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Abstract: China was the first country to undergo large-scale lockdowns in response to the pandemic
in early 2020 and a progressive return to normalization after April 2020. Spaceborne observations of
atmospheric nitrogen dioxide (NO2) and oxygenated volatile organic compounds (OVOCs), including
formaldehyde (HCHO), glyoxal (CHOCHO), and peroxyacetyl nitrate (PAN), reveal important
changes over China in 2020, relative to 2019, in response to the pandemic-induced shutdown and
the subsequent drop in pollutant emissions. In February, at the peak of the shutdown, the observed
declines in OVOC levels were generally weaker (less than 20%) compared to the observed NO2

reductions (−40%). In May 2020, the observations reveal moderate decreases in NO2 (−15%) and
PAN (−21%), small changes in CHOCHO (−3%) and HCHO (6%). Model simulations using the
regional model MAGRITTEv1.1 with anthropogenic emissions accounting for the reductions due
to the pandemic explain to a large extent the observed changes in lockdown-affected regions. The
model results suggest that meteorological variability accounts for a minor but non-negligible part
(~−5%) of the observed changes for NO2, whereas it is negligible for CHOCHO but plays a more
substantial role for HCHO and PAN, especially in May. The interannual variability of biogenic and
biomass burning emissions also contribute to the observed variations, explaining e.g., the important
column increases of NO2 and OVOCs in February 2020, relative to 2019. These changes are well
captured by the model simulations.

Keywords: COVID-19; nitrogen dioxide; volatile organic compounds; formaldehyde; anthropogenic
emissions; atmospheric modeling
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1. Introduction

The impact of the COVID-19 disruptions on the atmospheric composition is studied
by a rapidly growing number of publications, dominated by air quality studies over
China [1,2], as this country was the first to undergo large-scale stringent lockdowns starting
at the end of January 2020 and because their effects are expected to be very strong due to the
high pollution levels. The reduction of social exchanges and economic activities led to sharp
changes in air pollution, reported by in situ and satellite observations [3–11], and to an
estimated reduction of 20–30% in primary pollutant emissions in February in eastern China
based on activity data [12]. These widespread disturbances caused cascading changes in
secondary pollutants through chemical interactions and feedbacks [13,14]. To disentangle
the effects of long-term emission trends, meteorology and chemistry on the observed
changes due to the COVID-19 lockdown in China, model studies usually target February
and March 2020, when the Chinese economy was most affected, with a particular focus
on observations of nitrogen dioxide (NO2), ozone, and particulate matter [7,10,13,15–17].
However, spaceborne observations of other secondary pollutants such as volatile organic
compounds (VOCs), are important to complement the analysis regarding the response of
the atmospheric system to the pandemic-induced disruptions.

Here we use satellite column densities of four trace gases, NO2, formaldehyde
(HCHO), glyoxal (CHOCHO), and peroxyacetyl nitrate (PAN) in February and May 2019
and 2020 and analyze their distributions against simulations of the regional chemistry/
transport model MAGRITTEv1.1 (Model of Atmospheric Composition at Global and Re-
gional scales using Inversion Techniques for Trace gas Emissions, see Section 2.2). The
vertical distribution of these compounds presents a pronounced maximum in the boundary
layer [18,19] and their relatively short chemical lifetimes make them useful proxies for
the emissions of NOx and VOCs [20–22]. The first three compounds are measured by the
Tropospheric Monitoring Instrument (TROPOMI, [23]) on board the Sentinel-5 Precur-
sor platform, while PAN is retrieved from the observations of the Infrared Atmospheric
Sounding Interferometer (IASI, [24]), carried on the Metop platforms. In addition to Febru-
ary 2020, discussed in many previous studies, we focused also on May 2020, to determine
to what extent the lift of the shutdown was accompanied by a return to normality in terms
of air composition.

HCHO and CHOCHO are short-lived intermediates in the oxidation of biogenic, pyro-
genic, and anthropogenic non-methane VOCs (NMVOCs), and therefore their distributions
depend strongly on the NMVOC emissions. Spaceborne HCHO has been frequently used
to constrain the emissions of NMVOCs [25–27]. During the pandemic, TROPOMI HCHO
data showed declining columns in the North China Plain, relative to the same period
in 2019 [28]. PAN is formed via oxidation of NMVOCs in the presence of nitrogen oxides
(NOx = NO + NO2) and constitutes the main atmospheric reservoir for NOx radicals [19].
Spaceborne CHOCHO and PAN columns during the pandemic are presented and analyzed
here for the first time. We conducted simulations over China using the MAGRITTEv1.1
regional model [29] for February and May 2019 and 2020, using state-of-the-art emission
datasets, which account for the declining primary pollutant emissions due to the pandemic.
The resulting columns are evaluated against the aforementioned satellite data, and are
further investigated with the aid of sensitivity scenarios.

2. Materials and Methods
2.1. Satellite Observations from TROPOMI and IASI

The satellite data used are briefly presented here and are thoroughly described in
Appendix A, Appendix B, and Appendix C. For all products, we use monthly averages
gridded at the model resolution (0.5◦ × 0.5◦).

The NO2 columns are obtained from TROPOMI [23], which has an overpass local time
of ~1:40 p.m. and provides a quasi-global daily coverage at a resolution of 5.5× 3.5 km2. We
use L2 data with a quality value higher than 0.75 [30]. Since validation studies have shown
underestimations of high columns and overestimation of low columns, we apply a bias
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correction, i.e., the TROPOMI columns (Ω) are adjusted using Ω′ = (2.12 × Ω −2.12 × 1015)
where Ω and the adjusted column (Ω′) are expressed in molec.cm−2, based on the linear
regression of TROPOMI against ground-based column observations [31].

The TROPOMI HCHO retrieval is described in [32]. To improve the accuracy of
the data, we use a modified version of the operational product [33]. In this version, the
background correction in the remote Pacific Ocean is updated every day. To avoid possible
issues originating from auxiliary data, we use tropospheric columns not corrected for
clouds, in combination with a strict cloud fraction filtering (less than 20%) in addition to
the usual quality assurance criterion (values higher than 0.5 are retained). The column
averaging kernel and the a priori profiles are provided for every observation. In remote
regions, the precision of an individual column is estimated at ~5× 1015 molec.cm−2, but for
monthly averaged data at 0.5◦ × 0.5◦ it is estimated to be lower than 1.0× 1015 molec.cm−2.
The systematic uncertainty of the monthly tropospheric column varies between 20% and
50% of the column. The detection limit is estimated as three times the retrieved random
component of the uncertainty, multiplied by 2 to account for the underestimation of ran-
dom errors suggested by comparison with ground-based data [34]. Upon spatiotemporal
averaging, the detection limit scales as 1/

√
n, with n the number of observations per pixel

and per month.
The TROPOMI CHOCHO retrieval is described in [35]. The product includes vertical

tropospheric columns derived in the visible spectral range using a stringent cloud fraction
filtering (less than 20%), random and systematic errors, and column averaging kernels. The
low CHOCHO optical depth implies large random errors (6–10× 1014 molec.cm−2 for dark
scenes), which are significantly reduced through spatiotemporal averaging. Systematic
errors are estimated at 1–3 × 1014 molec.cm−2, corresponding to ca. 30–70% of a typical
column in emission regions. Detection limits are calculated as for HCHO, based on the
retrieved random uncertainty of the retrieval, but without the factor 2 upscaling.

The PAN total columns are obtained from hyperspectral radiance measurements
recorded by the IASI nadir-viewing satellite [24]. IASI operates continuously since 2007
and achieves global coverage twice daily, at 9:30 and 21:30 local time. The retrieval relies on
an artificial neural network framework specifically developed for weak infrared absorbers
such as ammonia [36,37] and VOCs [38–40]. The typical uncertainty on the individual
PAN column usually ranges between 1 × 1015 and 3 × 1015 molec.cm−2, and can reach
4 × 1015 molec.cm−2 for scenes affected by residual clouds or weak thermal contrast [38].
Single-cell measurements are considered robust when the hyperspectral radiance index
(HRI) is higher than 3, which for PAN over Eastern China in February and May corresponds
to a median value of 8.9 × 1015 molec.cm−2. As for HCHO and CHOCHO, this value is
lowered upon spatiotemporal averaging.

2.2. Simulations with the MAGRITTEv1.1 Chemical Transport Model

MAGRITTEv1.1 [29] is run at 0.5◦ × 0.5◦ over China and surrounding areas (73–150◦

E, 17–54◦ N) for February and May 2019 and 2020. Meteorological fields are from the ERA5
reanalysis [41]. Biomass burning fluxes are from the GFED4s database ([42], https://www.
geo.vu.nl/~gwerf/GFED/GFED4, accessed on 21 July 2021), and biogenic emissions from
the MEGAN-MOHYCAN model [43,44]. Baseline anthropogenic emissions are provided
by the CAMS-GLOB-ANT_v4.2-R1.1 inventory [45,46], which provides emissions from
2000 to 2020. This inventory uses the MEIC v1.3 (http://meicmodel.org, accessed on 21
July 2021) emissions over China between 2008 and 2016. The emissions are extended to
2020 by linear extrapolation based on the emission trends proposed by [47], which account
for recent emission decreases. The anthropogenic emissions during the pandemic are
obtained from the CONFORM (COVID adjustmeNt Factor fOR eMissions) global dataset,
which accounts for the slowdown of human activities through adjustment factors based on
activity data, which are applied for all economic sectors and geographical regions [12]. For
China, on average, the adjustment factors for the main sectors, i.e., road transport, power
generation, industry, and residential are estimated at 0.4, 0.6, 0.65, and 1.1, respectively,

https://www.geo.vu.nl/~gwerf/GFED/GFED4
https://www.geo.vu.nl/~gwerf/GFED/GFED4
http://meicmodel.org
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in February 2020, and at 1.0, 0.9, 0.8, and 1.0 in May 2020 [12]. The factor for air traffic
emissions is estimated at 0.44 in February 2020 and 0.67 in May 2020. Figure 1 illustrates
the emission ratio (E2020/E2019) for anthropogenic NOx and VOC fluxes in February and
May, as well as the difference in biomass burning VOC and isoprene fluxes between 2020
and 2019. Besides the average adjustment factors, the CONFORM dataset provides low and
high estimates of those factors accounting for uncertainties due to lack of data or limited
information for some activity sectors (Figure 2).
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Figure 1. (a) Ratio of anthropogenic NOx fluxes, February 2020 divided by February 2019 (left) and
May 2020 by May 2019 (right). (b) Idem for anthropogenic VOC fluxes. The anthropogenic fluxes
for 2020 are those of the CONFORM dataset [11]. (c) Absolute flux difference 2020–2019 for biomass
burning VOCs in February (left) and May (right). (d) Idem for isoprene biogenic fluxes.
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Figure 2. NOx emission estimates over China according to the baseline inventory CAMS-GLOB-
ANT_v4.2-R1.1 (dashed), and the CONFORM emissions which account for the slowdown of 
economic activities due to the crisis (red). The pink shading represents the uncertainty ranges of the 
CONFORM emissions. 
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3. Results 
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Over eastern China, defined as 22–42°N and 108–125°E (Figure 4), the column decrease 
estimated in the R1 experiment (−42%) is in excellent agreement with the observed 
decrease (−40%), whereas the simulations R1H and R1L, using high and low CONFORM 
factors (Figure 2) result in underestimated (−35%) or overestimated (−50%) changes, 
respectively (Table 2). These declines respond approximately linearly to the 
anthropogenic NOx flux decreases of the CONFORM dataset in the R1 simulation (−41%), 
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reductions are observed in the densely populated North China Plain (NCP, -46%, Figure 
4) and in the Hubei-Hunan region (HH, −44%, Figure 4). The latter region encompasses 
the Hubei province where some of the most severe lockdowns were enforced, and Wuhan, 

Figure 2. NOx emission estimates over China according to the baseline inventory CAMS-GLOB-
ANT_v4.2-R1.1 (dashed), and the CONFORM emissions which account for the slowdown of eco-
nomic activities due to the crisis (red). The pink shading represents the uncertainty ranges of the
CONFORM emissions.

The simulated monthly averaged columns at the satellite overpass time (13:30 local
time for TROPOMI) are calculated by accounting for the averaging kernels and sampling
times of valid data. The performed simulations are described in Table 1.

Table 1. Description of the model simulations. All simulations use the same emissions for 2019 but differ regarding their
2020 emissions.

Short Name Description

R1 Use average estimates of CONFORM adjustment factors for anthropogenic 2020 emissions [12]

R1H Use high estimates of CONFORM adjustment factors. The resulting anthropogenic fluxes for 2020 are higher than in R1.

R1L Use low estimates of CONFORM adjustment factors. The resulting anthropogenic fluxes for 2020 are lower than in R1.

R2 Use 2020 baseline anthropogenic emissions from CAMS-GLOB-ANT_v4.2-R1.1. These emissions do not account for
pandemic-induced disruptions.

R3 Use the same (2019) anthropogenic NOx fluxes in 2019 and 2020

R4 Use the same (2019) anthropogenic VOC fluxes in 2019 and 2020

R5 Use the same (2019) anthropogenic and natural (biomass burning, biogenic) fluxes in 2019 and 2020

3. Results
3.1. February 2019 and 2020: Simulated and Observed Changes

Figure 3a,b illustrates the ratio of NO2 columns in February 2020 to those of February
2019, observed by TROPOMI and simulated by MAGRITTEv1.1 (run R1) using the adjust-
ment factors from the CONFORM dataset. The modeled and observed ratios show a good
degree of consistency, both in terms of spatial patterns and percentage changes. Over east-
ern China, defined as 22–42◦ N and 108–125◦ E (Figure 4), the column decrease estimated
in the R1 experiment (−42%) is in excellent agreement with the observed decrease (−40%),
whereas the simulations R1H and R1L, using high and low CONFORM factors (Figure 2)
result in underestimated (−35%) or overestimated (−50%) changes, respectively (Table 2).
These declines respond approximately linearly to the anthropogenic NOx flux decreases of
the CONFORM dataset in the R1 simulation (−41%), as well as in the R1H (−33%) and
R1L (−51%) simulations. The strongest column reductions are observed in the densely
populated North China Plain (NCP, -46%, Figure 4) and in the Hubei-Hunan region (HH,
−44%, Figure 4). The latter region encompasses the Hubei province where some of the
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most severe lockdowns were enforced, and Wuhan, the city where the pandemic was first
detected. The R1 experiment predicts very similar strong decreases over these regions
(−47% and −45%, respectively), although their spatial patterns show less variability than
TROPOMI (Figure 3). Over the Yangtze River Delta (YRD), the modeled change is slightly
stronger than observed (−44% in R1 vs. −38% in TROPOMI).
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Figure 3. (a,b) NO2 column ratio, February 2020 divided by February 2019, according to TROPOMI
(left) and to the R1 simulation (right). (c,d) Idem for May. Invalid data and areas with very low total
NOx emissions (less than 2 × 1010 molec.cm−2 s−1) are left blank. The boxes of panel (a) indicate the
analysis regions (also shown in Figure 4).
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Figure 4. Regions used in this study. ECN = eastern China (22–42◦ N, 108–125◦ E); NCP = North
China Plain (34–41.5◦ N, 112–119◦ E); YRD = Yangtze River Delta (29–33.5◦ N, 117.5–122.5◦ E);
HH = Hubei–Hunan (27–32◦ N, 108.5–116.5◦ E); PRD = Pearl River Delta (22–24.5◦ N, 111–117◦ E).
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Table 2. Percentage changes of monthly columns between 2020 and the same month in 2019
((2020-2019)/2019), based on observed and modelled columns from simulations R1 (CONFORM
emissions), R1H and R1L (high and low CONFORM emissions), R2 (baseline emissions), R3 (fixed
anthropogenic NOx flux), R4 (fixed anthropogenic VOC flux), and R5 (fixed anthropogenic and
natural fluxes). All values are calculated for the eastern China region shown in Figure 4 delimited by
22–42◦ N, 108–125◦ E.

NO2 Changes

TROPOMI R1 R1H R1L R2 R3 R4 R5

February −39.7 −41.9 −35.2 −49.5 −8.4 −2.6 −43.1 −5.2

May −15.4 −12.3 −5.7 −14.4 −4.4 −2.3 −12.7 −3.2

HCHO Changes

TROPOMI R1 R1H R1L R2 R3 R4 R5

February −8.6 −13.7 −11.3 −16.3 −5.7 −10.8 −8.3 −6.3

May 6.0 4.5 6.8 3.1 7.8 5.7 6.9 4.2

CHOCHO Changes

TROPOMI R1 R1H R1L R2 R3 R4 R5

February −13.2 −20.7 −14.7 −27.0 0.2 −21.9 2.4 0.5

May −3.2 −8.4 −0.9 −14.9 −2.1 −9.4 3.6 −1.3

PAN Changes

IASI R1 R1H R1L R2 R3 R4 R5

February −17.9 −11.5 −7.6 −15.0 0.6 −7.9 −3.4 0.6

May −21.2 −19.5 −13.2 −23.0 −11.5 −16.5 −14.2 −9.9

The baseline R2 scenario predicts a column decrease of −8.4%, stronger than the
NOx emission decline (−2% in 2020 with respect to 2019) of the CAMS-GLOB-ANT_v4.2-
R1.1 dataset. The R3 (same anthropogenic NOx flux for 2019 and 2020) and R5 (same
emissions in 2019 and 2020) simulations lead to small NO2 column changes (−3% and
−5%, respectively).

We further compared the NO2 percentage changes between 2019 and 2020 estimated in
the standard simulation (R1) and observed by in situ NO2 data obtained at environmental
monitoring stations from the China National Environmental Monitoring Center ([48,49]
Figure A1). Table 3 summarizes this evaluation of surface NO2 changes and also presents
comparisons between TROPOMI and model-simulated NO2 columns at the locations of
the in situ stations. For meaningful comparisons, we consider only in situ data within a
two-hour time-window around the TROPOMI overpass time (12 a.m.–2 p.m. local time).
The relative decreases in the observed and modeled surface NO2 concentrations are in good
agreement both in February and in May over all regions considered in Figure 4 (less than
10% difference on average). Similarly, the changes in the observed and modeled columns at
the locations of the stations show good consistency. With regards to February and May 2019,
the in situ data suggest a change of −36% in February and −8% in May 2020 in eastern
China (1035 stations), which is well reproduced by the model (−40% in February and −8%
in May). Over the same region, the satellite data at the locations of the in situ stations
exhibit a change of −45% in February and −19% in May 2020, in excellent agreement with
the changes calculated by the model (R1 simulation, Table 3). Similar results are found for
the smaller regions of Figure 4, although with more pronounced differences related to the
smaller number of measurement sites.
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Table 3. Percentage changes between 2019 and 2020 in: (i) NO2 surface concentrations modeled by the standard simulation
(R1) and observed at network in situ measurement stations (Figure A1), and (ii) NO2 columns modeled by R1 and observed
by TROPOMI at the locations of the in situ observations. All values are calculated for the regions shown in Figure 4. The
number of measurement stations is indicated for each region between brackets.

Region (Number of In Situ Sites)

In Situ vs. R1 TROPOMI Columns vs. R1 (At In Situ Stations)

February May February May

In Situ R1 In Situ R1 Sat R1 Sat R1

Eastern China (1035) −36 −40 −8 −8 −45 −46 −19 −18

North China Plain (230) −36 −45 −5 −2 −46 −48 −17 −19

Yangtze River Delta (154) −41 −39 −2 2 −45 −47 −29 −25

Pearl River Delta (94) −31 −23 −24 −20 −8 −33 −24 −15

Hubei-Hunan (150) −39 −46 −18 −8 −48 −49 −11 −11

In contrast to NOx, which have strong direct emissions, HCHO, CHOCHO, and PAN
are predominantly secondary in origin. In Northern China, their wintertime columns
are lower than in summer, due to reduced photochemical activity and biogenic NMVOC
emissions [19,21,22,38]. The low winter columns explain the noisier and more uncertain
columns in winter. Despite these limitations, a good agreement between observed and
model distributions of the 2020-to-2019 column ratios is found in February (Figure 5). As
for NO2, however, the spatial variability of the changes is much lower in the model than in
the observations (Figure 5). Very high and very low values of the satellite-based ratio are
often related to columns being near or below the detection limit of the retrievals, especially
for glyoxal (in south/central China) and PAN (in western and northeastern China).

The observed HCHO and CHOCHO ratio distributions are relatively similar, with
lower-than-1 values in central-eastern China (between ~28◦ and 38◦ N), and values higher
than 1 in the southern part (<25◦ N) as well as in northern China (between 40◦ and 43◦ N).
This pattern is reproduced by the model, with HCHO and CHOCHO column decreases
reaching respectively 14% and 21% on average in eastern China (17% and 24% in the
YRD region). These declines are largely due to the drop in anthropogenic VOC emissions
between 2020 and 2019. The stronger column reduction for CHOCHO than for HCHO is
explained by the larger contribution of anthropogenic sources to the CHOCHO budget [50].
The HCHO column changes simulated here are consistent with those reported by another
model study focusing on the North China Plain and a different period (between 1–23
January 2020 and 24 January–15 February 2020). In both studies, the spatial patterns are
more homogeneous in the models than in the observations (Figure 5 and [13]).

Due to secondary formation, both HCHO and CHOCHO are observed away from the
emission source, a well pattern represented in the model (Figure 5). The higher biomass
burning emission in 2020 over Myanmar (18–23◦ N, 96–102◦ E, Figure 1c) led to modelled
HCHO and CHOCHO columns enhancements by 6% and 18%, respectively, in qualitative
agreement with the observed enhancements (15% for HCHO and 34% for CHOCHO) but
suggesting an underestimation of fire activity. The data also suggest an underestimation
of biomass burning emissions over northern Vietnam, as well as an underestimation of
CHOCHO formation in agricultural fires, which are a commonplace practice in this region
for clearing the fields after harvesting [51]. In eastern China, the use of the CONFORM
emissions in R1 leads to a decrease of 8% and to 21% in the HCHO and CHOCHO column
ratio, respectively, in comparison with the R2 experiment using baseline emissions for 2020.
The stronger impact of emission reduction on CHOCHO than on HCHO is due to the
larger contribution of anthropogenic VOCs to the abundance of CHOCHO (20–25% at
global scale, [22,52] compared to HCHO (7%, [21]). Similarly, the observations show a
pronounced north–south gradient in the PAN column ratios, which is qualitatively well
represented in the model (Figure 5), although the observed changes are larger (Table 2).
In consistency with the model, the largest decrease is found in the NCP, in response to
the anthropogenic emission decreases. The higher column ratios in southern China might
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be due to a combination of higher biomass burning over Myanmar and higher isoprene
emission fluxes over Southeastern China in 2020 (Figure 1d). Isoprene is a major precursor
of PAN, responsible for ~37% of its formation on the global scale [19]. While the enhanced
fires in Myanmar result in higher modeled PAN columns in February 2020 in this region,
this enhancement is overestimated by the model over South China, and the impact of fires
is not visible over the source region according to IASI, suggesting that fire events might
actually play little role in the PAN formation [19].
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Figure 5. (a,b) HCHO column ratio, February 2020 divided by February 2019, according to satellite
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of panel (a) indicate the analysis regions (also shown in Figure 4).

3.2. May 2019 and 2020: Simulated and Observed Changes

After the sharp decline in economic activity during the first three months of 2020,
China’s economy recovered in the following months, reaching almost normal levels by
mid-May, as suggested by numerous indicators, like traffic density, energy consumption
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and business reopening [12,53]). By the beginning of May 2020, the resumption levels were
estimated at ~90%, marking a swift normalization of economic activity, even though some
sectors restarted somewhat later, e.g., the services sector [53]. According to the average
CONFORM estimate for May 2020, the anthropogenic NOx and VOC fluxes over China
were respectively about 15% and 13.5% lower than in May 2019 (Figure 1), while the high
(low) CONFORM estimate suggests decreases of 7% (18%) for NOx and 5% (20%) for VOCs.

The observed NO2 column changes and the R1 simulation are in good overall agree-
ment in May (−15% vs. −12% on average, Table 2) even though the observed spatial
distribution of the changes is more heterogeneous (Figure 3c,d). Whereas moderate reduc-
tions are found in Hubei-Hunan (−7% and −4% according to TROPOMI and MAGRITTE),
much higher differences are seen in YRD (−19% and −23%) and NCP (−18% and −14%).
Those inter-regional differences are mostly due to meteorological variability, the spatial
distribution of the changes being very similar in the R1 and in the R5 simulation (not
shown). For example, the 2020/2019 ratio of average columns in the R5 run is positive in
Hubei-Hunan (+6%) and negative in both NCP and YRD (−8%). On average for eastern
China, the change in NO2 column due to the COVID-19 restrictions is estimated at about
−8% in May (difference between R1 and R2 changes).

The observed distributions of HCHO, CHOCHO, and PAN columns in May 2020
and the corresponding model results are shown in Figure 6, and the ratios of the 2020
columns to those of 2019 are depicted in Figure 7. The comparisons for HCHO columns
(Figure 6c,d) show a good agreement in terms of spatial distribution, but also a model
overprediction by 20–40% over emission regions. This is in line with the low bias of
about 30% of TROPOMI HCHO columns against ground-based FTIR measurements for
high HCHO levels (>8 × 1015 molec.cm−2) [34]. Accounting for this data bias would
have improved the agreement with the model, but would have had little influence on the
difference between the two years.

The observed and modeled HCHO column ratios are slightly higher than unity
(Figure 7a,b), except over Yunnan and northern Myanmar, where the low pyrogenic and
biogenic VOC emissions in 2020 lead to significant HCHO reductions. Over eastern China,
the increase is estimated at 5% on average by R1, in excellent match with the observation
(6%, Table 2) although TROPOMI displays a higher variability of column ratios. The
observed spatial heterogeneity is not well represented in the model in May, a feature that
has been found also in February and also reported in [13]. The column increase derived in
spite of the lower 2020 anthropogenic VOC emissions can be attributed to meteorology, as
shown by the R5 simulation results displaying a 4% increase in the columns. The estimated
change in the R2 scenario using baseline emissions is 8%, suggesting that the impact of the
emissions decline due to the pandemic is about−3% for this month. Besides those increases,
HCHO decreases are observed in Yunnan and in northern Indochina (18–28◦ N, 92–104◦ E),
in good agreement with model results (Figure 7a,b). In this region, anthropogenic VOC
fluxes are low and HCHO is chiefly formed from biogenic VOC oxidation and fire events.
Therefore, the observed column differences stem mostly from differences in these source
categories. The emission inventories used in MAGRITTEv1.1 indicate lower biogenic and
fire fluxes in May 2020 than in May 2019 in this region, by 15% and 38%, respectively.
The negative change calculated by the model (−15%) is weaker than in the observations
(−24%), suggesting underestimated differences in biogenic and/or fire fluxes between the
two years. This conclusion is comforted by comparison between observed and modeled
ratios for CHOCHO over the same region (Figure 7c,d).

The TROPOMI CHOCHO observations in May 2020 are fairly well reproduced by the
R1 results over eastern China (Figure 6e,f). Hotspots are found over densely populated
megacities and industrial hubs, like the Yangtze River Delta, the Chengdu-Chongqing
urban cluster, and the Pearl River Delta, primarily due to anthropogenic VOC precursors,
in particular aromatic compounds used in solvents and other industrial processes [54].
Over eastern China, the model does not match the spatial patterns of the observed column
ratios (Figure 7c,d). The simulated CHOCHO decreases in central and northern China, due
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to anthropogenic emission reductions, and the column increases in southern China, due to
higher isoprene flux in 2020 (Figure 1d), are not seen in the satellite data (Figure 7c,d). An
overestimation of isoprene fluxes in 2020 relative to 2019 in the model was also suggested
by HCHO in that area (Figure 7a,b).
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Figure 7. (a,b) HCHO column ratio, May 2020 divided by May 2019, according to satellite data
(left) and to the MAGRITTEv1.1 model (right). (c,d) Idem for CHOCHO. (e,f) Idem for PAN. Invalid
data and areas with very low VOC emissions (less than 5 × 1010 molec.cm−2s−1) are left blank in
panels a–d. The stippling in panels a, c, and e indicates data below the estimated detection limit. The
boxes of panel (a) indicate the analysis regions (also shown on Figure 4).

IASI detects high PAN levels of about 6–8 × 1015 molec.cm−2 over eastern China
in May 2020, in good consistency with the model results over land (Figure 6g,h). Note
that because of the weak, broadband spectral signatures of PAN and of the lower thermal
contrast over sea, oceanic retrievals are more uncertain. The PAN distribution suggests
a large anthropogenic contribution, consistent with the strong anthropogenic signals in
the distribution of NO2 and HCHO. The model succeeds in reproducing the observed
high PAN levels in Northern China and in the Chengdu-Chongqing area, where human
activities are dominant. The observed enhancements over Assam (India) and Myanmar
are due to biogenic emissions (over Myanmar) and anthropogenic emissions (over India)
(Figure 6g). As shown in Figure 7e,f, the observed and modeled PAN ratios are in fair
agreement in both distribution and magnitude. The relative change over eastern China
according to IASI (−21%) and the model (−19%) are very similar. According to model
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results, about half of the PAN decrease is due to meteorological variability (Table 2, runs R1
and R5), whereas the anthropogenic NOx and VOC reductions led to PAN column declines
of about 3% and 5%, respectively (runs R3 and R4 in comparison with R1).

Finally, sensitivity simulations suggest that the reduction in anthropogenic VOC
fluxes in 2020 relative to 2019 leads to column reductions of 5% or less for HCHO (differ-
ence between R4 and R1 estimates, Table 2), between 12% (May) and 23% (February) for
CHOCHO and 5–8% for PAN. The larger changes for CHOCHO are expected because of
the strong contribution of anthropogenic VOC oxidation to the CHOCHO budget over
China [50,55]. The NOx level decline due to the pandemic also contributes to the reduction
in the columns of HCHO (by 1–3%) and PAN (3–4%), whereas their impact on CHOCHO
appears negligible (Table 2, columns R1 and R3).

4. Discussion

When using the CONFORM database, and in agreement with the observations, the
simulated combined effect of meteorology and emission reductions is strongest for NO2
between February 2020 and 2019 (−40% on average over Eastern China), especially in the
NCP. The magnitude of this change compares well with recent modelling studies, e.g.,
the investigation of surface pollutants changes using the CAM-Chem model by [14] and
the regression model study based on OMI observations by [7]. Meteorology explains a
small part of this change (−5%, run R5), due to warmer and moister conditions in 2020 [6]
leading to a shorter chemical NOx lifetime. The major contribution to the NO2 reduction
originates from the pandemic-induced emission decreases (−34%, difference between R2
and R1 in Table 2). The reduction of VOC emissions is found to have a small offsetting
effect (+1.2%, difference between R4 and R1 in Table 2) due to the decreased sink through
organic nitrate and peroxyacetyl nitrate formation [13]. Similar results are found in May,
with the effect of the reduced emissions explaining about 70% of the column decrease.

In the case of HCHO, the effects of the lockdowns are much smaller than for NO2,
and are estimated at −8% in February and at −3% in May (Table 2, difference between
R2 and R1). Meteorology has a significant impact, −6% in February. [28] also reported
meteorological impacts (−6% in the NCP) being of the same order as those of emissions,
although these conclusions are not strictly comparable to ours since their study was based
on January–April averages. In the Beijing area, HCHO columns were higher in February
2020 than in 2019, which is well simulated by R1 (Figure 5). The authors of [28] attribute
this increase to enhanced OH levels as a result of NOx emission decreases. Although
boundary layer OH levels were indeed higher in 2020 (>50% compared to 2019) in the
R1 run, this effect explains only a small part of the HCHO enhancement in February, as
shown by the very similar distribution of the column ratios calculated in the R5 simulation
adopting identical emissions in 2019 and 2020 (not shown).

The impact of the emission decreases is more significant for CHOCHO than for HCHO
columns. Based on the R1 and R2 simulations, we estimate the column decrease over
eastern China at 21% and 6% for February and May, respectively. The model overestimates
the column decrease between the two years, which might indicate an overestimation of the
anthropogenic contribution to the CHOCHO budget, or issues in the chemical mechanism
for glyoxal formation adopted in the model for aromatic compounds.

Finally, based on the sensitivity simulations (Table 2), the lockdowns in 2020 have led
to PAN column decreases of−12% and−8% in February and May, respectively, while these
changes become smaller when anthropogenic VOC fluxes are kept fixed for both years
(−8% in February and −5% in May), and are even smaller when the anthropogenic NOx
emissions are fixed (−3%). This underscores the importance of anthropogenic VOCs in the
PAN budget according to the model in this region, and is to a large degree corroborated by
the changes in satellite observations between the two years.
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5. Conclusions

Spaceborne data of NO2 and oxygenated VOCs complemented by MAGRITTEv1.1
simulation were used to investigate atmospheric composition changes in China during
the stringent lockdown of February 2020 and during the recovery phase in May 2020. The
lockdown-related emission reductions from the CONFORM dataset were implemented in
these simulations. Relative to 2019, the model succeeds in reproducing the observed NO2
column changes of −40% in February and −15% in May over eastern China, and goes a
long way towards explaining the observed changes of oxygenated VOCs including HCHO,
CHOCHO, and PAN. For those species, the observed changes are generally weaker than for
NO2. Besides the response to changes in anthropogenic fluxes, the oxidized VOCs are also
affected by biomass burning and biogenic sources. The observed column ratios between
2020 and 2019 reflect primarily the differences in these sources between the two years. In
an average sense, these differences are well captured by the model. The observations show
a larger variability of column changes, likely due in part to model issues (e.g., due to errors
in meteorological fields, in emissions, etc.) but also to noise and biases in the observations.
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Appendix A

The TROPOMI HCHO retrieval algorithm is based on a 3-step DOAS (Differential
Optical Absorption Spectroscopy) method: (1) the fit of the HCHO slant columns in the
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measured Earth radiance spectra, (2) radiative transfer calculation of air mass factors
(AMFs), and (3) a background correction of the columns based on the observations in a
reference sector, the Pacific Ocean [32]. The fit of the slant columns (Ns) is performed in the
UV spectral window between 328.5 and 359 nm. The HCHO cross-section is taken from [56].
All cross-sections have been pre-convolved for every row separately with an instrumental
slit function adjusted just after launch. The DOAS reference spectrum is updated daily
with an average of Earth radiances selected in the Equatorial Pacific region on the previous
days. The result of the fit is a differential slant column. The conversion from slant (Ns)
to tropospheric columns (Nv) is performed using a look-up table of vertically resolved
air mass factors (M) calculated at 340 nm with the radiative transfer model VLIDORT
v2.6 [57]. Entries for each ground pixel are the observation geometry, the surface elevation
and reflectivity and a priori tropospheric profiles. The surface albedo is taken from the
monthly OMI albedo climatology at the spatial resolution of 1◦ [58]. Global a priori vertical
profiles at 1◦ × 1◦ are provided by the TM5-MP daily forecast [59]. Cloud properties are
taken from the TROPOMI operational product [60]. As baseline, a cloud correction based
on the independent pixel approximation [61] is applied for cloud fractions larger than
0.1. To correct for any remaining global offset and stripes, a background correction is
performed based on the HCHO slant columns in the Pacific Ocean (Ns,0) from the four
previous days (operational product) or from the current day (modified product used in this
study). Finally, the background vertical column of HCHO, due to the methane oxidation, is
obtained from TM5-MP in the reference region (Nv,0

CTM). The tropospheric HCHO vertical
column is expressed as follows: Nv = (Ns − Ns,0)/M + (M0/M) Nv,0

CTM, where M0 is the
air mass factor in the reference sector. To derive the clear sky tropospheric columns, we
apply a simple transformation using the cloud-corrected AMFs and the clear-sky AMFs
(no cloud correction applied): Nv_clear = (M/Mclear) Nv. Differences between TROPOMI
HCHO Nv and Nv_clear are small, especially since we applied a strict cloud filtering. This
transformation allows one to avoid possible biases coming from the use of different cloud
products (between TROPOMI HCHO or with other satellite datasets) or changes in the
cloud product version. We used data with quality assurance values higher than 0.5 to filter
out most observations presenting a solar zenith angle larger than 70◦, a cloud radiance
fraction at 340 nm larger than 0.6 or an air mass factor smaller than 0.1 or other errors. In
this study, we further restricted data to measurements with a cloud fraction lower than 20%.

For each observation: the tropospheric column uncertainty comprises a random and
systematic component. In remote regions, the random uncertainty of an individual observa-
tion is estimated at 5 × 1015 molec.cm−2. It is significantly improved upon data averaging,
e.g., it is estimated at 1.3 × 1015 molec.cm−2 at a spatial resolution of 20 km on a daily
basis [34]. Additional noise originating from AMF variability and from natural variability
(in space, from day to day, and from seasonal and interannual changes) needs to be consid-
ered when studying continental emissions. Over polluted sites, the random uncertainty
is estimated at 8 × 1015 molec.cm−2 for individual pixels, while at 20 km resolution, it
is improved to 4.8 × 1015 molec.cm−2 on a daily basis and to 1.5 × 1015 molec.cm−2 for
monthly averaged columns [33].

Appendix B

Like for HCHO, the CHOCHO retrieval algorithm relies on a three-step DOAS ap-
proach described in the previous section. The interval 435–460 nm is used for retrieving
the slant columns. In addition to the CHOCHO, the fit includes absorption by NO2 (at
220 K and 294 K), O3, O2-O2, water vapor, and liquid water, as well as spectral signatures
from inelastic scattering and residual stray light. The fit also accounts for perturbations
of the instrumental slit function due to heterogeneity of the scene brightness. Additional
parameters allow ensuring an optimal alignment between the measured Earthshine radi-
ance and the DOAS reference spectrum. Every TROPOMI detector row, corresponding to
the position of a pixel within the swath of the instrument, has a slightly different spectral
resolution to which cross-sections are pre-convolved. To minimize the presence of row-
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dependent biases, the DOAS reference spectra (also one per row) is taken as the mean of a
set of Earthshine spectra recorded on the same day in a remote region (here the Equatorial
Pacific Ocean, 15◦ S–15◦ N, 180◦–240◦ E), where the CHOCHO abundances are expected
to be low.

The CHOCHO air mass factors are computed as for HCHO by combining box-air
mass factors appropriately extracted from a precomputed look-up table at 448 nm with a
priori CHOCHO vertical profiles. The latter are provided by the MAGRITTEv1.1 global
CTM at 1◦ × 1◦. Over oceans, instead of using the CTM profiles, we use a fixed a priori
profile measured by an air-borne MAX-DOAS instrument during the TORERO campaign
over the Pacific [62]. For CHOCHO, no cloud correction is applied, but instead a simple
and stringent cloud filtering with cloud fractions lower than 20%. Measurements over
pixels covered by snow or ice are rejected.

A background correction is also required for CHOCHO, since its weak absorption
leads to systematic biases due to spectral interferences with signatures from other species or
from calibration limitations. This scheme consists in adding (row-dependent) offsets to the
CHOCHO slant columns so that the mean value of the vertical columns retrieved in the Pa-
cific matches a reference value. Contrary to HCHO, this reference value cannot be provided
by a model as model predictions differ significantly from the few CHOCHO measurements
reported in oceanic regions (e.g., [63,64]). Instead, we simply used 1 × 1014 molec.cm−2 as
the reference value.

Random and systematic errors are estimated and provided for every satellite obser-
vation. The random component is dominated by the instrumental noise propagating in
the retrieval. For clear sky scenes, it is generally in the range of 6–10 × 1014 molec.cm−2.
For individual observations, the random error dominates the error budget and generally
hides the possible real CHOCHO signal. Spatiotemporal averaging is used to minimize
this random error component. Total systematic errors are estimated by considering the
different error sources in the different algorithmic steps (e.g., input albedo data, a priori
profiles, background correction scheme, reference sector value, etc.), which sum up to
a total systematic error in the range of 1–3 × 1014 molec.cm−2, corresponding to about
30–70% for emission regimes [35].

Appendix C

Thanks to the continuous coverage across the thermal infrared spectrum offered by
IASI (645–2760 cm−1) combined with a fairly high spectral resolution (0.5 cm−1, apodized)
and a low radiometric noise, the detection of a large suite of atmospheric trace gases has
been made possible [65]. For an increasing number of them, (quasi-)global distributions
of their atmospheric abundance are being derived from IASI spectra using fast retrieval
methods. In particular, the general framework Artificial Neural Network for IASI (ANNI)
has recently allowed the retrieval of global column measurements of ammonia [36,37], and
of several VOCs [38–40].

The first step of the ANNI retrieval consists in calculating a Hyperspectral Range
Index (HRI), which quantifies for each individual IASI observation the magnitude of the
spectral absorption of a target gas within a specific spectral band. Because it exploits many
channels sensitive to the target compound within that range, the HRI is well suited for
the detection of weak, broadband absorbers such as PAN. An artificial feedforward neural
network (NN) is then used to convert this index into the gas total column abundance.
Along with a series of variables characterizing the state of the surface and atmosphere, the
HRI value feeds a NN trained specifically to mimic the interconnections between all these
variables and the gas total column ([38,66] and references therein).

The PAN product used in this study has been retrieved with the version 3 of the ANNI
framework [38], using surface and atmospheric variables from the European Centre for
Medium-range Weather Forecasts (ECMWF) ERA5 reanalysis [41]. The use of the ERA5
dataset ensures consistency in input fields throughout the IASI operational time period.
The HRI uses the PAN absorptions in the 760–880 cm−1 spectral range, around its ν16
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NO2 stretch band centered at 794 cm−1. ANNI is made of two computational layers with
eight nodes showed excellent training performance and was adopted to produce PAN total
columns [38]. Filtering prior to the retrieval excluded observational scenes with a cloud
cover exceeding 10%, whereas retrieved columns associated with unsatisfactory sensitivity
or poor retrieval performance were discarded from the final dataset. An uncertainty associ-
ated with each retrieved column was also generated by the NN. The typical uncertainty
on the individual PAN column usually ranges between 1 × 1015 and 3 × 1015 molec.cm−2,
and can reach 4 × 1015 molec.cm−2 for observation scenes affected by residual clouds or
weak thermal contrast. Thanks to the high spatial sampling and daily occurrence of the
IASI measurements, these uncertainties are reduced substantially upon spatial and/or
temporal averaging.

IASI PAN total columns have been retrieved since October 2007 and March 2013 to the
present from the IASI/Metop-A and -B observations, respectively, and daily (quasi-)global
PAN distributions are available over this time period. Analysis of the retrieved product
revealed a good agreement between the measurements from the a.m. and p.m. satellite
overpasses, which can therefore be used together.

Appendix D
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Figure A1. Location of 1643 environmental monitoring stations of the China National Environmental
Monitoring Center operated by the Ministry of Ecology and Environmental Protection of China. The
data is available at http://106.37.208.233:20035 (accessed on 21 July 2021) [48]. Data quality control
has been applied to the measurements following [49]. To allow meaningful comparisons between the
in situ NO2 data and the TROPOMI columns, we considered only in situ data within a two-hour
time-window around the TROPOMI overpass time (12–2 p.m. local time).
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