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Abstract

Fluid-solid reactions play a key role in a large range of biogeochemical processes. Transport
limitations at the pore scale limit the amount of solute available for reaction, so that reaction rates
measured under well-mixed conditions tend to strongly overestimate rates occurring in natural and
engineered systems. Although different models have been proposed to capture this phenomenon,
linking pore-scale structure, flow heterogeneity, and local reaction kinetics to upscaled effective
kinetics remains a challenging problem. We present a new theoretical framework to quantify these
dynamics based on the chemical continuous time random walk framework. We study a fluid–solid
reaction with the fluid phase undergoing advective–diffusive transport. We consider a catalytic
degradation reaction, AF + BS → BS , where AF is in fluid phase and BS is in solid phase and
homogeneous over the fluid–solid interface, allowing us to focus on the role of transport limitations
and medium structure. Our approach is based on the concept of inter-reaction times, which result
from the times between contacts of transported reactants with the solid phase. We use this
formulation to quantify the global kinetics of fluid-reactant mass and test our predictions against
numerical simulations of advective–diffusive transport in stratified channel flow and Stokes flow
through a beadpack. The theory captures the decrease of effective reaction rates compared to the
well-mixed prediction with increasing Damköhler number due to transport limitations. Although
we consider simple kinetics and media, these findings will contribute to the understanding and
modeling of the effect of transport limitations in more complex reactive transport problems.

1 Introduction

Biogeochemical reactions at the interface between fluid and solid medium phases play a central role
in a large range of reactive transport problems, such as contaminant transport and degradation, soil
remediation, mineral weathering, and carbon dioxide sequestration [1–3]. Biotic and abiotic reactions
at solid-fluid interfaces include dissolution/precipitation, adsorption, complexation and redox reactions.
The kinetics of these reactions on solid surfaces depend directly on the concentration of solutes in
the fluid phase, which evolve in time and space through flow and transport dynamics. Therefore,
much effort has been invested into the development, setup, and choice of detailed reactive transport
models to quantify these processes and their interaction with transport and medium geometry [4–
6]. The basic quantification of the kinetics of such reactions is generally performed using well-mixed
batch experiments. Yet, transport limitations at the pore scale lead to large deviations from these
estimates by reducing access of solutes to reactive surfaces compared to fully-mixed systems. This
phenomenon has been observed in resolved numerical simulations of carbonate mineral dissolution in
porous media [7], numerical simulation and column experiments of calcite dissolution [8–10], numerical
simulations of mineral dissolution in heterogeneous porous media [11, 12], pore-scale reactive transport
simulations in rough fractures [13], and batch experiments and field-scale modeling of biodegradation
of dissolved organic carbon in aquifers [14]. Pore-scale flow and structure have also been found to
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significantly impact adsorption to mineral surfaces in porous media, an effect which has been observed
in detailed lattice-Boltzmann simulations [15–17].

These studies have consistently found that reaction rates are significantly lower than expected from
classical well-mixed theories, especially when reaction is fast compared to transport processes. Volume
averaging techniques [18, 19] have been employed to identify general conditions under which classical
macroscopic models of reactive transport break down, and transport limitations lead to decreased
global reaction rates and/or modified rate laws. Random walk models have been used to investigate
the impact of transport on surface reactions for simple geometries, such as sinusoidal channels [20, 21].
The role of available reactive surface area [22, 23] and surface roughness [13] in mineral dissolution in
porous and fractured media has been analyzed and quantified through experiments and numerical sim-
ulations. However, a quantitative link between pore-scale transport dynamics and effective fluid–solid
reaction kinetics remains unavailable. Furthermore, in practice, highly-resolved numerical simulations
can be prohibitively expensive, and detailed knowledge of the dynamics and spatial distribution of
physico-chemical properties is often not available, stressing the need for upscaled models of reactive
transport [24].

In well-mixed batch reactors, reactant concentrations are spatially homogeneous. In the Lagrangian
particle picture, this corresponds to every particle being instantaneously available to participate in a
reaction with every other particle. This deterministic picture can be extended to account for stochastic
variability for small particle numbers, while retaining the well-mixed assumption [25]. This is achieved
through the concept of inter-reaction times, which represent the time between the occurrence of sequen-
tial reaction events amongst sets of reactants in accordance with the chemical reactions. In the classical
stochastic theory, reactants are assumed to be fully-mixed, in the sense that all sets of reactants al-
lowed by the chemistry have the same probability of reacting. This leads to exponentially-distributed
inter-reaction times, representing a probability per unit time of reaction that is fully determined by
the thermodynamic reaction rate and the available reactant numbers at a given time. The classical
well-mixed rate laws, under which reaction rates correspond to products of reactant concentrations
with powers determined by the reaction stoichiometry, are recovered in the limit of large particle
numbers [26]. In practice, this picture holds only if diffusion is sufficiently fast to locally homogenize
reactants, so that the limiting factor in determining reaction rates lies in the thermodynamic properties
of the reaction rather than transport.

Fluid–solid reactions involve transported and immobile reactants. Solid-phase reactants are located
at the interface between a fluid phase, in which fluid-phase reactants are transported, and a solid
phase of the underlying medium. The first explicit model of the impact of transport on reaction
is due to von Smoluchowski [27]. It quantifies contact reactions between a hard sphere and a sea
of diffusing particles, and it leads to an effective, time-dependent reaction rate which depends on
transport properties, namely the diffusion coefficient. Because there is no fluid flow into or out of the
solid interface, mass flux of fluid reactants allowing contact with solid-phase reactants is ultimately
governed by diffusion. On the other hand, advective transport along streamlines may bring reactants
closer or farther from the solid phase. Thus, in the inter-reaction time picture discussed above, the
combined effect of medium heterogeneity, advective variability, and diffusion introduces reaction delays
in terms of the first passage times of reactants to the solid phase. Quantifying this effect and its impact
on reaction rates is therefore fundamental for modeling fluid–solid reactions in porous and fractured
media.

Recently, the chemical continuous time random walk (chCTRW) framework was developed in or-
der to relax the well-mixed assumption in stochastic reaction modeling, leading to inter-reaction times
which encode the effect of local transport limitations through additional reaction delays due to trans-
port limitations [28]. The chCTRW hence quantifies the effect of broader distributions of the times
required for sequential reaction events to occur. Despite the formal similarities, this differs conceptu-
ally from the classical CTRW framework, which quantifies the effect of broadly distributed times or
distances associated with particle displacements [29]. Such reaction delays can be quantified in terms
of the first passage times of reactant particles across each other [30–34]. In the case of fluid–solid
reactions, these are related to the duration of excursions between visits to the solid interface. The
latter are closely related to the time spent near the interface, which can be formally quantified through
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the so-called local time at the boundary, which represents the amount of time spent in a thin region
near the interface divided by the region thickness, in the limit of vanishing thickness [35–38]. The
concept of modeling reactive transport in terms of exposure time, that is, the time that reactants
spend in close proximity and so are available for reaction, has received some attention over the past
decade [39–43]. Nonetheless, the relationship between exposure time and flow and medium hetero-
geneity remains little understood. The central goal of the present work is to formalize the notion of
inter-reaction times and their impact on reaction dynamics in the context of fluid–solid reactions under
advective–diffusive transport, in order to better undertand and upscale the impact of flow, transport,
and medium structure on global reaction rates.

We consider here a catalytic degradation reaction, AF + BS → BS , a simplified chemical setup
which allows us to focus on the role of transport limitations. The reactant species BS is taken to
be in solid phase, immobile, and homogeneously distributed over the fluid-solid interface, whereas
the reactant species AF is in fluid phase and undergoes advective–diffusive transport. The impact
of disordered (i.e., random and uncorrelated at different spatial locations) distributions of solid-phase
reactants and residence times on this type of reaction has been studied for diffusive and subdiffusive
transport (i.e., transport phenomena where plume variance grows sublinearly in time) and trapping
using random walk models [44–51], and purely-advective transport in a streamtube model using the
chCTRW framework [52]. However, these models did not consider the joint effect of flow variability
and diffusion. In porous media, the interplay between these processes controls mass fluxes towards the
fluid-solid interface, and therefore the amount of reactant available for reaction. As shown here, the
interplay between medium geometry and transport limitations can lead to effective reaction kinetics
that differ from their well-mixed counterparts, even for this simple chemical setup. It should be
noted that we disregard for the present more complex effects which may play an important role in
reactive transport dynamics, such as the coupling of transport and medium evolution due to reaction-
induced precipitation and dissolution [53–57]. Our simplified setup allows for in-depth understanding
and quantification of the specific role of transport limitations and medium geometry regarding global
reaction dynamics, and provides a rigorous upscaling approach to be later extended to more complex
reaction chemistry.

The paper is structured as follows. We first formalize fluid–solid reaction dynamics under diffusive
transport near an interface in Section 2. This is followed by a brief review of the fundamental concepts
behind inter-reaction times and the chCTRW formulation in Section 3. In Section 4, we develop the
relationship between return times to the interface and inter-reaction times, and use this formulation to
quantify the time evolution of total fluid-reactant mass. Next, in Section 5, we illustrate these results
by obtaining an analytical formulation of the mass dynamics for advection–diffusion under stratified
flow in a two-dimensional channel. Section 6 shows how the framework thus developed may be applied
to compute the time evolution of total mass from numerical determination of first passage and return
times in more general settings. In particular, we consider advection–diffusion under stratified flow in a
three-dimensional channel and Stokes flow in an idealized porous medium, specifically a body centered
cubic beadpack. An overall discussion and conclusions are presented in Section 7, and some additional
technical details and derivations may be found in appendix.

2 Fluid–solid reaction model

We consider a mobile reactant species AF , transported by the fluid phase, and an immobile, solid-
phase reactant species BS , distributed over the fluid–solid interface of the medium. In order to focus
on the effects of transport limitations, we assume for simplicity that the distribution of the latter
over the interface is homogeneous, and that its concentration at a given spatial location does not
change appreciably due to reaction. Assuming further that the reaction is irreversible at the timescale
of interest and ignoring the reaction products, this corresponds locally to the reaction AF + BS →
BS . We thus consider a far-from-equilibrium situation where the reverse reaction can be neglected.
Mass conservation requires this reaction to give rise to additional products, which are ignored here.
We consider also that the available reactant BS is homogeneous across the solid phase. While this
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assumption should not be expected to hold over large scales, it is directly relevant for relatively
chemically-homogeneous column experiments, or over certain regions of larger media. The assumption
that BS is not consumed holds directly for truly catalytic reactions, but, along with homogeneity, it
is also a relevant approximation if BS is locally not consumed appreciably, for example under large
flow rates and short injections, where the fluid phase may be significantly consumed throughout the
column, but consumption of the solid phase at a particular location is small. As mentioned in the
introduction, the assumption of no consumption of the solid phase also implies that we also disregard
more complex effects such as coupling of transport and medium evolution, which can occur due to
precipitation and/or dissolution.

The resolved simulation method developed in this work can in principle handle more complex chem-
ical setups, including multiple reactions and/or multicomponent reactions. However, the theoretical
developments become substantially more complex, because it is necessary to account for the simul-
taneous presence and amount of different reactants near the interface. The simple chemical reaction
AF + BS → BS , along with the assumption of chemical homogeneity of the solid-phase reactant, al-
lows us to focus on the impact of transport mechanisms and medium geometry on reaction dynamics.
Despite the fact that the chemical kinetics are linear at the fluid–solid interface, reaction is limited
by the available fluid-reactant flux toward the latter, and transport limitations can lead to modified
effective reaction kinetics and significant reaction slowdown. While it is important to note that the
theory developed here cannot at present be directly applied to multicomponent chemical reactions, it
provides the first direct link between first passage and return time statistics, inter-reaction times, and
fluid-solid reaction dynamics, and sets the stage for later generalizations.

In order for reaction to occur, physical reactant molecules of the transported phase AF must be
in reactive contact with the solid-phase component BS . This occurs within some distance `s of the
fluid–solid interface. We assume that `s is much smaller than the scale at which transport of reactant
AF within the fluid phase may be described through continuous advection–diffusion, and that reaction
then occurs when reactant AF is transported sufficiently close to the interface. As we will see, this
corresponds to the usual concept of surface (as opposed to bulk) reactions. It should be noted that if
this spatial scale separation between transport and reaction does not hold, a more detailed reaction
model is necessary. For example, if attachment or transport times within a physical reactive layer play
a significant role, sorption or microporosity models may be needed, which we do not consider here.

From both a theoretical and a numerical perspective, it is convenient to adopt a conceptualization
of transport in terms of Lagrangian tracer particles. Each Lagrangian particle represents a macroscopic
number of physical reactant particles undergoing advection–diffusion [58, 59] and subject to reaction
near the interface. Disregarding reaction for the moment, particle positions X(t) as a function of time
t are described by the Langevin equation (see, e.g., [60])

dX(t) = v[X(t)]dt+
√

2Ddt ξ(t), (1)

where D is the diffusion coefficient, v(·) is the velocity field as a function of position, and, for each
time t, ξ(t) are independent random vectors whose components are independent unit Gaussian random
variables.

Under the assumed scale separation between reaction and transport, reaction dynamics are con-
trolled by the concentration of fluid reactant AF near the interface, subject to both advective–diffusive
transport and reaction. When a discretization is considered, for a given time step ∆t, the support
scale `d over which concentrations are well defined must be large compared to the spatial resolution
of the model description, which is of order

√
2D∆t (see A for further details). It is important to note

that `d is not a parameter of the theoretical model, but rather a property of the discretization. In this
sense, the dynamics will be shown to converge to a well-defined limit when `d → 0, which corresponds
to taking the continuum limit ∆t→ 0.

For a given discretization, below the support scale `d, the mass represented by a Lagrangian particle
is taken to be well-mixed. Particles within a region comprising a distance up to `d from the interface
are subject to reaction, as we will formalize below. In what follows, we will refer to this region as
the reactive region for convenience, although it should be remembered that it is associated with a
given discretization and different from the physical reactive region, associated with the subscale length
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`s. In Section 4, we will employ the chCTRW inter-reaction times to show that the continuum limit
`d → 0 (or, equivalently, ∆t → 0) of this conceptualization is well defined and leads to a consistent
description of the full reactive transport problem. This approach is conceptually convenient for the
derivations that follow. From a computational standpoint, it converges to the correct results, as will
be discussed in detail below. Nonetheless, we expect that it will prove useful in the future to explore
equivalent but computationally more efficient approaches for direct numerical simulations, such as
kernel-smoothing [61, 62] to determine concentrations near the interface. We note that any method
for estimating local mass fluxes to the interface from Lagrangian particle collisions must address the
same conceptual issues, since, as discussed in detail in what follows, the number of collisions with the
interface within a given time period is also discretization-dependent.

According to the previous considerations, while a Lagrangian particle is in the reactive region, a
fraction `s/`d of its mass Mp is physically available for reaction. Assuming the law of mass action
holds locally, we have

dMp

dt
= −kcs

`sMp

`d
, (2)

where k is the usual well-mixed reaction rate, in units of inverse concentration per time, and cs is the
solid-phase concentration within the reactive region. Thus,

dMp

dt
= −kdMp, kd = k

cA
`d
, (3)

where kd is the effective particle reaction rate in units of inverse time, and cA = cs`s is the solid-
phase surface concentration, i.e., mass of solid reactant per unit interface area. Note that, under the
scale separation assumption, `s is small compared to the scale at which transport can be described by
continuous advection–diffusion. This means that, formally, the continuum description then corresponds
to the scaling limit `d → 0 with the physical concentration cA remaining finite, whereas `s/`d remains
small due to the scale separation. This scale separation corresponds to the situation where the fluid–
solid mass-action reaction can be treated as a surface reaction: the reaction rate kd, describing particle
mass decay per unit time in the reactive region, is independent of `s, and kcA is the usual surface
reaction rate (units of length per time), which depends only on the surface concentration cA. As will
be shown in Section 4, this leads to a well-defined continuum limit for the evolution of total fluid
reactant mass, where the results are independent of both the discretization length `d and the subscale
length `s. Similarly, we assume here that molecular-scale attachment/detachment at the interface is
fast compared to diffusion near the interface, so that it can be considered instantaneous. Specifically,
this corresponds to assuming that τa/τd, where τa is the average duration of an attachment event
and τd = `2d/(2D) is the diffusion time associated with the discretization lengthscale, remains small.
We note that the concept of scale separation, where a continuum limit is taken while maintaining a
subscale length or timescale small, is commonly employed in volume averaging, see, e.g., [63].

Numerically, we implement these dynamics using particle tracking random walk (PTRW) simu-
lations, which discretize the Langevin equation (1) (see, e.g., [58, 59] and A for further details). If
a fluid-reactant particle is in the reactive region during a time step of duration ∆t, its mass evolves
according to

Mp(t+ ∆t) = Mp(t)e
−kd∆t. (4)

Otherwise, if the particle is farther from the interface, no reaction occurs.

3 Inter-reaction times and the chemical continuous time ran-
dom walk

In this section, we provide a brief description of the chCTRW framework and the associated concept
of inter-reaction times, which will be used in what follows to obtain a quantitative description of
total fluid reactant mass. In this framework, the inter-reaction time is the sum of the delay time
due to transport limitations and the intrinsic reaction time necessary for the reaction to occur under
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Figure 1: (a): Illustration of the concepts of first passage, return, and interface visit times. The
overall fluid-solid reaction rate is decreased due to the time spent by the fluid reactants away from the
interface. Points in the initial condition (cyan blob) take different paths towards the interface (purple
line). After the interface is reached for the first time, additional excursions away from and back to
the interface (blue lines) also depend on medium geometry and transport. Obtaining a consistent
description of the effect of the excursion times on reaction slowdown requires resolving the return
excursions and interface visits (orange line) at the support scale of a discretized transport description
before taking the continuum limit. (b): We apply the general framework to analyze reaction dynamics
under advective–diffusive transport in two- and three dimensional media: (i) Laminar flow in a straight
2D channel; (ii) Laminar flow in a cylindrical 3D channel; and (iii) Stokes flow in a body centered
cubic beadpack, composed of a periodic array of the conventional cubic cells shown (the spherical solid
bead at the cell center is shown in red, and the corner beads in green).

well-mixed conditions. For the present application, these correspond to the times between visits of
the particle to the reactive region, and the time spent in the reactive region. These concepts are
illustrated in Fig. 1a. In the sections that follow, we will develop a theory of fluid–solid reaction under
advective–diffusive transport, and apply it to analyze different two- and three-dimensional example
media (Fig. 1b).

The chemical CTRW framework treats the inter-reaction time τ , i.e., the time between successive
reaction events, as a stochastic quantity incorporating variability from the chemical kinetics on the
one hand, and transport and medium structure on the other. In what follows, we will obtain the PDF
φ of inter-reaction times for our fluid-solid reaction. Disregarding for the moment the first excursion
to the interface (purple excursion in Fig. 1), the total inter-reaction time in the chCTRW formulation
can be written as [28]

τ = τr + τg(τr), (5)

where τr is the time it would take for a reaction to occur if a particle were confined to the reactive
region, and τg is the additional time spent in excursions away from the latter (blue excursions in
Fig. 1). The total time τr that must be spent in the reactive region before the next reaction event
impacts the delay time τg, because a longer τr typically requires more visits to the reactive region
(corresponding to orange excursions in Fig. 1), punctuated by excursions.

When small numbers of reactant particles (molecules) are considered, the inter-reaction time refers
to the time between two successive reaction events between reactant molecules, allowing for capturing
fluctuations due to finite particle numbers [25]. Recall that here we consider Lagrangian particles
representing a certain amount of fluid reactant mass undergoing continuous advection-diffusion, and
corresponding to a macroscopic number of molecules. In that case, fluctuations due to molecule
numbers are not significant [25, 28]. For conceptual and computational reasons, it is then more
convenient to consider a fixed number of Lagrangian particles whose masses evolve in time [64]. In
this case, the rate equation (3) for the evolution of the mass carried by a Lagrangian particle within
the reactive region corresponds to a constant reaction rate kd = kcA/`d (with units of inverse time).
According to the classical well-mixed theory for stochastic inter-reaction times, this reaction rate may
be interpreted as a constant probability of reaction per unit time, which translates into an exponential
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inter-reaction time distribution [25]. Specifically, the probability that τr takes a value in [u, u+ du) is
given by φr(u) du, such that its probability density function (PDF) is given by

φr(u) = kde
−kdu. (6)

For a given τr = u, τg(u) is also a random variable, whose PDF φg(·;u) reflects the underlying medium
heterogeneity and the stochasticity inherent in diffusive motion. In the next section, we will explicitly
relate this PDF to the statistics of excursions away from the interface. As we will see, although τr and
τg are discretization-dependent, τ is well defined in the continuum limit.

The impact of delay due to return excursions on reaction dynamics is captured by a memory
function, given in terms of the PDF φ of inter-reaction times τ as [28]

K̃φ(λ) =
λφ̃(λ)

1− φ̃(λ)
. (7)

Here and throughout, we denote Laplace transforms (with respect to time) by a tilde and the cor-
responding Laplace variable by λ. For the AF + BS → BS reaction considered here, the total mass
obeys

dMφ

dt
= −Kφ ∗Mφ, (8)

where ∗ denotes the convolution product, (Kφ ∗Mφ)(t) =
∫∞

0
dt′Kφ(t)Mφ(t− t′), and the subscript φ

in the total mass indicates that the first delay time to reach the interface (see Fig. 1) has not yet been
considered, so that these dynamics incorporate the impact of the inter-reaction time PDF φ only. This
equation may be seen as a generalized rate law governing the time evolution of the total mass under
the impact of reaction delay caused by transport limitations. In contrast to the classical well-mixed
rate laws, where reaction rates depend only on the current mass in a batch reactor, the presence of
the convolution with a memory function renders this equation integro–differential. Physically, this
arises because the reaction rate at a given time depends on past history through the statistics of past
excursions. Excursions away from and back to the reactive interface, controlled by transport and
medium geometry, take the form of reaction delays, which lead to memory effects in the large-scale
mass dynamics. Broad distributions of excursion times translate into long-range memory effects.

Applying these results to fluid-solid reactions requires relating the inter-reaction times to the statis-
tics of excursions away from and back to the solid interface, as well as including the role of the first
excursion to the interface (Fig. 1), representing the impact of the initial condition. This is the subject
of the next section.

4 Mass dynamics and inter-reaction times

In this section, we first quantify the impact of diffusion near the reactive interface on the distribution
of return times to the reactive region and the duration of each visit. Based on these concepts and
the first passage time to the interface from the initial condition, we then obtain the inter-reaction
times and the evolution of total fluid reactant mass based on the chCTRW formulation of the previous
section.

4.1 Return and visit times

The dominant transport mechanism that controls local reactant mass flux towards the interface is
diffusive, because there is no fluid flow into or out of the solid phase. We assume the interface to be
locally flat at the scale of the transport model, so that, close to the interface, it is sufficient to consider
one-dimensional diffusion in the transverse direction. We note that this local flatness assumption may
be inappropriate in some systems, such as rough fractures, where the surface may exhibit fractal (i.e.,
self-similar across scales) properties (see, e.g., [65]). Such pronounced surface roughness is known
to impact reaction rates [13]. A one-dimensional conceptualization of diffusion perpendicular to the
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surface may then be inaccurate, and more detailed modeling of transport and reaction near the interface
may be necessary. This scenario, although important, is beyond the scope of the present work, and we
do not explore it further here.

For a diffusing particle, characterized by the diffusion coefficient D, in an unbounded domain in
one dimension, the PDF of the time to first reach a target located at a distance ` to one side of the
initial position is given by the Lévy 1/2-stable density (see, e.g., [66]),

ψD(t; `) =
`√

4πDt3
e−

`2

4Dt . (9)

That is, ψD(t; `) dt is the probability that the first passage time to the target is in the interval [t, t+dt).
We have

ψ̃D(λ; `) = e−
√
`2λ/D. (10)

In order to apply the chCTRW formulation, we require the time to return to a target, which sets
the time between successive visits to the reactive interface, and therefore controls the inter-reaction
times (see Fig. 1). This concept must be treated with care, because a particle undergoing continuous
diffusive motion in one dimension crosses its original position infinitely many times in any given finite
time interval. This is reflected in the fact that the limit ` → 0 of ψD(t; `) is not well define (see
also [35, 37, 67, 38]). To avoid this problem, we will obtain the inter-reaction times in the scaling
limit of an appropriate discretization, associated with the support scale `d (see Section 2). Consider a
regular one-dimensional discretization into intervals, or cells, of equal length `d. The return times to
the interface associated with the discretization are then the first passage times to the center of the cell
touching the interface, from the center of the adjacent cell. The cell centers are a distance `d apart, so
that the corresponding first passage time PDF is given by ψd(·) = ψD(·; `d). Note that the same result
is obtained by considering the first passage times to a distance `d from the interface, starting from a
distance 2`d. This is convenient for numerical determination from particle tracking simulations, where
particles can be placed at distance 2`d from the interface and the first passage time determined as the
time when distance `d from the interface is crossed.

Before proceeding, we may relax the assumption of an unbounded domain, and the requirement
of one-dimensional diffusive transport far from the reactive region. First, we denote the timescale
associated with the discretization support scale `d by

τd =
`2d
2D

. (11)

In order to allow for different effects away from the interface while retaining the diffusive behavior near
it, we write the return time PDF in the form

ψ̃d(λ) = ψ̃D(λ; `d) = e−f̃(λ)
√

2τdλ, (12)

see Eq. (10). The discretized description can only resolve times t � τd, corresponding to λ � 1/τd.
Thus, with a view to taking the continuum limit, it is sufficient to consider the limit of λ � 1/τd,
corresponding for a given discretization to times large compared to the discretization time. We then
find

ψ̃d(λ) ≈ 1− f̃(λ)
√

2τdλ. (13)

It is important to note that this and similar results below do not represent late-time expansions, but
rather lead to results valid for all times (or all λ) in the continuum limit `d → 0. In other words,
finite-`d effects are a product of the discretization, which disappear in the continuum-limit description
of total mass obtained in what follows.

The form factor f̃(λ), which depends on the geometry of the domain and the transport mechanisms
involved up to the timescale 1/λ, must approach unity for large λ, so that the behavior of the return
time is dominated by the

√
2τdλ term characterizing the diffusive behavior near the fluid-solid interface

at short times. For small λ, corresponding to large times, f̃(λ) encodes information about transport
excursions far from the reactive region. As before, in an arbitrarily small time interval, continuous
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diffusion in one dimension crosses the origin infinitely many times. The factor
√

2τdλ, which approaches
zero as `d → 0, captures the resulting singular character of the return time distribution in this limit,
whereas the factor f̃(λ), whose departure from unity represents additional effects from transport
excursions unrelated to the discretization, remains finite and nonzero in the continuum limit.

Let `c be a characteristic lengthscale of the medium, such as the average pore size. Note that the
choice of `c is arbitrary and simply provides a reference scale based on which nondimensional quantities
characterizing the relationship between reaction, diffusion, and advection processes will be introduced
below. We denote the corresponding diffusion time as

τD =
`2c
2D

(14)

and define the Damköhler number

Da =
kcAτD
`c

. (15)

The latter quantifies the relative importance of reaction and diffusive transport at this scale. It is
convenient to define the rescaled return time tail probability

g(t) =
`cΨd(t)

2τD`d
, (16)

where

Ψd(t) =

∞∫
t

dt′ ψd(t
′) (17)

is the probability that the return times are greater than a given time t. In terms of the rescaled tail
probability, the return times obey

ψ̃d(λ) ≈ e−2τDλg̃(λ)`d/`c , (18)

so that, comparing to Eq. (12), we have the relation g̃(λ) = f̃(λ)/
√

2τDλ. Since f̃(λ) remains finite
and nonzero in the limit `d → 0, so does g̃(λ). Note that for large λ we have g̃(λ) ≈ 1/

√
2τDλ,

because f̃(λ) ≈ 1 as discussed above. For small λ, corresponding to large times, g̃(λ) again encodes
the behavior of excursions away from the interface. These quantities are obtained analytically for the
example of diffusion in a bounded one-dimensional domain in Section 5.

Note that the statistics of the excursions back to an arbitrary point along the interface may differ
depending on the starting point, corresponding to different form factors and rescaled tail probabilities
depending on the latter. Here, in order to obtain a stationary description where successive return
times to the wall have the same statistics, we treat any such variability statistically. That is, the same
rescaled tail probability is used to characterize the return time statistics associated with each point
on the interface and at all times. In other words, this method disregards possible non-stationarity
of the return times, as well as possible correlations between subsequent return times arising from
different transport and geometry properties at different interface points. Nonetheless, we believe such a
statistical description to be appropriate, as long as the flow is statistically stationary and the structural
characteristics of the medium are statistically homogeneous within the region being considered. Note
that this assumption is similar to that employed in the standard CTRW for transport [29], where
variability in particle jump sizes and/or transit times is treated stochastically but assumed statistically
homogeneous and stationary, that is, the PDFs associated with these quantities do not depend on the
current time or particle position. In Section 6, we show that this approach leads to accurate predictions
of mass dynamics in a regular beadpack, despite different points on the bead surfaces having different
characteristics in terms of the distance to other nearby surface points.

Next, we turn to the statistics of the time spent in the reactive region in each visit. As shown in
B, the corresponding PDF is given by

ψv(t) =
e
− t

2τd

2τd
, (19)

so that the single-visit times are exponentially distributed with mean 2τd.
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4.2 Inter-reaction times

We are now in a position to compute the PDF of global delay times τg, which will allow us to obtain
the PDF φ of the inter-reaction time τ , see Eq. (5). Given a well-mixed reactive time τr = u, the delay
time due to excursions away from the reactive region is given by

τg(u) =

NU (u)∑
i=1

Wi, (20)

where the Wi are independent and identically distributed return times with PDF ψd and NU (u) is
the (random) number of visits to the reactive region given well-mixed reactive time u. For sufficiently
fine discretization, the residence times per visit to the reactive region are approximately exponential
with mean 2τd, Eq. (19). This implies that NU (u) is approximately Poisson with mean u/(2τd) (see,
e.g., [60]). Thus, the global delay (20) is a compound Poisson process, so that its PDF has Laplace
transform [68–70]

ψ̃g(λ;u) = exp

[
−λΨ̃d(λ)u

2τd

]
. (21)

The PDF φ of the total inter-reaction time τ resulting from a well-mixed reaction time τr with
PDF given by Eq. (6) and a compound Poisson delay has been obtained in [28]. With the form (21)
of the delay PDF, it reads

φ̃(λ) = φ̃r

[
λ

(
1 +

Ψ̃d(λ)

2τd

)]
. (22)

In the continuum limit `d → 0, using Eqs. (6) and (12), we obtain

φ̃(λ) =
Da

Da +τDλg̃(λ)
. (23)

In this form, the inter-reaction times are manifestly well defined in the continuum limit. The effect
of diffusion near the interface is implicit in the form of Eq. (23), and additional effects arising from
domain geometry and/or velocity variability are encoded in the rescaled tail probability g, see Eq. (16).

4.3 Dynamics of reactant mass

The chCTRW formulation can now be used to obtain the evolution of total mass given the inter-
reaction time PDF together with the additional delay time to first reach the interface (see Fig. 1).
This delay is distributed according to a PDF ψ0, which depends on the transport mechanism and the
initial reactant distribution. Defining

Ψ0(t) =

∞∫
t

dt′ ψ0(t′), (24)

the tail probability of the first passage time to the interface, we obtain, as shown in C,

dM

dt
= −Kφ ∗ (M −M0Ψ0). (25)

This generalized, integro-differential rate law encodes the impact of transport and heterogeneity on
the effective reaction kinetics through the inter-reaction times and the first passage time to the in-
terface. In the standard CTRW description of transport, advection–dispersion at the small scales
in the presence of heterogeneity leads to the emergence of memory kernels at larger scales in the
advection–dispersion equation, accounting for statistical variability in particle jump sizes and/or tran-
sit times [29]. Analogously, the chCTRW leads to a description of total mass which incorporates the
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impact of transport limitations through a memory kernel representing statistical variability in first
passage and inter-reaction times.

Taking the Laplace transform of Eq. (25), we obtain the Laplace-space solution for the evolution
of total mass as

M̃(λ)

M0
=

Da Ψ̃0(λ) + τDg̃(λ)

Da +τDλg̃(λ)
. (26)

While the number of visits to the reactive region within a given time window increases when the
discretization is refined, the residence time associated with each visit decreases accordingly, and the
total mass change due to reaction in the actual, subscale reactive region is well defined. These results
connect the effect of transport limitations on mass dynamics to the inter-reaction times of the chCTRW
under a transport mechanism for which mass exchange near a locally-flat interface is controlled by
diffusion. In particular, this is the case for advection–diffusion: since there is no flux into or out of the
solid interface, diffusion always dominates returns at sufficiently short times, when particles are close
to the interface. This fact is incorporated into the form of Eq. (26). The rescaled tail probability g̃(λ)
captures further effects controlling the statistical variability of the excursion times, such as transverse
velocity variations across the domain and the size of the latter, as will be discussed in more detail and
illustrated in the following sections. Note that this description does not require zero- or low-velocity
regions to occur only near the interface. The presence of stagnation regions affects g̃(λ), and may lead
to broader variability of the return times and therefore of the inter-reaction times.

We note that Eq. (26) can also be obtained in terms of the statistics of times spent near the interface,
rather than the statistics of the inter-reaction times. This alternative formulation is discussed in D.

5 Reactive transport in a 2D channel

In order to illustrate the results of the previous section, we consider first the simple example of transport
in an infinite two-dimensional channel with stratified flow and reactive walls (Fig. 1b, (i)), for which
fully-analytical results can be obtained in Laplace space. We take the characteristic length `c as the
channel half-width.

5.1 Analytical first passage/return times and mass dynamics

The distribution of times to reach either wall from a given point along the channel cross-section
depends in this case only on transverse diffusion and not on the velocity profile. It is thus sufficient to
consider one-dimensional diffusive transport along the channel cross-section. The corresponding PDF
in a bounded domain of size L, starting from a distance ` from one wall, has Laplace transform [71]

ψ̃(λ; `, L) =
csch[

√
`2λ/D] + csch[

√
(L− `)2λ/D]

coth[
√
`2λ/D] + coth[

√
(L− `)2λ/D]

. (27)

In order to determine the first return time PDF, in the sense discussed in the previous section, we
take ` = `d and L = 2`c. In preparation for taking the continuum limit `d → 0, we expand for small
`d � `c to obtain

ψ̃d(λ) ≈ exp[− tanh(
√

2τDλ)
√

2τdλ] ≈ 1− tanh(
√

2τDλ)
√

2τdλ, (28)

which, according to Eqs. (12) and (18), corresponds to the form factor and rescaled tail probability

f̃(λ) = tanh(
√

2τDλ), g̃(λ) =
tanh(

√
2τDλ)√

2τDλ
. (29)

Substituting g̃(λ) in Eq. (26), the total mass as a function of time has Laplace transform

M̃(λ)

M0
=

2 Da Ψ̃0(λ) + tanh(
√

2τDλ)
√

2τD/λ

2 Da + tanh(
√

2τDλ)
√

2τDλ
. (30)
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For small Da, we can expand this result for small λ � 1/τD (time t � 1/τD) before appreciable
reaction occurs, and we obtain

M̃(λ) ≈ M0

Da /τD + λ
, M(t) ≈M0 e

−Da t/τD . (31)

Hence, the reaction kinetics correspond to a fully-mixed cross-section. This arises because, for slow
reaction compared to the diffusive time scale, diffusion homogenizes the fluid reactant to a mass per
cross-section length 1/(2`c) before appreciable reaction occurs. Since there are two reaction interfaces,
the fraction of mass in the reactive region is 2`d/(2`c) = `d/`c. The effective reaction rate is thus
kd`d/`c = Da /τD = kcA/`c, independent of the diffusion coefficient.

For large Da and an initial condition not fully concentrated at the channel walls, so that Ψ̃0(λ) 6= 0,
the initial condition dominates, and we have

M(t) ≈M0Ψ0(t). (32)

This result can be interpreted as follows. In the limit of fast reaction, the surviving mass is that which
has never reached the channel walls. The fraction of the initial mass that has not reached the walls
is given by the probability Ψ0(t) that the first passage time to the walls from the initial position is
greater than t.

In the particular case where all the mass starts at the channel walls, Ψ̃0(λ) = 0, the dynamics are
fully controlled by the return times. For large Da and λ & 1/τD (early times), we obtain

M̃(λ) ≈ M0

Da

√
τD
2λ
, M(t) ≈ M0

Da

√
τD
2πt

. (33)

For λ . 1/τD (late times), we find

M̃(λ) ≈ M0

Da

τD
1 + 2τDλ/3

, M(t) ≈ 3M0

2 Da
e
− 3t

2τD . (34)

This means that diffusive excursions far from the walls control reaction until the channel cross-section
is homogenized by diffusion, after which we recover exponential behavior, but diffusion- rather than
reaction-limited: the exponent of the exponential decay in (34) depends only on the diffusion coefficient,
while that of (31) depends only on the reaction rate.

While the form of the mass dynamics, Eq. (30), is flow-profile-independent, the actual mass evolu-
tion can depend on the profile through the initial condition, such as for a flux-weighted condition. In
the low-Da limit discussed above, the initial delay does not play a relevant role and this dependence
disappears. For definiteness, consider two-dimensional Poiseuille flow, with the velocity profile

v(y) = vM

(
1− y2

`2c

)
, (35)

for y ∈ [−`c, `c] along the one-dimensional cross-section, with vM the maximum velocity, attained at
the channel center, y = 0. The corresponding Eulerian mean velocity is given by v = 2vM/3.

Different initial conditions affect the initial first passage time until the interface is first reached.
We consider four examples of instantaneous injection, with the fluid reactant mass placed: (a) at the
middle of the channel, (b) homogeneously along the channel cross section, (c) flux-weighted along the
channel width, and (d) at the channel walls; the Laplace transforms of the corresponding first passage
time PDFs ψ0 are given in E.

5.2 Numerical simulations of reactive transport

We performed PTRW simulations of the two-dimensional reactive transport problem, as described in
Section 2 and A. We nondimensionalize distances by `c, time by the diffusion time τD, and mass by
the initial mass M0. Note that, numerically, this can be conveniently achieved by setting the diffusion
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Figure 2: Reactant mass as a function of time for Poiseuille flow in a two-dimensional channel, for
different Damköhler numbers Da (colors) and initial conditions (a)-(d). Solid lines show numerical
inversion of Eq. (30) and square markers represent reactive PTRW simulations. Circles correspond to
the analytical solution (31) for a well-mixed cross-section. (a): Channel middle. (b): Uniform. (c):
Flux-weighted. (d): Channel walls. Asterisks in (d) correspond to the analytical solutions (33) for
t/τD 6 1 and (34) for t/τD > 1. PTRW simulations for Da = 100, 102 use a time step ∆t = 10−4τD
and N = 103 particles. For Da = 102, N = 104, with ∆t = 10−6τD for (a)-(c) and ∆t = 10−7τD for
(d).

coefficient to D = 1/2, the channel half-width to `c = 1, and the initial mass to M0 = 1, in arbitrary
units. Each of N particles initially carries a fraction M0/N of the initial mass. In order to obtain good
statistics, the number N of particles used must be such as to permit resolving the transverse direction
to within the discretization length, meaning N & `c/`d =

√
τD/τd. Aside from setting the spatial

resolution through `d, the time step must be sufficiently small to resolve reaction. Since the average
residence time per visit to the reactive region is 2τd, this requires 2kdτd . 1. Note that, even though
the initial condition (c) depends on the velocity profile, the first passage time (73) is independent of
the mean velocity, so that we can arbitrarily set v = 1.

The evolution of total mass under the different initial conditions (a)-(d) is shown in Fig. 2. Good
agreement is observed between simulations and numerical inversion of Eq. (30). Note how the Da =
10−2 case is identical for all initial conditions; it corresponds to the low-Da limit, Eq. (31), characterized
by purely exponential decay and fully controlled by the reaction rate, i.e., independent of the diffusion
coefficient. In (a)-(c), the Da = 102 curves have converged to the Da-independent fast reaction limit,
Eq. (32). This regime is the most affected by the initial condition, because it is controlled by the
initial first passage time to the interface. However, the characteristic first passage times associated
with conditions (a)-(c) are all on the order of the diffusion time τD, and thus lead to qualitatively
similar mass decay. For (d), the evolution of the total mass is fully controlled by the return times to
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Figure 3: Reaction efficiency ε(t), comparing the observed overall reaction rate as a function of time to
the rate for a well-mixed two-dimensional channel cross-section. The initial condition is concentrated
at the middle of the channel. (a): Reaction efficiency computed from the data in Figure 2a (symbols).
The theoretical asymptotic value ε∞ is shown as a dashed line for each value of the Damköhler number
Da. (b): Theoretical assymptotic reaction efficiency ε∞ as a function of Da. The well-mixed (low-Da)
and fully transported-limited (high-Da) limits are shown as dashed and dash-dotted lines, respectively.

the reactive region, Eqs. (33) and (34). The late-time behavior in this case is also exponential, but
fully controlled by the diffusion coefficient, i.e., independent of the reaction rate constant k and the
solid-phase surface concentration cA. Note how, for moderate to high Damköhler number, Da & 1,
the solution (31) corresponding to a well-mixed cross-section tends to overestimate reaction. This is
the case even for the uniform initial condition (a), because fast consumption of solute at the interface
inhibits transverse homogeneity. At early times in (d), reaction is faster than the well-mixed-channel
prediction in these regimes due to solute starting in the reactive region, but slower at later times as
the surviving solute explores the channel cross-section.

5.3 Reaction efficiency

These results show that, while reaction rates tend to increase with the Damköhler number as would
be expected, the reaction efficiency compared to a well-mixed channel cross-section characterized by
the same Da decreases due to transport limitations. In order to better understand this phenomenon,
consider the global, or effective, reaction rate

ke(t) =

∣∣∣∣d lnM(t)/M0

dt

∣∣∣∣ . (36)

In other words, the effective rate ke(t) is defined so that dM(t)/dt = −ke(t)M(t). Note that, for
pure exponential decay at constant rate, M(t) = M0 exp(−ket), this definition recovers ke(t) = ke as
expected. We define the reaction efficiency by comparing ke(t) to the reaction rate kwm

e associated
with well-mixed conditions in the domain,

ε(t) =
ke(t)

kwm
e

. (37)

According to Eq. (31), the well-mixed reaction rate for the two-dimensional channel is kwm
e = Da /τD.

It is important to keep in mind the different physical meanings of the effective well-mixed rate kwm
e and

the thermodynamic well-mixed rate k in Eq. (2). The latter, defined in units of inverse concentration
per time, is the usual batch-reactor rate, which governs fully well-mixed reaction. The former, defined
in units of inverse time, represents the effective reaction rate occurring when the (fluid-phase) domain

14



is well-mixed. It is impacted by medium geometry, as it accounts for the fact that part of the fluid
reactant remains far from the interface.

We now obtain a theoretical expression for the asymptotic rate k∞e = limt→∞ ke(t) and the cor-
responding asymptotic reaction efficiency ε∞ = k∞e /k

wm
e . To this end, we introduce the mean first

passage time to the wall w0 and the corresponding second moment,

w0 =

∞∫
0

dt tψ0(t), s0 =

∞∫
0

dt t2ψ0(t). (38)

We define also

α0 =
s0

2τDw0
, (39)

which represents a dimensionless measure of the variability in the first passage times, compared to the
diffusion time τD. Expanding Eq. (30) for small λ . 1/τD, and inverting the Laplace transform, we
find the late-time behavior

M(t)

M0
≈
(
w0 +

τD
Da

)
k∞e e

−k∞e t,

k∞e =
2 Da(Daw0 + τD)

Da2 s0 + Da τD(2w0 + 4τD/3) + 2τ2
D

, (40)

so that

ε∞ =

(
1 +

τD
w0 Da

)(
1 +

2τD
3w0

+ α0 Da +
τD

w0 Da

)−1

. (41)

Thus, for small Da, we recover the well-mixed rate as predicted by Eq. (31), and ε∞ ≈ 1. For high
Da and an initial condition not concentrated at the channel walls, the asymptotic reaction rate is
limited by the first passage times to the interface, and k∞e ≈ 1/(α0τD). For a given initial condition,
this asymptotic rate cannot exceed a constant value. Since the well-mixed rate is linear in Da, the
asymptotic efficiency ε∞ ≈ 1/(α0 Da) is inversely proportional to Da. In the special case of the initial
condition at the channel walls, we recover Eq. (34), and ε∞ ≈ 3/(2 Da). In this case, reaction is limited
by the return times to the wall, and the asymptotic efficiency remains inversely proportional to Da.

These results are illustrated for the case of a mid-channel injection, initial condition (a), in Fig. 3.
From Eq. (71), we find in this case w0 = τD, s0 = 5τ2

D/3, and α0 = 5/6. As predicted, the reaction rate
becomes asymptotically constant for all Damköhler, corresponding to exponential decay. However, the
reaction rate is initially variable as the fluid reactant explores the channel cross-section. For this choice
of initial condition, the reaction efficiency is initially zero because the solute is far from the interface,
and subsequently increases to the asymptotic value.

6 Generalization to other media

In this section, we will discuss the generalization of our approach to more complex scenarios, where fully
analytical results for the inter-reaction times are not available. As long as diffusion is the dominant
transport mechanism near the reactive interface, and the latter can be assumed flat at the scale of
the transport model, Eq. (26) may be used to predict the time evolution of total mass for arbitrary
Damköhler number, given knowledge of the tails Ψ0 and Ψd of the first passage and return times.
In general, analytical expressions for these quantities are not available, and they must therefore be
determined numerically. However, some general results about the mean return time, if it exists, may
be obtained and employed to determine asymptotic reaction rates. Note that the existence of a mean
inter-reaction time is directly related to the existence of a mean return time to the interface. If the
excursions away from and back to the interface (see Fig. 1) have sufficiently heavy-tailed duration
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statistics, the chCTRW framework predicts a similar effect on reaction dynamics [28]. Such situations,
which we do not consider further here but can be captured in our framework, can be important when
modeling scenarios where solute may be retained in large regions of low velocity away from the reactive
interface, or where the distribution of distances between separate reactive regions is very broad and
not well characterized by a mean value [52].

6.1 Mean return times and effective reaction rate

The asymptotic reaction rate for stratified flow in a 2D channel was obtained in Section 5 , Eq. (41).
In that case, the limit of low Da, corresponding to slow reaction, leads to an effective reaction rate
of Da /τD, Eq. (31). We begin by generalizing this result by considering the mean return time to the
interface,

wd =

∞∫
0

dt tψd(t). (42)

We have for the return time PDF ψ̃d(λ) ≈ 1−wdλ, for λ� 1/wd, so that the rescaled tail probability,
Eq. (16), obeys

g̃(0) =

∞∫
0

dt g(t) =
wd`c
2τD`d

. (43)

Taylor-expanding Eq. (26) for small λ and inverting the Laplace transform,

M(t) = M0e
−ket, (44)

with the effective reaction rate

ke =
2 Da `d
wd`c

. (45)

In order to relate the mean return time wd to medium structure, we now determine the effective
rate in a well-mixed domain. Consider that the solute is well-mixed over a region of volume V , within
which the volume of the reactive region is Vd. The reactive region comprises a layer of height `d
immediately adjacent to the interface, so that Vd ≈ AI`d, where AI is the interface area. The mass in
the reactive region is then M(t)Vd/V , and reacts at rate kd, see Eq. (3), so that

dM(t)

dt
= −kwm

e M(t), (46)

with the well-mixed effective reaction rate given by

kwm
e =

Vd
V
kd =

ρDa

τD
, (47)

where we have introduced the dimensionless interface-extent coefficient

ρ =
AI`c
V

, (48)

encoding the amount of interface area per unit volume. Note that, if a representative elementary
volume for interface area exists, and the solute is well-mixed over a larger volume, ρ is given by this
ratio over the representative volume. Note also that for an empty channel of cross-section A, we have

ρ =
`I`c
A

, (49)

where `I is the total interface length intersecting the cross-section. If the medium is statistically
homogeneous along the flow direction, this formula may also be used to compute ρ given information
about the interface extent over a cross-section, taking A as the fluid-phase area over the latter.
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If the concentration becomes well-mixed due to transport before appreciable reaction occurs, the
effective reaction rates associated with the return time and well-mixed-domain pictures must coincide,
ke = kwm

e . Using Eqs. (45) and (47), we find the mean return time and associated effective reaction
rate as

wd =
2τD`d
ρ`c

, ke =
ρDa

τD
. (50)

Note that these results agree with the example considered in Section 5. In that case, `I = 2, A = 2`c,
ρ = 1, and ke = Da /τD. Note also that wd is independent of the Damköhler number, so that, according
to Eq. (43),

g̃(0) = ρ−1, (51)

independent of Da, so long as the transport mechanism leads to a well-mixed state in the absence of
reaction. We note that, as before, for large Da (fast reaction) and an initial condition not concentrated
along the interface, reaction is controlled by the first passage times to the interface, and M(t) =
M0Ψ0(t). In that case, the reaction dynamics are thus controlled by the initial reactant distribution.

6.2 Reaction efficiency

We can now generalize the results for the asymptotic reaction efficiency. Using Eqs. (16) and (51), we
find the small-λ . 1/τD expansion for the rescaled tail probability:

g̃(λ) ≈ ρ−1 (1− αλ/2) , (52)

where α is defined by

α =
sd

2τDwd
, sd =

∞∫
0

dt t2ψd(t), (53)

quantifying the variability in the return times to the interface relative to the diffusion time. Using this
result to expand Eq. (26) for λ . 1/τD, and inverting the Laplace transform, we find the late-time
behavior

M(t)

M0
≈ ρDaw0 + τD

Da
k∞e e

−k∞e t,

k∞e =
2ρDa(Daw0 + τD)

ρ2 Da2 s0 + ρDa τD(2w0 + α) + 2τ2
D

. (54)

We thus conclude that, as long as the transport mechanism leads to a well-mixed state in the absence
of reaction, the reaction rate always asymptotes to a constant at late times, for arbitrary Da. Using
Eqs. (37) and (47), the corresponding asymptotic reaction efficiency is

ε∞ =

(
1 +

τD
w0ρDa

)(
1 + α+ α0ρDa +

τD
w0ρDa

)−1

, (55)

see also Eqs. (38) and (39). For the 2D channel case, ρ = 1 and α = 2/3 from Eq. (28), so that this
result reduces to Eq. (41). In the low-Da limit of slow reaction, we recover Eq. (47) for the well-mixed
reaction rate and obtain ε∞ ≈ 1 as expected. For high Da and an initial condition not concentrated at
the channel walls, we have the initial-condition-limited results k∞e ≈ 1/(α0τD) and ε∞ ≈ 1/(α0ρDa).
In the special case of an initial condition distributed over the interface, for which w0 = s0 = 0, we
find k∞e ≈ 1/(ατD), emphasizing that in this case the transport limitations come into play through
the return times rather than the first passage times. As before, ε∞ ≈ 1/(αρDa) remains inversely
proportional to Da.
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Figure 4: Rescaled first return time PDF (a) and return time tail probabilities (b) for one-dimensional
diffusion in a bounded domain, obtained from 104 return time samples from PTRW simulations (sym-
bols) and numerical inversion according to the analytical Laplace transform (27) (lines). The large-
time scalings associated with pure diffusion in a semi-infinite domain, which here hold below the
characteristic diffusion time τD for sampling the full domain and above the discretization timescale
τd = `2d/(2D) = τD`

2
d/`

2
c , are shown as dashed lines.

6.3 Mass dynamics from numerical first passage and return statistics

According to Eq. (16), g̃(λ) is proportional to Ψ̃d(λ). Thus, mass dynamics can be quantified through
Eq. (26) by numerically sampling first passage and first return times in PTRW simulations of the
transport. For a given initial condition, the Laplace transform Ψ̃0(λ) can be found directly from the
fraction of first passage time samples to the interface above a given time. To determine the first return
times associated with discretization length `d for a given medium and flow, we take a single-particle
initial condition chosen uniformly randomly over the surface at (perpendicular) distance 2`d from the
interface, corresponding to a distance `d from the reactive region. Once the reactive region is reached,
we record the duration of the excursion, place the particle at the closest point at distance 2`d from the
interface, and repeat the process for the next excursion a prescribed number of times. Note that, in
the cases considered here, the system is asymptotically well-mixed over a representative region, so that
different points along the interface are revisited with the same probability. This means that equivalent
results would be obtained by considering the first passage time to within `d of the interface for a set
of particles initially distributed uniformly over the latter.

A comparison of the rescaled tail probabilities g(t) obtained in this manner for one-dimensional
diffusion in a bounded domain of half-width `c, along with the rescaled first return time PDF ψd(t)`c/`d,
with those obtained from numerical inversion of the analytical Laplace transform of Ψ̃d(λ), Eq. (27)
with ` = `d and L = 2`c , is shown in Fig. 4 for two different values of `d. We nondimensionalize
distances by `c and times by τD as before. For t� ∆t, the return time statistics converge to the same
discretization-independent behavior. Above the discretization timescale τd, the late-time scalings follow
those of pure diffusion in an semi-infinite domain, Eq. (9), until the effect of the far boundary is felt,
leading to a cutoff on a characteristic timescale of order τD, corresponding to exploring the full domain.

6.3.1 Reactive transport in a 3D channel

As a first example to verify the results for the mass dynamics using numerical estimation of the first
passage and return times, consider transport in a three-dimensional, cylindrical channel, with the
characteristic length `c given by the channel radius (Fig. 1b, (ii)). We take a point injection at the
center of the channel as the initial condition. As before, it suffices to consider diffusion along a cross-
section in order to determine the evolution of total mass, independent of the flow field as long as it is
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Figure 5: (a): Total mass as a function of time in a three-dimensional, cylindrical channel, for
different Damköhler numbers Da (colors). The initial condition is concentrated at the channel center.
Solid lines show numerical inversion of Eq. (30) given numerical computation of the first passage and
return times, and square markers represent reactive PTRW simulations. Circles correspond to the
analytical solution with the effective well-mixed reaction rate (45) for ρ = 2. Asterisks represent the
fully transport-limited solution M(t) = M0Ψ0(t). First passage and return statistics are computed
from 104 samples, using a time step ∆t = 10−6τD. Reactive PTRW simulations use ∆t = 10−4τD and
N = 103 particles for Da = 10−2, 100, and ∆t = 10−6τD and N = 104 particles for Da = 102. (b): For
each value of Da, the reaction efficiency computed according to numerical differentiation of the data in
(a) is shown as markers, and the theoretical asymptotic value ε∞, computed based on the same first
passage and return data, is shown as a dashed line.

assumed to be stratified. We again nondimensionalize distances by `c, time by τD, and initial mass by
M0.

The results obtained from numerical inversion of Eq. (26), given numerical determination of the
first passage and return times, are in good agreement with reactive PTRW simulations, as shown in
Fig. 5a. In this case, the cross-section area is given by A = π`2c , and the interface length intersecting
a cross-section by `I = 2π`c, so that the interface-extent coefficient is ρ = 2, Eq. (49). For Da = 10−2,
we find good agreement between the numerical simulations and exponential decay according to the
effective well-mixed reaction rate, Eq. (47) with ρ = 2, whereas for higher Da deviations from the well-
mixed behavior are observed because transverse diffusion is incapable of homogenizing the cross-section
under fast reaction. For Da = 102, the numerical simulations agree with the fully-transport-limited
solution M(t) = M0Ψ0(t).

The reaction efficiency ε(t) corresponding to these dynamics is shown in Fig. 5b. The theoretical
asymptotic efficiency ε∞, Eq. (55), evaluated using the first and second moments of the numerically-
determined first passage and return times, is in good agreement with the simulations. Although some
quantitative differences are discernible in the mass decay, compare Figures 5a and 2a, the reaction
dynamics are remarkably similar to the two-dimensional channel case, especially regarding the reaction
efficiency, compare Figures 5b and 3a.

6.3.2 Reactive transport in a body centered cubic beadpack

We now investigate the application of our approach to the case of reactive transport in a crystalline
porous medium. Recall that the inter-reaction time approach presented here relies on the assumption
that a statistical description of the return times, with stochastic return times but with the same
statistics applying to each return to the interface, is sufficient to characterize reaction. We assess
this hypothesis for advective–diffusive transport in a body centered cubic beadpack [72], where the
structure of the medium is periodic but not all points on the interface within a unit cell are equivalent
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Figure 6: (a): Total mass as a function of time in a body centered cubic beadpack, for different
Damköhler numbers Da (colors). The Péclet number is Pe = 103, and the initial condition is homoge-
neous in the conventional unit cell. Solid lines show numerical inversion of Eq. (30) given numerical
computation of the first passage and return times, and square markers represent reactive PTRW sim-
ulations. Circles correspond to the analytical solution with the well-mixed reaction rate (45). First
passage statistics are computed from 104 samples and return statistics from 105 samples, both using
a time step ∆t = 10−7τD. Reactive PTRW simulations use N = 103 particles, with ∆t = 10−7τD for
Da = 100, 101 and ∆t = 10−8τD for Da = 102. (b): For each value of Da, the reaction efficiency com-
puted according to numerical differentiation of the data in (a) is shown by markers, and the theoretical
asymptotic value ε∞, computed based on the first and second moments of the same first passage and
return data, is shown as a dashed line.

in their positioning relative to the rest of the interface (Fig. 1b, (iii)). For details on the numerical
simulations, see A. As shown in F, the interface-extent coefficient for this system is given by

ρ =
3π

2

(
1−
√

3π

8

)−1

≈ 14.7. (56)

The relative importance of advection compared to diffusion can be quantified through the Péclet
number, which we define in terms of the absolute value v of the Eulerian mean velocity vector and the
characteristic lengthscale `c as

Pe =
`cv

D
. (57)

The total mass as a function of time for different Damköhler numbers and Pe = 103 is shown in Fig. 6a,
for an initial condition uniformly distributed over a conventional unit cell (see Fig. 1b, (iii)). The
inter-reaction time approach, parameterized according to the numerically-determined first passage and
return tails Ψ0 and Ψd as discussed above, is in good agreement with the reactive PTRW simulations.
For low Da, the mass evolution agrees with the effective well-mixed decay, Eq. (46). This happens
because, for low reaction rates, the fluid reactant remains homogeneous over a representative region
of pore volume. As for the channel examples, deviations from the well-mixed behavior become more
pronounced as the Damköhler number increases and transport is unable to efficiently homogenize
the fluid-phase concentration. The corresponding reaction efficiency ε(t) is shown in Fig. 6b. The
theoretical asymptotic efficiency ε∞, Eq. (55), evaluated using the first and second moments of the
numerically-determined first passage and return times, is again in good agreement with the simulations.
In this case, the homogeneous character of the initial condition results in a reaction efficiency that is
initially unity. For high Damköhler, reaction tends to destroy homogeneity, which results in a decrease
of the reaction efficiency towards the asymptotic value.
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Figure 7: Total mass as a function of time in a body centered cubic beadpack, for different Damköhler
numbers Da (colors) and Péclet numbers Pe (symbols). The initial condition is homogeneous in a
conventional unit cell. Results are computed from numerical inversion of Eq. (30) given numerical
computation of the first passage and return times. Dashed lines correspond to the analytical solution
with the effective well-mixed reaction rate (45). First passage statistics are computed from 104 samples
and return statistics from 105 samples, both using a time step ∆t = 10−7τD.
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Figure 8: Rescaled first return time PDF (a) and first passage time PDF (b) for a homogeneous initial
condition in a conventional unit cell for advective–diffusive transport in a body centered cubic beadpack
for different Péclet numbers (colors). Return time statistics are computed from 105 return time samples
and first passage time statistics from 104 samples, both using a time step ∆t = 10−7τD. The inset
shows the rescaled return time tail probability, computed from the same data. The large-time scalings
associated with pure diffusion in a semi-infinite domain, which here hold below the characteristic time
to encounter a different bead and above the discretization timescale τd = `2d/(2D) = τD`

2
d/`

2
c , are

shown as dashed lines.
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In Fig. 7, we show the total mass as a function of time for the same Damköhler numbers as
in Fig. 6 and different values of Péclet number, computed using the inter-reaction time approach.
Although we refrain from showing these results in Fig. 6 to avoid clutter, we verified that PTRW
simulations show similar very good agreement as for Fig. 6a across Péclet numbers. For sufficiently
high Da, the reaction is slower than the effective well-mixed prediction, but approaches the latter
when the Péclet number becomes sufficiently high, as advection-induced transverse dispersion effects
become important compared to diffusive mixing. In order to better understand the role of the Péclet
number in the reaction dynamics, we examine the first passage and return time statistics arising
under different transport regimes, see Fig. 8. The flow considered here is known to induce chaotic
mixing [73, 72, 74, 75]. This means that the flow efficiently homogenizes the concentration on the
cross-section of the pore space transverse to the mean flow direction, over a characteristic advective
mixing timescale. For sufficiently low Péclet number, as long as the advective mixing timescale is
large compared to the typical diffusive first passage and return times, transverse mixing is carried out
by diffusion and advection does not have an appreciable effect on reaction. Thus, the first passage
and return times, along with the mass dynamics, are similar for Pe up to 102. When advective effects
become important, particles far from the interface are brought towards it faster than by diffusion alone.
On the other hand, particles at intermediate distances can take longer to reach the interface than they
would have by diffusion. Lastly, very low return times remain controlled by diffusion. This effect on
the first passage and return times can be clearly seen for Pe = 103.

Whichever effect is dominant, the average return time reflects the fact that at sufficiently late
times concentration is well mixed, and remains given by Eq. (50). Thus, the low-Da reaction behavior,
which depends only on the average return time, is unaffected by the mixing mechanism and remains
unchanged, see Fig. 7. However, the distributions of first passage and return times become less broad
with increasing Péclet (Fig. 8), and the effective well-mixed regime is reached faster. For this reason,
the reaction dynamics approach the effective well-mixed behavior at higher values of the Damköhler
number; the strength of this effect increases with increasing Pe (Fig. 7). We note that for higher
Péclet numbers, Pe & 104, the corresponding strongly-advection-dominated transport simulations
become particularly sensitive to the underlying flow velocities. Accurate results for such cases would
require more finely-resolved flow fields, and we refrain from simulating them here.

The first passage and return time dynamics in the two- and three-dimensional channel and bead-
pack examples exhibit some qualitative similarities, due to the role of diffusion in transverse mixing and
its dominant role near the fluid–solid interface. Indeed, the corresponding distributions exhibit clear
diffusive scalings, followed for long times by cutoffs, see Figs. 4 and 8. The characteristic timescale
associated with the cutoff, and therefore the characteristic variability in inter-reaction times, depends
on medium geometry, and in the case of the beadpack is also impacted by advective mixing for large
Péclet number. Correspondingly, the reactant mass dynamics in these different systems exhibit similar-
ities, such as late-time exponential decay, but also differences in the onset of transport limitations with
Damköhler number and the effective reaction rates associated with a well-mixed system, see Figs. 2,
5, 6, and 7. In particular, the interface extent coefficient ρ, quantifying the available surface area per
unit volume, increases compared to the 2d channel by a factor of 2 in the 3d channel and about 15 in
the beadpack, effectively increasing the well-mixed reaction rate in these systems for a given value of
the Damköhler number. Transport limitation effects become important for ρDa & 1, although they
are mitigated in the beadpack when the Péclet number is large and advection-induced mixing plays a
role.

7 Discussion and conclusions

In this work, we have developed a new framework to quantify the effect of transport limitations on
fluid–solid reaction dynamics in porous media. Our approach, based on the chemical continuous time
random walk theory of inter-reaction times, relates the statistics of solute excursions away from and
back to the fluid–solid interface to reaction times. We have shown that the dynamics of effective
reaction rates relate to the statistics of inter-reaction times, which are in turn controlled by transport
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and medium geometry. We have illustrated the approach analytically for advection–diffusion–reaction
in stratified flow through a two-dimensional channel, and provided a generic numerical approach to
determine the corresponding dynamics in more complex media and flow fields. For fast reactions,
reactant mass is controlled by the first passage time of solute to the reactive solid interface. For slow
reactions, multiple excursions to the interface are necessary before reaction occurs. In the latter case,
the statistics of the durations of these excursions, which are sensitive to diffusive mass transfer near the
interface, become a dominant control on mass dynamics. Consistently with numerical simulations, our
theory predicts that, for intermediate and high Damköhler number, these effects can lead to significant
reaction slowdown due to transport limitations, even for the simple reaction studied here, and even
in simple geometries. We provide analytical expressions for the late-time effective reaction rate as a
function of Damköhler number, which exhibits a transition from the well-mixed reaction rate at low
Da to the inverse of the diffusion time at large Da, a direct consequence of transport limitations.

The theory presented here also leads to a useful numerical framework. Fluid–solid reactions pose
unique computational and theoretical challenges, as they require resolving transport dynamics close
to the interface in a consistent manner. Here, we have analyzed a simple fluid–solid reaction in detail,
and shown how the assumption of scale separation between reaction and transport dynamics near the
interface leads to a consistent continuum model of surface reaction. Resolved numerical simulations
of these dynamics are computationally demanding. The inter-reaction time approach presented here
opens up new possibilities for efficient numerical computation of mass dynamics by extending existing
theoretical frameworks for the determination of first passage times [76, 31, 51, 52] and/or numerical
techniques for efficient first passage time computation [77–79].

This work has been mainly concerned with introducing the concepts and methodology underlying a
new approach to upscaling fluid–solid reaction dynamics. As such, we have made significant simplifica-
tions regarding the reaction chemistry and porous medium structure. The framework developed here
brings new perspectives to link the statistical characteristics of medium geometry and flow to reaction
dynamics in a broad range of porous media, which will be the subject of future work. Furthermore,
we expect an approach similar to that presented here to be applicable to the dynamics of mass break-
through as a function of distance, in terms of the statistics of inter-reaction distances. Future work
will also aim to generalize the approach to higher-order reactions involving multiple transported com-
ponents, multiple simultaneous reactions, and heterogeneity (spatial and temporal variability) in the
solid-phase reactant distribution along the interface.
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A Particle tracking simulations

In this appendix, we discuss some details of the PTRW (particle tracking random walk) simulation
method used in this work. Lagrangian particle tracking methods, which simulate particle trajectories
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based on a random walk, have been found to mitigate numerical dispersion issues, typically associated
with more traditional Eulerian methods, and their impact on fluid–fluid reactions [80]. However,
particle tracking methods are less developed and widespread than Eulerian methods, and we are not
aware of an available tool for Lagrangian simulation of fluid–solid reaction dynamics. In the present
work, a PTRW approach has the added benefit of directly simulating Lagrangian trajectories, the
properties of which are the basis for the theoretical developments. This allows us to employ the
same methodology to simulate the conservative component of the reactive transport problem and to
determine first passage and return times (see Sections 5 and 6 of the main text).

The PTRW method used here is based on that employed in [81] to simulate conservative transport
in a number of stratified flows, where it was validated against theoretical predictions for dispersion,
concentration distributions, breakthrough curves (first passage times across a plane), and Lagrangian
velocity distributions. The conservative transport algorithm consists in discretizing the Langevin
equation (1) for a set of Lagrangian particles, or trajectories, with prescribed initial conditions. The
displacement ∆X(t) of a particle in a time step of duration ∆t starting at time t is computed as the
sum of the advective and diffusive contributions to the change in particle position X(t),

∆X(t) = X(t+ ∆t)−X(t) = ∆XA(t) + ∆XD(t). (58)

Boundary conditions at the solid interface are implemented as elastic collisions based on the full
displacement ∆X(t). The diffusive contribution is obtained from a stochastic forward-Euler scheme
as ∆XD(t) =

√
2D∆t ξ(t), where the component of ξ(t) along each Cartesian axis and at each time

t is sampled independently from a unit (zero mean and unit variance) Gaussian distribution. For the
two-dimensional channel simulations of Section 5, the advective contribution is also computed based
on a forward-Euler scheme, ∆XA(t) = v[X(t)], where the velocity field v is evaluated at particle
positions according to the analytical flow field, Eq. (35).

Here, we have extended the algorithm to account for: (i) elastic reflections on bead surfaces,
representing reflecting boundary conditions; (ii) advection due to an arbitrary velocity field, previously
obtained and provided at a number of points on an arbitrary (possibly unstructured) grid; and (iii)
fluid–solid reaction. Regarding (i), we implemented and independently verified a simple trigonometry-
based computation of perfectly elastic collisions on spherical surfaces, valid in arbitrary dimension
(for circles in the plane, etc.). Regarding (ii), the flow field at a given position is obtained from
linear interpolation based on Delaunay triangulation and Sibson natural neighbor coordinates on an
arbitrary grid, based on the well-established CGAL C++ library [82]. For the beadpack simulations,
the advective particle displacement associated with the interpolated flow is computed according to a
fourth-order explicit Runge–Kutta scheme. Finally, (iii) is implemented according to the considerations
of Section 2. As discussed therein, the spatial support scale `d should be large compared to

√
2D∆t,

in order to permit resolving fluid-reactant concentrations near the interface and the resulting reaction
rates. We set the support scale

`d = 10
√

2D∆t. (59)

It is important to note that `d is not a parameter of the theoretical model, but is rather associated
with the discretization. In this sense, taking `d = a

√
2D∆ with a > 10 leads to the same results in the

continuum limit ∆t→ 0. It is, however, necessary to take a & 10, in order to guarantee that reactant
concentrations near the interface are resolved correctly and converge for ∆t → 0. The diffusion time
associated with the support scale `d is τd = `2d/2D; thus, our choice corresponds for a given `d to
setting ∆t = τd/100.

The algorithm employed to compute first passage and return times is validated here by the agree-
ment with theoretical results for the one-dimensional channel, see Section 5. Similarly, the agreement
between theory and simulations found for the dynamics of total mass, especially regarding the theo-
retical results for low and high Damköhler number and the assymptotic reaction rates for arbitrary
Damköhler number, discussed in Sections 5 and 6, provides validation for the reactive transport algo-
rithm. We note that we have implemented only the AF + BS → BS reaction studied here, but the
reaction algorithm can be direclty extended to other reactions and heterogeneous distributions of solid-
phase reactants at the expense of explicitly keeping track of the surface concentrations of the latter
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Figure 9: Schematic illustrating the equivalence of the first passage time by diffusion in one dimension
from the center of cell A to the center of cell B, in the presence of a reflecting boundary and in an
equivalent bounded domain. If the boundary, at distance `d/2 from the starting point, is reached
before the center of cell B, at a distance `d, the first passage time to the latter is the same as to its
reflection. Thus, the first passage time in the presence of the boundary is the same as the first passage
time to either boundary in the equivalent domain of length 3`d.

across the fluid–solid interface. A github repository where the code is available under an open-source
license and regularly updated can be found at github.com/tcAquino/BeadPack. Further benchmarks
and extensions to the fluid–solid reaction algorithm will be included and discussed thereat. The version
of the code used in the present work can be found at the DOI 10.5281/zenodo.4392882. Additional
documentation addressing further technical details may also be found in both these repositories.

In order to simulate reactive transport and determine first passage and return times using the
PTRW algorithm, we first require the flow field, which may be given at a set of points on an arbitrary
grid. For the beadpack simulations of Section 6, the flow field was obtained numerically from Stokes
flow simulations using a finite volume discretization in openFOAM [83], with Nc = 1572138 hexahedral
cells. The flow was computed in a conventional (cubic) unit cell, of side `c = 1 cm, of the body centered
cubic packing considered. The associated body cubic centered bead diameter is d =

√
3`c/2 [84],

corresponding to a spatial resolution of about `c/N
1/3
c ≈ 10−2d. Periodic boundary conditions were

imposed on the cell faces and no-slip boundaries at the spherical bead interfaces. The flow had
kinematic viscosity 5·10−7 m2/s and was driven by a pressure gradient of 1 Pa/m, obtained by applying
a body force. In terms of Cartesian axes perpendicular to the unit cell faces, the mean velocity vector
had an orientation corresponding to an angle 5π/40 with the x axis on the x–y plane and an angle π/40
with the z axis. This flow configuration has been analyzed in [72], and it is known to induce chaotic
mixing. As discussed in the same reference, the contact points between beads can cause numerical
instabilities in the numerical determination of the flow field. This issue can be addressed by placing
small spheres or cylinders, with no-slip boundary conditions on the exposed surface, at the contact
points between beads to avoid numerical issues near the contact points. These structures do not
have an appreciable impact on flow and transport properties [72]. In the present simulations, spheres
of 20% the bead diameter were employed in this manner. These contact spheres are not needed for
stability of the PTRW simulations; in the conservative and reactive transport simulations, no boundary
conditions were enforced on their surface, and zero-velocity points were added at the contact points
instead. Particle positions undergoing advection–diffusion were mapped onto the unit cell according
to the periodic boundary conditions.

B Statistics of single interface visit times

Here, we obtain the PDF of the time spent in the reactive region in each visit. Consider again one-
dimensional diffusion close to the interface. The first passage time from the middle of the discretization
cell nearest the interface to the middle of the adjacent cell corresponds to the duration of a visit to
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the reactive region. It can be obtained by considering the first passage time to either boundary in a
domain of length 3`d and starting from a distance `d from one boundary, as illustrated in Fig. 9. The
first passage time PDF to reach either boundary in a domain of length L, starting from a distance `
from one and L− ` from the other, has Laplace transform [71]

ψ̃(λ; `, L) =
csch[

√
`2λ/D] + csch[

√
(L− `)2λ/D]

coth[
√
`2λ/D] + coth[

√
(L− `)2λ/D]

. (60)

Setting L = 3`d and ` = `d yields the single-visit PDF

ψ̃v(λ) =
[
2 cosh(

√
2τdλ)− 1

]−1

. (61)

Expanding for λ � 1/τd and inverting the resulting Laplace transform leads to Eq. (19). Recall that
λ � 1/τd represents large times compared to the discretization time, so that this result constitutes
a step in taking the continuum limit rather than a large-time approximation. As before, the same
conclusion is reached if we consider the first passage times to within `d of the interface starting from
a distance 2`d from the latter. This result remains valid in higher dimensions under the assumption
that interface is locally flat at the scale of the transport model.

C Impact of first passage time to the interface on reaction
dynamics

According to the chCTRW framework, in the absence of the delay associated with first reaching the
interface, the generalized rate law governing the evolution of total fluid reactant mass is given by
Eq. (8). When this delay is added, the mass is equal to the initial mass for times smaller than the
delay, and evolves according to the previous equation for later times. That is, averaging over initial
delays (i.e., over an ensemble of Lagrangian particles distributed according to the initial condition),

M(t) = M0

t∫
0

dt′ ψ0(t′) +

t∫
0

dt′ ψ0(t′)Mφ(t− t′). (62)

The first term represents the fact that, if the interface has not been reached for the first time by time t,
which happens with probability

∫ t
0
dt′ψ0(t′) over the ensemble of Lagrangian particles, the fluid mass

is equal to its initial value M(0) = M0. Regarding the second term, if the interface is reached for the
first time at time t′ < t, which happens with probability density ψ0(t′), the mass at time t is equal to
Mφ(t − t′). Note that, given a first arrival at the interface at time t = t′, M(t = t′) = Mφ(0) = M0.
Then, for times t > t′, the mass dynamics proceed according to the inter-reaction times, with Mφ

obeying the chCTRW equation (8). This result may be written in terms of the first passage time tail
probability Ψ0 as

M = M0Ψ0 +Mφ ∗ ψ0. (63)

Substituting Eq. (8) for the dynamics of mass Mφ resulting from the inter-reaction times, we obtain
Eq. (25).

D Mass dynamics and reactive time

The dynamics of reactant mass may be formulated in terms of the statistics of the total time spent
in the reactive region rather than the statistics of the inter-reaction times. In this appendix, we show
that the former approach leads to the same results as the latter, which is developed in the main text.
Consider the reactive time Ud(t), representing the total time spent within distance `d of the interface.
We denote its PDF by pU (·; t), that is, pU (u; t) du is the probability that, given total elapsed time t,
a particle has spent a time in the interval [u, u+ du) within distance `d of the reactive interface.
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For small `d, in preparation for taking the continuum limit `d → 0, we approximate

Ud(t) ≈ 2τdNd(t), (64)

where Nd(t) is the (random) number of visits to the reactive region by time t, each of which contributes
the mean residence time per visit 2τd, see Eq. (19). Since Ud(t) is proportional to Nd(t), denoting by
pN (n; t) the probability that Nd(t) = n, we have

pU (u; t) ≈ pN (0; t)δ(u) + (2τd)
−1 pN

(
u

2τd
; t

)
, (65)

where δ(·) is the Dirac delta.
The number of visits to the reactive region by a given time depends on the PDF of inter-visit delay

times ψd, as well as on the PDF ψ0 of the time of the first visit. Adapting the results of [68], the
Laplace transform of the distribution of the number of visits to the reactive region with respect to
time t in terms of these quantities is given by

p̃N (n;λ) =

{
Ψ̃0(λ), n = 0

Ψ̃d(λ)ψ̃0(λ)ψ̃d(λ)n−1, n > 0
. (66)

In the limit of small `d, we obtain, according to Eq. (65),

p̃U (u;λ) = Ψ̃0δ(u) + λ−1ψ̃0(λ)Ed(u, λ), (67)

where

Ed(u, λ) =
λg̃(λ)`c
`d

exp

[
−λg̃(λ)`c

`d
u

]
, (68)

with the rescaled tail probability g defined in terms of the return time tail Ψd according to Eq. (16).
To quantify the dynamics of total mass in terms of the reactive time Ud(t), we make use of a

subordination-type description [66, 69, 70, 28]. Within the reactive region, reaction is well-mixed in
the sense described in Section 2. The overall reaction then proceeds according to the time particles
spend within this region. The amount of mass left by time t is the average of the surviving mass
M0 exp[−kdUd(t)] over all possible times Ud(t) spent within `d of the interface up to time t, which are
distributed according to pU (·; t). That is,

M(t) = M0

∞∫
0

du e−kdupU (u; t). (69)

The Laplace transform of the total mass (26) obtained using the inter-reaction time formulation is
then recovered by direct computation in the limit `d → 0.

In terms of a Laplace transform with respect to operational time (denoted by a hat), keeping time
t fixed, we may write Eq. (69) as

M(t)

M0
= p̂U (kd; t), (70)

which can also be interpreted as the Laplace transform of the stochastic process Ud/`d, evaluated at
the rate `dkd = kcA. In the limit `d → 0 of fine discretization, the stochastic process Ud/`d is the
local time at the boundary mentioned in the introduction [35–38] (note that, in accordance with the
standard terminology used in the literature, the so-called local time has units of time per length). It
is this quantity, rather than Ud itself, that is well defined in the continuum limit. This is directly
related to the fact that a particle undergoing continuous diffusion in one dimension returns to the
initial position infinitely many times within an arbitrarily small time interval. Despite the fact that
this represents a mathematical abstraction, it corresponds to the correct behavior when transport is
adequately described by continuous diffusion at the scale of interest.
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E First passage times to the wall in a 2D channel

In this appendix, we provide the Laplace transforms of the first passage time PDFs of solute to the
channel walls for transport in stratified flow through a two-dimensional straight channel. As discussed
in Section 5, these are controlled by diffusion in the transverse direction, although the velocity profile
can impact the result due to its role in determining the initial distribution, for example for flux-weighted
injections.

The different first passage times are obtained by using Eq. (27) for a point injection, and weighting
according each initial condition. Thus, the mid-channel injection (a) leads to

ψ̃0(λ) = ψ̃(λ; `c, 2`c) = sech(
√

2τDλ). (71)

For the homogeneous injection (b), we have

ψ̃0(λ) =
1

2`c

2`c∫
0

d` ψ̃(λ; `, 2`c) =
tanh(

√
2τDλ)√

2τDλ
. (72)

For the flux-weighted case (c), we find

ψ̃0(λ) =
1

2`c

2`c∫
0

d`
v(`− `c)

v
ψ̃(λ; `, 2`c) =

3

2τDλ

[
1− tanh(

√
2τDλ)√

2τDλ

]
, (73)

and for all mass starting at the channel walls (d),

ψ̃0(λ) = 1. (74)

F Interface-extent coefficient for the body centered cubic bead-
pack

In order to compute the interface-extent coefficient ρ for a body centered cubic beadpack, first note
that the bead radius is related to the conventional (cubic) unit cell side by r =

√
3`c/4, where we have

taken the cell side `c as the characteristic length (see, e.g., [84] on the theory of crystalline structures).
Within a unit cell, there is a full bead at the center, and eight bead quarters at each cell corner,
totaling a solid volume of two full beads. Since the volume of a bead is Vb = 4πr3/3, the porosity is
given by

ϕ = 1− 2Vb
`3c

= 1−
√

3π

8
≈ 0.320. (75)

The surface area of a bead is Ab = 4πr2, so that, according to Eq. (48), we have

ρ =
2Ab`c
ϕ`3c

=
3π

2

(
1−
√

3π

8

)−1

. (76)
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