
HAL Id: insu-03283695
https://insu.hal.science/insu-03283695

Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial Persistence of Water Chemistry Patterns across
Flow Conditions in a Mesoscale Agricultural Catchment
Sen Gu, A. Casquin, Rémi Dupas, Benjamin W W Abbott, Patrice Petitjean,

Patrick Durand, G. Gruau

To cite this version:
Sen Gu, A. Casquin, Rémi Dupas, Benjamin W W Abbott, Patrice Petitjean, et al.. Spatial Persistence
of Water Chemistry Patterns across Flow Conditions in a Mesoscale Agricultural Catchment. Water
Resources Research, 2021, 57 (7), pp.e2020WR029053. �10.1029/2020WR029053�. �insu-03283695�

https://insu.hal.science/insu-03283695
https://hal.archives-ouvertes.fr


Spatial Persistence of Water Chemistry Patterns across Flow Conditions in a 

Mesoscale Agricultural Catchment 

S. Gu1,2*, A. Casquin3†, R. Dupas3, B. W. Abbott4, P. Petitjean2, P. Durand3, G. Gruau2 

1Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, 2CNRS, 

OSUR, Géosciences Rennes, UMR 6118, Univ. Rennes, Rennes F-35000, France, 3UMR SAS, 

INRAE, Institut Agro, Rennes F-35000, France, 4Brigham Young University, Department of 

Plant and Wildlife Sciences, Provo, UT 84602,USA 

*Corresponding author: Sen Gu (gusen@ihb.ac.cn) 

†Co-first author 

Key Points: 

 We found high spatial persistence of water chemistry, despite high spatiotemporal 

variability in water chemistry 

 Spatial persistence of water chemistry is primarily determined by the ratio between 

spatial and temporal variability 

 A single synoptic sampling during the high-flow season allows efficient identification of 

source and sink subcatchments 
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Abstract 

Protecting water quality at catchment scales is complicated by the high spatiotemporal variability 

in water chemistry. Consequently, determining pollutant sources requires costly monitoring 

strategies to diagnose causes and guide management solutions. However, recent studies have 

shown that spatial patterns in water chemistry can be persistent at catchment scales, potentially 

allowing identification of pollution sources and sinks with just a few sampling campaigns. Here, 

we tested a new method to quantify spatial persistence (SP) of water chemistry patterns with data 

from synoptic samplings in 22 headwater subcatchments within a 375 km2 catchment in western 

France (March 2018 - July 2019). This new method to quantify SP reduces dependence on long-

term metrics such as flow-weighted concentrations, which are usually uncertain or unavailable. 

We applied the method to 16 ecologically relevant water quality parameters, including soluble 

reactive phosphorus, nitrate, and dissolved organic carbon. The results showed an average SP of 

0.68 among parameters during the study period. For most parameters, SP was higher during the 

high-flow winter period but lower and more variable during the low-flow summer period. We 

found that the SP ultimately depended on the ratio between the temporal and spatial coefficients 

of variation (variance explained: 70%) rather than the temporal synchrony among subcatchments 

(variance explained: 4%). These results demonstrate that in these temperate catchments, synoptic 

sampling during the high-flow winter period allows efficient identification of source and sink 

subcatchments, while more frequent samplings are needed to characterize ecological conditions 

at low flow. 

1 Introduction 

Despite decades of research and changes to management, degrading water quality is still 

one of the most urgent issues for human society in the 21st century (Vörösmarty et al., 2010; 

Sutton et al., 2011; UNICEF, 2019). Water pollution causes approximately two million deaths 

each year, and excess nutrients cause eutrophication in more than 50% of global freshwater and 

estuarine water bodies (Conley et al., 2009; Matthews, 2014; Le Moal et al., 2018). Human 

activities, such as agriculture, urbanization, and disturbance of natural ecosystems can deliver 

excess nutrients to aquatic ecosystems, triggering eutrophication (Withers et al., 2014a; Jenny et 

al., 2016; Van Meter et al., 2017; Bol et al., 2018). The harmful algae blooms and dead zones 

associated with eutrophication degrade human health, water supply, and recreational uses 

(Conley et al., 2009; Ward et al., 2018). These anthropogenic pressures on aquatic ecosystems 

are predicted to intensify through the middle of the century because of population growth, 

increasing food demand (particularly meat and dairy), and climate change (Seitzinger et al., 

2010; Ibarrola-Rivas et al., 2017; Sinha et al., 2019; Frei et al., 2020). In response, national and 

international agencies worldwide have made substantial investments to establish water quality 

monitoring networks to identify pollution sources, and implement management measures that 

reduce pollutant losses from land to water at field to catchment scales (Hering et al., 2010; 

Skeffington et al., 2015; Wurtsbaugh et al., 2019). 

Water flow and chemistry are highly variable in space and time, creating a substantial 

challenge to representative monitoring and robust prediction of water quality in complex 

freshwater landscapes (Guo et al., 2018; Lintern, et al., 2018; Alilou et al., 2019; Mentzafou et 

al., 2019). This inability to reliably measure or infer water quality has contributed to mixed 

results of water quality interventions (Jenny et al., 2016; Abbott et al., 2018a; Kleinman et al., 

2019). Current monitoring approaches face two competing challenges: the headwater conundrum 
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and the sampling frequency conundrum (Johnes, 2007; Cassidy and Jordan, 2011; Lloyd et al., 

2015; Skeffington et al., 2015; Abbott et al., 2018a). 

The headwater conundrum refers to the fact that current monitoring networks are mostly 

implemented in medium-to-large rivers, while most of the nutrient fluxes enter the watercourses 

from headwater catchments (< 50 km2) (Skeffington et al., 2015; Helton et al., 2018). Unlike the 

catchments larger than 100 km2, where riverine nutrient fluxes are strongly associated with the 

percentage of agricultural land use (Jordan et al., 1997; Strayer et al., 2003), nutrient fluxes in 

smaller catchments vary widely despite similar land use (Lefebvre et al., 2007; Schilling et al., 

2013; Abbott et al., 2018a; Bol et al., 2018; Casquin et al., 2020). This relationship breakdown 

between nutrient flux and catchment characteristics emphasizes the need to better understand the 

nutrient sources, sinks, and pathways in headwater catchments, in which more than 90% of 

global stream length occurs (Bishop et al., 2008; Downing, 2012). At the same time, the sheer 

number of headwater streams makes continuous monitoring impractical, limiting the 

identification of nutrient sources at the scale where preventive actions could be most effective 

and tractable (Thomas et al., 2016; Abbott et al., 2018a; Dupas et al., 2018). 

The sampling frequency conundrum results from temporal variability in riverine water 

chemistry on event, seasonal, and interannual timescales (Abbott et al., 2018a; Zarnetske et al., 

2018). A significant share of the annual flux can be transported during just a few storm events, 

especially for phosphorus (P) and carbon (C; Johnes, 2007; Cassidy and Jordan, 2011; Kirchner 

and Neal, 2013; Lloyd et al., 2015; Shogren et al., 2020). Though there are fewer observations 

from small streams due to the headwater conundrum, variability in water chemistry may be even 

greater in “flashy” headwaters compared to mesoscale rivers (Abbott et al., 2018a). To reveal 

nutrient dynamics and identify their potential sources within catchments, current monitoring 

networks conduct temporally intensive or sometimes nearly continuous sampling at selected 

locations (Bowes et al., 2015; Rode et al., 2016; Bieroza et al., 2018; Fovet et al., 2018; Yang et 

al., 2018). However, high-frequency sensors are often too expensive to be widely deployed, 

especially in developing countries where degraded water quality is most directly impacting 

public health (Crocker and Bartram, 2014; Landrigan et al., 2017). 

This vision is nevertheless changing. Informed by landscape ecology and catchment 

hydrology, recent studies (Abbott et al., 2018a; Dupas et al., 2019; Shogren et al., 2019; Frei et 

al., 2020; Weller and Jordon, 2020) quantified the spatiotemporal variability of water chemistry 

in headwater stream networks by infrequent synoptic sampling and found that the spatial patterns 

of the stream water chemistry were unexpectedly persistent on seasonal to decadal timescales 

(Abbott et al., 2018a; Dupas et al., 2019; Shogren et al., 2019). If this spatial persistence (SP) of 

water chemistry patterns through time is widespread, it could resolve the monitoring conundrums 

described above by allowing reliable characterization of nutrient concentrations or even fluxes 

with infrequent synoptic sampling. SP results from the interaction between the spatial variability 

of water chemistry among sites and the degree and synchronicity of temporal variations of water 

chemistry at each site. On the French national scale, for example, a single sampling was found to 

capture 88% of the spatial variability of NO3
- across ecoregions with different climate and land-

use conditions (Dupas et al., 2019). 

While SP of water chemistry could provide a shortcut to effective water-quality 

diagnoses, the current method to calculate SP requires more data than is available in many areas 

of the world (Bogena et al., 2018; Abbott et al., 2018a). SP is typically calculated from 

Spearman’s rank correlations between concentrations of individual sampling dates and long-term 
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concentration metrics such as the flow-weighted mean concentration, flux, or various quantiles 

(Abbott et al., 2018a; Dupas et al., 2019). For catchments with only infrequent observations, the 

calculations of these long-term metrics introduce substantial uncertainty. In this context, we 

developed a new method to calculate the SP in water chemistry, by pair-wise Spearman rank 

correlations among sampling dates. If robust, this approach could lead to more efficient and 

widely applicable monitoring approaches for quantifying and regulating water quality across 

spatial scales. We demonstrated this new method in an intensively cultivated mesoscale 

catchment (Yvel catchment, 375 km2) located in Brittany (western France), where we conducted 

repeated synoptic sampling of headwater subcatchments across flow conditions and seasons, 

with the main objectives to assess the seasonal variations in SP of water chemistry and to verify 

its controlling factors. 

2 Materials and Methods 

2.1 Site description and hydrochemical monitoring 

The Yvel catchment (375 km²) is drained by a 5th order river that discharges into the “Lac 

au Duc”, a 3 million m3 recreational and drinking water reservoir suffering from cyanobacteria 

blooms since the 1970s (ODEM, 2012). The mean discharge at the outlet of the catchment 

ranges from 0.52 L s-1 km-2 in August to 18.67 L s-1 km-2 in February. The climate is temperate 

oceanic with the average temperature ranging from 7.1°C in November and March to 17.1°C in 

July and September, and a mean annual precipitation averaging 777 mm of which approximately 

50% falls between November and March (1998-2017). The catchment has shallow soils, with 

70% of the catchment having soils less than 70 cm deep and the remaining 30% less than 1 m. 

Soils are luvisols in the north and brown soils in the rest of the catchment. The land use consists 

of 54% arable fields (maize and winter cereals), 21% grassland (mostly leys in rotation), 18% 

forest, and 6% urban area. A more detailed catchment description can be found in Casquin et al., 

(2020). 

We conducted repeated synoptic sampling from March 2018 to July 2019 approximately 

every 2 weeks (31 sampling dates in total) in 22 selected headwater subcatchments within the 

Yvel catchment (Figure 1). The 31 sampling dates covered all ten deciles of long-term discharge 

(1998-2017), i.e. they captured the full range of water flow in the Yvel catchment. The 22 

subcatchments were selected based on stream order (1-3), size (0.8 – 14.2 km2), accessibility, 

and representativeness of soil type/land use/topography in the whole Yvel catchment. These 22 

subcatchments represented 33.5% of the whole catchment area (See Table S1 for the detailed 

land use, soil properties, and topographic information). 

Water samples were collected with a PVC cup equipped with a long aluminum handle 

during high flows and with 50 ml syringes when the water level was low. We were careful to 

avoid artificial resuspension of river sediments during sampling. We selected sampling locations 

that were immediately upstream of roads and bridges and allowed access to the sites. We 

measured 16 common and ecologically relevant water quality parameters for all water samples, 

including different forms of P (soluble reactive phosphorus [SRP], total dissolved phosphorus 

[TDP], total phosphorus [TP], and particulate phosphorus [PP]), C species (dissolved organic 

carbon [DOC], dissolved inorganic carbon [DIC]), anions (NO3
-, NO2

-, F-, Br-, Cl-, SO4
2-), 

physicochemical parameters measured with in-situ sensors (pH, dissolved O2, conductivity), and 

specific ultraviolet absorbance at 254 nm (SUVA254). All water samples were filtered on site 
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after sampling, using cellulose acetate filters of 0.45 μm pore size for SRP and TDP, and 0.20 

μm pore size for C, anions, and SUVA254 analyses, respectively. All filters were rinsed with 20 

ml deionized water in the laboratory prior to use. An unfiltered subsample was collected for the 

analysis of TP. All samples were transported to the laboratory in a cooler and then refrigerated at 

4°C until analysis within 1 week. 

SRP was determined colorimetrically by direct reaction with ammonium molybdate 

(Murphy and Riley, 1962). The same method was used for TDP and TP but after digestion in 

acidic potassium persulfate. The precision of SRP, TDP, and TP measurements was ±4, ±13, ±13 

μg l−1, respectively. PP was calculated as TP minus TDP. DOC and DIC were analyzed with a 

total organic C analyzer (Shimadzu TOC-5050A; precision ±5%). SUVA254 values were 

calculated by dividing ultraviolet absorbance at 254 nm with the DOC concentration. Ultraviolet 

absorbance was measured with a Lambda 25 (PerkinElmer) spectrophotometer using deionized 

water as a blank. Anions were quantified by ion chromatography (DionexTMDX 100; precision 

±2.5%). Dissolved O2, pH, and conductivity were measured in situ by portable multiparameter 

probes (Multi 3430 SET F). Concentrations for most parameters were above their quantification 

limits during most sampling dates (Figure S1), except for NO2
-, whose concentrations were 

below the detection limit in approximately 25% of all nitrite samples. We assigned the value of 

half the limit of nitrite quantification (0.0076 mg l-1 in N) for those samples. 

2.2 Estimation of water quality metrics 

The SP metric indicates the persistence of the water chemistry pattern (i.e. relative spatial 

differences) through time. It is commonly calculated with the Spearman’s rank correlations 

between concentrations of individual sampling dates and long-term concentration metrics, which 

can introduce uncertainty in the estimation (Abbott et al., 2018a; Cassidy and Jordan, 2011; 

Dupas et al., 2019). To reduce the dependence on uncertain and often unavailable estimates of 

long-term metrics, we quantified SP by comparing the concentration rank of an individual 

sampling date with the concentration ranks of the other 30 sampling dates using Spearman’s rank 

correlation and then used the median value of the 30 correlation coefficients as the SP of this 

individual sampling date, as follows: 

SPpairs = median{𝑟𝑐𝑜𝑟𝑟(𝐶𝑡, 𝐶𝑡𝑖≠𝑡)}                                                                              (1) 

where the SPpairs at an individual sampling date (t) is the median value of the Spearman’s 

rank correlation coefficient (rcorr) between the concentrations of subcatchments at this sampling 

date (Ct) and the concentrations of the other 30 sampling dates ( 𝐶𝑡𝑖≠𝑡). 

An SP value of 1 indicates that the sampling date perfectly predicts the relative water 

chemistry across all sites for at least half of the whole monitoring period. A detailed time series 

of SP provides useful information about when synoptic sampling better represents the annual or 

long-term water quality at the catchment scale. 

At a mathematical level, three non-exclusive factors contribute to the SP of water 

chemistry: the spatial and temporal variance of water chemistry and the temporal synchrony of 

water chemistry among subcatchments (Figure 2). We quantified the spatial variability of water 

chemistry as the coefficient of variation (CV) of water chemistry at each date (hereafter referred 

to as Spatial CV): 

Spatial CV =  
𝜎𝑡

𝜇𝑡
                                                                                                             (2) 
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where t is the sampling date, σ the standard deviation, and µ the mean of concentrations 

at this date for all the sites. 

We quantified the temporal variability of water chemistry as the CV of water chemistry at 

each site (hereafter referred to as Temporal CV): 

Temporal CV =  
𝜎𝑠

𝜇𝑠
                                                                                                        (3) 

where s is the sampling site, σ the standard deviation, and µ the mean of concentrations at 

this site for all the dates. The temporal synchrony quantifies the similarity of subcatchments in 

response to changes in factors controlling stream water chemistry. We quantified the temporal 

synchrony among subcatchments for each parameter at each site with Spearman’s rank 

correlations between time series from pairs of subcatchments (22^2 pairs):  

Temporal synchrony = median{𝑟𝑐𝑜𝑟𝑟(𝐶𝑠, 𝐶𝑠𝑖
)}                                                       (4) 

where temporal synchrony of an individual site (s) is the median of the Spearman’s rank 

correlation (rcorr) coefficients between set of concentrations at this site and all the 22 

subcatchments (si). 

For a given water quality parameter, spatial CV and SPpairs were determined for each date 

while temporal CV and synchrony were determined for each site (Figure 2 and Eqs. 1-4). 

High SP of water chemistry could result from a much higher spatial CV among multiple 

sampling sites relative to the temporal CV of those sites (Hammond and Kolasa, 2014; McGuire 

et al., 2014; Botter et al., 2020). In this case, the curves representing time-series of 

concentrations cross less and the relative rank of concentrations would be preserved through time 

(Figure 2). High SP could also derive from high temporal synchrony among sampling sites. 

When water chemistry changes synchronously, the relative rank of concentrations would be 

more resilient to temporal concentration variations because concentrations move up and down 

together (Erlandsson et al., 2008; Abbott et al., 2018a; Dupas et al., 2019). 

2.3 Statistical analysis 

Following equations 1 and 2, we quantified the SPpairs and spatial CV for each sampling 

date for each parameter. We plotted SPpairs against time to reveal its seasonal variation (section 

3.1). 

We also calculated the SP by the original method (SPFWC, Abbott et al., 2018a), and made 

comparison with the SPpairs from the new method (section 3.1). 

The SPFWC is calculated as follows: 

SPFWC = 𝑟𝑐𝑜𝑟𝑟(𝐶𝑡, 𝐹𝑊𝐶)                                                                                              (5) 

where the SPFWC at an individual sampling date (t) is the Spearman’s rank correlation 

coefficient (rcorr) between the concentrations of subcatchments at this sampling date (Ct) and the 

flow-weighted mean concentrations (FWC) across the whole monitoring period. 

The FWC is calculated as follows: 

FWC =  
∑ 𝐶𝑡∗𝑄𝑡𝑡

∑ 𝑄𝑡𝑡
                                                                                                                (6) 
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where C is the concentration and Q the discharge at the catchment outlet at the sampling 

date (t). 

We correlated the FWC for each parameter at each subcatchments with the subcatchment 

characteristics (land use, topography, soil properties, etc), to identify potential landscape drivers 

of the stream water chemistry (section 3.2). 

We calculated the mean values of SPpairs, spatial CV, temporal CV, and temporal 

synchrony for each parameter and computed pairwise correlations to identify linkages among 

those parameters. Finally, we used a multiple linear regression (MLR) model to explain the 

direct influence of spatial and temporal CV and temporal synchrony on SPpairs (section 3.3). 

All statistical analyses were performed with R version 3.6.1 (R Core Team, 2019). 

Correlations were considered significant at a confidence level of 0.05. We used the Akaike 

information criterion (AIC) to select the variables to be included in the final model, the model 

having the lowest AIC being the best model. 

3 Results 

3.1 Variations of spatial persistence across seasons and flow conditions 

The SPpairs was high for most parameters with values ranging from 0.60 to 0.90 for most 

sampling dates (Figures 3, S2), despite large changes in concentration during the studied period 

(Figure S1). DOC, F-, O2, and SUVA254 had relatively low and variable SPpairs, with average 

values between 0.40-0.52 as compared with 0.63-0.86 for the other parameters (Table 1). SPpairs 

was lower in the summer dry season than in the winter wet season when SPpairs was consistently 

high. This strong seasonality of SPpairs was true for most parameters, except F- and O2 whose 

SPpairs showed no seasonal signal during the study period. This seasonality of SPpairs was more 

pronounced for DOC than other parameters (Figures 3, S2). 

The seasonality in SPFWC was similar as for SPpairs, but was higher in the wet season when 

most values ranged between 0.7-1.0 and decreased more rapidly in the dry season than SPpairs 

(Figure S3). This difference was further confirmed by the higher mean values and standard 

deviations of SPFWC than SPpairs for most parameters (Table 1, Figure S4). SPpairs was strongly 

correlated with SPFWC for all parameters, with Pearson correlation coefficients ranging between 

0.69-0.98 (Figure S5).  

3.2 Spatiotemporal variations of water chemistry and the influence from catchment 

characteristics 

Spatial CV was substantially higher for all forms of C, N, and P, as well as for F- and 

SO4
2- during most sampling dates (Figure S6), with average values ranging between 0.34-0.85, 

than for the other parameters (ranging between 0.07-0.27, Table 1). For the different forms of N 

and P and for SO4
2-, spatial CV exhibited a marked seasonality with higher values in the dry 

season than that in the wet season (Figure S6). Similar to spatial CV, temporal CV was 

substantially higher for different forms of C, N, and P, as well as for F- and SO4
2- (Figure S6), 

with average values ranging between 0.27-0.77, than for the other parameters (ranging between 

0.09-0.16, Table 1). Temporal synchrony varied greatly among parameters, from 0.32 for pH to 

0.88 for O2 (Table 1, Figure S6). 
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For all water quality parameters except DOC, PP, F-, and O2, the temporal CV was lower 

than the spatial CV, with ratios ranging between 0.47–0.98, with the lowest values for SRP. For 

DOC, PP, F- and O2, the ratios ranged between 1.01–1.56 and their SPpairs were generally lower 

than the other parameters. 

Even though the studied subcatchments had highly diverse land properties and land use 

characteristics (Table S1), the relationships between these characteristics and the FWC values of 

monitored water parameters were typically weak with non-significant or low correlations (│r│ < 

0.6) (Figure S7). For different forms of C, N, and P, the strongest correlation appeared between 

the proportion of arable fields and NO3
- (r = 0.85). Land use composition, such as proportions of 

wetland, cultivated wetland, and pasture, had no relationship with most parameters. Mean soil 

depth and slope degree, together with proportions of Luvisols and forest were negatively 

correlated with FWC for most parameters. The other subcatchment landscape metrics, including 

proportions of arable land, winter crops, brown soil, and artificial drainage, all showed positive 

relationships with FWC for most parameters (Figure S7). 

3.3 Controls of spatial persistence in water chemistry 

Among parameters, SPpairs was unrelated to spatial and temporal CV and temporal 

synchrony (p >0.26, Figure 4), demonstrating that the SPpairs could not be determined simply by 

the overall magnitude of temporal and spatial variance or the synchrony of water chemistry 

variations among subcatchments. Similarly, temporal synchrony was not related to spatial or 

temporal CV (p >0.89, Figure 4), suggesting the independence of water chemistry synchrony 

among subcatchments with magnitude of water chemistry temporal and spatial variance. 

Temporal CV was positively correlated with spatial CV (p <0.001, Figure 4). The temporal CV 

was generally lower than spatial CV, as the ratio of temporal CV/spatial CV was smaller than 1 

for 12 out of 16 parameters (Table 1, Figure 5). 

The MLR model showed a good prediction of SP by a single predictor: the ratio of 

temporal CV/spatial CV, which explained 70% of the variance of SPpairs (Figure 5a, AIC = -

77.4). The performance of the MLR model was slightly improved by adding the temporal 

synchrony as the second predictor, with the variance of SPpairs explained increasing to 74% 

(Figure 5b, AIC = -78.1).  

4 Discussion 

4.1 Spatial persistence of water chemistry across seasons and flow conditions 

In an effort to improve characterization of pollution sources in mesoscale catchments (i.e. 

100-1000 km2), we developed a new method to quantify the SP of water chemistry. The results 

demonstrated the value of occasional synoptic sampling in characterizing long-term water 

chemistry, with an average SP of 0.68 among parameters during the study period and values 

higher for crucial water quality parameters including N and P species (Table 1). The SP values 

calculated from the new method (SPpairs) are similar to those obtained using the original method 

(SPFWC), but their standard deviations were smaller and the method does not depend on the 

estimation of the long-term concentration or flux metrics, which are often uncertain or 

unavailable. This approach thus increases the ease, precision, and applicability of this method to 

characterize the spatiotemporal behavior of water chemistry. The high SP found for parameters 

like TDP, SRP, and NO3
- in the present study are consistent with previous research on the spatial 
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patterns of water chemistry at seasonal to decadal timescales across ecoregions (Abbott et al., 

2018a; Dupas et al., 2019; Shogren et al., 2019; Frei et al., 2020). The current study builds on 

this previous work by highlighting the mechanisms creating these persistent spatial patterns, and 

by revealing the influence of seasons and flow conditions on the SP of the 16 parameters studied. 

We found that the SPpairs is consistently high during the high-flow winter period (except 

for occasional storm events) but is low and more variable during the low-flow summer period for 

most parameters (Figures 3, S2). Three non-exclusive factors could explain the lower and more 

variable SPpairs during the low-flow period. First, fluctuations of solute sources that determine the 

chemistry of the water discharged into the stream network. For example, the drawdown of the 

groundwater level is known to disconnect the stream from the shallow groundwater that drains 

the upland cultivated soils, switching the source of nutrients from cultivated soils to riparian 

wetlands and deep groundwater (Abbott et al., 2016; Gu et al., 2017; Li et al., 2021). This source 

fluctuation could create variability in stream water chemistry that could differ among parameters 

because shallow groundwater in this region is known for example to be enriched in NO3
-, unlike 

riparian wetlands and deep groundwater which are mostly denitrified (Aubert et al., 2013; Abbott 

et al., 2018b; Kolbe et al., 2019). Second, the increasing importance of riparian and/or in-stream 

biogeochemical processes during the low-flow season could contribute to spatial instability in 

water chemistry patterns (Moatar et al., 2017). Decreased discharge increases residence time of 

solutes in different components of the stream network (e.g. riparian wetlands and hyporheic 

zones), while simultaneously decreases mass flux, thus increasing the exposure time to 

biogeochemical transformations and capacity for the in-stream and hyporheic community to 

modify concentrations and fluxes (Pinay et al., 2015; Wollheim et al., 2018; Kolbe et al., 2019; 

Casquin et al., 2020). A recent study on the concentration-discharge relationship in stream water 

supported this hypothesis, finding a dominant biogeochemical control on the concentration-

discharge slope when the discharge is below the median discharge (Moatar et al., 2017). The 

biogeochemical alteration of solutes could create variability unrelated to source fluctuations, 

which could explain why SP was low during this period of time for biologically reactive 

parameters, such as DOC (Figure 3; McGuire et al. 2014; Casas-Ruiz et al., 2017; Dong et al. 

2017; Harjung et al., 2018). Third, the increasing importance of point source contribution during 

low flow. Point sources, such as leaking septic tanks, animal farming buildings, and wastewater 

treatment plants, are heterogeneously distributed in the landscape. Their influence on the annual 

loads may be small but may dominate the stream water chemistry at low flow, especially for 

elements enriched in those point source discharges like SRP, DOC, Cl-, etc (Withers et al., 

2014b; Richards et al., 2016; Casquin et al., 2020). 

During the high-flow winter period, the connectivity between solute sources in hillslopes 

and the stream network is high, leading to strong correlation between catchment solute sources 

and observed stream water chemistry (Raymond et al., 2016; Covino, 2017; Pinay et al., 2018). 

This creates high SP of water chemistry during this period. However, the hypothesis that the 

hydrological flux overwhelms biological factors during the high-flow period (Raymond et al., 

2016; Moatar et al., 2017; Zarnetske et al., 2018) could differ among parameters, based on the 

timing of the drop in SP. The SP of more biologically reactive parameters (i.e. SRP, NO3
-, and 

DOC) decreased earlier than less reactive parameters (i.e. TDP, PP, and DIC) (Figure 3), which 

showed spatial reorganization as discharge dereased. These seasonally-lagged spatial 

rearrangements in chemistry suggest parameter-specific dynamics, potentially associated with 

stoichiometrically-regulated biological uptake and release, or complex multi-flowpath sources 

(Helton et al., 2015; Casquin et al., 2020; Frei et al., 2020; Lannergård et al., 2020). 
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4.2 Controls on the observed spatial persistence of water chemistry 

We found that the high SPpairs for most parameters in the present study resulted from the 

combined contribution of the spatiotemporal variations in water chemistry and subcatchment 

synchrony, with 74% of its variance explained by the combined effects of the ratio between 

temporal and spatial CV, and temporal synchrony (Figure 5). However, the MLR indicated that 

SPpairs is primarily controlled by the ratios between temporal and spatial CV (explained variance: 

70%), in contrast with the weak influence of temporal synchrony alone (explained variance: 4%). 

The larger variation in concentration among subcatchments at each date relative to the smaller 

temporal concentration variations at each site make the SPpairs relatively independent of 

subcatchment synchrony, in line with previous findings (Dupas et al., 2019). 

The pairwise correlations of SPpairs, spatial and temporal CV, and temporal synchrony for 

the 16 investigated parameters showed positive and significant correlations only between spatial 

CV and temporal CV (r2 = 0.7; Figure 4), which has not been observed in previous studies 

(Abbott et al., 2018a; Dupas et al., 2019; Shogren et al., 2019). One possible explanation is that 

the agricultural land use in a catchment is not randomly distributed but inherently determined by 

catchment characteristics such as geology, soil type, and topography (Odgaard et al., 2013; Zabel 

et al., 2014; Thomas et al., 2016). For example, steep hillslopes are not well suited for 

agricultural cultivation and are more likely to remain undisturbed (e.g. forest), leading to a 

negative relationship between mean slope and FWC for most parameters (Figures S7, S8). 

Conversely, brown soil makes good agricultural land due to high fertility and active soil fauna, 

resulting in the positive relationships between brown soil and FWC for most parameters (Figure 

S7). This human-mediated linkage between catchment attributes and water quality parameters 

appears widespread in the Anthropocene. Subcatchments with different agricultural land use will 

have different initial resilience to solute loading, though the nonrandom distribution of human 

disturbance can offset or nullify this initial template (Thomas et al., 2016; Frei et al., 2020), thus 

creating a land use-driven linkage between the spatial and temporal variations in water 

chemistry. Another possible explanation is that sources of anthropogenic solutes (N and P) are 

concentrated near the soil surface where they are applied (Sebilo et al., 2013; Van Meter et al., 

2016; Abbott et al., 2018b; Botter et al., 2020), generating large vertical gradients of N and P 

content in the soil profile and vadose zone. Additionally, sources of these solutes are also 

spatially variable because the degree of agricultural intensification varies across the gradient 

from 100% forest to 100% agriculture. With the changes in water flowpath on seasonal scales 

(wet vs. dry seasons) or on event scales (stormflow vs. baseflow), the convolution of high 

vertical variation with the large lateral variability could result in the high spatial and temporal 

CV of these solutes in stream water (e.g. all forms of N and P, Table 1). On the contrary, 

geogenic solute sources are more evenly distributed vertically and spatially, resulting in both low 

spatial and temporal CV for these solutes (Godsey et al., 2009). 

4.3 Implications for improved characterization of water chemistry 

By using pairwise rank correlations among sampling dates, the new method to quantify 

SP developed in the present study avoids using metrics calculated from medium-frequency 

monitoring datasets, which usually introduce large uncertainties (Cassidy and Jordan, 2011; 

Lloyd et al., 2015; Skeffington et al., 2015). An important finding of the present study is that a 

synoptic sampling during the high-flow season increases the representativeness of monitoring on 

the long-term spatial structure of water chemistry. If this pattern applies in other ecosystem types 
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and land-use regimes, this will be of great practical importance for regions of the world with low 

density of monitoring networks and low frequency of monitoring, especially in developing 

countries where the water quality is degrading rapidly (Seitzinger et al., 2010; Crocker and 

Bartram, 2014). An implication of our findings is that specific monitoring campaigns should be 

done during low-flow periods, when spatial persistence is lower and nutrient sources are 

probably not the same as high-flow periods. In many regions, the symptoms of eutrophication 

such as cyanobacteria blooms and dead zones occur most frequently and intensely during periods 

of low flow. Likewise, human use of surface and groundwater is often higher during these 

periods, requiring additional monitoring and mitigation to avoid societal damages (Abbott et al., 

2019). 

Thus far, relatively high spatial persistence of nutrients and major ions has been observed 

in temperate oceanic ecoregions (Abbot et al., 2018a; this study; Frei et al., 2020), various other 

temperate ecoregions (Dupas et al., 2019; Weller and Jordan, 2020), and in the Boreal and Arctic 

(Temnerud et al., 2005; Shogren et al., 2019). Additional research is needed in other ecoregions, 

including arid, semi-arid, and wet/dry and wet tropics where most developing countries are 

located. Additionally, the current study confirmed the applicability of the SP concept to a broad 

suite of water quality parameters (including conductivity, pH, SUVA254, etc.), suggesting the 

potential utility of this metric in characterizing spatial patterns of other crucial parameters of 

concern, such as suspended sediments, and emerging contaminants (e.g. pharmaceuticals, 

microplastics, and other novel micropollutants). We assessed the sensitivity of SPpairs to the 

number of sampling campaigns (Figure 6), by calculating the SPpairs with decreasing number of 

randomly selected sampling campaigns (out of the 31 samplings). According to our sensitivity 

analysis, verifying the SPpairs for new water quality parameters or in a different ecoregion would 

need 7 to 14 sampling dates (Figure 6). Once a high SPpairs is verified for a parameter of concern 

in a given context, it allows fast identification of source and sink subcatchments, as only one 

synoptic sampling can be representative of the long-term spatial structure of water chemistry 

(Abbot et al., 2018a; Dupas et al., 2019; this study). 

Another important finding of the present study is that the spatial variability of a given 

parameter is correlated with its temporal variability (Figure 4). Trading “space for time” is a 

common method in hydrology and is a potentially crucial tool to advance water quality 

understanding and modelling (Singh et al., 2011). For example, a recent study has tried to draw 

guidelines on recommending sampling frequency as a function of temporal variability of the 

parameters of concern (e.g. TP, NO3
-, and DOC) (Moatar et al., 2020). Thus, an interesting 

application of the present work would be to draw guidelines on sampling spatial density 

depending on the spatial variability and SP of the parameters of concern. Our findings have 

different implications for the monitoring of different water chemistry parameters. For parameters 

with a relatively high SPpairs and a spatial CV higher than temporal CV (e.g. all forms of N and P, 

Table 1), the influence of spatial heterogeneity on the overall variability of those parameters will 

be greater than the influence of temporal variation magnitude. A sampling strategy with higher 

spatial intensity but lower frequency will be sufficient to account for the variations of these 

parameters and provide adequate information about catchment-scale source identification. On the 

contrary, for parameters such as DOC, F-, and O2 that had a poor SPpairs and a spatial CV lower 

than temporal CV (Table 1), a sampling strategy with higher frequency at a certain spatial 

intensity would be more appropriate to account for the variations of these parameters. Overall, 

the present study could contribute to increasing the efficiency of management efforts, by 
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optimizing the sampling strategy of the water quality parameters that are of greater ecological 

concern. 

5 Conclusions 

We developed a new method to quantify the spatial persistence of water chemistry to 

reduce the dependence on the uncertain estimation of long-term metrics. The test of this method 

in a mesoscale catchment resulted in high SP values for most parameters, confirming the value of 

an occasional synoptic sampling in representing the spatial structure of water chemistry during a 

certain period for a broad suite of parameters. Spatial persistence of water chemistry varied 

seasonally for most of the parameters studied, being consistently high during the high-flow 

winter period and was low and variable during the low-flow summer period. Among variables, 

we found that the spatial persistence was ultimately controlled by the ratio between temporal and 

spatial CV with a weak influence from temporal synchrony. Overall, the seasonal pattern in 

spatial persistence of water chemistry revealed that a synoptic sampling during the high-flow 

season will better represent the long-term spatial structure of water chemistry, potentially 

contributing to the development of monitoring and management measures with higher efficiency, 

especially for developing countries. 
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Figure Captions: 

Figure 1. Hydrographic network and sampling points in the Yvel catchment. Hatched areas 

show the monitored headwater subcatchments. Discharge was measured at the white dot, near 

the Yvel catchment outlet. 

Figure 2. Conceptual diagram of how water chemistry could vary through space and time. Each 

plane represents an individual sampling date. Dots on the plane represent the sampling sites, 

which have a variety of catchment areas and solute concentrations. Colored dots linked by lines 

represent the concentration time-series for a specific sampling site. High spatial persistence of 

water chemistry could result from a much higher spatial CV than the temporal CV, or from high 

temporal synchrony among subcatchments (i.e. concentrations move up and down 

synchronously). The diagram was inspired by Hammond and Kolasa (2014). 

Figure 3. Time series of the spatial persistence (SPpairs) for (a) total dissolved P (TDP), soluble 

reactive P (SRP), dissolved organic C (DOC), nitrate (NO3
-), and (b) total P (TP), particulate P 

(PP), dissolved inorganic C (DIC) and nitrite (NO2
-). (c) Daily discharge at the Yvel gauging 

station and dates of sampling (red dots). See Fig. S1 for the same information for the other 8 

analyzed parameters. 

Figure 4. Pairwise comparison among spatial persistence (SPpairs), spatial and temporal 

coefficient of variation (CV), and temporal synchrony (average per parameter). Error bars 

represent ± standard deviation. 

Figure 5. Spatial persistence (average per parameter) as a function of (a) temporal CV/spatial 

CV (TCV/SCV) and (b) the multiple linear regression predictions based on TCV/SCV and 

temporal synchrony. 

Figure 6. Sensitivity of mean spatial persistence to the number of sampling dates for three 

parameters with low (DOC), high (TDP) and very high (NO3
-) spatial persistence. (a) Values of 

mean SPpairs for 500 random draws given the number of sampling dates (dots). The green dashed 

lines represent the mean SPpair computed on all the dates (same as Table 1) and the green ribbons 

represent an interval of +/- 0.1 around this value. (b) Proportions of values of SPpairs that fall 

within this interval according to the number of sampled dates. Blue dashed lines indicate the 

minimum number of dates to sample to have 90% of the SPpairs within this +/- 0.1 interval. 
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Table: 

Table 1. Mean (standard deviation) of spatial persistence (SPpairs) and spatial CV (SCV) (mean 

of all dates), and of temporal CV (TCV) and temporal synchrony (Syn) (mean of all sites) for 

each parameter. SPFWC is the SP calculated from flow-weighted mean concentration. 

 

 SPpairs SCV TCV Syn TCV/SCV SPFWC 

TDP 0.71 (0.11) 0.79 (0.35) 0.47 (0.14) 0.59 (0.10) 0.60 0.78 (0.18)  

SRP 0.74 (0.11) 0.85 (0.41) 0.40 (0.20) 0.64 (0.13) 0.47 0.82 (0.15) 

DOC 0.46 (0.17) 0.34 (0.08) 0.39 (0.12) 0.59 (0.11) 1.13 0.58 (0.33) 

NO3
- 0.80 (0.10) 0.64 (0.11) 0.41 (0.19) 0.60 (0.17) 0.64 0.83 (0.17) 

TP 0.76 (0.11) 0.67 (0.24) 0.51 (0.14) 0.59 (0.12) 0.76 0.81 (0.14) 

PP 0.63 (0.14) 0.76 (0.20) 0.77 (0.25) 0.38 (0.09) 1.01 0.73 (0.19) 

DIC 0.79 (0.10) 0.47 (0.06) 0.37 (0.21) 0.64 (0.16) 0.78 0.85 (0.15) 

NO2
- 0.78 (0.12) 0.55 (0.27) 0.53 (0.28) 0.70 (0.17) 0.98 0.83 (0.17) 

F- 0.43 (0.18) 0.40 (0.21) 0.52 (0.23) 0.57 (0.06) 1.30 0.60 (0.25) 

Br- 0.71 (0.16) 0.16 (0.03) 0.14 (0.05) 0.57 (0.15) 0.85 0.78 (0.22) 

Cl- 0.80 (0.09) 0.15 (0.04) 0.09 (0.03) 0.53 (0.15) 0.60 0.85 (0.12) 

SO4
2- 0.76 (0.16) 0.38 (0.08) 0.27 (0.10) 0.66 (0.17) 0.70 0.82 (0.17) 

pH 0.68 (0.23) 0.08 (0.02) 0.05 (0.03) 0.33 (0.24) 0.57 0.69 (0.20) 

O2 0.40 (0.11) 0.07 (0.04) 0.11 (0.03) 0.90 (0.07) 1.56 0.58 (0.21) 

Cond. 0.86 (0.16) 0.27 (0.04) 0.13 (0.05) 0.46 (0.13) 0.50 0.87 (0.17) 

SUVA254 0.52 (0.23) 0.19 (0.05) 0.16 (0.06) 0.46 (0.27) 0.87 0.66 (0.29) 

mean (sd) 0.68 (0.15) 0.42 (0.26) 0.33 (0.21) 0.58 (0.13) 0.83 (0.30) 0.76 (0.10) 
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