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DIRECT AND ITERATIVE SPARSE LINEAR SOLVERS APPLIED
TO GROUNDWATER
FLOW SIMULATIONS

J. ERHEL �, A. BEAUDOIN , AND J.-R. DE DREUZY y

Abstract. Subsurface hydraulic properties are mainly governed by the heterogeneity of geologi-
cal formations. Moreover, it is not possible to measure the permeability in the whole site. In order to
take into account the e¤ects of heterogeneity on groundwater �ows and the uncertainty in the input
data, we use a probabilistic model in our numerical simulations. In the �ow equations, governed
by the Darcy law and mass conservation, the permeability is thus a stochastic given function. The
Darcy velocity and the hydraulic head become then unknown stochastic functions. When dealing
with fractured rocks, the domain itself and the geometry are random variables. With non intrusive
methods such as Monte Carlo sampling or stochastic collocation, statistics of outputs are obtained
through many simulations of deterministic equations. High performance computing is required to
solve the �ow equations. We consider two di¤erent cases. In porous media, the domain has a simple
geometry. We use then a regular mesh and a �nite volume method, leading to a structured sparse
matrix. In fractured media, as the domain is a complex network of fractures, we use an unstructured
mesh and a mixed hybrid �nite volume method, leading to a general sparse matrix. In both cases,
we compare direct methods, Krylov iterative methods and multigrid iterative methods, used to solve
the linear systems obtained by discretizing the �ow equations. We study the impact of the random
distribution function on the condition number of the matrix and on the accuracy of the result. We
also make a complexity analysis and a scalability analysis on parallel computers.

Key words. �ow equation, heterogeneity, sparse linear solvers

AMS subject classi�cation.

1. Introduction. groundwater �ow and solute transport
heterogeneous porous media and fractured media
stochastic numerical models
large sparse linear systems

2. Numerical model. �ow equations
probability distribution of permeability variance �
discretization with 2D structured grids and �nite volume method ; number of grid

points N = n2

Monte-Carlo method and non intrusive UQ methods
sparse linear system
scienti�c platform with interfaces to libraries and to Matlab
fully parallel for large scale computations

3. Accuracy. theoretical estimation of condition number ; impact of variance
and size : cond in O(e�) and in O(n)

numerical estimation with MUMPS or condest : cond in O(e�
2

), larger than
expected

scaling and componentwise estimations with Matlab : cond in O(e�) as expected
estimation for � = 1 with MUMPS and scaling with Matlab : cond in O(n) as

expected
conclusion : good accuracy for � � 3 and for large n, up to 8000
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4. Complexity. CPU and memory requirements; �ll-in for direct methods and
number of iterations for iterative methods

impact of variance and size
theoretical estimation of CPU time for direct methods : O(n3) and no sensitivity

to variance
numerical measure with UMFPACK : as expected
direct methods not sensitive to variance but very expensive in CPU and memory

for large size
numerical measure with PCG / IC(0) :
not too sensitive to variance but number of iterations increases with size; plateau

before superlinear convergence
PCG suitable only with multilevel preconditioner
multilevel methods : subdomain decomposition or multigrid
theory : number of V-cycles independent of n, complexity of multigrid in O(n2)
theory: geometric multigrid sensitive to � and algebraic multigrid robust to �
numerical measure with HYPRE : as expected
SMG better for small � and AMG better for large �

5. Large scale computations. Clusters with distributed memory ; SPMD and
MPI ; fully parallel code with data distributed from scratch

experiments with P=16 and n up to 4096
measures on clusters from Grid�5000
same conclusions as in sequential case: SMG better for small � and AMG better

for large �
Able to solve systems with 16 millions in 1 minute
Monte-Carlo or UQ methods feasible ; multiparametric studies feasible ; done

6. Future. 3D computations with subdomain decomposition
Grid computing
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