptotic efficiency e, Eq. (55), evaluated using the first and second
sss  moments of the numerically-determined first passage and return times, is
g5 again in good agreement with the simulations. In this case, the homoge-
sss neous character of the initial condition results in a reaction efficiency that is
ss7 initially unity. For high Damkohler, reaction tends to destroy homogeneity,
ss  which results in a decrease of the reaction efficiency towards the asymptotic
g0 value.
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Figure 7: Total mass as a function of time in a body centered cubic beadpack, for different
Damkéhler numbers Da (colors) and Péclet numbers Pe (symbols). The initial condition is
homogeneous in a conventional unit cell. Results are computed from numerical inversion of
Eq. (30) given numerical computation of the first passage and return times. Dashed lines
correspond to the analytical solution with the effective well-mixed reaction rate (45). First

passage statistics are computed from 10% samples and return statistics from 10° samples,
both using a time step At = 10~ 7p.
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Figure 8: Rescaled first return time PDF (a) and first passage time PDF (b) for a
homogeneous initial condition in a conventional unit cell for advective—diffusive transport
in a body centered cubic beadpack for different Péclet numbers (colors). Return time
statistics are computed from 10° return time samples and first passage time statistics from
10* samples, both using a time step At = 10~77p. The inset shows the rescaled return time
tail probability, computed from the same data. The large-time scalings associated with
pure diffusion in a semi-infinite domain, which here hold below the characteristic time to
encounter a different bead and above the discretization timescale 74 = ¢2/(2D) = tpl? /{2,
are shown as dashed lines.
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870 In Fig. 7, we show the total mass as a function of time for the same
s Damkohler numbers as in Fig. 6 and different values of Péclet number, com-
sz puted using the inter-reaction time approach. Although we refrain from
ez showing these results in Fig. 6 to avoid clutter, we verified that PTRW
s+ simulations show similar very good agreement as for Fig. 6a across Péclet
ers numbers. For sufficiently high Da, the reaction is slower than the effective
srs  well-mixed prediction, but approaches the latter when the Péclet number
sz becomes sufficiently high, as advection-induced transverse dispersion effects
srs  become important compared to diffusive mixing. In order to better under-
sro  stand the role of the Péclet number in the reaction dynamics, we examine
o the first passage and return time statistics arising under different transport
s Tegimes, see Fig. 8. The flow considered here is known to induce chaotic
22 mixing [75, 77-79]. This means that the flow efficiently homogenizes the
gs3 concentration on the cross-section of the pore space transverse to the mean
ssa  flow direction, over a characteristic advective mixing timescale. For suffi-
sss ciently low Péclet number, as long as the advective mixing timescale is large
sss compared to the typical diffusive first passage and return times, transverse
ss7  mixing is carried out by diffusion and advection does not have an appreciable
sss effect on reaction. Thus, the first passage and return times, along with the
0 Mass dynamics, are similar for Pe up to 102. When advective effects become
g0 important, particles far from the interface are brought towards it faster than
son by diffusion alone. On the other hand, particles at intermediate distances
sz can take longer to reach the interface than they would have by diffusion.
g3 Lastly, very low return times remain controlled by diffusion. This effect on
so« the first passage and return times can be clearly seen for Pe = 103.

895 Whichever effect is dominant, the average return time reflects the fact
sos that at sufficiently late times concentration is well mixed, and remains given
g7 by Eq. (50). Thus, the low-Da reaction behavior, which depends only on
s the average return time, is unaffected by the mixing mechanism and remains
g0 unchanged, see Fig. 7. However, the distributions of first passage and return
o0 times become less broad with increasing Péclet (Fig. 8), and the effective
s well-mixed regime is reached faster. For this reason, the reaction dynamics
w2 approach the effective well-mixed behavior at higher values of the Damkohler
o3 number; the strength of this effect increases with increasing Pe (Fig. 7). We
o« note that for higher Péclet numbers, Pe > 10%, the corresponding strongly-
ws advection-dominated transport simulations become particularly sensitive to
ws the underlying flow velocities. Accurate results for such cases would require
o7 more finely-resolved flow fields, and we refrain from simulating them here.
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908 The first passage and return time dynamics in the two- and three-dimensional
oo channel and beadpack examples exhibit some qualitative similarities, due to
a0 the role of diffusion in transverse mixing and its dominant role near the
on fluid—solid interface. Indeed, the corresponding distributions exhibit clear
o2 diffusive scalings, followed for long times by cutoffs, see Figs. 4 and 8. The
o3 characteristic timescale associated with the cutoff, and therefore the charac-
o teristic variability in inter-reaction times, depends on medium geometry, and
as in the case of the beadpack is also impacted by advective mixing for large
a6 Péclet number. Correspondingly, the reactant mass dynamics in these differ-
a7 ent systems exhibit similarities, such as late-time exponential decay, but also
ais  differences in the onset of transport limitations with- Damkohler number and
a9 the effective reaction rates associated with a well-mixed system, see Figs. 2,
w0 5, 6, and 7. In particular, the interface extent coefficient p, quantifying the
o1 available surface area per unit volume, increases compared to the 2d channel
o2 by a factor of 2 in the 3d channel and about 15 in the beadpack, effectively
o3 increasing the well-mixed reaction rate in these systems for a given value
o4 Of the Damkdhler number. Transport limitation effects become important
ws for pDa 2 1, although they are mitigated in the beadpack when the Péclet
o6 number is large and advection-induced mixing plays a role.

o7 7. Discussion and conclusions

928 In this work, we have developed a new framework to quantify the effect of
oo transport limitations on fluid—solid reaction dynamics in porous media. Our
a0 approach, based on the chemical continuous time random walk theory of
a1 inter-reaction times, relates the statistics of solute excursions away from and
a2 back to the fluid-solid interface to reaction times. We have shown that the
013 dynamics of effective reaction rates relate to the statistics of inter-reaction
o3 times, which are in turn controlled by transport and medium geometry. We
o35 have illustrated the approach analytically for advection—diffusion-reaction in
o6 stratified flow through a two-dimensional channel, and provided a generic nu-
037 merical approach to determine the corresponding dynamics in more complex
ss media and flow fields. For fast reactions, reactant mass is controlled by the
a9 first passage time of solute to the reactive solid interface. For slow reactions,
wo multiple excursions to the interface are necessary before reaction occurs. In
w1 the latter case, the statistics of the durations of these excursions, which are
w2 sensitive to diffusive mass transfer near the interface, become a dominant con-
w3 trol on mass dynamics. Consistently with numerical simulations, our theory
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ws predicts that, for intermediate and high Damkohler number, these effects can
ws lead to significant reaction slowdown due to transport limitations, even for
us the simple reaction studied here, and even in simple geometries. We provide
w7 analytical expressions for the late-time effective reaction rate as a function
as  of Damkohler number, which exhibits a transition from the well-mixed reac-
wo tion rate at low Da to the inverse of the diffusion time at large Da, a direct
0 consequence of transport limitations.

051 The theory presented here also leads to a useful numerical framework.
o2 Fluid—solid reactions pose unique computational and theoretical challenges,
ss3  as they require resolving transport dynamics close to the interface in a con-
osa  sistent manner. Here, we have analyzed a simple fluid solid reaction in de-
o5 tail, and shown how the assumption of scale separation between reaction
s and transport dynamics near the interface leads to a consistent continuum
sz model of surface reaction. Resolved numerical simulations of these dynamics
oss  are computationally demanding. The inter-reaction time approach presented
os0 here opens up new possibilities for efficient numerical computation of mass
w0 dynamics by extending existing theoretical frameworks for the determination
o1 Of first passage times [34, 47, 55, 80] and/or numerical techniques for efficient
2 first passage time computation [81-83].

963 This work has been mainly concerned with introducing the concepts and
sws methodology underlying a new approach to upscaling fluid—solid reaction
ss dynamics. As such, we have made significant simplifications regarding the
ws reaction chemistry and porous medium structure. The framework developed
o7 here brings new perspectives to link the statistical characteristics of medium
ws geometry and flow to reaction dynamics in a broad range of porous media,
w0 which will be the subject of future work. Furthermore, we expect an approach
oo similar to that presented here to be applicable to the dynamics of mass
o1 breakthrough as a function of distance, in terms of the statistics of inter-
o2 reaction distances. Future work will also aim to generalize the approach to
o3 higher-order reactions involving multiple transported components, multiple
o simultaneous reactions, and heterogeneity (spatial and temporal variability)
o5 in the solid-phase reactant distribution along the interface.
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wr Appendix A. Particle tracking simulations

088 In this appendix, we discuss some details of the PTRW (particle track-
90 ing random walk) simulation method used in this work. Lagrangian particle
wo tracking methods, which simulate particle trajectories based on a random
o1 walk, have been found to mitigate numerical dispersion issues, typically as-
s sociated with more traditional Eulerian methods, and their impact on fluid—
o3 fluid reactions [84]. However, particle tracking methods are less developed
oa and widespread than Eulerian methods; and we are not aware of an avail-
ws able tool for Lagrangian simulation of fluid—solid reaction dynamics. In the
ws present work, a PTRW approach has the added benefit of directly simulating
o7 Lagrangian trajectories, the properties of which are the basis for the the-
os oretical developments. This allows us to employ the same methodology to
oo simulate the conservative component of the reactive transport problem and
o to determine first passage and return times (see Sections 5 and 6 of the main
1001 text).

1002 The PTRW method used here is based on that employed in [85] to sim-
w03 ulate conservative transport in a number of stratified flows, where it was
wos  validated against theoretical predictions for dispersion, concentration distri-
wes  butions, breakthrough curves (first passage times across a plane), and La-
s grangian velocity distributions. The conservative transport algorithm con-
w7 sists in discretizing the Langevin equation (1) for a set of Lagrangian par-
s ticles, or trajectories, with prescribed initial conditions. The displacement
wo  AX (t) of a particle in a time step of duration At starting at time ¢ is com-
w0 puted as the sum of the advective and diffusive contributions to the change
o in particle position X (),

AX(t) = X(t+ At) — X (1) = AX4(t) + AXp(t). (A1)

102 Boundary conditions at the solid interface are implemented as elastic colli-
03 sions based on the full displacement AX (¢). The diffusive contribution is
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14 obtained from a stochastic forward-Euler scheme as AX p(t) = V2DAt&(t),
s where the component of £(¢) along each Cartesian axis and at each time ¢ is
6 sampled independently from a unit (zero mean and unit variance) Gaussian
w17 distribution. For the two-dimensional channel simulations of Section 5, the
s advective contribution is also computed based on a forward-Euler scheme,
w9 AX4(t) = v[X (t)], where the velocity field v is evaluated at particle posi-
020 tions according to the analytical flow field, Eq. (35).

1021 Here, we have extended the algorithm to account for: (i) elastic reflections
022 on bead surfaces, representing reflecting boundary conditions; (ii) advection
123 due to an arbitrary velocity field, previously obtained and provided at a num-
1024 ber of points on an arbitrary (possibly unstructured) grid; and (iii) fluid-solid
s reaction. Regarding (i), we implemented and independently verified a simple
w26 trigonometry-based computation of perfectly elastic collisions on spherical
w2z surfaces, valid in arbitrary dimension (for circles iu the plane, etc.). Regard-
s ing (ii), the flow field at a given position is obtained from linear interpolation
w0 based on Delaunay triangulation and Sibson natural neighbor coordinates
0% on an arbitrary grid, based on the well-established CGAL C++ library [86].
1w For the beadpack simulations, the advective particle displacement associated
w2 with the interpolated flow is computed according to a fourth-order explicit
033 Runge-Kutta scheme. Finally, (iii) is implemented according to the consider-
3 ations of Section 2. As discussed therein, the spatial support scale ¢4 should
s be large compared to +/2DAt, in order to permit resolving fluid-reactant
w3 concentrations near the interface and the resulting reaction rates. We set
1037 the support scale

= 10V2DAL. (A.2)

w3 It is important to note that ¢4 is not a parameter of the theoretical model,
w30 but is rather associated with the discretization. In this sense, taking ¢; =
w0 av2DA with a > 10 leads to the same results in the continuum limit At —
wa 0. It 1s; however, necessary to take a = 10, in order to guarantee that
w2 reactant concentrations near the interface are resolved correctly and converge
w3 for At — 0. The diffusion time associated with the support scale ¢, is 74 =
s (2/2D; thus, our choice corresponds for a given /4 to setting At = 7,/100.

1045 The algorithm employed to compute first passage and return times is val-
s idated here by the agreement with theoretical results for the one-dimensional
w7 channel, see Section 5. Similarly, the agreement between theory and simula-
s tions found for the dynamics of total mass, especially regarding the theoreti-
w4 cal results for low and high Damkohler number and the assymptotic reaction
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wso  rates for arbitrary Damkohler number, discussed in Sections 5 and 6, pro-
ws1 vides validation for the reactive transport algorithm. We note that we have
w2 implemented only the Ar 4+ Bg — Bg reaction studied here, but the reaction
ws3  algorithm can be direclty extended to other reactions and heterogeneous dis-
s tributions of solid-phase reactants at the expense of explicitly keeping track
wss  of the surface concentrations of the latter across the fluid—solid interface. A
wse  github repository where the code is available under an open-source license
ws7 and regularly updated can be found at github.com/tcAquino/BeadPack.
wss  Further benchmarks and extensions to the fluid-solid reaction algorithm will
wso  be included and discussed thereat. The version of the code used in the present
weo work can be found at the DOI 10.5281/zenodo.4392882. Additional doc-
we  umentation addressing further technical details may also be found in both
we2 these repositories.

1063 In order to simulate reactive transport and determine first passage and
we4 return times using the PTRW algorithm, we first require the flow field, which
1065 may be given at a set of points on an arbitrary grid. For the beadpack sim-
e ulations of Section 6, the flow field was obtained numerically from Stokes
w7 flow simulations using a finite volume discretization in openFOAM [87], with
wes [N, = 1572138 hexahedral cells. The flow was computed in a conventional
e (cubic) unit cell, of side £. = 1 ¢m, of the body centered cubic packing consid-
w0 ered. The associated body cubic centered bead diameter is d = v/3(./2 [76],
wn  corresponding to a spatial resolution of about EC/NC1 /3 ~ 1072d. Periodic
w2 boundary conditions were imposed on the cell faces and no-slip boundaries at
s the spherical bead interfaces. The flow had kinematic viscosity 5- 107" m?/s
s and was driven by a pressure gradient of 1Pa/m, obtained by applying a
s body force. In terms of Cartesian axes perpendicular to the unit cell faces,
s the mean velocity vector had an orientation corresponding to an angle 5 /40
w7 with the o axis on the z—y plane and an angle /40 with the z axis. This flow
s configuration has been analyzed in [75], and it is known to induce chaotic
o mixing. As discussed in the same reference, the contact points between beads
ws0 can cause numerical instabilities in the numerical determination of the flow
ws1  field. This issue can be addressed by placing small spheres or cylinders, with
102 no-slip boundary conditions on the exposed surface, at the contact points
sz between beads to avoid numerical issues near the contact points. These
s« structures do not have an appreciable impact on flow and transport prop-
wss  erties [75]. In the present simulations, spheres of 20% the bead diameter
10ss  were employed in this manner. These contact spheres are not needed for sta-
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Figure B.9: Schematic illustrating the equivalence of the first passage time by diffusion
in one dimension from the center of cell A to the center of cell B, in the presence of a
reflecting boundary and in an equivalent bounded domain. If the boundary, at distance
£q4/2 from the starting point, is reached before the center of cell B, at a distance ¢4, the
first passage time to the latter is the same as to its reflection. Thus, the first passage time
in the presence of the boundary is the same as the first passage time to either boundary
in the equivalent domain of length 3/,.

ws7  bility of the PTRW simulations; in the conservative and reactive transport
wss  simulations, no boundary conditions were enforced on their surface, and zero-
wse  velocity points were added at the contact points instead. Particle positions
1000 undergoing advection—diffusion were mapped onto the unit cell according to
o1 the periodic boundary conditions.

w2 Appendix B. Statistics of single interface visit times

1003 Here, we obtain the PDF of the time spent in the reactive region in
4 each visit. Consider again one-dimensional diffusion close to the interface.
s The first passage time from the middle of the discretization cell nearest the
e interface to the middle of the adjacent cell corresponds to the duration of
w7 a visit to the reactive region. It can be obtained by considering the first
w8 passage time to either boundary in a domain of length 3¢; and starting from
w9 a distance ¢, from one boundary, as illustrated in Fig. B.9. The first passage
no  time PDF to reach either boundary in a domain of length L, starting from a
uo  distance ¢ from one and L — ¢ from the other, has Laplace transform [71]

BNl L) = csch[y/?\/ D] + csch[/(L — £)2\/ D] (B.1)
T coth[\/P2X\/D] + coth[\/(L — £)2\/D] '

uo2  Setting L = 3¢, and ¢ = {; yields the single-visit PDF

Dy(N) = [2 cosh(y/27,\) — 1}_1. (B.2)
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uis  Expanding for A < 1/7,; and inverting the resulting Laplace transform leads
s to Eq. (19). Recall that A\ < 1/7,4 represents large times compared to the
nos  discretization time, so that this result constitutes a step in taking the con-
nos  tinuum limit rather than a large-time approximation. As before, the same
nor  conclusion is reached if we consider the first passage times to within ¢, of the
nos interface starting from a distance 2¢; from the latter. This result remains
nos  valid in higher dimensions under the assumption that interface is locally flat
mo  at the scale of the transport model.

u Appendix C. Impact of first passage time to the interface on reac-
112 tion dynamics

113 According to the chCTRW framework, in the absence of the delay associ-
mas  ated with first reaching the interface, the generalized rate law governing the
s evolution of total fluid reactant mass is given by Eq. (8). When this delay
me 1S added, the mass is equal to the initial mass for times smaller than the
mr  delay, and evolves according to the previous equation for later times. That
w18, averaging over initial delays (i.e., over an ensemble of Lagrangian particles
e distributed according to the initial condition),

t t

M(t) = Mo/dt’@/)o(t’) +/dt’ Yo(t" ) My(t —t'). (C.1)

0 0

u20 The first term represents the fact that, if the interface has not been reached
uz for the first time by time ¢, which happens with probability fg dt' o (t") over
n» the ensemble of Lagrangian particles, the fluid mass is equal to its initial
s value M (0) = M. Regarding the second term, if the interface is reached for
w2 the first time at time ¢ < ¢, which happens with probability density (%),
uzs  the mass at time ¢ is equal to My(t —t'). Note that, given a first arrival at
uz  the interface at time ¢t = ¢/, M(t =t') = My(0) = M. Then, for times ¢ > ¢/,
12z the mass dynamics proceed according to the inter-reaction times, with My
s obeying the chCTRW equation (8). This result may be written in terms of
o the first passage time tail probability g as

M= MO\IJ() + M¢ * ’Lﬁo. <C2>

usn  Substituting Eq. (8) for the dynamics of mass My resulting from the inter-
un reaction times, we obtain Eq. (25).
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uz2  Appendix D. Mass dynamics and reactive time

133 The dynamics of reactant mass may be formulated in terms of the statis-
u3e  tics of the total time spent in the reactive region rather than the statistics of
uss  the inter-reaction times. In this appendix, we show that the former approach
s leads to the same results as the latter, which is developed in the main text.
uy  Consider the reactive time Uy(t), representing the total time spent within dis-
us  tance {4 of the interface. We denote its PDF by py(+;t), that is, py(u;t) du
u3 is the probability that, given total elapsed time ¢, a particle has spent a time
usw in the interval [u, u + du) within distance ¢, of the reactive interface.

1141 For small /4, in preparation for taking the continuum limit ¢; — 0, we

12 approximate
Ud(t> =~ 2Tde(t), (Dl)

uss - where Ny(t) is the (random) number of visits to the reactive region by time ¢,
uas  each of which contributes the mean residence time per visit 274, see Eq. (19).
s Since Uy(t) is proportional to Ny (t), denoting by px(n;t) the probability that
s Ng(t) = n, we have

() = p(00000) + ) i) (D2)
usr where 0(-) is the Dirac delta.
1148 The number of visits to the reactive region by a given time depends on
9 the PDF of inter-visit delay times 14, as well as on the PDF 1)y of the time
uso  of the first visit: Adapting the results of [72], the Laplace transform of the
us1  distribution of the number of visits to the reactive region with respect to
us2  time ¢ in terms of these quantities is given by

i Wo(N), n=0
Pn(n;A) = bod), o . (D.3)

Ua(A)po(N)pa(N)" ™, n >0

us3  In the limit of small ¢4, we obtain, according to Eq. (D.2),
Po(u; N) = Wod(u) + A0 (N) Eq(u, N), (D.4)

use  where \G (N \G (N
Eq(u,\) = JOUE exp |— 9N ‘ul, (D.5)
ly ly
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uss  with the rescaled tail probability ¢ defined in terms of the return time tail
uss Wy according to Eq. (16).
157 To quantify the dynamics of total mass in terms of the reactive time Uy(?),
uss  we make use of a subordination-type description [31, 69, 73, 74]. Within the
uso reactive region, reaction is well-mixed in the sense described in Section 2.
ueo The overall reaction then proceeds according to the time particles spend
uer  within this region. The amount of mass left by time ¢ is the average of the
ue2  surviving mass My exp[—kqUq(t)] over all possible times Uy(t) spent within
ues {4 of the interface up to time ¢, which are distributed according to py(+;t).
ues  That is,

o0

M(t) = Mo/du e Faupy (ust). (D.6)
0

ues The Laplace transform of the total mass (26) obtained using the inter-
ues reaction time formulation is then recovered by direct computation in the
167 limit gd — 0.

1168 In terms of a Laplace transform with respect to operational time (denoted
use by a hat), keeping time ¢ fixed, we may write Eq. (D.6) as
M(t)
= pu(kq;t), D.7
M, pu(ka;t) (D.7)

un  which can also be interpreted as the Laplace transform of the stochastic pro-
un  cess Uy/ly, evaluated at the rate lyky = kcy. In the limit ¢; — 0 of fine
ur  discretization, the stochastic process Uy/{y is the local time at the bound-
uzs ary mentioned in the introduction [38-41] (note that, in accordance with
s the standard terminology used in the literature, the so-called local time has
urs units of time per length). It is this quantity, rather than Uy itself, that is
ue  well'defined in the continuum limit. This is directly related to the fact that a
urr  particle undergoing continuous diffusion in one dimension returns to the ini-
urs  tial position infinitely many times within an arbitrarily small time interval.
ure  Despite the fact that this represents a mathematical abstraction, it corre-
uso  sponds to the correct behavior when transport is adequately described by
us1  continuous diffusion at the scale of interest.

nez Appendix E. First passage times to the wall in a 2D channel

1183 In this appendix, we provide the Laplace transforms of the first passage
uss time PDFs of solute to the channel walls for transport in stratified flow
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uss  through a two-dimensional straight channel. As discussed in Section 5, these
uss are controlled by diffusion in the transverse direction, although the veloc-
usr ity profile can impact the result due to its role in determining the initial
uss distribution, for example for flux-weighted injections.

118 The different first passage times are obtained by using Eq. (27) for a
ue  Ppoint injection, and weighting according each initial condition. Thus, the
uot  mid-channel injection (a) leads to

Yo(A) = (X e, 20,) = sech(y/27pA). (E.1)

uee  For the homogeneous injection (b), we have

20c
N B It Oy, vy
waA>—;ﬁ;!lw¢wxa2a>—J—fziif——. (B2)

ues  For the flux-weighted case (c), we find

20,
~ 1 vl —10,) - 3 tanh(v/27p\)
A =— [ dl ———=(\ 0,20,) = l— ——|, (E3
G = g [ ) = 5 varor | B
0
ues and for all mass starting at the channel walls (d),

Jo(N) = 1. (E4)
nes  Appendix F. Interface-extent coefficient for the body centered cu-
119 bic beadpack
1197 In order to compute the interface-extent coefficient p for a body centered

nes cubic beadpack, first note that the bead radius is related to the conventional
neo  (cubic) unit cell side by r = v/3(./4, where we have taken the cell side
o {, as the characteristic length (see, e.g., [76] on the theory of crystalline
vor  structures). Within a unit cell, there is a full bead at the center, and eight
w2 bead quarters at each cell corner, totaling a solid volume of two full beads.
1203 Since the volume of a bead is Vj, = 4mr3/3, the porosity is given by

2V, 3
p=1- e3b :1—%%0.320. (F.1)

c
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e The surface area of a bead is A, = 47r?, so that, according to Eq. (48), we

1205 have 1
240, 3 3
p=be o T ﬁ _ (F.2)
ol3 2 8
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