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Cenozoic evolution of the Qaidam basin and implications 

for the growth of the northern Tibetan plateau: A review

Abstract

As the largest depression in the Tibetan plateau, the Qaidam basin preserves over 10 km thick of Cenozoic 

sediments. Those sediments represent a unique archive of the evolution of the northern part of the Tibetan 

plateau and of intracontinental deformation in general. Yet, several critical issues associated with the 

evolution of the Qaidam basin remain controversial, preventing a full understanding of the evolution of the 

northern margin of Tibet during the Cenozoic. Here we comprehensively review these issues, synthesize 

records from structural geology, sedimentology, geochronology, and geophysics, and finally propose a 

holistic view of the Cenozoic evolution of the Qaidam basin. We infer that: 1) the traditional age model that 

assigned a Paleocene to Eocene basal age to the Cenozoic strata in the basin seems to fit reasonably well the 

deformation history obtained from combining growth-strata observations and thermochronology data across 

the basin; 2) basement-involved faults, with both dip-slip and strike-slip components, developed within the 

Qaidam basin. In particular, the Neogene initiation of strike-slip faulting along the south-dipping faults that 

roots into the Eastern Kunlun Shan played an important role in the evolution of the southern Qaidam basin; 

3) The Eastern Kunlun Shan was already exhumed during the deposition of the Lulehe Formation, serving 

as a significant source of clastic material deposited in the Qaidam basin and separating the latter from the 

Hoh Xil basin to the south. We conclude that the Qaidam basin is a superimposed sedimentary basin that 

successively experienced flexural subsidence, outwards expansion, isolation and partitioning during the 

Cenozoic. Finally, the Cenozoic evolution of the basin results from a tight interplay between tectonics and 

climate.
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1.1 Introduction

Our knowledge of the growth of the Tibetan plateau has progressed over the last few decades, mostly by depicting in 

details the Cenozoic tectonic and topographic evolution of the several mountains belts and associated fault systems that 

compose the plateau (Ding et al., 2014; Hubbard and Shaw, 2009; Jolivet et al., 2001; Lease, 2014; Tapponnier et al., 

2001; Wang et al., 2014; Yin et al., 2002). A particular interest has been addressed to the margins of the plateau – the 

locus of the outward expansion of the high-topography region – characterized by active tectonic deformation and sharp 

topographic and climatic gradients. Several substantial breakthroughs have been achieved in dating, describing and 

quantifying the Cenozoic deformation of the northern edge of the Tibetan plateau. One of the first widely accepted 

model argued that crustal deformation in the northern Tibetan plateau initiated during the Pliocene to Holocene, 

progressively propagating northward (Métivier et al., 1998; Meyer et al., 1998; Tapponnier et al., 2001). However, 

recent work highlights a protracted Cenozoic deformation history initiating during Early Cenozoic, progressing through 

the Oligocene to Early Miocene, and accelerating in the Middle Miocene to Holocene-Quaternary times (Cheng et al., 

2015a; Clark et al., 2010; Dupont-Nivet et al., 2004; Duvall et al., 2013; Duvall et al., 2011; Jolivet et al., 2001; Lease 

et al., 2012; Yin et al., 2002; Zheng et al., 2010; Zhuang et al., 2011b). These new findings are in conflict with the 

progressively northward propagation model, highlighting an urgent need for a better understanding of the mechanisms 

that drove the growth of the plateau.

The northern Tibetan plateau is composed of a series of high topographic gradient mountain ranges surrounding the 

large and deep Qaidam sedimentary basin (Fig. 1). Being the largest Cenozoic sedimentary basin within the Tibetan 

plateau, the Qaidam basin is bordered by the Altyn Tagh Shan to the west, the Eastern Kunlun Shan to the south, and 

the Qilian Shan to the northeast (Figs. 1–2). Geological and subsurface surveys reveal that the basin preserves 

Cenozoic sedimentary successions reaching over 10 km in thickness (Cheng et al., 2018; Cheng et al., 2017; Wei et al., 

2016; Xia et al., 2001; Yin et al., 2008b; Zhang et al., 2013a; Zhu et al., 2006). These clastic deposits contain some 

major hydrocarbon resources and the numerous field-derived and geophysical data resulting from exploration offer a 

unique opportunity to elucidate the evolution of the basin itself but also the growth history of the surrounding mountain 

belts. However, three critical issues associated with the tectonic and sedimentary evolution of the Qaidam basin remain 

controversial, leading to diverse and even competing models for the Cenozoic evolution of northern Tibet.

Cenozoic, Qaidam basin, Northern Tibetan plateau, Tectonic evolution, Tectonics-climate interplay
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Figure 1.Fig. 1

(a) Topographic map of the Tibetan plateau, showing the main geological features. IYS, BNS, JS, AMS, refer to Indus Yalu, Bangong 

Nujiiang, Jiinsha, Anyimagen-Kunlun-Muztagh suture zones, respectively. (c) Topographic map of the Qaidam basin and the 



First, the age model for the Cenozoic strata within the Qaidam basin is highly debated. Most studies based on 

magnetostratigraphy, spore and pollen assemblages, fission-track and 
40

Ar/
39

Ar dating of detrital grains as well as 

regional lithostratigraphic correlations assigned a Paleocene basal age (>50 Ma) to the Lulehe Formation (Fm.) that 

represents the lowermost part of the Cenozoic sequence (Chang et al., 2015; Fang et al., 2019; Fang et al., 2006; Fang 

et al., 2007; Ji et al., 2017; Ke et al., 2013; Lu and Xiong, 2009; Rieser et al., 2006a; Rieser et al., 2006b; Sun et al., 

1999; Sun et al., 2005; Yang et al., 1992; Zhang, 2007). By contrast, a few recent studies proposed a Late Oligocene 

(~25‐–20 Ma) onset of sedimentation based on magnetostratigraphical constraints from two sections exposed along the 

northern margin of the basin (Fig. 2). When adopting the older age model with a Paleocene to Eocene deposition age of 

the Lulehe Fm., the Cenozoic onset time of faulting along the Altyn Tagh Fault and the northern Qaidam basin-Qilian 

Shan thrust belt becomes roughly coincident with the onset of India-Asian collision at 60‐–50 Ma (Cheng et al., 2019a; 

Cheng et al., 2019c; Cheng et al., 2015b; Cheng et al., 2016b; Cheng et al., 2019d; Dupont-Nivet et al., 2010; Hu et 

al., 2015; Yin et al., 2008a; Yin et al., 2008b). This inference of an Early Cenozoic deformation in the northern Tibetan 

plateau supports the argument that stress derived from India-Asia collision was transmitted rapidly to the northern edge 

of the plateau (Clark et al., 2010; Jolivet et al., 2001; Wang et al., 2017a; Yin et al., 2002; Zhuang et al., 2011b). 

Furthermore, if Paleocene to Eocene crustal shortening took place in the northern Tibetan plateau, mountain belts 

would probably have formed orographic barriers, starting to block the transfer of atmospheric moisture to the 

continental interior as early as the Early Cenozoic. This would be consistent with the already semi-arid to arid climate 

recorded in the Tarim basin during the Paleogene (Heilbronn et al., 2015; Jolivet et al., 2018; Sun and Wang, 2005). 

On the contrary, if considering an Oligocene deposition age for the Lulehe Fm., the onset time of deformation in the 

Altyn Tagh Shan and Qilian Shan would be similar to that of exhumation in the Eastern Kunlun Shan, Xining-Minhe-

Longzhong basin complex and Dangchang basin (Clark et al., 2010; Dupont-Nivet et al., 2008; Dupont-Nivet et al., 

2004; Horton et al., 2004). Based on this model, the initial deformation in the northern Tibetan plateau would start 

about 15‐–20  Ma later than the onset of India-Asia collision. This would fit with the model proposing a gradual 

northward propagation of the deformation in the plateau (Meyer et al., 1998; Tapponnier and Molnar, 1977; Tapponnier 

et al., 2001; Wang et al., 2017b). If topographic growth had remained limited in the northern Tibetan plateau during the 

Early Cenozoic, atmospheric circulation would probably not have been strongly affected, and the climate change in the 

Asian interior during the Early Cenozoic should be largely linked to other factors, such as the global climate variation 

or the retreat of the Paratethys sea (Bosboom et al., 2014; Dupont-Nivet et al., 2007; Meijer et al., 2019). As a 

consequence, it is of great importance to confirm the age model for the Cenozoic strata in the Qaidam basin.

Second, the source to sink and structural relations between the Eastern Kunlun Shan and the Qaidam basin (Figs. 1–2) 

has attracted geoscientists for decades because of their implications for the deformation pattern of the northern Tibetan 

surrounding mountain belts.

alt-text: Fig. 2

Figure 2.Fig. 2

(a) Geological map of the Qaidam basin and the surrounding regions. (b) NE-SW- and (c) NW-SE-oriented profiles across the Qaidam 

basin, modified from Cheng et al. (2018). Note the NE-SW-directed crustal shortening across the Qaidam basin and eastward 

migration of the depocenter of the basin during the Cenozoic.
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plateau (e.g., progressive northward, out of sequence, or pulsed deformation). Comparing the stratigraphic architecture 

of the Cenozoic strata in the Qaidam basin with those of the Hoh Xil basin immediately to the south, Yin et al. (2008b) 

proposed the existence of a wide Paleo-Qaidam basin. Their model suggested a vast Early Cenozoic depression 

bounded by the Qilian Shan to the north and by the Fenghuo Shan Thrust Belt to the south with negligible topographic 

relief in the Eastern Kunlun Shan This model has been followed by many researchers (Fig. 1)(McRivette et al., 2019; 

Wu et al., 2019b). However, other studies have indicated that the Eastern Kunlun Shan might have already been 

exhumed during the Early Cenozoic (Cheng et al., 2016a; Cheng et al., 2019a; Wang et al., 2014), which would 

suggest that the similar stratigraphic architecture of the Qaidam and Hoh Xil basins is only due to a similar depositional 

environment. Given that the crux of the debate is a dispute over the uplift history of the Eastern Kunlun Shan, it is of 

primary importance to document the evolution of the topography and the structural relation between the Qaidam basin 

and the Eastern Kunlun Shan.

The third open question is the Cenozoic evolution history of the Qaidam basin and the associated growth history of the 

northern Tibetan plateau. This issue is closely related to the abovementioned two issues. For instance, a Paleocene basal 

age (>50 Ma) for the Cenozoic strata in the basin would partly support the distributed shortening model (Dewey and 

Bird, 1970; England and Searle, 1986). However, a late Oligocene basal age (~25‐–20 Ma) would support the outward 

growth or northward propagation model (Métivier et al., 1998; Meyer et al., 1998; Tapponnier et al., 2001; Wang et al., 

2017b; Zheng et al., 2017). In addition, the Paleo-Qaidam basin model requires an Early Cenozoic onset of 

deformation in the Qilian Shan to the north and a Neogene initiation of the deformation in the Eastern Kunlun Shan to 

the south. This would imply deformation first in the northern margin of the Tibetan plateau, partially skipping the Easter 

Kunlun Shan shortly after India-Asia collision (Yin et al., 2008a; Yin et al., 2008b). On the other hand, other studies 

proposed a synchronous deformation in both the Eastern Kunlun Shan and the Qilian Shan to the north (Cheng et al., 

2016a; Cheng et al., 2019a; Wang et al., 2014), again indicating distributed crustal deformation across the northern 

Tibetan plateau.

In this contribution, we focus on the first two critical issues by summarizing recent studies that provide different views 

on these issues and discussing the advantages and limitations of each hypothesis, and we propose future directions of 

investigation. We synthesize available information from subsurface data interpretation (i.e., seismic profiles and isopach 

maps of Cenozoic strata), sedimentology, stratigraphy, and basin analysis to present a holistic view of the Cenozoic 

evolution of the Qaidam basin.

2.2 Geological setting

The granitic and metamorphic crystalline basement of the Qaidam basin is covered by a relatively thin (less than 3 km) 

and discontinuous Mesozoic sedimentary sequence and a huge, as thick as 10 km Cenozoic sequence (Figs. 2, 3a and 4

)(Liu et al., 2007b; Meng and Fang, 2008; Rieser et al., 2006b; Xia et al., 2001; Yin et al., 2008a; Yin et al., 2008b; 

Zhou et al., 2006). Recent studies showed that the Qaidam basin and the surrounding orogenic belts share a similar 

basement composition (i.e., similar geochemistry and U-Pb zircon age spectra) (Cheng et al., 2017) (Fig. 3b–f). The 

Qaidam crystalline basement was involved in at least Neoproterozoic, Early Paleozoic, and Late Paleozoic to Mesozoic 

tectono-magmatic episodes (Cheng et al., 2017). These recurrent thermo-mechanical events generated weaknesses in 

the Qaidam basement that should therefore not be considered as a mechanically strong crust. Detailed description of the 

basement is given in the Supplementary materials.

alt-text: Fig. 3

Figure 3.Fig. 3



(a) Zircon U-Pb ages for granitoids showing the distribution of Proterozoic to Mesozoic intrusions in the Qaidam basin and 

surrounding orogenic belts. Note the age of the Qaidam basement rocks along the edges of the basin (Cheng et al., 2017). The relative 

probability plot of the U-Pb zircon ages from basement rocks in the Qaidam basin (b), Qiilian Shan (c), Altyn Tagh Shan (d), and 

Eastern Kunlun Shan (e). Cumulative probability plot for these data is shown in (f). Data and references listed are from Cheng et al. 

(2017) and references therein.

alt-text: Fig. 4

Figure 4.Fig. 4
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Mesozoic strata are Jurassic and Cretaceous in age (Cheng et al., 2019d; Meng et al., 2001; QBGMR, 1991; Ritts and 

Biffi, 2000; Ritts and Biffi, 2001; Ritts et al., 1999; Wu et al., 2011). These clastic, continental deposits mainly consist 

of sandstone intercalated with shale, coal, and conglomerate associated to fluvial to lacustrine depositional 

environments (Fig. 4a–b). The Mesozoic strata are essentially distributed in small sub-basins along the Altyn Tagh and 

the southern flank of the Qilian Shan in the NE Qaidam basin (Cheng et al., 2019d; Wu et al., 2011).

On the contrary, the Cenozoic strata are widely distributed throughout the basin with their main deposition center 

systematically located at the geometric center of the basin (Fig. 2) (Meng and Fang, 2008; Xia et al., 2001). According 

to the lithology and stratigraphy, the Cenozoic strata are classically subdivided into eight lithostratigraphic units, namely 

the Lulehe (Fm.), E
1+2

l; (2) the Lower Xiaganchaigou Fm., E
3

1
xg; (3) the Upper Xiaganchaigou Fm., E

3

2
xg; (4) the 

Shangganchaigou Fm., N
1
sg; (5) the Xiayoushashan Fm., N

2

1
xy; (6) the Shangyoushashan Fm., N

2

2
sy; (7) the 

Shizigou Fm., N
2

3
s; and (8) the Qigequan Fm. (Q

1
q). Integrating our own basin-scale field investigations and drill 

core observations with a compilation of previously published data (Fig. 4a–i), we propose a series of depositional 

environment maps and summarize the sedimentary features of these eight formations (Figure. S1 in the Supplementary 

materials). The depositional ages for the Cenozoic strata are discussed in  (Fig. 5).

The Mesozoic and Cenozoic strata are cut by a series of NW- to WNW- trending faults also involving the basement (

Fig. 2b–c) that must have participated in accommodating a significant amount of the Cenozoic crustal deformation in 

the northern Tibetan plateau (Cheng et al., 2014; Cheng et al., 2015c; Meng and Fang, 2008; Sun, 2019; Wang et al., 

2010c; Wei et al., 2016; Wu et al., 2019c; Wu et al., 2014; Yin et al., 2008a; Yin et al., 2008b; Yin et al., 2007; Zhou et 

al., 2006). However, the geometry and kinematics of these faults have long remained debated (Burchfiel et al., 1989; 

Cheng et al., 2014; Huang et al., 2020; Métivier et al., 1998; Sun, 2019; Yin et al., 2007; Zuza and Yin, 2016), and will 

be discussed in .

3.3 Approaches

3.1.3.1 Age model

To evaluate the age model for the Cenozoic strata in the Qaidam basin, we first review the dating history and explain 

the details of the two above-mentioned debated age models, including their advantages and limitations (Fig. 5). We also 

select two seismic profiles in the southern and western parts of the basin that intersect the boundary faults (Fig. 6). After 

Lithology, lithostratigraphic units, and age models of the Cenozoic strata in the Qaidam basin. The stratigraphic column is 

representative of the lithology in the western Qaidam basin, modified from Cheng et al. (2018). The multiple age models are modified 

from the compilation of (Wu et al., 2019b). These age models were established by previous work from different sections in the 

basin(Chang et al., 2012; Chang et al., 2015; Fang et al., 2006; Fang et al., 2007; Heermance et al., 2013; Ji et al., 2017; Ke et al., 

2013; Lu and Xiong, 2009; Nie et al., 2019; Sun et al., 2005; Wang et al., 2017b; Wu, 2011; Zhang, 2007; Zhang et al., 2013b; 

Zhuang et al., 2011b). The location of each section is shown in Figure 2a.]Images of typical outcrops and drill cores samples of 

Mesozoic to Cenozoic strata and basement rocks in the Qaidam basin. (a) Unconformities between the Jurassic and Cretaceous strata 

in the NE Qaidam basin. (b) Marginal lacustrine coal-bearing Jurassic srata in the NE Qaidam basin. (c) Drilling core samples in the 

NE Qaidam basin, showing coarse-grained sandstone in the Lulehe Fm. and granite basement rocks. (d) Conglomerates in the Lulehe 

Fm., eastern Qaidam basin. (e) Lacustrine limestone in the Lower Xiaganchaigou Fm., western Qaidam basin. (f) Organic rich layers in 

the Upper Xiaganchaigou Fm., western Qaidam basin. (g) Lacustrine to fluvial deposits in the Shangganchaigou Fm., eastern Qaidam 

basin. (h) Lacustrine sequences in the Xiayoushashan Fm., western Qaidam basin. (i) Mega-yardangs sculpted in mainly lacustrine 

Shizigou Fm. and fluvial Qigequan Fm., NE Qaidam basin.

Section 4
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Fig. 5
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superimposing the two age models to the growth strata on these seismic profiles, we compare the obtained deformation 

histories in the basin with the uplift and exhumation history of the mountain belts as inferred by existing low-

temperature thermochronology data. We then discuss which age model provides a better match. A comprehensive 

analysis of the age model (Fig. 7) and a future perspective on the age model for the Cenozoic strata in the Qaidam basin 

are provided.

alt-text: Fig. 6

Figure 6.Fig. 6

Traditional (a) and new (b) age model for the Cenozoic strata in the Qaidam basin, represented by the work by Ji et al. (2017) and 

Wang et al. (2017b). Interpreted seismic profiles in the western (c) and southern (d) Qaidam basin. The section CC’ is perpendicular to 

the strike of the Altyn Tagh Shan (Cheng et al., 2016b) while section DD’ is perpendicular to the strike of the Eastern Kunlun Shan (

Cheng et al., 2018). The onset time of exhumation in the Altyn Tagh Shan and Eastern Kunlun Shan is from previous low-temperature 

thermochronology studies (Clark et al., 2010; Jolivet et al., 2001; Wang et al., 2017a; Wang et al., 2015; Zhang et al., 2012). When 

following the “young ages” model (Wang et al., 2017b), the estimated onset time of deformation indicated by the growth strata 

conflicts with the onset time derived from the thermochronology data. When following the “old ages” model (Chang et al., 2012; 

Chang et al., 2015; Fang et al., 2007; Heermance et al., 2013; Ji et al., 2017; Ke et al., 2013; Lu and Xiong, 2009; Sun et al., 2005; 

Zhang, 2007; Zhang et al., 2013b), the estimated onset time of deformation indicated by the growth strata is consistent with the onset 

time derived from the thermochronology data. The location of each section is shown in Fig. 2a.

alt-text: Fig. 7

Figure 7.Fig. 7



3.2.3.2 Interactions between the Qadaim basin and the Eastern Kunlun Shan

To understand the interactions between the Eastern Kunlun Shan and the Qaidam basin, two fundamental questions 

should be addressed: 1) What are the structural and kinematic relations between the Qaidam basin and the Eastern 

Kunlun Shan? (Fig. 8) and 2) What about the physiography of the northern Tibetan plateau margin in the Early 

Cenozoic? In other words, were the Qaidam and Hoh Xil basins part of a large Paleo-Qaidam basin or were they 

separated by a proto-Kunlun relief? To answer the first question, we first summarize the current debates on the fault 

geometry in the SW Qaidam basin. We then use seismic profiles (Figs. 9–11) and isopach data (Fig. 10) to document 

the structural evolution of the transition zone between the Qaidam basin and the Eastern Kunlun Shan. To answer the 

second question (Fig. 12), we analyze evidence provided by flexural modeling, sedimentary record (e.g., bulk 

petrology, detrital zircon geochronology) and subsurface data (seismic profiles, drill core samples, isopach maps) (Figs. 

14–17) to document in details the source to sink relation between the Qaidam basin and the Eastern Kunlun Shan. 

Using the above-mentioned discussion as a guide, we propose a holistic view of the Cenozoic evolution of the basin.

(a) Stratigraphic column and age model for the Cenozoic strata based on a magnetostratigraphy study in the western Qaidam basin, 

modified from Chang et al. (2015). Isopach map for the Cenozoic strata shows the thickness of the Shangganchaigou Fm. (b), Upper 

Xiaganchaigou Fm. (c), Lower Xiaganchaigou Fm. (d), and Lulehe Fm. (e) at this magnetostratigraphy site, respectively. Isopach data 

are from Cheng et al. (2018).

alt-text: Fig. 8

Figure 8.Fig. 8



Three typical models to describe the tectonic relation between the Qaidam basin and the Eastern Kunlun Shan. (a) Foreland basin 

model (northwards thrusting model)(Burchfiel et al., 1989). (b) Southwards thrusting model (Yin et al., 2008b; Yin et al., 2007). (c) 

Northward propagation model (Cheng et al., 2014).

alt-text: Fig. 9

Figure 9.Fig. 9



(a) Distribution of the basement-involved faults in the Qaidam basin (data provided from the Qinghai Oil field, PetroChina). (b)–(e) 

interpreted seismic profiles across the Qaidam basin, compiled from previous studies (Cheng et al., 2015a; Cheng et al., 2019d; 

Cheng et al., 2017).

alt-text: Fig. 10

Figure 10.Fig. 10



(a) Isopach of the Upper Xiaganchaigou Fm., showing the Kunlun fault and Arlar fault (Cheng et al., 2014). The location of isopach 

map is shown in Fig. 9a. (b) 2D seismic profile of Song and Wang (1993), across the Arlar fault. (c) interpreted seismic profile by Song 

and Wang (1993). (d) Interpreted seismic profile by Yin et al. (2007). Uninterpreted (e) and interpreted (f) 3D seismic profile of across 

the Arlar fault (Cheng et al., 2014). Note that 3D seismic profiles show more obvious reflectors and flower structures are evidenced, 

indicating strike-slip faulting.

alt-text: Fig. 11

Figure 11.Fig. 11

Reinterpreted seismic profiles in the western Qaidam basin. Location of each profile is shown in Fig. 9a. Original profiles are listed in 

Liu et al. (2019). Note the flower structures, indicating the strike-slip components along these basement-involved faults. E1+2l; 

E3
1

xg; E3
2

xg; N1sg, N2
1

xy, N2
2

sy, N2
3

s, Q1q are the abbreviated symbols for the Lulehe Fm., Lower Xiaganchaigou Fm., Upper 

Xiaganchaigou Fm., Shangganchaigou Fm., Xiayoushashan Fm., Shangyoushashan Fm., Shizigou Fm., Qigequan Fm., respectively.

alt-text: Fig. 12

Figure 12.Fig. 12



4.4 Age model of Cenozoic strata in the Qaidam basin

4.1.4.1 Two debated age models

The first age model established for the Qaidam basin dates back to the late 1980s (Huo, 1990; Yang, 1988). A 

pioneering magnetostratigraphy study in the western and northeastern parts of the basin was then carried out by Yang et 

al. (1992), resulting in the following chrono-stratigraphic sequence: Paleocene to Early Eocene = Lulehe Fm., Late 

Eocene  =  Lower and Upper Xiaganchaigou Fms., Oligocene  =  Shangganchaigou Fm., Early to Middle 

Miocene  =  Xiayoushashan Fm., Middle to Late Miocene  =  Shangyoushashan Fm., Late Miocene to 

Pliocene = Shizigou Fm. Since then, a number of magnetostratigraphy studies have been conducted on the sparse 

exposures of Cenozoic strata of the Qaidam basin, leading to several different age models (Chang et al., 2012; Chang et 

al., 2015; Fang et al., 2006; Fang et al., 2007; Heermance et al., 2013; Ji et al., 2017; Ke et al., 2013; Lu and Xiong, 

2009; Sun et al., 1999; Sun et al., 2005; Wang et al., 2017b; Zhang, 2007). Despite minor uncertainties in the absolute 

age of the boundaries between adjacent stratigraphic units, those models generally follow the model initially proposed 

by Yang et al. (1992) (Figs. 5–6). This stratigraphic framework, to some extent, is supported by the age controls from 

vertebrate fossils, ostracods, spore and pollen assemblages, fission-track and 
40

Ar/
39

Ar dating of detrital grains as well 

as regional lithostratigraphic correlations (Chang et al., 2015; Fang et al., 2019; Fang et al., 2006; Fang et al., 2007; Ji 

et al., 2017; Ke et al., 2013; Lu and Xiong, 2009; Rieser et al., 2006a; Rieser et al., 2006b; Sun et al., 1999; Sun et al., 

2005; Yang et al., 1992; Zhang, 2007).

On the other hand, as mentioned above, some recent publications reassigned the depositional age of the Cenozoic strata 

based on new magnetostratigraphy studies in the Honggou section (northeastern Qaidam basin) (Figs. 2 and 6b). This 

new age model claims for an Oligocene initial deposition of the Cenozoic strata, and proposes the following chrono-

stratigraphic sequence: Oligocene = Lulehe Fm., Early Miocene = Lower and Upper Xiaganchaigou Fms., Middle 

Miocene = Xiaganchaigou Fm., Late Miocene = Shangyoushashan, and Shizigou Fms. (Fig. 5). Unlike the traditional 

age model, this new age model correlates their observed normal and reversed polarity zones at the Lulehe Fm. to the 

Late Oligocene to Early Miocene polarity zones at the Geomagnetic Polarity Time Scale (GPTS) (Fig. 6b). This new 

correlation is mainly based on: 1) Miocene vertebrate fossils found in the upper part of the section; 2) well-preserved 

and continuous strata without any unconformity or hiatus; 3) integrated detrital apatite fission track and detrital zircon 

geochronology data describing the source to sink relationships between the northeastern part of the Qaidam basin and 

the surrounding mountain belts; 4) a better match between the mean annual paleoprecipitation record in the Qaidam 

basin (Nie et al., 2019) and in the Chinese Loess Plateau (Nie et al., 2017) during the mid-Miocene climatic optimum 

(MMCO, 17‐–14.5 Ma) (Zachos et al., 2001).

However, some 20 km away from the Honggou section, in a laterally well connected section, Ji et al. (2017) performed 

a second magnetostratigraphic study, relying on biostratigraphic constraints, including palynological assemblages 

throughout the section, fossil leaves in the lower part of the section, ostracod assemblages, vertebrate fossils and detrital 

geochronology age constraints in the upper part of the section. Their results assign a Paleocene to Eocene depositional 

age for the basal part of the Lulehe Fm, completely different from the assignment by Wang et al. (2017b) and Nie et al. 

(2019), but consistent with the initial correlation of Yang et al. (1992). Given that these two sections are laterally 

connected and are situated on the same side of a fold in the NE Qaidam basin, these age models cannot be 

simultaneously correct.

4.2.4.2 Which age model is valid and can be better applied to other parts of the basin?

Both age models provide robust independent vertebrate fossil record at ~12‐–14 Ma as biostratigraphic age controls, 

suggesting convergence of the models for the post-middle Miocene strata and leaving open the debate on the pre-

middle Miocene strata. Although fossils leaves were identified in the lower part of the section investigated by Ji et al. 

(2017), these leaves are not index fossils and thus cannot provide a tight age control. A lack of independent age 

constraints for the lower part of the Honggou section also makes the new age model debatable. Only by exclusively 

considering the correlation between the observed polarities zones and GPTS, the younger age model seems to provide 

a better match (Fig. 6b) further reinforced by the higher quality of the data with less gaps in the polarities correlations (

Nie et al., 2019; Wang et al., 2017b).

However, we should still be cautious to assign a Late Oligocene age to the basal Cenozoic strata across the Qaidam 

basin. As shown on the seismic profiles (Fig. 9), the tectonic framework along the northwestern margin of the Qaidam 

basin is characterized by complex structures in the fold-thrust belt (Cheng et al., 2019c; Cheng et al., 2019d; Yin et al., 

2008a; Yin et al., 2008b). Outcrops in the eastern part of the basin, especially along the southwestern front of the Qilian 

Shan usually contain much more complex lithostratigraphic units comparing with those exposed in the other parts of the 

basin (Fig. 2a). If the lithostratigraphic unit at the bottom of this section is truly the Lulehe Fm., it is worthy to carefully 

Isopach map of the Cenozoic strata in the western Qaidam basin. Note the expansion of the Qaidam drainage area from the deposition 

of the Lulehe Fm. to the Shangchanghaigou Fm.; and the isolation of the Qaidam basin during the deposition of the Xiayoushashan 

Fm. to Qigequan Fm.



recheck for potential unconformities, hiatus or faulted contacts along this section. More importantly, previous 

thermochronology studies have revealed an obvious Paleocene to Early Eocene tectono-thermal event in mountain belts 

surrounding the Qaidam basin (Chen et al., 2011; He et al., 2017; He et al., 2018; Jolivet et al., 2001; Lin et al., 2015; 

Pan et al., 2013; Staisch et al., 2020; Wang et al., 2010a; Wang et al., 2017a; Wang et al., 2007; Wang et al., 2015), 

roughly coincident with or shortly post-dating the onset of India-Asia collision. Therefore, crustal shortening and 

surface uplift in the northern Tibetan plateau might have already initiated in the Early Cenozoic. Materials eroded from 

these mountain belts undergoing exhumation would then be transported and finally deposited in the adjacent 

sedimentary basins. This prediction is supported by the occurrence of the well-dated Paleocene-Eocene strata in the 

Hoh Xil basin (Lin et al., 2020; Miao et al., 2016; Staisch et al., 2014; Wang et al., 2008) and the Eocene strata in the 

Yumen basin (Cheng et al., 2019b; Dai et al., 2005; Wang et al., 2016b) and Xorkol basin (Li et al., 2018). As a 

consequence, even if the new age model is valid for the Honggou section, it is likely that these lithostratigraphic units 

might not be representative of the initial Cenozoic initial subsidence of the Qaidam basin.

Another way to test these two debated age models is to try to tie them to the independent chronology of deformation 

events recorded in both the basin and surrounding mountain belts (Fig. 6). To establish that chronology, we used the 

growth strata developed along the margins of the basin and compared the onset time of deformation evidenced from 

growth strata with the increase in exhumation rate derived from thermochronology data in the hanging wall of 

boundary reverse faults in the various ranges. Previous thermochronology studies suggested that the Altyn Tagh Shan 

experienced a first rapid exhumation during the Eocene (40 ± 10 Ma) followed by a renewed, strong exhumation since 

the Miocene (Jolivet et al., 2001; Wang et al., 2006; Wang et al., 2015; Yu et al., 2019a; Yu et al., 2019b; Zhang et al., 

2012). Seismic profiles in the northwest margin of the Qaidam basin display well-developed growth strata in the 

footwall of major thrust faults (Fig. 6c). When following the “old ages” model (Chang et al., 2012; Chang et al., 2015; 

Fang et al., 2006; Fang et al., 2007; Heermance et al., 2013; Ji et al., 2017; Ke et al., 2013; Lu and Xiong, 2009; Nie et 

al., 2019; Sun et al., 2005; Wu, 2011; Zhang, 2007; Zhang et al., 2013b; Zhuang et al., 2011b), the Altyn Tagh Shan 

would have experienced a first Paleocene to Eocene exhumation followed by a second Oligocene to Miocene 

exhumation, roughly consistent with the thermochronology studies. However, by following the “young ages” model, 

seismic profiles would show two exhumation pulses at ~25 to 24 Ma and 17 ~ <6.3 Ma separated by a period of 

tectonic quiescence from 24 Ma to 17 Ma. This second scenario does not fit the information provided by available 

thermochronology data (Fig. 6c). Another set of thermochronology studies suggested that the Southern Qaidam Thrust 

initiated at 35‐–25 Ma (Clark et al., 2010; Jolivet et al., 2001; [Instruction: Li et al., 2020 should be changed to Li et al., 

2021]Li et al., 2020; Mock et al., 1999; Wang et al., 2017a), associated with the simultaneous exhumation of the 

Eastern Kunlun Shan basement. Seismic profiles from the southern Qaidam basin show well-developed growth strata 

in the footwall of the Southern Qaidam Thrust that separates the Eastern Kunlun Shan from the Qaidam basin. When 

following the “old ages” model, the observed pre-growth strata were deposited from the Paleocene to the Eocene, and 

the growth strata initiated during the Oligocene. The inference of an Oligocene onset of the Southern Qaidam Thrust 

activity is consistent with the ~35‐–25  Ma onset time of initial activity that has been proposed based on 

thermochronology data. However, if adopting the “young ages” model, the deposition of the pre-growth strata lasted 

from ca. 25.2 Ma to 16.5 Ma, and the growth strata initiated at the 16.5 Ma (Fig. 6d). The “young ages” model would 

thus indicate a middle Miocene initiated faulting along the Southern Qaidam Thrust, conflicting with the ~35‐–25 Ma 

age derived from thermochronology (Fig. 6). Based on the obvious discrepancies described above between the 

established exhumation history in the mountain ranges surrounding the Qaidam basin and the sequence of events 

implied by the young age model proposed by Wang et al. (2017b) and Nie et al. (2019), we propose that the latest 

should not be applied to the northwestern and southern parts of the Qadaim basin.

Moreover, combined magnetostratigraphic data with independent age constraints provided by fossils, Chang et al. 

(2015) indicates an Oligocene Shangganchaigou Fm., Early to Middle Miocene Xiayoushashan Fm., Middle to Late 

Miocene Shangyoushashan Fm., respectively (Fig. 7a). According to the isopach map of the Cenozoic strata in the 

Qaidam basin, the Shangganchaigou Fm. is over 600 m thick at the Honggou magnetostratigraphy study site (Fig. 7b). 

Moreover, over 2000 m thick upper Xiaganchaigou Fm., over 600 thick Lower Xiaganchaigou Fm., and over 800 m 

thick Lulehe Fm. are also developed (Fig. 7c–f). Considering these additional >3000  m thick underlying the 

Shangganchaigou Fm., the initial depositional age of the Cenozoic strata in that section should be much older than the 

Oligocene, unless the sedimentation rate was dramatically higher during that period, which is not reflected by the 

sediment facies (Fig. S1). In other words, the new age model does not fit the entire sedimentary record in the western 

part of the Qaidam basin and the classic old age model seems to provide a much better match.

The “old ages” model thus seems to fit reasonably well the deformation history obtained from combining growth-strata 

observations and thermochronology data in the northern and southern Qaidam basin. However, when this issue is 

examined in more detail, it is likely that the Cenozoic lithostratigraphic units in the Qaidam basin are diachronous from 

one section to the other and have no basin-wide chronostratigraphic significance. A good example of such 

diachronicity in foreland deposits is given by the Xiyu Fm. in the Tarim and Junggar basins (Fig. 1). Indeed, these 

alluvial fans once considered to be synchronous and dated as Early Pleistocene in age (Chen et al., 1994; Feng and 

Dai, 2004; Gaboardi et al., 2005; Zhu et al., 2004), were later demonstrated to be largely diachronous, spanning at least 
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from 15 Ma to 1.7 Ma (Charreau et al., 2009a; Charreau et al., 2005; Charreau et al., 2009b; Cheng et al., 2018; 

Heermance et al., 2007; Huang et al., 2010; Sun et al., 2009; Sun et al., 2007).

4.3.4.3 Future perspective

As shown above, the Cenozoic strata preserved in the Qaidam basin record the Cenozoic deformation history of the 

northern margin of the Tibetan plateau (Meng and Fang, 2008; Métivier et al., 1998; Meyer et al., 1998; Xia et al., 

2001; Yin et al., 2008a; Yin et al., 2008b; Yin et al., 2002). In particular, the Lulehe Fm., marking the onset of 

Cenozoic deposition in the basin, clearly corresponds to the onset of topographic growth of the surrounding mountain 

belts (Cheng et al., 2019a; Wang et al., 2017b; Xia et al., 2001; Yin et al., 2008a; Yin et al., 2008b; Yin et al., 2007; 

Yin et al., 2002). The uncertainties in the depositional age of this key formation have major consequences on our 

understanding of the initial deformation pattern along the northern edge of the plateau. On a larger scale, it also affects 

our understanding of the mechanisms of crustal deformation in the entire plateau, and finally of the possible interaction 

between plateau growth and climate change (Bush et al., 2016; Cheng et al., 2019a; Cheng et al., 2019c; Dupont-Nivet 

et al., 2008; Fu et al., 2012; Wang et al., 2017b; Zhang et al., 2013a). Given the importance of constraining the age 

model of the Cenozoic strata within the Qaidam basin, increased investigations are thus urgently needed.

First, as pre-Quaternary strata are largely covered by younger deposits in the western Qaidam basin, 

magnetostratigraphy study could be carried out on the deep drilling cores obtained by the Qinghai Oilfield Company, 

PetroChina. Second, a recent detrital zircon geochronology study in the southwestern part of the Qaidam basin reported 

Cenozoic U-Pb zircon ages (e.g. 37 Ma and 56 Ma) from the Miocene and Pleistocene strata in the southern part of the 

basin (Cheng et al., 2016a). This indicates that Early Cenozoic volcanic ash might have been deposited in some parts of 

the Qaidam basin. Finding and dating those ashes would indeed bring robust constraints to the age model. Third, U-Pb 

dating of authigenic carbonate minerals from lacustrine strata in nonmarine systems are now widely used to determine 

the depositional ages (Drost et al., 2018; Finzel and Rosenblume, 2020; Rasbury and Cole, 2009). The well-developed 

limestones and marls in the Lulehe Fm. to Shangganchaigou Fms. (Chang et al., 2015; Cheng et al., 2019a; Cheng et 

al., 2019c; Meng and Fang, 2008; Miao et al., 2011; Rieser et al., 2009a; Xia et al., 2001) are suitable materials that 

hold great potential for determining such depositional ages. Using outcrops and the dense drill core network, a detailed 

U-Pb dating of carbonate samples from the Xiaganghaigou to the Shangganchaigou Fms. across the basin would not 

only provide independent age controls for the corresponding magnetostratigraphy studies but also bring detailed 

constraints on the potential diachronicity of the units inside the basin. Fourth, Re-Os geochronometry has been widely 

used as a proxy for determining precise and accurate depositional ages of marine organic-rich rocks (Rooney et al., 

2020; Selby and Creaser, 2003; Tripathy et al., 2015) and is now successfully applied to similar deposits in lacustrine 

nonmarine systems (Cumming et al., 2012; Cumming et al., 2014; Meng et al., 2020). As the largest petroliferous basin 

in the Tibetan plateau, the Qaidam basin contains abundant rocks that are rich in organic matter, especially the 

lacustrine source rocks in the Xiaganchaigou Fm. and Shangganchaigu Fm. (Fu et al., 2015; Jin et al., 2002; Pang et 

al., 2004). An extensive, basin-wide Re-Os geochronology study would again enhance our understanding of the 

depositional age of the corresponding Cenozoic strata pointing out potential stratigraphic diachronicity.

Finally, a better understanding of the tectonic and sedimentary interactions between the Qaidam basin and the 

surrounding belts would contribute to a better knowledge of the basin fill history, which, in turn, would help assessing 

the degree of reliability of the age model proposed through the above-mentioned geochronometer. Although datasets on 

the sedimentation and deformation history of the Tibetan plateau (e.g., low- and high- temperature geochronology, 

provenance data, isotopic data, palynology, seismic profiles) have improved significantly over the last few decades, the 

understanding of the interaction between the Qaidam basin and the surrounding belts is still hampered by the 

incomplete coverage of these datasets, especially from remote and often inaccessible regions (Wu et al., 2019a; Yin et 

al., 2007).

5.5 Interactions between the Eastern Kunlun Shan and the Qaidam basin

5.1.5.1 Tectonic relation between the Qaidam basin and the Eastern Kunlun Shan

5.1.1.5.1.1 South-dipping vs north dipping boundary fault in the southern Qaidam basin

The debate on the upper crustal structural relation between the Eastern Kunlun Shan and the Qaidam basin has become 

particularly heated during the last two decades. Although several models have been proposed (Burchfiel et al., 1989; 

Cheng et al., 2014; Huang et al., 2020; Jolivet et al., 2003; Meng and Fang, 2008; Meyer et al., 1998; Mock et al., 

1999; Tapponnier et al., 2001; Wang et al., 2006; Xia et al., 2001; Yin et al., 2007), three typical models (Fig. 8) that 

describe the tectonic structure in the Eastern Kunlun Shan and in the SW Qaidam basin are representative of the key 

questions that remain debated: (1) Northward thrusting model, (2) Northward propagation model, (3) Southward 

thrusting model.

First, the northward thrusting model dates back to the 1980s. Burchfiel et al. (1989) proposed that the Qaidam basin is 

bounded to the south by a south-dipping fault. North-directed motion of the southern block would induce thrusting of 

the Eastern Kunlun Shan crust onto the Qaidam basin leading to the uplift of the Eastern Kunlun Shan (Fig. 8a). 



Following this model, Mock et al. (1999) further argued that, from the Oligocene to the Early Miocene, this north-

directed thrusting would be associated with the formation of a crustal wedge in the Eastern Kunlun Shan. Therefore, 

this model considers the southwestern part of the Qaidam basin as a foreland basin of the Eastern Kunlun Shan. Meng 

and Fang (2008) proposed that the Cenozoic tectonic subsidence of the Qaidam basin may result from crustal buckling 

in response to regional NE-trending compression. In this model, north-directed thrusting, initiating during the Miocene 

along the south-dipping boundary fault, may have controlled the exhumation of the Qimen Tagh Range, the western 

segment of the Eastern Kunlun Shan (Fig. 2) (Cheng et al., 2014). The second type of models emphasizes the role of 

sinistral strike-slip faults in the Eastern Kunlun Shan. The structural pattern of the range would be characterized by a 

large transpressional system, including the left-lateral strike-slip Kunlun fault to the south and a series of south-dipping 

thrusts to the north (Jolivet et al., 2003; Meyer et al., 1998; Tapponnier et al., 2001; Wang et al., 2006). Cheng et al. 

(2014) further developed this model and proposed a northward propagation model (Fig. 8b). This model emphasizes 

the Neogene northward bending and propagation of the fault system initiating as strike-slip lineaments along the 

Kunlun fault and progressively switching to thrusts, forming a northward growing crustal wedge (Fig. 8b). In the 

meantime, Yin et al. (2007) proposed a quite different model arguing that several south-directed thrusts rooted into the 

Qilian Shan to the north propagated southward, carrying the low-elevation Qaidam basin to the high-elevation Eastern 

Kunlun Shan (Fig. 8c). This southward thrusting model has been adopted by some recent studies (Shi et al., 2009; 

Wang et al., 2011; Wu et al., 2019b; Zuza and Yin, 2016), attracting a growing attention from the Asian tectonics 

community in recent years.

The abundant, high quality subsurface data acquired by the oil industry in recent years enable a re-evaluation of these 

three competing models. First, isopach maps show that the Cenozoic strata (including the Lulehe, Lower and Upper 

Xiaganchaigou, and Shangganchaigou formations) generally thicken from the southern margin of the basin 

towardstoward its center (Figs. 2b–c, 12) (Cheng et al., 2018; Mao et al., 2014a; Meng and Fang, 2008; Yin et al., 

2008b). This pattern opposes the classic tectonically subsiding foreland-basin model that requires the depocenter to be 

situated next to the bounding fault (Jordan, 1981). To this end, the foreland basin model (northwards thrusting of the 

Eastern Kunlun Shan) (Burchfiel et al., 1989; Mock et al., 1999) does not seem to explain the structural relation 

between the Eastern Kunlun Shan and the Qaidam basin.

On the other hand, the south-directed thrusting model put forward by Yin et al. (2007) was mainly based on: 1) 

observation of an unconformity between the north-dipping Pliocene-Quaternary strata and the Ordovician to 

Carboniferous strata of the Eastern Kunlun Shan; 2) evidence for south-directed thrusting in the Carboniferous strata; 3) 

observation, on 2D seismic profiles, of several south-directed reverse faults beneath the southwestern part of Qaidam 

basin; 4) the reporting of several north-dipping faults in the Eastern Kunlun Shan on existing geological map (Liu, 

1988) and in fieldwork reports of (Dewey et al., 1988). We acknowledge the importance of the observed unconformity 

between the Pliocene-Quaternary strata and the Ordovician to Carboniferous basement rocks of the Eastern Kunlun 

Shan. Yet this observation may just indicate the exhumation of the Eastern Kunlun Shan during or before the deposition 

of Pliocene-Quaternary strata. The geological map by Liu (1988) is 1: 1,500,000 scale and cannot display subtle key 

information on faults geometry, whereas the field investigation performed by Dewey et al. (1988) is limited to a narrow 

strip along the Golmud to Lhasa road, covering only a small portion of the Eastern Kunlun Shan near the Golmud (

Kidd et al., 1988). More recent geological maps (1: 250,000 scale) report several major north-directed thrust faults in 

the Qimen Tagh Range, forming the western part of the Eastern Kunlun Shan (I.G.S.Q.P, 2004; I.G.S.S.P, 2003). 

These faults might support the northward thrusting model, contradicting the southward thrusting hypothesis. More 

importantly, several newly acquired 2D and 3D high-quality seismic profiles display series of south-dipping faults 

beneath the southwestern part of Qaidam basin (Fig. 9b–c). On NE-trending seismic profiles EE’ and FF’, these thrusts 

are high angle basement-involved faults defining a block-like structure (Fig. 9b). These faults cut the Cenozoic 

sediments rooting into the Eastern Kunlun Shan and Qaidam basement. On seismic profile EE’, the thickness of the 

Lower Cenozoic lithostratigraphic units (Lulehe Fm. to Xiaganchaigou Fm.) in the footwall do not match with those of 

the hanging wall. The post-Xiaganchaigou Fm. strata taper toward the faults, forming growth strata (Fig. 9c). On 

seismic profile FF’, the post-Xiaganchaigou Fm. in the SW Qaidam basin again taper toward the faults, forming growth 

strata that indicate the onset of deformation accommodated along these faults (Fig. 9c). Based on a 2D low-resolution 

seismic profile (Fig. 10a–b), Song and Wang (1993) suggested that the Arlar fault cuts through all the Cenozoic strata 

up to earth surface. They interpreted such fault as a long-lived purely reverse fault that initiated during the Early 

Cenozoic (Fig. 10c). However, Yin et al. (2007) reinterpreted the same 2D seismic profile by describing a fault-bend 

fold above the Arlar fault. In that second model, this basement-involved fault cuts through the Mesozoic to Early 

Cenozoic strata (Lulehe, Lower and Upper Xiaganchaigou Fms.) and forms a footwall flat within the 

Shangganchaigoou Fm. (Fig. 10d). The growth strata started to develop during the deposition of the Shangganchaigou 

Fm. suggesting that the Arlar fault initiated at this time. Finally, based on a newly acquired much higher resolution 3D 

seismic profile from the same location (Fig. 10e), Cheng et al. (2014) proposed that the Arlar fault is characterized by a 

positive flower structure, indicating strike-slip displacement along the fault (Fig. 10f). The isopachs of the Upper 

Xiaganchaigou Fm. show over 20 km lateral offset across the Arlar and Kunbei faults (Fig. 10a), indicating sinistral 

strike-slip movements along these two faults. Growth strata associated with the flower structure initiated during the 

deposition of the Xiayoushashan Fm., probably dating the onset time of left-lateral faulting along the Arlar fault (Fig. 



10f). We thus propose that left-lateral faulting along these structures (including the Arlar and Kunbei faults) in the 

southwestern part of the Qaidam basin initiated during the deposition of the Shangganchaigou Fm. to Xiayoushashan 

Fm. (Fig. 10). Some of the basement-involved faults within the basin also display a major strike-slip component 

reflected by flower structures on the seismic profiles (Fig. 11) (Liu et al., 2019). These flower structures reveal 

transpressional deformation within the basin, indicating that the N-S contraction in the northern Tibetan plateau was 

slip-partitioned along these WNW-striking faults in the Qaidam basin.

Moreover, isopach maps show that the depocenters of the southwestern part of the Qaidam basin are located next to the 

Eastern Kunlun Shan during deposition of Xiayoushashan and Shangyoushashan Fms. (Fig. 12e–f), coincident with 

the Oligocene to Miocene rapid exhumation of the Eastern Kunlun Shan revealed by low-temperature 

thermochronology (Dai et al., 2013; Duvall et al., 2013; Jolivet et al., 2001; Jolivet et al., 2003; McRivette et al., 2019). 

As a consequence, the southwestern part of the Qaidam basin might be considered as a foreland/flexural basin of the 

Eastern Kunlun Shan during deposition of the Xiayoushanshan and Shangyoushashan Fms. In summary, these newly 

acquired subsurface data allow us to interpret the basement-involved faults as south-directed dipping thrusts, rooting 

into the Eastern Kunlun Shan (Cheng et al., 2014; Cheng et al., 2015c; Sun, 2019; Wu et al., 2014), ruling out the 

north-directed thrusting model.

5.1.2.5.1.2 The northward propagation model

The structural pattern discussed above can be summarized as: 1) a series of south-dipping faults control the general 

tectonic pattern of the southwestern part of the Qaidam basin; 2) these faults have a sinistral strike-slip component 

accommodated during the deposition of the Shangganchaigou to Xiayoushashan Fms. Based on the evidence of a 

southwards younging of the onset of sinistral strike-slip motion on the faults from the SW Qaidam basin to the Qimen 

Tagh Range and to the modern Kunlun fault, Cheng et al. (2014) proposed a northward fault-propagation model. This 

model considers the faults beneath the southwestern part of the Qaidam basin and the faults within the Qimen Tagh 

Range as the former western segments of the Kunlun fault. These faults were once located further south in the present-

day location of the Kunlun fault and gradually migrated northward since the deposition of the Shangganchaigou to 

Xiayosuhashan Fm., while their kinematics changed from sinistral strike-slip motion to NE-SW contraction. We believe 

that the distinctive distribution of Cenozoic strata and the geometry of the faults in the southwestern part of the Qaidam 

basin can be reconciled with this northward propagation model (Cheng et al., 2014). Indeed, it better explains the 

kinematics framework by taking the Neogene northward bending and propagation of the successive strike-slip faults 

into consideration. During the deposition of the Lulehe to Xiaganchaigou Fms., tectonic activity in the Eastern Kunlun 

Shan and the southwestern part of the Qaidam basin was null or very low. Since the deposition of the 

Shangganchaigou to Xiayoushashan Fm., the south-dipping basement-evolved faults gradually migrated northward. 

Their sinistral strike-slip motion gradually changed to the NE-SW contraction which controlled the deposition of the 

Neogene sediments in the SW Qadaim basin.

5.1.3.5.1.3 Uncertainties of fault geometry and further work

Despite the improvements brought by the newly available geophysical data on our understanding of the structural 

pattern along the SW margin of the Qaidam basin, it should still be noted that the strong seismic noise in the region 

adjacent to the mountain ranges prevents clear imaging of that key boundary region (Cheng et al., 2014; Cheng et al., 

2015c; Sun, 2019; Wang et al., 2010c; Wu et al., 2014). The interpretation of either a north-directed (Mock et al., 1999; 

Sun, 2019) or a south-directed décollement (Yin et al., 2007) beneath the Cenozoic strata in the Qaidam basin remains 

speculative. Analyzing the earthquake focal mechanisms and focal-depth distribution within the Eastern Kunlun Shan, 

Chen et al. (1999) proposed that the southern Qaidam basin is bounded by a south-dipping thrust fault to the south. 

However, as Yin et al. (2007) pointed out, projecting the earthquake data collected from over 1000 km along the 

Eastern Kunlun Shan on a single cross-section is problematic. Besides, focal mechanisms for reverse or normal faults 

would have two opposite nodal planes difficult to relate to true faults in the absence of additional field evidence (Yin et 

al., 2007). Therefore, despite the improvement of the quality of the seismic reflection data in the southwestern part of 

the Qaidam basin (Cheng et al., 2014; Cheng et al., 2015c; Sun, 2019; Wu et al., 2014) and increased field-based 

geologic mapping in the remote Eastern Kunlun Shan (Staisch et al., 2020; Wu et al., 2019a), further geological and 

geophysical work is needed. The researches should especially focus on determining which are the major boundary 

faults and which are associated back-thrusts.

5.2.5.2 Was there a large depression in the northern Tibetan plateau during the Early Cenozoic?

Besides the structural relation between the Eastern Kunlun Shan and the Qaidam basin, another important issue 

associated with the Cenozoic evolution of the northern Tibetan plateau is the source to sink relationship between the 

Eastern Kunlun Shan and the Qaidam basin. As described above, the isopach maps (Fig. 11e–f) indicate that the 

Neogene (post-Xiayoushashan Fm.) SW Qaidam basin can be described as a foreland basin, a geometry supported by 

the Miocene rapid exhumation of the Eastern Kunlun Shan (See discussion in ) as revealed by the low-

temperature thermochronology (Fig. 12) (Dai et al., 2013; Duvall et al., 2013; Jolivet et al., 2001; Jolivet et al., 2003; 

Mao et al., 2014a; McRivette et al., 2019). However, this geometry does not seem to have prevailed during the Early 
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Cenozoic and the occurrence of a Paleogene Paleo-Qaidam basin encompassing the Qaidam and Hoh Xil depressions (

Yin et al., 2008b) remains speculative (Figs. 1a and 13a). This hypothesis is based on similarities in stratigraphic 

characteristics of the Cenozoic strata in the Qaidam and Hoh Xil basins and the rapid Miocene exhumation of the 

Eastern Kunlun Shan that would have ultimately separated the two depressions. In this model, the minor depocenter in 

the southern Qaidam basin during the deposition of Lulehe Fm. was interpreted as a syncline creating a local sub-

depocenter. If correct, this model suggests no or little paleo-relief in the Eastern Kunlun Shan during the Early 

Cenozoic and out-of-sequence deformation (i.e., Paleogene deformation in the Qilian Shan to the north with Neogene 

deformation in the Eastern Kunlun Shan to the south) in the northern Tibetan plateau, which will largely affect our 

understanding of the growth pattern of the entire Tibetan plateau. The key to answering these questions is whether the 

Eastern Kunlun Shan was exhumed during the Early Cenozoic. Indeed, several lines of evidence challenge the burial 

of the Eastern Kunlun Shan during the Early Cenozoic.

5.2.1.5.2.1 Flexural modeling evidence

Using seismic profiles and isopach maps, Cheng et al. (2019a) reconstructed the original shape of a NE-trending 

section across the Qaidam basin at the time of deposition of the Lulehe Fm. after conducting the balanced cross-section 

restoration and decompaction. The authors subsequently modeled the shape of this profile using flexural modeling (Fig. 

14). Comparing this model with the restored cross-section, it appears clearly that the topographic load induced by the 

Qilian Shan alone cannot create a sufficient load to cause the observed deflection of the Qaidam basement during the 

deposition of the Lulehe Fm. (Fig. 14a). Changing the size (equivalent to the topographic load) of the Eastern Kunlun 

Shan and Qilian Shan cannot provide a better fit between the modeled deflection of the Qaidam basement and the 

original shape of the Qaidam basin restored from geological data (Fig. 14b–e). In other words, both the Eastern Kunlun 

Shan and the Qilian Shan basements should be exhumed during the deposition of the Lulehe Fm., and the associated 

overload was responsible for the flexural deflection of the Qaidam basement. Following this methods, Wang et al. 

alt-text: Fig. 13
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Two scenarios for the evolution of the Qaidam basin and the Eastern Kunlun Shan during the Cenozoic. (a) Paleo-Qaidam model, 

forming a large depression in the northern Tibetan plateau (Mao et al., 2014a; Yin et al., 2008b). (b) Isolated-Qaidam model, showing 

the minor topographic relief in the Eastern Kunlun Shan, cutting off the link between the Qaidam basin and the Hoh Xil basin (Cheng 

et al., 2016a; Cheng et al., 2019c). (c) Modern topography of the Qaidam basin and surrounding regions.



(2021) analyzed four additional NE-trending sections across the Qaidam basin at the time of deposition of the Lulehe 

Fm. and further documented the variable along-strike relief of the Eastern Kunlun Shan at that time. Based on these 

information, we thus conclude that, during deposition of the Lulehe Fm., a non-negligible paleo-Kunlun relief was 

present, separating the SW Qaidam from the Hoh Xil basins.

5.2.2.5.2.2 Sedimentary records

Based on sediment samples obtained from drill cores in the southern Qaidam basin, the Lulehe Fm. in the southern 

Qaidam basin is described as boulder-to cobble-sized clast-supported conglomerate (Fu et al., 2012; Gong et al., 2012; 

Ma and Wang, 2015; Mu, 2002; Sun et al., 2005; Zhang et al., 2013a). However, fine-grained fluvial and lacustrine 

deposits have also been observed in the Lulehe Fm. in the southwestern part of Qaidam basin, indicating a complex 

depositional environment pattern (Cheng et al., 2019a; Cheng et al., 2019c). Cheng et al. (2019a) carried out an 

extensive study based on the core samples obtained from a wide range of drill wells to document the sedimentary 

characteristics of the Lulehe Fm., indicating both proximal and distal deposits (Fig. 15a–e). Meanwhile, heavy mineral 

analysis on the Lulehe Fm. core samples collected from the drilling wells along the southern margin of the basin also 

revealed a dominating zircon-leucoxene-garnet-sphene assemblage. This result indicates that the Lower Paleozoic and 

Lower Mesozoic igneous rocks in the Qimen Tagh Range were likely the sources of material deposited in the 

southwestern part of the Qaidam basin (Li et al., 2015a; Zhu et al., 2017). In addition, unstable minerals, such as the 

epidote, were well-preserved in in those samples. Given that these unstable minerals are unlikely to have been 

preserved under long-distance transport from the Altyn Tagh Shan or Qilian Shan, the Eastern Kunlun Shan should be 

the primary source region for the southwestern part of Qaidam basin during that period (Fu et al., 2013; Li et al., 2015a; 

Zhu et al., 2017). Moreover, Cheng et al. (2016a), reported foraminifera-bearing carbonate fragments are preserved 

within Lulehe Fm. conglomerates in the SW Qaidam basin (Fig. 15f). Given that foraminifera are generally found in 

marine environments (Rohling et al., 1998) and carbonate fragments are not transported over long distances (Mack and 

Rasmussen, 1984; Zuffa, 1980), a simple explanation for these carbonate fragments is that they were derived from the 
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Two-load bean flexural modeling results, showing that both Eastern Kunlun Shan topographic loads are responsible for the flexural of 

the Qaidam basement, modified from Cheng et al. (2019a). The location of this section MM’ is given in Fig. 9a. Note that changing 

the size of the Eastern Kunlun Shan and Qilian Shan cannot provide a better fit between the modeled deflection of the Qaidam 

basement (green curve) and the original shape of the Qaidam basin (red curve) that restored after decompaction and the cross-section 

shortening restoration. See Cheng et al. (2019a) for the detailed flexural modeling experiment. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)



foraminifera-abundant Carboniferous sequences in the western segment of the Eastern Kunlun Shan. This further 

demonstrates that the Eastern Kunlun Shan was the primary source region for the southwestern part of Qaidam basin.

5.2.3.5.2.3 Low-temperature thermochronologyl record

Published low-temperature thermochronology data reveal that the Eastern Kunlun Shan might have experienced a two-

stage exhumation history during the Cenozoic: (1) Paleocene to Early Oligocene initial exhumation and (2) Late 

Oligocene to Miocene rapid exhumation. Thermochronology data and modeling in the Eastern Kunlun Shan show 

initial rapid exhumation as early as ca. 55‐–40 Ma (Clark et al., 2010; Jolivet et al., 2001; Shi et al., 2018; Staisch et al., 

2020; Wang et al., 2017b; Wu et al., 2020). More specifically, apatite and zircon fission track and (U-Th)/He 

thermochronology studies on the crystalline rocks of the Eastern Kunlun Shan revealed that the exhumation of the 

Eastern Kunlun Shan might have initiated at 40 ± 10 Ma in response to the India-Asia collision (Clark et al., 2010; 

Jolivet et al., 2001; Staisch et al., 2020; Wang et al., 2017b). Meanwhile, (U-Th)/He thermochronology studies on 

detrital apatite from upper Eocene to Pliocene strata within the Eastern Kunlun Shan indicated that high mountain 

ranges in the Eastern Kunlun Shan might have formed at or before ~40 Ma (Shi et al., 2018). On the other hand, the 

rapid exhumation of the Eastern Kunlun Shan during the Oligocene to Miocene has been inferred by a number of low-

temperature thermochronology studies (Dai et al., 2013; Duvall et al., 2013; Jolivet et al., 2001; Li et al., 2021; Liu et 

al., 2017; McRivette et al., 2019; Staisch et al., 2020; Wang et al., 2018; Wu et al., 2020; Yuan et al., 2003).

Although it is obvious that a Paleogene relief existed in the Kunlun region, it is also undeniable that strong similarities 

existed between the sediment facies in both basins (Yin et al., 2008b). Following that observation, the question whether 

the two basins were completely disconnected or not still remains open. On seismic profile MM’ (Fig. 15g), the 

successive westward onlaps of the Lulehe and Lower Xiaganchaigou Fm. suggest a mountainward expansion of the 

Qaidam basin during the Paleocene – Early Eocene. This inference of a progressive expansion of the drainage area in 

the SW Qaidam basin is further supported by the progressively westward retrogradation of the fluvial-deltaic deposits (

Fig. 15e–d) and by the westward expansion of the Lulehe to Shangganchaigou deposits (Fig. 12a–d). Moreover, the 

increasing proportion of Mesozoic to Late Paleozoic and Precambrian U-Pb detrital zircon ages in samples from the 

Lulehe Fm. to the Shangganchaigou Fm. further suggest a widening of the source regions, again supporting the 

expansion of the drainage system in the SW Qaidam basin (Fig. 16). These observations thus suggest that while some 

relief existed in the Eastern Kunlun Shan area during the Paleogene, the Qaidam basin drainage area nonetheless might 

have expanded progressively during that period, likely merging with that of the Hoh Xil basin to the south (Fig. 13b). 

This connection was cut off during the Miocene due to the rapid exhumation of the Eastern Kunlun Shan. This 
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Photographs of the core samples collected from the SW Qaidam basin, showing the laminated marls in the Lower Xiaganchaigou Fm. 

(a) and the conglomerates in the Lulehe Fm. (Cheng et al., 2019c) (b). (c) Well-correlation diagram of the Lulehe Fm. and Lower 

Xiaganchaigou Fm. strata based on well-log and drill core data in the SW Qaidam basin. Distribution of facies during the deposition 

of the Lulehe Fm. (d) and Lower Xiaganchaigou Fm. (e) in the SW Qaidam basin (Cheng et al., 2019c). The location of facies map is 

shown in Fig. 9a. (f) Plane polarized light microphotograph of core samples collected from the Lulehe Fm. in the SW Qaidam basin, 

from Cheng et al. (2016a). Note the foraminifera fossils in carbonate debris within conglomerates. (g) Interpreted seismic profile in the 

SW Qaidam, displaying the successive westward (mountain-ward) onlap of the Lulehe and Lower Xiaganchaigou formations, 

modified from Cheng et al. (2019c). The location of section is shown in Fig. 9a.



inference of a Late Oligocene to Miocene isolation of the Qaidam basin is consistent with the reduction of the 

deposition area observed on the isopach maps (Fig. 12e–h).

In summary, flexural modeling, sedimentology and low-temperature thermochronology evidence demonstrate that no 

single large depression developed during the Paleocene and that the Eastern Kunlun Shan was exhumed during the 

Paleocene to Early Oligocene, feeding clastic material to the Qaidam basin. In the same time, the southwestern part of 

the Qaidam basin drainage area was expanding southward toward the Hoh Xil basin depression implying that the relief 

in the Eastern Kunlun Shan area was limited. This inference of an existing minor exhumation in the Eastern Kunlun 

Shan during the Early Cenozoic has been adapted to the tectonic evolution model of the northern Tibetan plateau by 

McRivette et al. (2019).

6.6 Implication for the Cenozoic evolution of the Qaidam basin

Based on the various arguments discussed above, we propose a holistic view of the Cenozoic evolution of the Qaidam 

basin. Given the debates on the age model for the Cenozoic strata in the Qaidam basin, the lithostratigraphic units are 

used to describe the corresponding time period without reference to an absolute time-scale. We propose a three-stages 

evolution model including: 1) initial flexural subsidence; 2) basin-scale expansion; 3) isolation.

6.1.6.1 Flexural subsidence of the Qaidam basin

Thermochronology studies (e.g., 
40

Ar/
39

Ar dating and apatite fission track) have revealed several Mesozoic tectono-

thermal events in the Altyn Tagh Shan, Eastern Kunlun Shan, and Qilian Shan, indicating substantial crustal 

deformation in the northern Tibetan plateau during the Mesozoic (Arnaud et al., 2003; Baotian et al., 2013; Chen et al., 

2003; Chen et al., 2009; Cheng et al., 2016c; Dai et al., 2013; Du et al., 2018; He et al., 2017; He et al., 2018; Jian et 

al., 2018; Jolivet et al., 2001; Jolivet et al., 1999; Li et al., 2019; Lin et al., 2019; Liu et al., 2007a; Liu et al., 2005; Liu 

et al., 2007b; Mock et al., 1999; Pan et al., 2013; Qi et al., 2016; Rieser et al., 2006b; Rieser et al., 2009b; Sobel et al., 

2001; Tian et al., 2020; Wang et al., 2016a; Wang et al., 2004; Wang et al., 2005; Wang et al., 2018; Wang et al., 2015; 

Wu et al., 2019c; Yuan et al., 2006; Zhang et al., 2017; Zhuang et al., 2018). This multi-pulse crustal deformation 

resulted in the exhumation and uplift of the mountain belts, forming pre-existing topographic reliefs in the northern 

Tibetan plateau. Provenance analyses on the Mesozoic sedimentary records in the Qaidam basin (Cheng et al., 2016a; 

Cheng et al., 2016b; Ritts and Biffi, 2000; Ritts and Biffi, 2001; Ritts et al., 1999; Robinson et al., 2003; Wu et al., 

2011; Yu et al., 2017; Zhang et al., 2020; Zhao et al., 2020a; Zhao et al., 2020b), Hoh Xil basin (Staisch et al., 2020; 

Staisch et al., 2014; Wu et al., 2019b), Suganhu basin (Cheng et al., 2019d), Jiuquan basin (Chen et al., 2014; Cheng et 

al., 2019b), also demonstrated the existence of inherited relief in the northern Tibetan plateau. As shown by the detrital 

zircon geochronology, paleocurrent measurement, heavy mineral analysis, and petrology studies, pre-existing reliefs in 

the Eastern Kunlun Shan and the Qilian Shan shed materials into the southwestern and northeastern parts of the 

Qaidam basin during deposition of the Lulehe Fm. (Cheng et al., 2016a; Cheng et al., 2016b; Wang et al., 2020a; Wu 

et al., 2011; Yu et al., 2017; Zhao et al., 2020a). These pre-existing reliefs in the Eastern Kunlun Shan and the Qilian 
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Detrital zircon age spectra for Cenozoic sandstone samples from the SW Qaidam basin and relative probability plot of granitoid 

pluton ages in the Eastern Kunlun Shan and the Central Tibet. Zircon ages from the Cenozoic sandstone and basement rocks of 

potential source regions are mainly compiled from (Cheng et al., 2016a; Cheng et al., 2017; Dai et al., 2012). The green arrows show 

that the distribution of the zircon ages becomes more diverse from the Lulehe Fm. sample to the Shangganchaigou Fm., probably 

indicate the expansion of the drainage are of the Qaidam basin. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)



Shan were resulting in topographic load induced basement deflection of the Qaidam basin during the deposition of the 

Lulehe Fm. An early stage of exhumation of the Qilian Shan and the Altyn Tagh Shan is also supported by the growth 

strata shown on the seismic profile in the northwestern and northeastern edges of the basin (Cheng et al., 2019a; Cheng 

et al., 2019c; Cheng et al., 2019d; Yin et al., 2008a; Yin et al., 2008b). As shown on the isopach map of the Lulehe 

Fm. strata (Figs. 7, 12, 17a), the major depocenter was adjacent to the Qilian Shan while a few secondary depocenters 

were located along the southern and western margins of the basin. Despite uncertainties, the synchronous deformation 

along the western edge of the Qaidam basin might be associated with the initial left-lateral strike-slip faulting along the 

Altyn Tagh Fault (Cheng et al., 2015a; Cheng et al., 2016b; Yin et al., 2002).

Integrated provenance analysis based on sedimentology evidence and detrital zircon geochronology show that the pre-

Cenozoic exhumed Eastern Kunlun Shan (including basement-exposed topographic highs) served as the dominant 

source of detrital materials for the Qaidam basin during the deposition of the Lulehe Fm. (Fig. 17a) and separated the 

Qaidam basin from the Hoh Xil basin to the south. Despite the existence of this relief, the Lulehe Fm. along the 

northern front of the Eastern Kunlun Shan is composed of distal fluvial to marginal lacustrine deposits and proximal 

fluvial deposits (Cheng et al., 2019a; Cheng et al., 2019c), indicating that the relief of the Eastern Kunlun Shan was 

limited and was likely located further south than its modern position. This inference of limited topography of the 

Eastern Kunlun Shan is consistent with flexural modeling results (Cheng et al., 2019a; Wang et al., 2021). Wang et al. 

(2021) applied flexural modeling to reconstructed the Paleogene isopach pattern obtained from seismic imaging of the 

Qaidam basin. Modeling result shows that the topographic load of the Eastern Kunlun Shan was much smaller than that 

of the Qilian Shan (Fig. 14a). Based on these lines of evidence, we proposed that the Qaidam basin should be 

considered as a flexural basin during the deposition of the Lulehe Fm.

6.2.6.2 Basin-scale expansion of the Qaidam basin drainage system

Based on the information derived from the isopach maps, seismic profiles, sedimentology, and detrital zircon 

geochronology, we propose a basin-scale expansion of the Qaidam basin from the deposition of the Lower 

Xiaganchaigou Fm. to that of the Shangganchaigou Fm. This expansion is characterized by the landward 

migration/retrogradation of the alluvial-fluvial facies deposits along the edges of the Qaidam basin (Fig. 15c–e)(Cheng 

et al., 2019c). Inside the basin, expansion of the drainage and deposition system translates into landward-onlapping 

reflectors shown on the seismic reflection profiles (Fig. 15g) (Cheng et al., 2016a; Cheng et al., 2019c), the outwards 

widening of the sediment deposition area as shown on the isopach maps (Figs. 5, 11, 17b–d), and the more diverse age 

distribution shown on detrital zircon age spectra (Fig. 16) (Cheng et al., 2016a; Cheng et al., 2019c).

Despite that left-lateral strike-slip faulting along the Altyn Tagh Fault might locally create extension along the fault 

zone, seismic profiles across the basin indicate a continuous contractional setting affecting the Qaidam basin, the Qilian 

Shan, and the Eastern Kunlun Shan throughout the Cenozoic (Cheng et al., 2016a; Cheng et al., 2019a; Cheng et al., 

2019c; Cheng et al., 2016b; Cheng et al., 2017; Wei et al., 2016; Wu et al., 2014; Yin et al., 2008a; Yin et al., 2008b; 
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Sketched tectonic features in the Qaidam basin and surrounding orogenic belts on the isopach maps of the Cenozoic strata. The 

yellow arrows refer to the direction of the drainage system. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)



Yin et al., 2007; Zhou et al., 2006). Continuous formation of growth strata can be observed in the Lower 

Xiaganchaigou, Upper Xiaganchaigou, and Shangganchaigou Fms. of the northern Qaidam basin (Fig. 9), indicating a 

contemporaneous uplift of the Qilian Shan seemingly incompatible with an overall widening of the basin (Cheng et al., 

2019c). On the other hand, the depositional facies datasets provided by the Qinghai Oilfield, PetroChina, shows a 

distinct basin-ward shift of lithofacies associations, from proximal alluvial fan facies to distal lacustrine facies in plan 

view (Cheng et al., 2019c). Vertically, the coarse-grained alluvial fan and braided river deposits retrograded northward, 

from the deposition of the Lulehe Fm. to that of the Shangganchaigou Fm. In details, the alluvial fan facies of the 

Lulehe Fm. gradually evolved upward to braided river facies in the Lower Xiaganchaigou and Shangganchaigou Fms. 

As a consequence, in such a contractional setting, climate likely played a major role in reducing the formation of 

topographic relief, allowing for the expansion of drainage and deposition areas. A negative shift in δ18
O values of 

marls/limestones from the Lower Xiaganchaigou Fm. to the Shangganchaigou Fm. (Cheng et al., 2019c; Li et al., 2016

; Li et al., 2017; Mao et al., 2014b; Rieser et al., 2009a) and the discovery of the fishes living in warm freshwater 

environments (Yan et al., 2018; Yang et al., 2018), suggest that the regional climate was relatively wet climate with 

considerable precipitation at that time.

We thus propose that during the deposition of the Lower Xiaganchaigou Fm. to Shangganchaigou Fm., the regional 

climate changed toward wetter conditions triggering erosion in the uplifting ranges around the basin and allowing a 

landward expansion of the basin drainage area and deposition area. Although the southward basin expansion would 

lead to a potential connection between the Qaidam basin and the Hoh Xil basin to the south at that time (Cheng et al., 

2016a; Cheng et al., 2019c; Mao et al., 2014a; McRivette et al., 2019; Yin et al., 2008b), the Eastern Kunlun Shan 

might still be partly uplifted. Except for a few minor depocenters in the western or eastern part of the basin, the major 

depocenter was consistently located near the geometric center of the basin. This continuous accumulation of materials 

derived from the surrounding mountain belts increased the sedimentation load, which further drove the subsidence, 

allowing for continuous sediment accommodation space (Fig. 17b–d) (Cheng et al., 2017; Métivier et al., 1998; Meyer 

et al., 1998).

6.3.6.3 Isolation of the Qaidam basin

From the deposition of the Xiayouoshashan Fm., the Qaidam basin has been gradually shrinking, as shown on the 

isopach maps by a reduction in sediment distribution area (Figs. 5, 17e–h). The most prominent change is that the 

southern edge of the basin migrated northwards compared to the previous period. This motion is reflecting the rapid 

uplift of the Eastern Kunlun Shan during deposition of the Xiayooushashan Fm. This is further supported by growth 

strata forming during the same period in the southern Qaidam basin (Cheng et al., 2016a; Cheng et al., 2018; Cheng et 

al., 2019a; Cheng et al., 2014; Cheng et al., 2017; Cheng et al., 2015c; Huang et al., 2020; Mao et al., 2014a; Wang et 

al., 2010b; Wu et al., 2014) and the increase in cooling rates evidenced by low-temperature thermochronology data in 

the Eastern Kunlun Shan (Dai et al., 2013; Duvall et al., 2013; Jolivet et al., 2001; Jolivet et al., 2003; Mao et al., 

2014a; McRivette et al., 2019; Staisch et al., 2020; Wu et al., 2019a). Northwest and northeast of the basin, the tectonic 

uplift of the Altyn Tagh Shan and Qilian Shan, evidenced by low-temperature thermochronology data (Chen et al., 

2009; Cheng et al., 2016c; Jolivet et al., 1999; Li et al., 2015b; Lin et al., 2015; Liu et al., 2007a; Pang et al., 2019a; 

Pang et al., 2019b; Wang et al., 2006; Wang et al., 2020b; Yin et al., 2002; Yu et al., 2019a; Yu et al., 2019b) and the 

development of growth strata along the margins of the Qaidam basin (Figs. 6a and 7d), forced the depocenter of the 

basin to gradually migrate eastward during the deposition of the Xiayoushashan, Shangyoushashan, Shzigou, and 

Qigequan Fms. (Cheng et al., 2015a; Cheng et al., 2015b; Cheng et al., 2016b; Cheng et al., 2019d; Meng and Fang, 

2008; Wang et al., 2010b; Wang et al., 2010c; Wu et al., 2019d)(Fig. 2c). The deposition of the Shangyoushashan Fm., 

marks the onset of noticeable internal deformation in the Qaidam basin that will lead to partitioning during the Neogene 

(uplifted zone during the Neogene are represented by non-deposition areas on the isopach maps) (Fig. 17f–g). Seismic 

profiles show that these structures formed during the period extending from the deposition of the Xiayoushashan Fm. to 

that of the Qigequan Fm. (Figs. 6, 9–11). This internal deformation, added to the topographic growth of the 

surrounding ranges, further increased the shrinking of the Qaidam basin. However, during the same period, the regional 

climate became more arid (Heermance et al., 2013; Li et al., 2016; Miao et al., 2019; Zhuang et al., 2011a), and we 

might not rule out the possibility that the decrease in rainfall, by reducing the erosion rates, limited the sediment 

discharge in the basin, favoring its reduction in size. The Late Cenozoic evolution of the Qaidam basin was thus 

controlled by a complex combination of tectonic crustal thickening and relief building associated to a climate-driven 

reduction in erosion rates.

Overall, the Qaidam basin should be considered a superimposed basin, controlled during the Cenozoic by the major 

fault systems in the Altyn Tagh Shan, Qilian Shan, and Eastern Kunlun Shan. It cannot be simply summarized as a 

foreland basin, strike-slip full-part basin, or any other type of sedimentary basin. Given the multiple pulses of 

contractional deformation in the surrounding regions, the Qaidam basin might have experienced at least three stages of 

evolution during the Cenozoic, from a flexural basin during the deposition of the Lulehe Fm., to an expanding 

“cratonic basin” during the deposition of the Lower Xiaganchaigou, Upper Xiaganchaigou, and Shangganchaigou 

Fms., and finally to a completely isolated and partitioned endoreic basin from the deposition of the Xiayoushashan Fm. 

to the present. Besides the tectonics, climate change toward a wetter climate condition during the Paleogene contributed 



to the expansion of the basin, a trend that was inverted during the Neogene due to the superimposed effects of 

increased crustal shortening and aridity-driven decrease in erosion rates.

7.7 Conclusion

The compilation of the available sedimentology, tectonics, thermochronology, geochronology, and geophysical data in 

the Qaidam basin highlights the following points:
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Although the most recent “young ages” model for the Cenozoic strata in the Qaidam basin might work 

for the northeastern part of the basin, the traditional “old ages” model seems to fit reasonably well the 

deformation history obtained from combining growth-strata observations and thermochronology data in 

the northern and southern Qaidam basin. The Cenozoic lithostratigraphic units within the basin might be 

probably time-transgressive, but further investigation is urgently needed.

(1)

The Neogene initiation of strike-slip faulting along the south-dipping faults that roots into the Eastern 

Kunlun Shan played an important role in the evolution of the southern Qaidam basin. The Eastern 

Kunlun Shan has been exhumed since the deposition of the Lulehe Fm., serving as a significant source 

to the sediments deposited in the Qaidam basin. The topographic relief in the Eastern Kunlun Shan 

seperated the Qaidam basin from the Hoh Xil basin to the south.

(2)

The Qaidam basin is a superimposed sedimentary basin, which experienced three stages of evolution 

during the Cenozoic, from a flexural basin setting during the deposition of Lulehe Fm. Then the Qaidam 

basin became an outward expanding “cratonic basin” during the deposition of Lower Xiaganchaigou, 

Upper Xiaganchaigou, and Shangganchaigou formations, and finally became an isolated, partitioned, 

and closed basin from the deposition of the Xiayoushashan Fm. to the present. Both tectonics and 

climate play an important role in the evolution of the basin during the Cenozoic.

(3)
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HighlightHighlights

• The old age model fits well the deformation history in the northern Tibetan plateau.

• Cenozoic lithostratigraphic units of the Qaidam basin could be time-transgressive.

• Basement-involved faults accommodate deformation and control basin evolution.

• Qaidam basin has experienced flexural subsidence, outwards expansion, and isolation.

• The interplay between the tectonics and climate determines the basin evolution.
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