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Abstract20

Elevated concentrations of atmospheric bromine are known to cause ozone depletion in21

the Arctic, which is most frequently observed during springtime. We implement a de-22

tailed description of bromine and chlorine chemistry within the WRF-Chem 4.1.1 model,23

and two different descriptions of Arctic bromine activation: (1) heterogeneous chemistry24

on surface snow on sea ice, triggered by ozone deposition to snow (Toyota et al., 2011),25

and (2) heterogeneous reactions on sea salt aerosols emitted through the sublimation of26

lofted blowing snow (Yang et al., 2008). In both mechanisms, bromine activation is sus-27

tained by heterogeneous reactions on aerosols and surface snow. Simulations for spring28

2012 covering the entire Arctic reproduce frequent and widespread ozone depletion events,29

and comparisons with observations of ozone show that these developments significantly30

improve model predictions during the Arctic spring. Simulations show that ozone de-31

pletion events can be initiated by both surface snow on sea ice, or by aerosols that orig-32

inate from blowing snow. On a regional scale, in spring 2012, snow on sea ice dominates33

halogen activation and ozone depletion at the surface. During this period, blowing snow34

is a major source of Arctic sea salt aerosols but only triggers a few depletion events.35

Plain Language Summary36

During Arctic spring, ground level ozone is often depleted to very low concentra-37

tions compared to background levels. This surface ozone depletion is caused by reactive38

halogen species in the atmosphere, especially bromine. In this study, we implement a de-39

tailed description of chlorine and bromine chemistry in the regional atmospheric model40

WRF-Chem 4.1.1. We also compare two different bromine sources capable of triggering41

these events: first, chemical reactions on surface snow over sea ice, and second, sea salt42

particles emitted by the sublimation of salty “blowing snow” lofted by strong winds. These43

developments are used to investigate the origins of Arctic bromine and of ozone deple-44

tion events, and to improve the representation of Arctic ozone in the model. We find that,45

in spring 2012, both bromine sources can cause ozone depletion events, but that over the46

entire Arctic, snow on sea ice dominates halogen activation and causes ground level ozone47

depletion.48

1 Introduction49

During Arctic spring, the Atmospheric Boundary Layer (ABL), experiences episodic50

depletion of ozone to values less than 10 parts per billion by volume (ppbv), far below51

background levels of ∼40 ppbv (Oltmans, 1981; Barrie et al., 1988). These well-known52

ozone depletion events (ODEs) are tied to the presence of enhanced concentrations of53

reactive bromine in the atmosphere (Barrie et al., 1988), including species such as Br2,54

BrO, Br, HOBr, and BrNO3 (Platt & Hönninger, 2003; Simpson et al., 2007b; Abbatt55

et al., 2012; Pratt et al., 2013; Simpson et al., 2015). Although the link between increased56

bromine in the atmosphere and ozone depletion events was discovered over three decades57

ago (Barrie, 1986), developing predictive model descriptions of bromine emissions and58

chemistry in polar regions remains a challenge (Yang et al., 2008; Toyota et al., 2011;59

Falk & Sinnhuber, 2018; Fernandez et al., 2019; Huang et al., 2020; Herrmann et al., 2021).60

At present, most models used to predict Arctic scale or global ozone largely ignore or61

only include simplified descriptions of these processes and do not correctly predict bound-62

ary layer ozone concentrations during the Arctic spring (see for example Monks et al.,63

2015; Emmons et al., 2015). Since ozone is a key atmospheric oxidant and plays a role64

in virtually all other atmospheric oxidant cycles (e.g. HOx=OH+HO2) and acts as a green-65

house gas, inaccurate predictions of Arctic ozone severely limit our ability to understand66

past and future polar atmospheric chemistry. In addition, the key link between ozone,67

halogens, and sea ice/snow cover is essential in order to predict future polar conditions68

and interpret past ice core records and sea ice conditions (Spolaor et al., 2013, 2016).69
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Finally, atmospheric bromine also cause mercury oxidation in the Arctic boundary layer,70

leading to atmospheric mercury depletion events (AMDEs) and deposition to the cryosphere71

and ecosystems. Better predicting Arctic mercury oxidation, and human exposure there-72

fore also requires more realistic representation of Arctic halogen chemistry.73

The key emitted species that triggers bromine explosion events, ODEs and AMDEs74

is molecular bromine (Br2), which is photolysed (R1) to form bromine atoms (Br) that75

quickly react with ozone (R2). This forms another key gas phase species in the reactive76

bromine/ozone cycle, bromine monoxide (BrO), which can react with HO2 to form HOBr77

(R3). HOBr then photolyzes (R4) to form OH and Br, which has two main impacts. First,78

the Br radical goes on to further propagate the ozone destruction cycle. Second, the net79

effect of both (R3) and (R4) is that one HO2 radical is converted to the more reactive80

OH radical. This can increase the amount of OH relative to HO2 present during bromine81

activation, potentially increasing the oxidation rate of chemical species (e.g. volatile or-82

ganic gases) within the ABL. BrO also undergoes self reaction to reform Br2 (R5), which83

is the dominant Br2 formation pathway under sufficiently high BrO concentrations. The84

resulting effect of equations R1 to R5 is rapid ozone loss, causing ODEs.85

Br2
hν−→ 2Br (R1)86

87

Br + O3 → BrO + O2 (R2)88

89

BrO + HO2 → HOBr + O2 (R3)90

91

HOBr
hν−→ OH + Br (R4)92

93

BrO + BrO→ Br2 + O2 (R5)94

The source of atmospheric bromine in the Arctic is undoubtedly bromide (Br– ) that95

is present in trace amounts in the ocean, and is activated via heterogeneous reactions96

on surfaces (snow, aerosols, etc). Recycling of reactive bromine via gas phase and het-97

erogeneous reactions on surfaces is crucial in sustaining significant concentrations of at-98

mospheric bromine that cause ODEs. Without this recycling, the quantity of reactive99

bromine (present in pptv levels) in the atmosphere is too small to sufficiently deplete ozone100

(present in ppbv levels). Recycling of bromine on surfaces can occur via reactions involv-101

ing HOBr (R6) and BrONO2 (R7) on salty surfaces, resulting in re-release of Br2 to the102

atmosphere. These heterogeneous processes are what make bromine species incredibly103

active during polar spring and capable of depleting ozone to near-zero values. Reactive104

bromine cycling is terminated when reactive bromine is deactivated upon formation of105

species that do not undergo gas phase photochemistry or that are inefficient at reform-106

ing reactive bromine via heterogeneous reactions (e.g. HBr).107

HOBr + Br− + H+ (surface)−−−−−−−→ Br2 + H2O (R6)108

109

BrONO2 + Br−
(surface)−−−−−−−→ Br2 + NO −

3 (R7)110

While numerous theories have been discussed as to how bromine is released to the111

atmosphere, two main mechanisms, both relying on salty snow, have been tested in 3D112

numerical models. The first mechanism has proposed that activation of bromine occurs113

via reactions on surface snow present on sea ice, followed by further recycling of bromine114

on land and sea ice based snowpacks (Toyota et al., 2011). It also involves heterogeneous115

recycling on aerosols present within the atmosphere to sustain halogen activation. This116

mechanism has been tested in the 3D models GEM-AQ and EMAC (Toyota et al., 2011,117

2014; Falk & Sinnhuber, 2018), and very recently WRF-Chem (Herrmann et al., 2021).118

There is experimental evidence for this surface snow mechanism: Pratt et al. (2013) re-119

ported the photo-chemical production of molecular bromine from surface snow using chem-120

ical ionization mass spectroscopy (CIMS) based on Arctic snow chamber experiments.121
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It has also been shown that bromine activation correlates with the occurrence of first-122

year sea ice (Simpson et al., 2007a; Bougoudis et al., 2020), and that it can also occur123

over snow found on multi-year sea ice (Peterson et al., 2019). These surfaces are sim-124

ilar in that both first year and multi year ice are usually snow covered.125

The second mechanism that has been proposed is that bromine activation occurs126

on aerosols originating from sublimation of salty blowing snow. Under high wind con-127

ditions, snow is lofted into the atmosphere and undergoes sublimation to form new sea128

salt particles in the atmosphere. Fresh sea salt aerosols (primarily sodium chloride, NaCl)129

contain trace amounts of bromide that undergo heterogeneous chemistry to release re-130

active bromine to the atmosphere (Yang et al., 2008, 2010; Huang & Jaeglé, 2017; Yang131

et al., 2019), which is fastest in the presence of sunlight (i.e. photo-chemical reactions132

are occurring). There is recent direct evidence for the role of blowing snow in forming133

sea salt aerosols in the Antarctic (M. Frey et al., 2020). Model studies on polar aerosols134

also demonstrate an improved agreement compared to sea salt observations for winter135

and spring when blowing snow sourced sea salt aerosols are included (Rhodes et al., 2017;136

Huang et al., 2018). Further, this has been recently shown to improve model predictions137

of BrO and O3 (Huang et al., 2020; Yang et al., 2020). Finally, observations show that138

aerosols can sustain bromine activation above the boundary layer (Peterson et al., 2017),139

but it has not yet been clearly demonstrated from measurements that blowing snow sourced140

sea salt aerosols trigger bromine explosion events.141

Bromine chemistry is influenced by numerous polar processes including: light avail-142

ability (influenced by cloud cover, latitude, and season), atmospheric boundary layer dy-143

namics, mixing between the free troposphere and ABL, occurrence of high winds/storms,144

and other factors (e.g. stratospheric influences). There is a delicate interplay between145

atmospheric dynamics, emissions, recycling and chemistry, which determines when bromine146

activation results in significant observable impacts on atmospheric chemistry (Jones et147

al., 2009; Peterson et al., 2015). For example, the very stable atmospheric boundary lay-148

ers often found over ice/snow correspond to slow vertical mixing/dispersion and low wind149

speeds (e.g. Anderson & Neff, 2008). These conditions likely favor the importance of sur-150

face emissions from snow on sea ice by concentrating these emissions into a small vol-151

ume, allowing for the bromine explosion cycle to take off (e.g. Swanson et al., 2020). Con-152

versely, high wind conditions that are found during storms favor blowing snow and blow-153

ing snow sourced aerosol formation. Blowing snow sourced aerosols are also likely to be154

most important when the ocean is mostly ice covered, suppressing open ocean sea salt155

aerosol production (Huang et al., 2018). High winds also indicate that the ABL is not156

clearly separated from the free troposphere, allowing air masses containing high bromine157

to be lofted from the surface to higher altitudes where they can be more easily detected158

above clouds via satellite remote sensing (Blechschmidt et al., 2016). These complex fac-159

tors, must be taken into account when considering Arctic halogen chemistry within dif-160

ferent 3D modeling frameworks and model evaluations using observations. In this study,161

we focus on very near surface processes and model evaluation using near surface obser-162

vations within the ABL.163

In this work, we implement a bromine and chlorine chemistry mechanism in an ad-164

vanced regional meteorological model that includes atmospheric chemistry, the Weather165

Research and Forecasting coupled with Chemistry (WRF-Chem) model, to study spring-166

time ODEs in the Arctic in 2012. We include, for the first time two different halogen ac-167

tivation and recycling mechanisms and we study their individual contributions to Arc-168

tic ozone depletion events for one example season, spring 2012. Section 2 describes the169

model setup and an optimized meteorological setup to simulate Arctic boundary layer170

dynamics and mixing. Section 3 describes the new model developments implemented in171

WRF-Chem 4.1.1. In section 4, we evaluate the performance of these developments by172

comparing model results with surface measurements of ozone and BrO taken at multi-173

ple Arctic sites. In section 5 we use these new developments to investigate what triggers174
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Arctic ozone depletion events, and to better understand their impacts on Arctic atmo-175

spheric chemistry. We put our results and spring 2012 into the long term meteorolog-176

ical and ozone depletion context in section 6. Finally, the lessons learned are discussed177

in section 7.178

2 Methodology179

2.1 WRF-Chem model setup180

In order to reproduce observed ozone depletion events in the Arctic, we add bromine181

and chlorine chemistry in the WRF-Chem 4.1.1 model (Grell et al., 2005; Fast et al., 2006).182

We perform these developments in a version of WRF-Chem already optimized for Arc-183

tic aerosols and ozone (Marelle et al., 2017), but that to date did not include a descrip-184

tion of halogen chemistry. New developments are integrated to the SAPRC-99 gas-phase185

chemistry scheme (Carter, 2000), coupled with MOSAIC-8bin sectional aerosol scheme186

(Zaveri et al., 2008) within WRF-Chen 4.1.1, due to its skill at reproducing boundary187

layer aerosols and ozone (outside of ozone depletion events). MOSAIC includes secondary188

organic aerosols (SOA), aqueous chemistry, and already includes chlorine aerosol species189

including heterogeneous ClNO2 formation from N2O5.190

Photolysis rates are calculated by the Fast-J scheme (Wild et al., 2000). Cloud mi-191

crophysics are represented by the Morrison 2-moment scheme (Morrison et al., 2009),192

and cumuli by the KF-CuP scheme (Berg et al., 2015), which are both coupled to MO-193

SAIC aerosols (wet removal, cloud chemistry, tracer transport, aerosol activation). Long-194

wave and shortwave radiation calculations are performed in the RRTMG scheme (Iacono195

et al., 2008). Initial and boundary conditions for aerosols and trace gases are from the196

Model for Ozone and Related chemical Tracers, version 4 (MOZART-4, Emmons et al.,197

2010). We chose a model domain centered over the Arctic (domain shown in Figure 1)198

with a horizontal resolution of 100 km × 100 km to encompass the entire Arctic with199

a vertical resolution of 72 levels up to a pressure of 50 hPa. All simulations are performed200

between the dates 1 March 2012 and 31 April 2012. The first 7 days are model spin up201

and are excluded from the analysis.202

2.2 Optimized meteorological setup for accurate boundary layer dynam-203

ics204

An accurate representation of boundary layer dynamics, especially boundary layer205

stability, is particularly critical for vertical mixing and non-linear atmospheric chemistry206

within the ABL. For this reason, we tested and evaluated multiple WRF dynamics con-207

figurations in order to select the meteorological options and the global model driving ini-208

tial and boundary conditions. We tested 2 different global meteorological datasets ERA-209

Interim (Dee et al., 2011) and NCEP FNL (Final Analysis, National Centers for En-210

vironmental Prediction, 2000). We also tested 3 different land surface models: the Noah211

Land Surface Model (NoahLSM, Tewari et al., 2004), the Noah land surface model with212

MultiParameterization options (NoahMP, Niu et al., 2011), and the Community Land213

Model version 4 (CLM4, Oleson et al., 2010). In addition, we tested three different bound-214

ary layer schemes: the Yonsei University Scheme (YSU, Hong et al., 2006), the MellorYa-215

madaJanjic Scheme (MYJ, Janji, 1994), and the MellorYamada Nakanishi Niino Level216

2.5 Scheme (MYNN2, Nakanishi & Niino, 2009).217

Because not all combinations of options were compatible with each other and with218

the chemistry and aerosol schemes, in total 13 simulations were completed (Table 1). Sim-219

ulated 2-meter temperatures from these 13 runs are compared to observations at Utqiaġvik,220

Alaska (NOAA/ESRL/GMD Baseline Observatories, https://www.esrl.noaa.gov/gmd/dv/data/).221

In addition, modeled vertical temperature profiles at Utqiaġvik, Alaska are compared222

to measurements from the Integrated Global Radiosonde Archive (IGRA, Durre et al.,223
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2006), provided twice a day at 11 UTC and 23 UTC. The model is evaluated using ra-224

diosondes below 500 meters (altitude above ground level), to evaluate the structure of225

the lowest portion of the troposphere where halogen chemistry is active. Table 1 shows226

the root-mean-square errors (RMSEs) and correlations between each chosen setup and227

these two observational datasets.228

Since boundary layer structure is critical in capturing dispersion and chemistry of229

surface emissions, we chose the setup with the highest correlation with IGRA radiosonde230

measurements. This good agreement is illustrated in Figure 2. This setup uses the FNL231

(final) analysis from NCEP for initial conditions, boundary conditions and spectral nudg-232

ing; the Noah Land Surface Model; and the MYNN2 boundary layer scheme with the233

MYNN2 surface layer. This setup also performs well against other metrics. Figure 2 also234

illustrates that even though it does not have the best agreement with 2-meter temper-235

atures at Utqiaġvik, the model performance there is still very good. The following model236

runs are therefore all performed with this model setup.237

3 New model developments in WRF-Chem 4.1.1238

We have added to the model chlorine and bromine gas phase reactions including239

photolysis (section 3.1), heterogeneous halogen reactions on aerosols (section 3.2), dry240

and wet deposition of halogen species (section 3.3), and emissions of bromine from sea-241

ice, snow, and open oceans (section 3.4). The version of the model used in this study and242

the input files are publicly available as Marelle et al. (2021).243

3.1 Gas-phase chlorine and bromine chemistry244

We add 82 additional gas-phase chemical reactions involving chlorine and bromine,245

and 50 additional gas-phase species, to the Kinetic PreProcessor (KPP) within WRF-246

Chem. These reactions are taken from a combination of prior modeling work on chlo-247

rine and bromine chemistry (Gratz et al., 2015; von Glasow et al., 2002a, 2002b; Piot248

& Glasow, 2009; Thomas et al., 2011, 2012a).249

These 82 new gas-phase reactions include 15 photolysis reactions. The new pho-250

tolysis rates are calculated in the Fast-J photolysis scheme in WRF-Chem (Wild et al.,251

2000), using absorption cross sections and quantum yields from IUPAC (Atkinson et al.,252

2008, ; http://iupac.pole-ether.fr/). Cross-sections and yields are taken from NASA JPL253

instead (Burkholder et al., 2015) when species were not found in IUPAC (BrO, OClO),254

or when JPL data were more spectrally resolved or covered a larger spectral range (Br2,255

BrNO2). In order to be used in Fast-J, the JPL and IUPAC cross sections at high spec-256

tral resolution are weighted by the solar spectrum and distributed to the 7 coarse Fast-257

J spectral bins. The preprocessor used to perform this interpolation (Wild et al., 2000)258

is available along with input files at https://github.com/lmarelle/FastJ-preprocessor259

3.2 Heterogeneous reactions involving halogens260

Heterogeneous reactions on aerosols containing bromine or chlorine are an impor-261

tant step sustaining activation of gaseous halogen species in the Arctic. We include a pa-262

rameterized representation of halogen heterogeneous chemistry in the SAPRC-99 MOSAIC-263

8bin scheme within WRF-Chem, for the 12 heterogeneous reactions presented in Table 2.264

Following Dentener and Crutzen (1993), we assume that the rate limiting factor in these265

heterogeneous reactions is the uptake of gaseous species on the aerosol. The heteroge-266

neous reactive uptake coefficient γ is corrected by the unitless factor, J , which is depen-267

dant on γ and the Knudsen number (Kn). Jn represents the limitation of reaction at268

the aerosol surface due to gas diffusion limitations, which is calculated for each aerosol269

size bin following equation 1 in Fuchs and Sutugin (1971), as presented in Seinfeld and270

Pandis (1998).271
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Jn =
0.75γ(1 +Kn)

Kn2 +Kn+ 0.283Kn× γ + 0.75γ
(1)272

We model the heterogeneous reaction rate k (s−1) following equation (2) as a prod-273

uct of J , the total aerosol area density A (cm−1), the mean molecular speed (v̄, given274

in cm s−1), γ, and the yield (φ) representing the weight of the different possible reac-275

tion pathways for a given species on the aerosol (such that the sum of the different re-276

action yields for a given species is 1). The γ values for each reaction and yields used are277

given in Table 2. Reaction rates are calculated for each of the eight MOSAIC aerosol size278

bins and then summed to obtain the heterogeneous reaction rate.279

k =

n=8∑
i=1

0.25φv̄γAiJi (2)280

This approach allows us to represent the effect of heterogeneous chemistry on the281

gas phase, without explicitly calculating the full chemistry in the aerosol phase. In or-282

der to limit the computational cost of the new scheme, we do not model aerosol bromine283

explicitly either, since adding an additional aerosol species in the MOSAIC-8bin aerosol284

scheme adds 16 advected tracers to the scheme (8 interstitial aerosol bins and 8 cloud-285

borne). In order to lighten the mechanism and still maintain mass conservation for bromine,286

reactions consuming aerosol-phase bromine (e.g. HOCl
(aerosol)−−−−−−→ BrCl) are rewritten287

using HBr as a proxy for aerosol bromine (e.g. HOCl + HBr → BrCl) (Table 2). For each288

of these reactions, the heterogeneous reaction rate is divided by the HBr concentration289

in KPP, to keep the kinetics independent of the HBr concentration while still consum-290

ing HBr (following Badia et al., 2019)291

For consistency and to simplify model developments, we use the same approach,292

using HCl, for heterogeneous reactions consuming chlorine in aerosols, even though chlo-293

rine aerosols are represented explicitly in MOSAIC-8bin. The only exception is the het-294

erogeneous formation of ClNO2 through N2O5, which is already calculated explicitly in295

MOSAIC in WRF-Chem 4.1.1.296

Some of these heterogeneous reactions might require acidic conditions to proceed297

(Abbatt et al., 2012). For aerosols that have a pH calculated in MOSAIC, we chose an298

aerosol pH threshold of 5, above which the heterogeneous reaction rates (equation 1) are299

set to 0. This pH condition is checked for each aerosol size bin independently, before cal-300

culating the summed reaction rates for the full aerosol population in equation 2.301

3.3 Dry and wet deposition of halogen species302

We include dry deposition for 7 new halogen species: Br2, HOBr, HBr, BrONO2,303

Cl2, HOCl and ClONO2. Dry deposition is neglected for all other new species. Dry de-304

position is calculated through the resistance scheme of Wesely (1989). This scheme re-305

quires 4 parameters for each new species: the effective Henry’s law constant (H*); the306

Henry’s law temperature correction factor (DHR); the deposition reactivity parameter307

(f0, representing the reactivity of the species when in contact with the ground surface);308

and the molecular diffusivity of the species (dvj). The values of these variables for the309

7 new species are presented in Table 3. H* and DHR are taken from Sander (2015), f0310

from Toyota et al. (2011), and dvj is taken as the inverse square root of the species molec-311

ular weight, in g mol−1.312

Wet removal of HCl was already included in WRF-Chem 4.1.1. We added to the313

model wet deposition of HBr, HOBr, BrONO2, HOCl and ClONO2 by impaction scav-314

enging, using a first-order scavenging rate constant of 3.89×10−4 s−1 per mm h−1 of315

precipitation (Toyota et al., 2011).316
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3.4 Emissions of bromine from sea-ice, snow, and open oceans317

Emissions of bromine in the Arctic have been attributed to multiple sources includ-318

ing sea-ice (first-year and multi-year), snow surfaces, sea salt from blowing snow, and319

oceanic sea salt. We implemented descriptions of these emission sources in WRF-Chem320

4.1.1, which are described in the following sections.321

3.4.1 Br2 emissions from surface snow322

Surface snow bromine activation follows Toyota et al. (2011). In this mechanism,323

deposition of atmospheric oxidants to the snowpack over sea ice releases Br2 to the at-324

mosphere, and this process is photochemically accelerated in the presence of sunlight.325

In practice, the Br2 emission flux is calculated as proportional to the O3 dry deposition326

flux, with a proportionality factor depending on solar zenith angle. In sunlit conditions327

(solar zenith angle ≤85°), Br2 emissions are 0.075 times the deposition flux, and in dark328

conditions, 0.001 times.329

3.4.2 Br2 emissions from blowing snow330

The blowing snow parameterization is based on Yang et al. (2008) and Huang and331

Jaeglé (2017). Blowing snow events start when the 10-m wind speed, w10, is above the332

threshold w10crit, which is a function of surface temperature (Yang et al., 2008). Lofted333

snow sublimates in the atmosphere depending on environmental conditions, releasing sea334

salt aerosols and Br2. In WRF-Chem 4.1.1, we calculate the Br2 emission flux, EBr2 (kg m−2 s−1),335

following equation 3.336

EBr2 =

n=8∑
i=1

ENaCl(bin)×Ra×DF (3)337

Where ENaCl(bin) is the sea salt emission flux from blowing snow in a given MOSAIC338

aerosol size bin (kg m−2 s−1), Ra is the mass ratio between bromine and NaCl in sea339

water (0.00233), and DF is the maximum bromine depletion factor of 0.38 from Yang340

et al. (2008), based on Sander et al. (2003), representing the fraction of aerosol bromine341

lost to the atmosphere. This maximum value for the depletion factor represents an es-342

timate of bromine emissions emitted during the whole atmospheric lifetime of the blowing-343

snow sourced sea salt aerosols. This constant value was chosen to limit the computational344

cost of the new scheme, since in reality bromine emissions from sea salt aerosols depend345

on heterogeneous chemistry on the aerosols, which can only be resolved by explicitly track-346

ing the simulated size-resolved aerosol bromine chemistry and resulting aerosol bromide347

content.348

The sea salt emissions in each MOSAIC aerosol size bin, ENacl(bin), are calculated349

following equation 4.350

ENacl(bin) =
qsξ

1000

∫ Dhigh(bin)

Dlow(bin)

f(Ddry)dDdry (4)351

Where qs is the snow sublimation flux (kg m−2 s−1), calculated as a function of local352

wind speed, temperature and humidity (Yang et al., 2008). In equation 4, Dhigh(bin)353

and Dlow(bin) are also the lower and upper dry diameter range of a given MOSAIC aerosol354

size bin, f(Ddry) is the snow size distribution expressed as a function of dry sea salt aerosol355

size (Yang et al., 2008), and ξ is a uniform snow salinity of 0.1 psu (Huang & Jaeglé, 2017).356

Following Huang and Jaeglé (2017), we also assume that each snow flake emits N = 5357

sea salt aerosols.358

Available values of salinity from the Antarctic differ by more than an order of mag-359

nitude (Rhodes et al., 2017). The Massom et al. (2001) distribution used in Yang et al.360

(2008) has a mean value of 8.3 psu, 83 times higher than the Arctic value used in our361
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implementation. No pan-Arctic measurements of snow and snow on sea ice salinity cur-362

rently exist, but recent measurements in the central Arctic (M. M. Frey & Nomura, 2019)363

found snow salinities with a median value of 0.02 psu and a mean of 1.7 psu. Here, we364

use the parameters from Huang and Jaeglé (2017) (ξ = 0.1 psu, N = 5), which are in365

the middle of this range, and were shown to improve model agreement with observed sea366

salt aerosol concentrations at Utqiaġvik. In agreement with Huang and Jaeglé (2017),367

we show (Supplementary Figure S1) that the chosen values for ξ and N produce more368

realistic sea salt aerosol concentrations at Arctic coastal sites than the original Massom369

et al. (2001) salinity and N = 1 value used in Yang et al. (2008). We also show that370

low salinity values of 0.01 psu match observations even better than 0.1 psu, while a rea-371

sonable high bound of 1.7 psu leads to overestimations of Na aerosols by up to 2 orders372

of magnitude.373

3.4.3 Bromine recycling on surface snow374

Br2 emitted to the atmosphere by either surface snow or blowing snow can be trans-375

formed into HOBr and BrONO2. When deposited on sea ice and snow, these species can376

be recycled back into atmospheric Br2 by surface reactions in the snowpack. Following377

Toyota et al. (2011), we assume that all HOBr and BrONO2 deposited on sea ice is re-378

emitted as Br2. This assumes an unlimited supply of Br− in snow over sea ice. Unlike379

Toyota et al. (2011), we assume that this recycling is independent of sea ice age, since380

recent observations indicate that multiyear ice can be an efficient source of Br2 (Peterson381

et al., 2019). Over continental snow, Br− availability in the snowpack is assumed to be382

limited by HBr deposition. As a result, the Br2 emission rate there is limited by the HBr383

deposition rate, and is taken as the smaller flux between HBr and HOBr+BrONO2.384

3.4.4 Temperature and ice fraction dependence of bromine emissions385

and recycling386

Recent observations indicate that Br2 emissions and recycling can occur at tem-387

peratures up to 0°C (Burd et al., 2017). For this reason, we removed the temperature388

threshold of −15°C used in Toyota et al. (2011) for surface emissions, and replaced it by389

a 0°C threshold that applies for all Br2 emission processes over surface snow (surface snow,390

blowing snow, surface recycling). When the skin temperature over snow or ice exceeds391

the 0°C threshold in a grid cell (i.e. when snow starts to melt), the grid cell stops emit-392

ting bromine until the end of the simulation.393

Snow on sea ice is also influenced by sea ice flooding events, which are more com-394

mon for thinner and lower fractional sea ice cover (Provost et al., 2017). These events395

may deactivate snow on sea ice by changing the pH and/or structure of the snow to less396

active for bromine release. Due to this, we include a cutoff for halogen activation and397

recycling on snow on sea ice that is dependent on the grid cell sea ice fraction. We test398

different fractional sea ice cutoff values (see electronic supplement), which are discussed399

further in section 4.400

3.4.5 Direct Br2 emissions from open oceans401

Sea salt emitted from open oceans can also release bromine to the atmosphere. We402

include this source of atmospheric Br2 in the model, following equation 5.403

EBr2,ocean = ENaCl,ocean×Ra×DF (5)404

Where ENaCl,ocean is the sea salt emission flux from the ocean surface (kg m−2 s−1),405

already calculated in WRF-Chem 4.1.1 for ice-free ocean grid cells (Gong et al., 1997).406

We added emissions from open leads in sea ice in WRF-Chem 4.1.1 by calculating the407

flux for fractional sea ice cells, and scaling it by the open ocean fraction in the cell. Ra408
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is the same Br/NaCl mass ratio already used in the blowing snow parameterization, and409

DF is a mean depletion factor of 0.25.410

4 Model results and evaluation411

In order to evaluate the updated model, we performed 4 different WRF-Chem sim-412

ulations, listed in Table 4, and compared them to surface ozone and BrO observations413

at 5 different Arctic locations. First, we perform a reference simulation with no halogen414

chemistry and no updates implemented (NOHALO), and one simulation (BOTH) includ-415

ing all our halogen chemistry developments with both the surface activation mechanism416

(section 3.4.1), and the blowing snow parameterization (section 3.4.2). In order to un-417

derstand which initial source of atmospheric bromine, (1) surface snow or (2) blowing418

snow, triggers ozone depletion events in the Arctic, we perform 2 additional simulations,419

SURFACE and BLOWING. SURFACE is a simulation with only the surface mechanism420

included, where blowing snow emissions are excluded. BLOWING is the simulation with421

only the blowing snow source, where surface emissions presented in section 3.4.1 are ex-422

cluded; however we note that the BLOWING simulation still includes bromine recycling423

on the snow surface (section 3.4.3), even though it was not included in the original pub-424

lications of Yang et al. (2008) and Huang and Jaeglé (2017). For the BOTH simulation,425

we have tested four different fractional sea ice coverage cutoff values for both halogen426

activation and recycling mechanisms to be active; 15%, 50%, 75%, and 90% (see Section 3.4.4).427

Based on these tests (Figures S2 and S3 in the electronic supplement), we have chosen428

a 75% fractional sea ice cover cutoff for all simulations presented.429

4.1 Surface ozone and BrO evaluation at Utqiaġvik, Alaska430

The comparison between observed and modeled concentrations of O3 and BrO at431

Utqiaġvik, AK (formerly Barrow, AK) is shown in Figure 3. Surface observations of ozone432

in Utqiaġvik are from NOAA-ESRL (https://www.esrl.noaa.gov/gmd/dv/data/). BrO433

is measured by a ground-based (0-200 m) MAX-DOAS in Utqiaġvik (BROMEX cam-434

paign, described in Simpson et al. (2017)). WRF-Chem surface Br2 concentrations (0-435

200 m average) are also shown. Model results are spatially interpolated at the location436

of the measurements, using only land grid cells.437

The simulation including both mechanisms (BOTH), captures the observations more438

accurately than the base version of the model (NOHALO). The RMSE of O3 in BOTH439

is 10 ppbv, compared to 25 ppbv in NOHALO (detailed statistics are given in supple-440

mentary Table S1). The variability of ozone is also captured in the model when both emis-441

sion mechanisms are implemented (correlation coefficient of 0.50 in BOTH, compared442

to 0.22 in NOHALO). The amount and timing of ozone depletion events are generally443

well represented, including both large scale ODEs that occur during the simulation pe-444

riod as well as smaller ozone depletion/regeneration events. At this site, surface snow445

activation (SURFACE simulation) is the main operating mechanism for ozone depletion446

as it captures most of the large ODEs and smaller peak fluctuations (RMSE 10.3 ppbv,447

correlation 0.50). The blowing snow mechanism (BLOWING simulation) does influence448

the modeled ozone levels to a small extent for most of the simulation period, however,449

it is only able to entirely capture the first ODE of the simulation (starting 8 March 2012)450

indicating this particular event may be initiated by blowing snow. These developments451

are able to significantly improve the representation of modeled ODEs, yet reproducing452

the full nature of all events remains a challenge.453

Similarly, Figure 3 shows that the timing of enhanced BrO concentrations repro-454

duced by the model is comparable to the observational data during both periods of in-455

creasing and declining BrO concentrations. However, from March 20th to March 30th mod-456

eled BrO is underestimated, and from April 8th to April 11th it is overestimated; this457

may be due to several factors. It is not likely to be caused by measurement error, since458
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Simpson et al. (2017) found that during March 2012, the typical error in BrO measure-459

ment was 2 to 3 pptv. However, the same study found that BrO retrievals were highly460

correlated at a 30 km scale only as long as sea ice was unbroken. At 100 km resolutions461

and at a later period in April when leads are more likely to open, it is possible that the462

WRF-Chem grid cell averages are less representative of measurements at Utqiaġvik. In463

addition, bromine activation and recycling is sensitive to boundary layer stability, and464

even recent reanalysis datasets or advanced regional models such as WRF still struggle465

to reproduce stable boundary layers over snow (C. Wang et al., 2019; Sterk et al., 2015).466

Figure 3 also shows that extended periods of very low O3 concentrations are some-467

times associated with low concentrations of BrO. Under these conditions of low ozone468

concentrations, BrO formation is limited by the fact that there is no ozone for Br atoms469

to react with. In this case, other unobserved species, such as BrNOy compounds, may470

play a role in sustaining bromine chemistry by regenerating Br2 (S. Wang et al., 2019).471

Similar to ozone depletion, the surface snow mechanism plays the most important role472

in determining enhanced BrO concentrations as well as high modeled Br2 mixing ratios473

at Utqiaġvik, AK.474

4.2 Surface ozone evaluation at 4 additional Arctic stations and 2 Arc-475

tic Ocean buoys476

In addition to improvements at Utqiaġvik, we also report improvements in model477

representation of ozone and ODEs at other Arctic locations. Figure 4 compares the sim-478

ulated ozone to observations at: Station Nord, Greenland; Tiksi, Russia; Summit, Green-479

land; Zeppelin Station, Svalbard, and at 2-Arctic buoys in the central Arctic (latitude480

> 85N), O-buoy4 and O-buoy6 (Simpson et al., 2009; Knepp et al., 2010; Halfacre et al.,481

2014). Table S1 also gives metrics (RMSE and correlation) at these sites. For high-altitude482

sites (Summit and Zeppelin), model O3 was interpolated at the altitude of the measure-483

ments, even though this altitude was not located in the lowest model level. At all sites484

except buoys, spatial interpolation is performed using only land grid cells. Figure 4 (and485

supplementary Table S1) shows that when the surface scheme or both mechanisms are486

included, modeled ozone concentrations are greatly improved in Nord, Greenland; Tiksi,487

Russia, and at buoys in the Central Arctic.488

At Station Nord (Figure 4a), a coastal site in the north of Greenland, the base run489

with no halogen chemistry misses main features of the observed spring ozone mixing ra-490

tios in 2012, including ODEs. The BLOWING model simulation has little influence on491

ozone. We note that we have not tuned the parameters of the surface or blowing snow492

bromine production mechanism to match observations, so it is possible that this and other493

events will be better captured upon adjusting the parameters to our model. As imple-494

mented, the surface snow mechanism (SURFACE) captures the timing and features of495

most events (RMSE = 12.9 ppbv, R=0.33, compared to 17.2 ppbv and 0.17 for NOHALO).496

At Station Nord, including both mechanisms (BOTH) does not significantly improve the497

model compared to the surface snow mechanism alone (RMSE = 12.4 ppbv, R=0.34),498

indicating that blowing snow has limited influence on modeled ozone at this station.499

For Tiksi (Figure 4b), a coastal site in Russia, only the surface snow mechanism500

reproduces the magnitude of observed ODEs. A long ozone depletion event occurs be-501

tween 9 and 16 March. For this event, the SURFACE simulation predict earlier ozone502

recovery to background levels. A second ODE, observed in between 22 March and 1 April,503

is captured by both the SURFACE and BOTH runs, but only very weak ozone deple-504

tion occurs in the BLOWING model run. Later, following April 15th, the decay of ozone505

for an extended period of time is captured by the SURFACE snow model run, but not506

by the BLOWING simulation. This suggests that in this season, the main operating mech-507

anism is surface snow.508
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At Summit (Figure 4c, a high altitude non-coastal Arctic site) ozone depletion con-509

ditions are not observed. This is due to the high altitude of the site, influenced by free510

troposphere air masses, and the distance between Summit and the Arctic Ocean. Ob-511

servations of halogen chemistry at Summit have been completed during other seasons512

and found 2-3 pptv of bromine can be present during late spring/early summer (Stutz513

et al., 2011; Liao et al., 2011), however these concentrations are not thought to cause ODEs.514

In our runs, we have some active bromine chemistry at Summit that arrives via surface515

snow and aerosol recycling from activation of oceanic bromine sources (Thomas et al.,516

2012b). However, the influence of this chemistry is overestimated in our model descrip-517

tion and should be investigated further in the future. When using a higher sea ice cover518

threshold for halogen chemistry of 90% (Supplementary Figure S3), results from BOTH519

and SURFACE are improved at Summit. Using this higher cutoff disables bromine emis-520

sions near Southern Greenland, indicating that some incomplete or missing process in521

our model (ice flooding, bromine depletion in snow, snow ageing or melt) should disable522

bromine emissions from these areas. These discrepancies do not persist later in the model523

run, after April 12th.524

At the Zeppelin observatory (Figure 4d, near coastal mountain site) there is no clear525

signature from blowing snow in modeled ozone depletion. Some of the model-observation526

discrepancies for the SURFACE simulation can be explained by the coarse horizontal res-527

olution of 100 km, which is not able to resolve the topography and the local mountain528

meteorology. Despite these limitations, surface snow does predict the first low ozone event529

(20 ppbv prior to March 15th), even though the mechanism results in too much ozone530

depletion. The model then captures a series of ozone depletion events following April 1st,531

but the BOTH and SURFACE runs remain depleted in ozone while the observations show532

that ozone recovers quickly. During this period the NOHALO and BLOWING simula-533

tion better reproduces the observation. The model cannot be evaluated for several days534

due to a period of missing measurements centered around April 15th. Then, the model535

does capture the amount, but not the timing of an ozone depletion event at the end of536

April. The final event is captured by the SURFACE run.537

Observations at very high latitudes at O-buoy4 and O-buoy6 indicate that ozone538

is very often completely depleted in the Central Arctic in Spring 2012. Only the SUR-539

FACE simulation (and BOTH) are able to reproduce this very low ozone, although BLOW-540

ING reproduces partial depletion around 15-25 March at O-buoy4, and between 16-18541

April at O-buoy6. Average observed ozone at O-buoy4 during the whole period is 6.7 ppbv542

(vs. 8.6 ppbv in SURFACE). O-buoy6 only has limited data coverage (15 days in late543

April), and experienced data quality issues (baseline levels are at -1.1 ppbv, corrected544

on Figure 4f by assuming that the error is a constant offset), but it measured average545

ozone of 1.3 ppbv during this limited period, also consistent with the 2.0 ppbv average546

in SURFACE.547

In summary, the timing and intensity of the ODEs in the BOTH and SURFACE548

simulation best captures the overall features within the observations, although the in-549

tensities of some events can be either over or underestimated. The average RMSE and550

correlation of SURFACE against ozone at the 7 locations shown in Figures 4 and 3 is551

10.2 ppbv and 0.37 respectively, compared to 19.4 ppbv and 0.28 for BLOWING (sup-552

plementary Table S1). In addition, we show on supplementary Figure S10 that this is553

not likely to be due to our choice of parameters for the blowing snow scheme: lower and554

upper bound snow salinities of 0.01 psu and 1.7 psu still do not reproduce observations555

as well as SURFACE. The blowing snow simulation with 1.7 psu reproduces observed556

ozone at Zeppelin relatively well, however supplementary Figure S1 shows that it also557

produces far too much sea salt at the same site, indicating that bromine emissions by558

blowing snow are overestimated by the scheme at Zeppelin. In almost all cases, surface559

snow activation can then be seen as the dominant mechanism for ozone depletion in March-560

April 2012.561
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5 Origins and impacts of springtime Arctic ozone depletion562

5.1 Origin of ozone depleted air masses at Utqiaġvik563

To identify the origin of ozone-rich and ozone-depleted air masses, we use the La-564

grangian particle dispersion model FLEXPART-WRF (Brioude et al., 2013), which is565

a version of the FLEXPART model (Stohl et al., 2005) driven by the WRF meteorolog-566

ical model. Using the meteorological fields from the WRF-Chem simulation described567

in section 2.1, we use FLEXPART-WRF in backward mode to study the source and trans-568

port of ozone-rich (measured O3 > 30 ppb) and ozone-depleted (measured O3 < 10 ppb)569

air masses during the month of April 2012. For each case, a fixed number of air parcels570

were released every hour when observed ozone was above or below these thresholds, so571

that the total number of parcels released from Utqiaġvik, AK was 100,000. For the ozone-572

rich air, this represented a total of 68 releases during the month of April, and for the ozone-573

depleted air this included 388 releases. Each simulation was run backwards in time for574

7 days to track the origin of air measured at Utqiaġvik, AK and to study source-receptor575

relationships. To do this, we use surface potential emission sensitivities (PES), calcu-576

lated by FLEXPART-WRF, which indicates when air was in contact with the surface577

and would be sensitive to emissions. PES values are given as the amount of time spent578

by parcels in each grid cell during the simulation.579

Figure 5a shows the 0-100 m (surface) PES column, which represents the area where580

ozone-depleted air (< 10 ppbv) originates from. These air masses originate predomi-581

nantly from over sea ice for the entire 7 day period prior to measurement. Figure 5b shows582

the 0-5000 m PES (consistent with the air altitude in Figure 5c), which shows that high583

ozone air (> 30 ppbv) is subject to long range transport across the Arctic from Siberia584

during the 7 days prior to arriving at Utqiavik. Figure 5c shows the mean altitude of585

the transported plumes for low and high ozone air. This shows that during periods of586

high ozone, the air descends down from the free troposphere prior to measurement at587

the surface. This downward vertical mixing of ozone rich air from the free troposphere588

is important for replenishing ozone, and may also allow for new initiation of bromine ac-589

tivation on surface snow. It also allows for generation of BrO in the boundary layer for590

conditions where bromine is present but BrO is not formed due to complete ozone de-591

pletion. This shows there is a complex interplay between triggering at the surface and592

replenishment of ozone from above the boundary layer, mixed down from aloft. Conversely,593

during low ozone periods air remains near the surface, where it is more sensitive to sur-594

face and blowing snow emissions and to chemistry occurring on sea salt aerosols within595

the boundary layer (Figure 5).596

5.2 Impacts on Pan-Arctic surface O3, BrO, and HOx during spring 2012597

The independent roles of the two halogen activation mechanisms on surface ozone598

and BrO concentrations, as well as their effect on Br2 emissions, are illustrated in Fig-599

ure 6. Here, we plot results for the SURFACE (left panels: a, d, g), BLOWING (cen-600

ter panels: b, e, h), and BOTH (right panels: c, f, i) runs, compared to the NOHALO601

base case, to illustrate how each mechanism activates bromine and impacts ozone.602

We plot the total Br2 emissions increase from each mechanism in Figures 6a-c. The603

most active Br2 emissions from surface snow are located on the coastal Arctic. Due to604

the lack of multi-year sea ice in 2012 and the recent evidence that bromine is activated605

from snow on multi-year sea ice (Peterson et al., 2019), we do not distinguish ice type606

in the surface snow activation mechanism. This is evident in the emissions from snow607

on sea ice, which occurs for all sea-ice covered regions. The key trigger for initial Br2 emis-608

sions is ozone deposition to sea ice in the surface snow mechanism, therefore emissions609

may be limited by the lack of ozone deposition when ozone has been depleted to near610

zero levels in the center of the Arctic (Figure 6g, discussed below, and supplementary611

Figure S6). For the blowing snow mechanism, the Br2 emissions are highest along the612
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Russian coast, Svalbard, and in the Central Arctic, but they are much lower on the Arc-613

tic scale. As a result, they contribute relatively little to emissions in the BOTH simu-614

lation (Figure 6c), which are dominated by surface snow. We also show in Figures 6d-615

f that predicted BrO concentrations do not directly correlate to the Br2 emissions loca-616

tions.617

Figures 6g-i show that, in April 2012, the surface snow mechanism is the main driver618

for large scale ozone depletion over most parts of the Arctic. This also shows that the619

effect of blowing snow is much smaller during this month, contributing at most to 10 to620

20 % of total depletion along Eastern Russia (supplementary Figure S7). We also note621

that ozone depletion and BrO are not well correlated in the central Arctic, where BrO622

formation is limited by near-total ozone depletion (mean concentrations ∼5 ppbv, Fig-623

ure S6). Ozone depletion also extends further inland into the Arctic than bromine ac-624

tivation, as indicated by BrO concentrations.625

In order to show the impact of this chemistry for oxidation in the Arctic bound-626

ary layer, Figure 7a presents the OH/HO2 ratio for the NOHALO run , which is in the627

range of 0-0.03 for the Arctic and near 0 over most of the Arctic ocean. Figure 7b shows628

the difference in this ratio upon including halogen chemistry in the model. The OH/HO2629

ratio increases by up to 0.03 over regions of the Arctic and Arctic Ocean upon includ-630

ing halogen chemistry. This is equal to the largest OH/HO2 ratio in the base run far from631

the Arctic Ocean. This indicates that the boundary layer over the Arctic Ocean may have632

oxidation conditions that are very different from most models at present, making it dif-633

ficult to predict the lifetime of gas-phase organics and aerosol precursors emitted from634

the Arctic Ocean during spring.635

6 Spring 2012 in the context of meteorological conditions and past stud-636

ies637

Our results indicate that surface snow was the main driver of ozone depletion events638

in the Arctic during Spring 2012. In agreement with previous work (Yang et al., 2019),639

we show that blowing snow has a strong impact on Arctic sea salt aerosol concentrations640

(supplementary Figure S1). However, in contradiction with previous work (Huang & Jaeglé,641

2017; Huang et al., 2020; Yang et al., 2020), we find that blowing snow has little effect642

on Arctic ozone depletion, being responsible only for a few events and, regionally, at most643

for 10 to 20% of the total depletion in a limited region along the Russian Coast. Here644

we explore some possible causes for these differences.645

We think it is unlikely that our implementation underestimates blowing-snow sourced646

Br2 emissions, since we found that sea salt aerosol emissions from blowing snow are likely647

overestimated in our implementation (supplementary Figure S1 and associated discus-648

sion). We used a high value of 0.38 for the depletion factor, meaning that 38% of all avail-649

able bromine from these overestimated blowing snow sea salt emissions is emitted in our650

implementation. In addition, our study is to our knowledge the first to jointly assess model651

performance for surface meteorology, sea salt, ground based BrO, and surface ozone in-652

cluding central Arctic ozone, and none of these model/measurement comparisons indi-653

cate model deficiencies which could explain these differences.654

Falk and Sinnhuber (2018) indicate that the surface snow mechanism leads obser-655

vations by up to 2 days at Alert, Canada. In order to examine if blowing snow is bet-656

ter at reproducing the timing of the depletion events, rather than their magnitude, we657

also perform a time-lagged correlation analysis (supplementary Figure S11). We do not658

find the same leading time lag than Falk and Sinnhuber (2018) at any coastal site nor659

at O-buoy 6, where the max correlation is reached at or very near a 0 h time-lag. We660

remind that the (0 h lag) correlation is always higher in SURFACE than in BLOWING,661

except for O-buoy6 where the highest correlation is found for NOHALO. Since BLOW-662
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ING has little effect on central Arctic ozone, it is closer to NOHALO and thus has a higher663

correlation than SURFACE at O-buoy6, even though it is strongly biased against ob-664

servations. At O-buoy4, the correlation exhibits a maximum at -2 days for all simula-665

tions (SURFACE, NOHALO and BLOWING). Since this also occurs in NOHALO, this666

is most likely caused by a time lag in the meteorological reanalysis, and not to the im-667

plementation of the surface or blowing snow schemes. This is a known issue in the Arc-668

tic and especially in the central Arctic, where observations remain sparse and models,669

including reanalysis, have known problems reproducing meteorological systems.670

We also examine if the lower role of blowing snow in ozone depletion found in our671

work could be due to meteorological differences in spring 2012 compared to other years.672

For example, in our simulations, wind speeds over Arctic sea ice, where salty blowing snow673

originates, are rarely above the critical threshold of 7 m/s (Supplementary Figure S4),674

and this threshold is exceeded even less often at the Arctic coastal sites (Supplementary675

Figure S5). We find (Supplementary Figure S9) that the blowing snow scheme emits sea676

salt aerosols as intended when this threshold is exceeded. Putting March-April 2012 into677

the long-term context, we find that wind speed was actually higher than normal over most678

of the Arctic (Supplementary Figure S8), which should in theory increase the influence679

of blowing snow in our simulations compared to earlier studies in other years. In addi-680

tion, the Arctic surface was also mostly colder than average in March-April 2012 (Sup-681

plementary Figure S8), possibly indicating more stable conditions than usual, which could682

also intensify ODEs. Therefore, we conclude that it is unlikely that meteorological dif-683

ferences are to blame for the lower role of blowing snow in ozone depletion compared to684

earlier work.685

In order to assess if 2012 was indeed a higher year in terms of bromine activity, we686

calculate the mean ozone concentration in March-April 2012 in Utqiagvik, and compare687

it to the long-term March-April mean for the 40 years 1973-2012. We also calculate the688

mean number of hours with depleted ozone (<10 ppbv) during the same March-April689

period. Excluding the 10 years with insufficient data quality (more than 10% of miss-690

ing data), we find that March-April 2012 was particularly active, with the second low-691

est mean ozone concentration in that record (12.2 ppbv, compared to a long-term mean692

of 20.3 ppbv), and the largest number of hours of depleted ozone (817 h, compared to693

a long-term average of 425 h). We think this high prevalence of ODEs in this season con-694

firms that this period is particularly suited for investigating the origin of these events.695

7 Conclusions696

In this work, we have implemented descriptions of halogen chemistry, activation697

and recycling within the WRF-Chem model. To our knowledge, this work is the first to698

implement both blowing snow and surface snow emissions of bromine into a single model,699

in order to compare their effects on springtime ozone depletion in the Arctic. We show700

that, in spring 2012, both bromine emission mechanisms can play a role in ozone deple-701

tion. Surface snow activation and recycling of bromine could be the key mechanism across702

most of the Arctic, while blowing snow could play an important role at specific sites and703

in initiating select events. We also show that the location of Br2 emissions are not nec-704

essarily correlated with either BrO or ozone depletion. Further, we show that including705

this chemistry significantly increases the OH/HO2 ratio at the surface regionally, espe-706

cially over the Arctic Ocean.707

Our results show, in agreement with previous studies, that blowing snow could be708

a strong source of sea salt aerosols over sea ice during spring. However, in contradiction709

with previous modeling work, we find that blowing snow has little effect on Arctic ozone710

depletion. We believe these differences can only be answered by completing a joint model711

study for the same time periods, using the same model input datasets (emissions, me-712

teorology) and the same parameters, in order to compare the different components of713
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the ozone and bromine budgets in these models. We think such a study will be extremely714

valuable to better understand the causes of Arctic ozone depletion, the sources of bromine,715

and to further improve models. The heterogeneous (include super-cooled liquid and ice716

phase) chemistry of sea salt aerosols during Arctic spring as well as snow pack chemistry717

are both still uncertain despite existing studies (Oum et al., 1998; Huff & Abbatt, 2002;718

Hunt et al., 2004; Pratt et al., 2013; Edebeli et al., 2020). Further experiments under719

controlled lab conditions are needed to better understand bromine release from these sur-720

faces in the future.721

In the future, we also hope to investigate the relative roles of these processes in the722

Antarctic, where wind speeds are higher and blowing snow could be more important, and723

in other locations and years as new observations become available.724

Our results provide a basis for future improvements in model predictions of sur-725

face ozone at the regional scale by improving the representation of Arctic halogen chem-726

istry and determining the activation pathways of reactive bromine within WRF-Chem.727

In the future, we aim to test how these mechanisms operate under past and future sea728

ice/snow cover conditions. Improved model predictions of polar halogen chemistry for729

ODEs and bromine activation events will allow us to better understand the oxidative pro-730

cesses for elemental mercury that lead to AMDEs and mercury deposition.731

The functioning of atmospheric chemistry system in the lowest portion of the Arc-732

tic atmosphere may fundamentally change as the Arctic warms and ice and snow cover733

are reduced. Emissions from snow and ice will change as sea ice retreats, becomes thin-734

ner, more saline, and as snow on sea ice changes. Chemistry within the Arctic bound-735

ary layer determines the conditions that oceanic, ice, and snow emissions experience. Pro-736

cesses in the lowest portion of the atmosphere are also important because this is where737

species are most likely to be directly deposited back to the Arctic ocean, ice, and snow.738

It is only by developing predictive models that include halogen chemistry that we will739

be able to fully understand the influence of future environmental changes (including sea740

ice change) and anthropogenic influences will have within the Arctic region.741
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Huang, J., Jaeglé, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., . . . Choi,936

S. (2020). Evaluating the impact of blowing-snow sea salt aerosol on spring-937

time BrO and O3 in the Arctic. Atmospheric Chemistry and Physics, 20 (12),938

7335–7358. Retrieved from https://acp.copernicus.org/articles/20/939

7335/2020/ doi: 10.5194/acp-20-7335-2020940
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Figure 1. Simulation domain, sea ice at the beginning of the simulation, location of the mea-

surement sites, and 60 degrees north latitude circle.
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Figure 2. (a) 2-meter temperature observed (black) and simulated by our selected WRF

setup (blue) at Utqiaġvik, Alaska. (b) Average temperature profile observed by radiosondes

over Utqiaġvik (black) during the same period, and interpolated (land points only) at the same

locations and times in our selected WRF setup (blue).
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Figure 3. (Top) O3 observed (black) at Utqiaġvik, Alaska and simulated by WRF-Chem

in the NOHALO (blue), SURFACE (orange), BLOWING (yellow) and BOTH (purple) simula-

tions. (Middle) BrO observed by MAX-DOAS during the BROMEX campaign at Utqiaġvik, and

simulated by WRF-Chem. (Bottom) Br2 simulated by WRF-Chem at Utqiaġvik.
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Figure 4. Surface ozone observed (black) and simulated by WRF-Chem (color) at (a) Station

Nord, Greenland; (b) Tiksi, Russia; (c) Summit, Greenland; (d) Zeppelin Station, Svalbard; (e)

O-buoy4, central Arctic; (f) O-buoy6, central Arctic
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Figure 5. FLEXPART-WRF 7-day backward potential emission sensitivity (PES) (a) 0-100

m PES for releases when measured O3 was below 10 ppbv and (b) 0-5000 m PES for when O3

exceeded 30 ppbv. Monthly average fractional sea ice coverage, as represented in WRF, for April

2012 is shaded in grey. (c) The altitude (above sea level) of the air mass trajectories, up to 7

days prior to the release, for high background ozone (blue) and low background ozone (red), with

RMS error bars.
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Figure 6. Monthly averaged (1 to 30 April 2012) changes in modeled quantities in each sim-

ulation, compared to NOHALO. Modeled Br2 emissions (top), BrO concentrations (middle)

and surface ozone concentrations (bottom). Changes predicted across the Arctic for SURFACE-

NOHALO (left panels), BLOWING-NOHALO (center panels), and BOTH-NOHALO (right

panels).
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Figure 7. (a) OH/HO2 ratio in the NOHALO run (b) increase in the OH/HO2 ratio upon

including halogen chemistry, given as the difference between the BOTH and NOHALO runs:

(OH/HO2)BOTH - (OH/HO2)NOHALO .
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Table 1. Root Mean Square Error (RMSE) and correlation coefficient (R) between WRF simu-

lations and temperature observations (IGRA radiosondes, surface measurements from NOAA) at

Utqiaġvik, Alaska. Selected model setup for this study is shown in bold.

Driving model Surface Boudary layer RIGRA RMSEIGRA Rsurface RMSEsurface
(K) (K)

ERA-Interim CLM YSU 0.44 2.21 0.94 4.34
ERA-Interim CLM MYNN2 0.48 2.59 0.94 4.37
ERA-Interim Noah-MP YSU 0.47 2.27 0.94 4.00
ERA-Interim Noah-MP MYJ 0.49 2.55 0.94 4.23
ERA-Interim Noah-MP MYNN2 0.48 2.55 0.94 4.09
ERA-Interim Noah LSM YSU 0.49 2.57 0.94 3.94
ERA-Interim Noah LSM MYJ 0.49 2.16 0.95 3.84
ERA-Interim Noah LSM MYNN2 0.46 2.60 0.95 3.92
FNL CLM YSU 0.46 2.23 0.93 4.13
FNL CLM MYNN2 0.45 2.60 0.93 4.20
FNL Noah LSM YSU 0.47 2.23 0.94 3.77
FNL Noah LSM MYJ 0.51 2.58 0.94 3.76
FNL Noah LSM MYNN2 0.53 2.53 0.94 3.79
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Table 2. Heterogeneous reactions, reaction probabilities (γ) and yields (φ).

Reaction Representation in WRF-Chem γ and φ Ref.

HOCl
aerosol−−−−−→ Cl2 HOCl(+HCl)→ Cl2 γ = 0.0004, φ = 0.5 a

HOCl
aerosol−−−−−→ BrCl HOCl(+HBr)→ BrCl γ = 0.0004, φ = 0.5 a

ClONO2
aerosol−−−−−→ Cl2 + HNO3 ClONO2(+HCl)→ Cl2 + HNO3 γ = 0.11, φ = 0.27 b

ClONO2
aerosol−−−−−→ BrCl + HNO3 ClONO2(+HBr)→ BrCl + HNO3 γ = 0.11, φ = 0.46 b

ClONO2
aerosol−−−−−→ HOCl + HNO3 ClONO2 → HOCl + HNO3 γ = 0.11, φ = 0.27 b

HOBr
aerosol−−−−−→ Br2 HOBr(+HBr)→ Br2 γ = 0.1, φ = 0.5 c,d

HOBr
aerosol−−−−−→ BrCl HOBr(+HCl)→ BrCl γ = 0.1, φ = 0.5 c,d

BrONO2
aerosol−−−−−→ Br2 BrONO2(+HBr)→ Br2 γ = 0.14, φ = 0.42 e

BrONO2
aerosol−−−−−→ BrCl BrONO2(+HCl)→ BrCl γ = 0.14, φ = 0.29 e

BrONO2
aerosol−−−−−→ HOBr + HNO3 BrONO2 → HOBr + HNO3 γ = 0.14, φ = 0.29 e

N2O5
aerosol−−−−−→ BrNO2 + HNO3 N2O5(+HBr)→ BrNO2 + HNO3 γ = 0.044, φ = 0.24 f

OH
aerosol−−−−−→ Cl2 OH(+HCl)→ 0.5*Cl2 γ = 0.2, φ = 0.5 g,h

aAmmann et al. (2013) bAguzzi and J. Rossi (1999)
cPratte and Rossi (2006) dInternational Union of Pure and Applied Chemistry (2009)
eDeiber et al. (2004) fSeisel et al. (1998)
gKnipping et al. (2000) hLaskin et al. (2006)
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Table 3. Parameters for the dry deposition scheme: Henry’s law constant (H*), Henry’s law

temperature correction factor (DHR), deposition reactivity parameter (f0), molecular diffusivity

(dvj).

Species H* DHR f0 dvj
(mol m−3 hPa−1) (K) (cm−2 s−1)

Br2 0.730 4400 1 0.079
HOBr 6000 0 1 0.102
HBr 24.3 370 0 0.111
BrONO2 24.3 370 1 0.084
Cl2 0.0932 2000 1 0.12
HOCl 659 5900 1 0.14
ClONO2 1510 2300 1 0.1
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Table 4. Description of the simulations performed in this study.

Simulation name Description

NOHALO No halogen chemistry and no updates included
SURFACE Only surface activation mechanism implemented (as described by Toyota et al. (2011))
BLOWING Only blowing snow parameterization included (as proposed by Yang et al. (2008) using parameters from Huang and Jaeglé (2017))
BOTH Both SURFACE and BLOWING mechanisms operating
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