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Tourmalines are rhombohedral cyclosilicates and the most widespread borosilicates. 
They are occurring in most rock types (from magmatic to sedimentary), are stable over 
a large P-T field and their crystal structure accommodate an exceptional range of diffe-
rent elements (van Hinsberg et al., 2011). 

Thus, many studies tried to used them :

  to constraint the chemistry of hydrothermal fluids (see
  on the left of this section)

  as geothermobarometer (Henry & Guidotti, 1985)

Those two uses imply a good knowledge of the thermodynamic 
properties of those minerals. But, due to their complexity and the lack of 
precise knowledge over their stability conditions, the geochemical 
simulations are generally working without those classical alteration 
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Tourmaline : «A unique [and stable] recorder of its geological past»
Van Hinsberg et al., 2011

Experimental study of the stability field of the schorl-dravite solid solution, based on the metasomatic alteration of a (sim-
plified) cordiertie-bearing leucogranite by a boron-rich hydrothermal fluid.
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Stability eld and tourmaline textures

The boundaries of the stability field slightly change with temperature (1.) : 
decreasing from 4 wt% at 600°C to 3 wt% at 400°C.

First occurence of tourmaline :  sheaf of fibrous crystal (4.), growing from cordierite 
and/or albite nucleus. 
At higher boron concentration : fibro-radiated aggregates (2.) and homogeneous 
crystallisation (3.)

Presence of NaCl in the fluid (Weisbrod et al., 1986) seems to lower the boron 
concentration needed to precipitate tourmaline (1.).
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Experimental conditions

Metasomatic experiment using an internally heated gas apparatus.

  Temperature : 600°C (2 weeks), 500°C (1 month) and 400°C (2 months).

  [B O ]init : from 0 to 10 wt%, with changes in the order of 1 wt%.

  Pressure : constant, at 200 MPa.

  Oxygen fugacity : included in the range ΔNNO +[1;2].

Tourmaline chemistry

Dravite - Mg-Foitite solid solution.

Higher Na-content with increasing temperature 
and increasing boron concentration.

No modification on the proportion of Mg-Fe from 
400 to 600°C. Variation at 500°C may be due to an 
experimental bias.

No chemical variation between the different textures 
analysed.

Two main substitutions :
Mg Na               AlVI []

X 

Mg (OH)              Al O 
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Boron concentration in natural fluid inclusion generally doesn’t 
exceed 1wt%, even in systems known to present tourmaline as an 
hydrothermal alteration product (8.).

In geochemical models, tourmaline crystalise even with just 500 
ppm of H BO  in the fluid and always as a Mg-foitite (9.).

However, our experiments show a stability field requiring higher 
boron concentration to make tourmaline crystallise (1.).
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Alteration mineral phase diagram showing the condition of temperature and 
reaction ratio of a H BO +H O fluid with an assemblage Crd + Alb. Created 

using CHIM (Reed et al., 2016) and reproducing Weisbrod et al. (1986) 
experiment.

Distribution of boron concentrations in natural fluid inclusions, 
according to the type of mineralization.

Th = [100 ; 450]°C
Salinity = [1 ; 40] wt% eq. NaCl

This difference with the fluid inclusion can be explained by the high 
salinities presented in those contexts.

The actual thermodynamic properties seem to overestimate 
tourmaline stability field. 

Comparison to natural and thermochemical data
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