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Additional Supporting Information (Files uploaded separately)

1. Caption for Figure S1. Reproduction of previously published results. Extension of a

crust with plastic strain softening as in Huismans and Beaumont (2007). The ’symmetric

plus mode’ and ’asymmetric plug mode’ have been reproduced with either V-E-P or

V-E-VP rheological models. Strictly symmetric initial and boundary conditions lead to

symmetric deformation (A, C). The introduction of non-symmetric initial condition (here,

random noise on initial Lagrangian marker locations) was necessary a condition to model

asymmetric extension (B, D). The reader is referred to the original publication for model

parameters (Huismans and Beaumont, 2007).

2. Caption for Figure S2. Effect of the viscoplastic regularisation viscosity on the style

of extension. A too large viscosity leads to large overstress and prevents from the occur-

rence of asymmetric extension (A). The ’Asymmetric plug mode’ extension is recovered

for sufficiently small regularisation viscosity. Models were all run with initial random

noise. The reader is referred to the original publication for model parameters (Huismans

and Beaumont, 2007).

3. Caption for Figure S3. Magnitudes of viscoplastic overstress during extension. Panel

a) shows a model with a linear viscoplastic rheology (nvp = 1.0) and reference overstress

of 2 × 105 Pa. The local magnitude of overstress is larger than 30 MPa and asymmetric

extension does not take place (panel A). For a similar reference overstress but a non-linear

viscoplastic model (nvp = 1.5), the local magnitude of overstress is lower than 20 MPa

and asymmetric extension is recovered (panel B). Alternatively, asymmetric extension can
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also be recovered with a linear viscoplastic model if the reference overstress is sufficiently

decreased (panel C), leading to a reduction of the local value of overstress (< 30 MPa).

4. Caption for Figure S4. This flowchart describes the implementation of a non-linear

Visco-Elasto-Viscoplastic code. Implementation details of local iterations routines are

documented in the main text and made available in the appended Code

5. Caption for Figure S5. A comparison of lithospheric models in extension and com-

pression. Panels A) and D) correspond to model that are fully converged and use a

V-E-VP rheology. Panels B) and E) correspond to V-E-VP models in which only one

global iteration was used. Panels B) and E) correspond to V-E-P model in which only

one global iteration was used. The black lines indicate the location of the Moho. The

white line is the 1.8 accumulated strain contour.

6. Caption for Figure S6. An illustration of the checkerboard-style shear banding pat-

terns obtained for low reference overstress values. These models were run with M2Di and

are based on those presented in Fig. 3 of the main article file. Model results are depicted

after 100 steps of ∆t = 4× 1011 s.

7. Caption for Figure S7. Example of results of 0D V-E-VP calculations using the

appended Julia language script. The upper panels correspond to the evolution of the

second deviatoric stress invariant, the middle panel corresponds the pressure and the

lower panels shows the norm of the difference between the consistent tangent operators

derived using the effective viscosity approach (Appendix A) and the finite-step consistent

tangent linearisation (Appendix B). The two cases (A ,B) can reproduced by changing

the value of the TrialModel and PlastModel variables
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8. Effect of different linearisation schemes on non-linear convergence using the test case

Test 1 of Duretz et al. (2018). Panel A shows the convergence behaviour of momentum

equation for Picard, Continuum tangent, Consistent tangent (Cons. Tangent) and Newton

linearisaton of the effective viscosity approach (EVA Newton) that are derived in the

Appendix. Picard linearisation necessitates several hundreds of iterations to converge

this step. EVA Newton and Cons. Tangent have a similar behaviour. Panel B shows

the total number of iterations required for each linearisation scheme. Panel C shows the

evolution of the second deviatoric stress invariant - the different approaches yield similar

results. For all cases, a line search procedure was used to optimize the convergence of

global iterations (e.g., Duretz et al, 2018).

9. Effect of global momentum iterations on the results of numerical models of shear

banding using Test 1 of Duretz et al. (2018). Left panels shows shear banding pattern

after 34 steps for converged (upper) and non-converged (bottom) cases. Similarly, the

right panels correspond to Test 1 including viscoplastic regularisation (ηvp = 4 × 1018

Pa.s). The colormaps correspond to the pressure field in MPa and the black lines are

isocontour of accumulated strain (εacc = 10−2.6). Models that reached machine precision

force equilibrium (lower panels) are characterised depict more intense strain localisation

thus a longer extent of shear bands at a given time. Model results were depicted at time

steps number 34.

10. Caption for Figure S10. Effect of bulk elasticity and plastic dilatancy on shear

banding based on Test 1 of Duretz et al. (2018). The upper left panel correspond to

the reference model (V-E-P). The simulation presented in the upper right panel includes

viscoplastic regularisation (V-E-VP, ηvp = 4×1018 Pa.s). The lower left panel accounts for
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zero dilatancy (plastic incompressibility, ψ = 0). The lower right is strictly incompressible

(ψ = 0 and K → inf), hence both effects of bulk elasticity and plastic dilatancy are

neglected. The colormaps correspond to the pressure field in MPa and the black lines are

isocontour of accumulated strain (εacc = 10−2.6). It is clear that both elastic and plastic

incompressibility promote strain localisation. Model results were depicted at time steps

number 34.

11. Caption for Figure S11. Effect of bulk elasticity and plastic dilatancy on the global

convergence behaviour. Simulations were based on Test 1 of Duretz et al. (2018). The

upper panel (A) shows the convergence behaviour of the V-E-P (reference), V-E-VP, V-E-

VP with zero dilatancy and V-E-VP incompressible at time steps number 34. The middle

panel (B) shows the number of iteration (Newton EVA) needed to fully converge each step.

The incompressible case can lead to large iteration counts (step 26 and 34) has also seen

in panel A. The lower panel (C) shows the evolution of the mean second deviatoric stress

invariant for the 4 models. Models that include bulk elasticity and dilatancy exhibit a

slight apparent hardening (V-E-P and V-E-VP) during shear banding. The incompressible

model (V-E-VP incomp.) exhibit no hardening and the model with bulk elasticity and no

dilatancy (V-E-VP - ψ = 0) exhibit a slight apparent softening

12. Caption for Code S1. This script allows to compute a Visco-Elasto-Viscoplastic

stress loading. The two local iterative procedures described in the main article file are

implemented. Both linear and non-linear rheological models are available for both the

predictor (visco-elastic) and corrector (viscoplastic). The tangent operators based either

on the Newton linearisation of the effective viscosity approach (Appendix A) or the finite-
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step consistent tangent linearisation (Appendix B) are also evaluated. This code is written

in Julia language.

Introduction This files contains the following informations: (1) the results of benchmark

test against previously published results (Figure S1, S2, S3), (2) details regarding the

implementation of the rheological models described in the main text (Figure S4 and Code

S5), (3) a comparison of V-E-VP and V-E-P using a lithospheric deformation model, (4)

an illustration of the checkerboard pattern that can be obtained at very low value of

reference overstress.

Figure S1.

Figure S2.

Figure S3.

Figure S4.

Figure S5.

Figure S6.

Figure S7.

Figure S8.

Figure S9.

Figure S10.

Figure S11.

Code S1.
# This is written in Julia language

iimport Plots

using LinearAlgebra

global const R = 8.3145 # Gas constant

######### Local rheological procedure: non-linear visco-elastic predictor #########

function LocalIterationsTrial(Eiid,etae,A,n,Q,T)

# Setup initial guess

eta_ve = etae

eta0 = A^(-1/n)*exp(Q/n/R/T) # Pre-exponential term, here I’ve included Aarhenius term. In practice, all other guys should appear there (grain size, water fugacity, experimental correction term, etc...)

Cv = (2*eta0)^(-n)

# Newton iterations

for iter=1:100

Tii = 2*eta_ve*Eiid

Eiidv = Cv*Tii^n

f = Eiid - Tii/2/etae - Eiidv
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dfdeta =-Eiid/etae - n*Eiidv/eta_ve

eta_ve -= f/dfdeta

println("Visco-elastic trial: ", iter, " --- f = ", abs(f)/Eiid)

if abs(f)/Eiid<1e-13; break; end

end

return eta_ve

end

######### Local rheological procedure: non-linear viscoplastic corrector #########

function LocalIterationsPlast(Eiidd,eta_ve,eta_vp0,n_vp,phi,psi,K,C,F_trial,P,Tii,dt)

# Setup initial guess

Tiic = Tii

Pc = P

F = F_trial

lamdot = F_trial/(eta_ve + K*dt*sin(psi)*sin(phi) + eta_vp0*Eiidd^(1/n_vp-1))

eta_vp = eta_vp0*abs(lamdot)^(1/n_vp-1)

# Newton iterations

for iter=1:100

eta_vp = eta_vp0*abs(lamdot)^(1/n_vp-1)

Pc = P + K*dt*lamdot*sin(psi)

Tiic = Tii - eta_ve*lamdot

F = Tiic - Pc*sin(phi) - C*cos(phi) - eta_vp*lamdot

dFdlam =-K*dt*sin(psi)*sin(phi) - eta_vp/n_vp - eta_ve

lamdot -= F/dFdlam

println("Viscoplastic corr.: ", iter, " --- F = ", F/F_trial)

if abs(F)/F_trial<1e-13; break; end

end

return lamdot, Tiic, Pc, F, eta_vp

end

function PartialDerivativeTrialViscosity(Txx,Tyy,Tzz,Txy,Tii,Exxd,Eyyd,Ezzd,Exyd,Eiid,eta_ve,A,Q,n,R,T)

# 1.0: Visco-elastic trial

Jii = Tii^2;

eta0 = A^(-1/n)*exp(Q/n/R/T) # Pre-exponential term, here I’ve included Aarhenius term. In practice, all other guys should appear there (grain size, water fugacity, experimental correction term, etc...)

Cv = (2*eta0)^(-n)

detadTxx = -1.0*Cv*Jii.^(n/2 - 3/2)*Txx.*eta_ve^2*(n - 1)

detadTyy = -1.0*Cv*Jii.^(n/2 - 3/2)*Tyy.*eta_ve^2*(n - 1)

detadTzz = -1.0*Cv*Jii.^(n/2 - 3/2)*Tzz.*eta_ve^2*(n - 1)

detadTxy = -2.0*Cv*Jii.^(n/2 - 3/2)*Txy.*eta_ve^2*(n - 1)

deta_ve_dExx = detadTxx * 2*eta_ve / (1 - 2*(detadTxx.*Exxd + detadTyy.*Eyyd + detadTxy.*Exyd + detadTzz.*Ezzd));

deta_ve_dEyy = detadTyy * 2*eta_ve / (1 - 2*(detadTxx.*Exxd + detadTyy.*Eyyd + detadTxy.*Exyd + detadTzz.*Ezzd));

deta_ve_dExy = detadTxy * 2*eta_ve / (1 - 2*(detadTxx.*Exxd + detadTyy.*Eyyd + detadTxy.*Exyd + detadTzz.*Ezzd));

deta_ve_dEzz = detadTzz * 2*eta_ve / (1 - 2*(detadTxx.*Exxd + detadTyy.*Eyyd + detadTxy.*Exyd + detadTzz.*Ezzd));

deta_ve_dP = zeros(size(Txx));

dDvedE = [deta_ve_dExx; deta_ve_dEyy; deta_ve_dEzz; deta_ve_dExy; 0];

return dDvedE

end

######### Consistent tangent: effective viscosity formulation after appendix A #########

function ConsistentTangentEVA(Txx,Tyy,Tzz,Txy,Tii,Exxd,Eyyd,Ezzd,Exyd,Eiid,eta_ve,dDvedE,eta_vp,n_vp,phi,psi,K,dt,lamdot,plastic)

eta = Tii/2/Eiid

Jii = Tii^2;

deta_ve_dExx = dDvedE[1]; deta_ve_dEyy = dDvedE[2]; deta_ve_dEzz = dDvedE[3]; deta_ve_dExy = dDvedE[4];

# 2.0: Viscoplastic corrector

if plastic == 1

# dFdE

dFdExx = Exxd.*eta_ve./Eiid + 2*Eiid.*deta_ve_dExx

dFdEyy = Eyyd.*eta_ve./Eiid + 2*Eiid.*deta_ve_dEyy

dFdExy = 2*Exyd.*eta_ve./Eiid + 2*Eiid.*deta_ve_dExy

dFdEzz = Ezzd.*eta_ve./Eiid + 2*Eiid.*deta_ve_dEzz

dFdP = -sin(phi);

# dlamdotdE

g = 1.0 / (eta_ve + eta_vp./n_vp + K.*dt.*sin(psi).*sin(phi) );

dlamdExx = g .* (dFdExx - lamdot .*deta_ve_dExx);

dlamdEyy = g .* (dFdEyy - lamdot .*deta_ve_dEyy);

dlamdExy = g .* (dFdExy - lamdot .*deta_ve_dExy);

dlamdEzz = g .* (dFdEzz - lamdot .*deta_ve_dEzz);

dlamdP = g .* (dFdP );

# deta_vp_dE

deta_vp_dExx = eta_vp./lamdot.*dlamdExx.*(1.0/n_vp-1);

deta_vp_dEyy = eta_vp./lamdot.*dlamdEyy.*(1.0/n_vp-1);

deta_vp_dExy = eta_vp./lamdot.*dlamdExy.*(1.0/n_vp-1);

deta_vp_dEzz = eta_vp./lamdot.*dlamdEzz.*(1.0/n_vp-1);

deta_vp_dP = eta_vp./lamdot.*dlamdP .*(1.0/n_vp-1);

# deta_vep_dE

a = eta_vp + K.*dt.*sin(psi).*sin(phi);

Tyield = Tii

deta_vep_dExx = -Exxd.*Tyield./(4*Eiid.^3) + (a.*dlamdExx + lamdot.*deta_vp_dExx)./(2*Eiid);

deta_vep_dEyy = -Eyyd.*Tyield./(4*Eiid.^3) + (a.*dlamdEyy + lamdot.*deta_vp_dEyy)./(2*Eiid);

deta_vep_dExy = -Exyd.*Tyield./(2*Eiid.^3) + (a.*dlamdExy + lamdot.*deta_vp_dExy)./(2*Eiid);

deta_vep_dEzz = -Ezzd.*Tyield./(4*Eiid.^3) + (a.*dlamdEzz + lamdot.*deta_vp_dEzz)./(2*Eiid);

deta_vep_dP = (sin(phi) + a.*dlamdP + lamdot.*deta_vp_dP )./(2*Eiid);

# ddivp

dQdP = -sin(psi)

ddivp_dExx = -dQdP.*dlamdExx

ddivp_dEyy = -dQdP.*dlamdEyy

ddivp_dExy = -dQdP.*dlamdExy

ddivp_dEzz = -dQdP.*dlamdEzz

ddivp_dP = -dQdP.*dlamdP

else

# Assume default values for VE case

deta_vep_dExx, deta_vep_dEyy, deta_vep_dEzz, deta_vep_dExy, deta_vep_dP = deta_ve_dExx, deta_ve_dEyy, deta_ve_dEzz, deta_ve_dExy, 0.0

ddivp_dExx, ddivp_dEyy, ddivp_dEzz, ddivp_dExy, ddivp_dP = 0.0, 0.0, 0.0, 0.0, 0.0

end

dP_ddiv = -K*dt

deta_vep_ddiv = deta_vep_dP * dP_ddiv

ddivp_ddiv = ddivp_dP * dP_ddiv

# ACHTUNG: here we use engineering strain rate:

Gxyd = 2*Exyd

# Therefore the 4th line is divided by 2

D_eva = [2*eta+2*deta_vep_dExx*Exxd 2*deta_vep_dEyy*Exxd 2*deta_vep_dEzz*Exxd 2*deta_vep_dExy*Exxd 2*deta_vep_ddiv*Exxd;

2*deta_vep_dExx*Eyyd 2*eta+2*deta_vep_dEyy*Eyyd 2*deta_vep_dEzz*Eyyd 2*deta_vep_dExy*Eyyd 2*deta_vep_ddiv*Eyyd;

2*deta_vep_dExx*Ezzd 2*deta_vep_dEyy*Ezzd 2*eta+2*deta_vep_dEzz*Ezzd 2*deta_vep_dExy*Ezzd 2*deta_vep_ddiv*Ezzd;

1*deta_vep_dExx*Gxyd 1*deta_vep_dEyy*Gxyd 1*deta_vep_dEzz*Gxyd 1*eta+1*deta_vep_dExy*Gxyd 1*deta_vep_ddiv*Gxyd;
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K*dt*ddivp_dExx K*dt*ddivp_dEyy K*dt*ddivp_dEzz K*dt*ddivp_dExy -K*dt*(1.0-ddivp_ddiv);]

return D_eva

end

######### Consistent tangent: finite-step formulation after appendix B #########

function ConsistentTangentCTL(Txx,Tyy,Tzz,Txy,Tii,Exxd,Eyyd,Ezzd,Exyd,Eiid,eta_ve,dDvedE,eta_vp,n_vp,phi,psi,K,dt,lamdot,plastic)

# First derivatives of plastic flow potential

dFdt = [0.5*Txx./Tii; 0.5*Tyy./Tii; 0.5*Tzz./Tii; Txy./Tii; -sin(phi);]

# First derivatives of yield function

dQdt = [0.5*Txx./Tii; 0.5*Tyy./Tii; 0.5*Tzz./Tii; Txy./Tii; sin(psi);]

# Second derivatives of plastic flow potential

I3 = Diagonal( [1/2; 1/2; 1/2; 1; 0] )

I4 = Diagonal( [1; 1; 1; 1; 0] )

d2Qdt2 = 1/Tii * ( I3 .- I4*(dQdt*dQdt’)*I4)

I = [ 1.0 0.0 0.0 0.0 0.0;

0.0 1.0 0.0 0.0 0.0;

0.0 0.0 1.0 0.0 0.0;

0.0 0.0 0.0 1.0 0.0;

0.0 0.0 0.0 0.0 1.0]

# ACHTUNG: here we use engineering strain rate: Gxy = 2*Exy

# Therefore the 4th line is divided by 2

Dve = [2*eta_ve 0 0 0 0;

0 2*eta_ve 0 0 0;

0 0 2*eta_ve 0 0;

0 0 0 1*eta_ve 0;

0 0 0 0 -K*dt]

# E matrix and its inverse

if plastic == 1

E = I + lamdot*Dve*d2Qdt2

else

lamdot = 0.0

E = I

end

Einv = inv(E)

# B Matrix, # ACHTUNG: here we use engineering strain rate: Gxy = 2*Exy

Ev = [Exxd; Eyyd; Ezzd; 2*Exyd; 0];

Ep = lamdot.*dQdt

B = 2*dDvedE*([1;1;1;1;0].*(Ev.-Ep))’

# Denominator of the consistent tangent

dFdlamdot = -eta_vp/n_vp # Here other terms will appear if softening is included

den = -dFdlamdot + dFdt’*Einv*Dve*dQdt

# Consistent tangent

D_ctl = Einv*B .+ Einv*Dve*( I - plastic*dQdt*dFdt’*Einv*(B .+ Dve)/den )

return D_ctl

end

######### MAIN #########

@views function main()

# Choose model type

TrialModel = "LinearViscoElasticity"

PlastModel = "LinearViscoPlasticity"

# TrialModel = "NonLinearViscoElasticity"

# PlastModel = "NonLinearViscoPlasticity"

# Material parameters

# a. Elasticity

G = 3e10 # Shear modulus [Pa]

K = 2e10 # Bulk modulus [Pa]

# b. Viscosity

etav = 1e23 # Viscosity used for "LinearViscoElasticity" [Pa.s]

A = 3.9811e-16 # Material parameter used for "NonLinearViscoElasticity" --- eta0 = A^(-1/n)

Q = 356e3 # Material parameter used for "NonLinearViscoElasticity"

n = 3.0

# c. Viscoplasticity

C = 40e6 # Cohesion [Pa]

phi = 30*pi/180 # Friction angle

psi = 5*pi/180 # Dilation angle

dS = 1e6 # Reference overstress [Pa]

n_vp = 2.0 # Power-law viscoplasticity exponent

# Loading conditions

# a. Total strain rate tensor components

Ebg = 1e-15 # Reference strain rate

exx = Ebg; # Normal strain rate [1/s]

eyy =-1.1*Ebg # Normal strain rate [1/s] - introduce some divergence

ezz = 0.0 # Plane strain constraint

exy = 0.0 # Shear strain rate [1/s]

div = exx + eyy + ezz # Divergence [1/s]

T = 773 # Temperature [K]

# Security

if TrialModel=="LinearViscoElasticity"

n = 1.0

A = 1/etav

end

if PlastModel=="LinearViscoPlasticity"

n_vp = 1.0

end

# b. Deviatoric strain rate tensor components

exxd = exx - 1/3*div

eyyd = eyy - 1/3*div

ezzd = ezz - 1/3*div

exyd = exy

# Numerical parameters

nt = 20

dt = 4*1e11 # Time step [s]

# Storage for visualisation

Tii_tab = zeros(nt)

P_tab = zeros(nt)

diff = zeros(nt)

# Constant (only if dt is constant!)

etae = G*dt

# Compute viscoplastic viscosity for a given reference overstress and strain rate

eta_vp0 = dS/(abs(Ebg)^(1/n_vp))

eta_vp = eta_vp0
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# Initial condition: Deviatoric stress tensor components and pressure

Txx, Tyy, Tzz, Txy, P = 0.0, 0.0, 0.0, 0.0, 200e6

# Time Loop

for it=1:nt

println("##### Time step: ", it, " #####")

# Previous step

Txx0, Tyy0, Tzz0, Txy0, P0 = Txx, Tyy, Tzz, Txy, P

plastic, lamdot = 0.0, 0.0

# Effective strain rate

Exxd = exxd + Txx0/2/etae

Eyyd = eyyd + Tyy0/2/etae

Ezzd = ezzd + Tzz0/2/etae

Exyd = exyd + Txy0/2/etae

Gxyd = 2*exyd + Txy0/1/etae

Eiid = sqrt(1/2*(Exxd^2+Eyyd^2+Ezzd^2) + Exyd)

# TRIAL STATE

# a. Compute effective viscosity

if TrialModel=="LinearViscoElasticity" ; eta_ve = 1/(1/etae + 1/etav); end

if TrialModel=="NonLinearViscoElasticity"; eta_ve = LocalIterationsTrial(Eiid,etae,A,n,Q,T); end

# b. Deviatoric stress

Txx = 2*eta_ve*Exxd

Tyy = 2*eta_ve*Eyyd

Tzz = 2*eta_ve*Ezzd

Txy = 2*eta_ve*Exyd

Tii = sqrt(1/2*(Txx^2 + Tyy^2 + Tzz^2) + Txy^2)

# c. Pressure

P = P0 - K*dt*div

# PLASTIC CORRECTION

# a. Check yield

Pt = P

F_trial = Tii - P*sin(phi) - C*cos(phi)

# b. Correct

if F_trial >= 0

Tiic, Pc, lamdot, plastic = Tii, P, 0.0, 1.0

dQdTxx, dQdTyy, dQdTzz, dQdTxy = Txx/2/Tii, Tyy/2/Tii, Tzz/2/Tii, Txy/Tii

if PlastModel=="LinearViscoPlasticity"

lamdot = F_trial/(eta_ve + K*dt*sin(psi)*sin(phi) + eta_vp0)

Pc = P + K*dt*lamdot*sin(psi)

Tiic = Tii - eta_ve*lamdot

eta_vp = eta_vp0

F = Tiic - Pc*sin(phi) - C*cos(phi) - eta_vp*lamdot

elseif PlastModel=="NonLinearViscoPlasticity"

lamdot, Tiic, Pc, F, eta_vp = LocalIterationsPlast(Eiid,eta_ve,eta_vp0,n_vp,phi,psi,K,C,F_trial,P,Tii,dt)

end

println(">>> Plastic: Trial F = ", F_trial, " --> Corrected F: ", F)

# Update stresses

Txx = 2*eta_ve*(Exxd - lamdot*dQdTxx )

Tyy = 2*eta_ve*(Eyyd - lamdot*dQdTyy )

Tzz = 2*eta_ve*(Ezzd - lamdot*dQdTzz )

Txy = 2*eta_ve*(Exyd - lamdot*dQdTxy/2)

Tii = sqrt(1/2*(Txx^2 + Tyy^2 + Tzz^2) + Txy^2)

P = Pc

end

# CONSISTENT TANGENT OPERATORS

## Partial derivatives of VE trial viscosity (necessary for both linearizations)

dDvedE = PartialDerivativeTrialViscosity(Txx,Tyy,Tzz,Txy,Tii,Exxd,Eyyd,Ezzd,Exyd,Eiid,eta_ve,A,Q,n,R,T)

## Assembly of the tangent operator following Appendix A

D_eva = ConsistentTangentEVA(Txx,Tyy,Tzz,Txy,Tii,Exxd,Eyyd,Ezzd,Exyd,Eiid,eta_ve,dDvedE,eta_vp,n_vp,phi,psi,K,dt,lamdot,plastic)

## Assembly of the tangent operator following Appendix B

D_ctl = ConsistentTangentCTL(Txx,Tyy,Tzz,Txy,Tii,Exxd,Eyyd,Ezzd,Exyd,Eiid,eta_ve,dDvedE,eta_vp,n_vp,phi,psi,K,dt,lamdot,plastic)

println("D_eva:")

[@show D_eva[i,:] for i=1:5]

println("D_ctl:")

[@show D_ctl[i,:] for i=1:5]

println("D diff:")

D_diff = (D_ctl .- D_eva)./norm(D_eva)

[@show D_diff[i,:] for i=1:5]

# Store

Tii_tab[it] = Tii

P_tab[it] = P

diff[it] = norm(D_diff)

end

# Visualise

p1 = Plots.plot((1:nt)*dt/(1e3*365.25*24*3600), Tii_tab/1e6, legend=:none, title="Dev. stress invariant II", ylabel="Tau [MPa]")

p2 = Plots.plot((1:nt)*dt/(1e3*365.25*24*3600), P_tab/1e6, legend=:none, title="Pressure", ylabel="P [MPa]")

p3 = Plots.plot((1:nt)*dt/(1e3*365.25*24*3600), diff, legend=:none, title="Difference between tangent operators", xlabel="t [ky]")

display(Plots.plot(p1,p2,p3, layout=(3,1) ))

end

main()
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V-E-P models - Convergence to equilibrium not reached V-E-VP models - Convergence to equilibrium reached

log10 εII

[s-1]

A) Symmetric initial and boundary conditions

B) Non-symmetric initial conditions (noise)

C) Symmetric initial and boundary conditions and ηvp = 8e19 Pa.s

D) Non-symmetric initial conditions (noise) and ηvp = 8e19 Pa.s

Symmetric plug mode

Asymmetric plug modeAsymmetric plug mode

Symmetric plug mode

Figure S1. Reproduction of previously published results. Extension of a crust with plas-

tic strain softening as in Huismans and Beaumont (2007). The ’symmetric plus mode’ and

’asymmetric plug mode’ have been reproduced with either V-E-P or V-E-VP rheological

models. Strictly symmetric initial and boundary conditions lead to symmetric deforma-

tion (A, C). The introduction of non-symmetric initial condition (here, random noise on

initial Lagrangian marker locations) was necessary a condition to model asymmetric ex-

tension (B, D). The reader is referred to the original publication for model parameters

(Huismans and Beaumont, 2007). The numerical resolution was set to 200× 60 cells and

the model was run during 300 steps with a constant ∆t = 5× 1011 s.
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V-E-VP models - Convergence to equilibrium reached

log10 εII

[s-1]

B) ηvp = 1e20 Pa.s

C) ηvp = 9e19 Pa.s

D)  ηvp = 8e19 Pa.s

A) ηvp = 2e20 Pa.s

Symmetric plug mode

Asymmetric plug mode

Asymmetric plug mode

Asymmetric plug mode

Figure S2. Effect of the viscoplastic regularisation viscosity on the style of extension. A

too large viscosity leads to large overstress and prevents from the occurrence of asymmetric

extension (A). The ’Asymmetric plug mode’ extension is recovered for sufficiently small

regularisation viscosity. Models were all run with initial random noise. The reader is

referred to the original publication for model parameters (Huismans and Beaumont, 2007).
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Time = 1.58 My Time = 2.37 My Time = 3.16 My log10 σ

[Pa]

A) σ ref = 2e5 Pa, nvp = 1.0

B) σ ref = 2e5 Pa, nvp = 1.5

C) σ ref = 8e4 Pa, nvp = 1.0

Symmetric plug mode 

Asymmetric plug mode 

Asymmetric plug mode 

Max.  σ > 30 MPa

Max.  σ < 10 MPa

Max.  σ < 30 MPa

Figure S3. Magnitudes of viscoplastic overstress during extension. Panel a) shows a

model with a linear viscoplastic rheology (nvp = 1.0) and reference overstress of 2×105 Pa.

The local magnitude of overstress is larger than 30 MPa and asymmetric extension does

not take place (panel A). For a similar reference overstress but a non-linear viscoplastic

model (nvp = 1.5), the local magnitude of overstress is lower than 20 MPa and asymmetric

extension is recovered (panel B). Alternatively, asymmetric extension can also be recovered

with a linear viscoplastic model if the reference overstress is sufficiently decreased (panel

C), leading to a reduction of the local value of overstress (< 30 MPa).
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Initialization

New time step

Global iteration

Local iteration 1

F evaluation if F ≥ 0

Local iteration 2

if F < 0

if convergence criteria reached

visco-elastic predictor viscoplastic corrector

Figure S4. This flowchart describes the implementation of a non-linear Visco-Elasto-

Viscoplastic code. Implementation details of local iterations routines are documented in

the main text and made available in the appended Code.
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Figure S5. A comparison of lithospheric models in extension and compression. Panels

A) and D) correspond to model that are fully converged and use a V-E-VP rheology.

Panels B) and E) correspond to V-E-VP models in which only one global iteration was

used. Panels B) and E) correspond to V-E-P model in which only one global iteration

was used. The black lines indicate the location of the Moho. The white line is the 1.8

accumulated strain contour.
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C) Ref. Overstress 106 Pa B) Ref. Overstress 105 Pa A) Ref. Overstress 104 Pa 

Figure S6. An illustration of the checkerboard-style shear banding patterns obtained

for low reference overstress values. These models were run with M2Di and are based on

those presented in Fig. 3 of the main article file. Model results are depicted after 100

steps of ∆t = 4× 1011 s.
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A) "LinearViscoElasticity" + "LinearViscoPlasticity" B) "NonLinearViscoElasticity" + "NonLinearViscoPlasticity"

Figure S7. Example of results of 0D V-E-VP calculations using the appended Julia

language script. The upper panels correspond to the evolution of the second deviatoric

stress invariant, the middle panel corresponds the pressure and the lower panels shows

the norm of the difference between the consistent tangent operators derived using the

effective viscosity approach (Appendix A) and the finite-step consistent tangent lineari-

sation (Appendix B). The two cases (A ,B) can be reproduced by changing the value of

the TrialModel and PlastModel variables.
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Figure S8. Effect of different linearisation schemes on non-linear convergence using

the test case Test 1 of Duretz et al. (2018). Panel A shows the convergence behaviour of

momentum equation for Picard, Continuum tangent, Consistent tangent (Cons. Tangent)

and Newton linearisaton of the effective viscosity approach (EVA Newton) that are de-

rived in the Appendix. Picard linearisation necessitates several hundreds of iterations to

converge this step. EVA Newton and Cons. Tangent have a similar behaviour. Panel B

shows the total number of iterations required for each linearisation scheme. Panel C shows

the evolution of the second deviatoric stress invariant - the different approaches yield sim-

ilar results. For all cases, a line search procedure was used to optimize the convergence of

global iterations (e.g., Duretz et al, 2018).
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Figure S9. Effect of global momentum iterations on the results of numerical models

of shear banding using Test 1 of Duretz et al. (2018). Left panels shows shear banding

pattern after 34 steps for converged (upper) and non-converged (bottom) cases. Similarly,

the right panels correspond to Test 1 including viscoplastic regularisation (ηvp = 4× 1018

Pa.s). The colormaps correspond to the pressure field in MPa and the black lines are

isocontour of accumulated strain (εacc = 10−2.6). Models that reached machine precision

force equilibrium (lower panels) are characterised depict more intense strain localisation

thus a longer extent of shear bands at a given time. Model results were depicted at time

steps number 34.
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Figure S10. Effect of bulk elasticity and plastic dilatancy on shear banding based

on Test 1 of Duretz et al. (2018). The upper left panel correspond to the reference

model (V-E-P). The simulation presented in the upper right panel includes viscoplastic

regularisation (V-E-VP, ηvp = 4 × 1018 Pa.s). The lower left panel accounts for zero

dilatancy (plastic incompressibility, ψ = 0). The lower right is strictly incompressible

(ψ = 0 and K → inf), hence both effects of bulk elasticity and plastic dilatancy are

neglected. The colormaps correspond to the pressure field in MPa and the black lines are

isocontour of accumulated strain (εacc = 10−2.6). It is clear that both elastic and plastic

incompressibility promote strain localisation. Model results were depicted at time steps

number 34.
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Figure S11. Effect of bulk elasticity and plastic dilatancy on the global convergence

behaviour. Simulations were based on Test 1 of Duretz et al. (2018). The upper panel

(A) shows the convergence behaviour of the V-E-P (reference), V-E-VP, V-E-VP with

zero dilatancy and V-E-VP incompressible at time steps number 34. The middle panel

(B) shows the number of iteration (Newton EVA) needed to fully converge each step. The

incompressible case can lead to large iteration counts (step 26 and 34) has also seen in

panel A. The lower panel (C) shows the evolution of the mean second deviatoric stress

invariant for the 4 models. Models that include bulk elasticity and dilatancy exhibit a

slight apparent hardening (V-E-P and V-E-VP) during shear banding. The incompressible

model (V-E-VP incomp.) exhibit no hardening and the model with bulk elasticity and no

dilatancy (V-E-VP - ψ = 0) exhibit a slight apparent softening.

June 9, 2021, 5:42pm


