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 12 

ABSTRACT 13 

 14 

Producing accurate structural maps is a pre-requisite to unravel the tectonic evolution 15 

of a region. For this purpose, magnetic anomaly maps are helpful data sets for the identification 16 

and mapping of geological features. We compiled 154 marine surveys and 7 aeromagnetic 17 

campaigns covering the Bay of Biscay, its surrounding continental shelves and western part of 18 

the Pyrenees. As the initial data sets had heterogeneous acquisition parameters, we applied a 19 

series of transforms before merging the data. We performed a variable reduction to the pole to 20 

localize the extrema of the anomaly vertically to their causative sources and facilitate geological 21 

interpretations. The resulting intermediate resolution maps compiled at 500 m altitude offshore 22 

and 3000 m both on- and offshore, display magnetic trends and patterns. They are enhanced by 23 

several potential field operators (analytic signal, tilt angle, vertical derivative) enabling the 24 

interpretation of the geometry of the sources causing the anomaly (3D, 2D and 2.5D). The 25 

analysis of these magnetic maps allows us to precise the distribution and segmentation of crustal 26 

domains previously identified in the Bay of Biscay and its adjacent continental shelves. A series 27 

of crustal scale structures mapped onshore and formed during and after the Variscan orogeny 28 

show well on this new map compilation, allowing the continuous onshore-offshore mapping of 29 

some of them and revealing their role in segmenting the northern margin of the Bay of Biscay. 30 

This new compilation notably reveals variations in the magnetic signature of the Ocean-31 

Continent-Transition (OCT) that we interpret as related to an increased magmatic production 32 

of the eastern part of the Bay of Biscay OCT during continental breakup. In addition to precise 33 

previous structural maps, this new magnetic compilation opens new perspectives for the 34 

interpretation of the Bay of Biscay geodynamic setting.  35 

 36 

Key words: magnetic compilation, aeromagnetic data, marine magnetic data, Bay of 37 

Biscay, passive margin segmentation, Ocean-Continent-Transition (OCT). 38 
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1 Introduction 40 

Magnetic properties of rocks are used in different geological contexts to map structures, 41 

estimate the depth of magnetic sources, describe deformation patterns, or identify the limits of 42 

ancient terranes, among others. High-resolution magnetic grids are notably valuable to help in 43 

the production and interpretation of the compilation of structural maps, hence, to unravel the 44 

tectonic evolution of geological domains. However, prior to any modelling which can push the 45 

interpretation forward, we have to be sure that magnetic lineations are really related to a 46 

magnetic contrast and do not result from the processing and/or merging of data sets. This 47 

contribution presents a new magnetic map compiled from diverse aeromagnetic and shipborne 48 

surveys with the aim of providing the highest possible resolution on the Bay of Biscay-Western 49 

Pyrenees system (Fig. 1). Existing structural compilations of the Bay of Biscay and surrounding 50 

continental shelves (Fig. 1) are compared to our new magnetic compilation with the aim of 51 

guiding new regional tectonic interpretations. The Bay of Biscay-Western Pyrenees system is 52 

of particular geological interest because it underwent a succession of transcurrent, extensional 53 

and compressional tectonic events including the Variscan orogeny, the Permo-Mesozoic 54 

riftings, and the Pyrenean orogeny. This long tectonic history resulted in the formation and 55 

reactivation of tectonic structures in different crustal domains previously distinguished based 56 

on their geological and geophysical signatures (Fig. 1, see Thinon et al., 2003 and Tugend et 57 

al., 2015a for reviews).  58 

Magnetic compilations which include the Bay of Biscay and surrounding shelves 59 

already exist (Verhoef et al., 1996; Lesur et al., 2016; Meyer et al., 2017), however, they were 60 

either of relatively low resolution or focused on offshore domains. In this contribution, we 61 

present new compilations at the altitudes of 500 m and 3000 m including all available datasets 62 

both offshore and onshore to image with the highest possible resolution regional variations of 63 

the magnetic field. This new regional magnetic compilation allows us to assign a magnetic 64 
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signature (characteristic intensity and texture) to the different crustal domains previously 65 

mapped (Fig. 1). Furthermore, the interpretation of magnetic anomalies allows us to confirm or 66 

remap the regional extent of several key crustal structures and evaluate their impact on the 67 

observed segmentation of the North Biscay passive margin.  68 

 69 

2 Geological setting and previous magnetic compilations 70 

2.1  Geological setting 71 

2.1.1 Structure of the Bay of Biscay oceanic domains and its continental margins 72 

The Bay of Biscay is a V-shape oceanic basin, which opened during the Cretaceous 73 

Magnetic Quiet Zone (CMQZ) between the European and Iberian lithospheric plates (Olivet 74 

1996; Sibuet et al., 2004). Compressional forces linked to the northward motion of Africa 75 

(Rosenbaum et al., 2002) inverted the North Iberian margin to initiate a proto-subduction, 76 

during the Late Cretaceous (e.g., Boillot et al., 1979; Alvarez-Marron et al., 1997; Gallastegui 77 

et al., 2002; Pedreira et al., 2015; Tugend et al., 2014; 2015b; Cadenas et al., 2018; 2020). In 78 

contrast, the North Biscay margin, which includes the Western Approaches and Armorican 79 

passive margin segments (Fig. 1, Thinon et al., 2003) and its continental shelf were weakly 80 

deformed, and the passive margin architecture is preserved (Barbier et al., 1986; Thinon et al., 81 

2001, Tugend et al., 2014). The distribution of oceanic and continental crustal domains and in-82 

between Ocean-Continent Transition (OCT) has previously been identified and mapped from 83 

the Bay of Biscay to its adjacent offshore continuation now integrated in the Pyrenees (Fig. 1, 84 

Thinon et al., 2003; Roca et al., 2011; Tugend et al., 2014; Ruiz et al, 2017; Cadenas et al., 85 

2018).  86 

The Bay of Biscay oceanic domain is interpreted to have developed during a short-lived 87 

late Early Cretaceous (Aptian-Albian) to Late Cretaceous (84 Ma, Santonian) seafloor 88 
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spreading episode (e.g. Bacon et al., 1969; Montadert et al., 1979; Boillot, 1984; Sibuet and 89 

Collette, 1991; Sibuet et al., 2004; Tugend et al., 2015b; Barnett-Moore et al., 2016, 2017; 90 

Nirrengarten et al., 2018). This interpretation is mainly deduced from the identification of 91 

magnetic anomalies in the North Atlantic Ocean and their interpreted continuation in the Bay 92 

of Biscay. A strong linear magnetic anomaly has previously been identified in the central part 93 

of the Biscay abyssal plain (e.g., Williams, 1975; Cande and Kristoffersen, 1977; Srivastava et 94 

al., 1990; Olivet, 1996; Sibuet et al. 2004) and interpreted as produced during Chron 34, dating 95 

the end of oceanic accretion during the Late Cretaceous (~84 Ma; Montadert et al., 1979). 96 

Anomaly 34 young is interpreted as the magnetic signature of the fossil-spreading axis located 97 

close to basaltic rocks drilled at Deep Sea Drilling Project Site 118 (Laughton et al., 1972 a, b). 98 

At the foot of the Goban Spur margin (westernmost extremity of the Bay of Biscay, Fig. 1), 99 

DSDP site 550 (Leg 80; Graciansky and Poag, 1981) dated the first oceanic crust to Early 100 

Albian time. In the Bay of Biscay, however, the age of the onset of oceanic accretion cannot be 101 

ascertained using oceanic magnetic anomalies. Some of the magnetic anomalies occurring 102 

along the OCT of the Bay of Biscay rifted margins have been interpreted as seafloor spreading 103 

anomalies from the M-series (Sibuet et al., 2004) analogous to those interpreted along the West 104 

Iberia margin (Srivastava et al., 2000). Onset of oceanic accretion in the Bay of Biscay has been 105 

interpreted as occurring either prior to (Sibuet et al., 1993; Srivastava et al., 1990), during 106 

(Montadert et al., 1979; Boillot, 1984; Sibuet and Collette, 1991, Thinon et al., 2003, Sibuet et 107 

al., 2004) or just after (Montadert et al., 1979; Thinon et al., 2003) the M0 anomaly (~125Ma, 108 

Gee and Kent 2007). However, the interpretation of these magnetic anomalies as seafloor 109 

spreading anomalies is debated both in the Bay of Biscay (Thinon et al., 2003) and along the 110 

West Iberian and Newfoundland rifted margins (Nirrengarten et al., 2017), casting doubts on 111 

the age of the onset oceanic accretion.  112 

 113 
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Located in between the oceanic and hyper-thinned continental domains, a wide OCT 114 

has previously been mapped along the North Biscay passive margin (including the ~80km-wide 115 

Armorican basin, Thinon et al., 2003), and in the abyssal plain at toe of the Aquitaine margin 116 

(Fig. 1; Roca et al., 2011; Tugend et al., 2014; Ruiz et al., 2017). The Bay Biscay OCT is now 117 

interpreted by most authors as floored by exhumed mantle, more or less serpentinized and 118 

associated with more or less mafic magmatism, based on seismic and gravity data (Figure 1, 119 

e.g., Thinon et al., 2003; Tugend et al., 2014; 2015a; Roca et al., 2011; Ruiz et al., 2017). 120 

Stratigraphic correlations conducted along the Western Approach margin (Thinon et al., 2002) 121 

suggest that the OCT formed at the end of the rifting by Aptian-Albian time (Thinon et al., 2003 122 

Tugend et al., 2014). 123 

2.1.2 The continental shelves 124 

The structural framework of the English Channel, Western Approaches, and Armorican 125 

continental shelf (Fig. 1) is relatively well-known, constrained by different data sets (field work, 126 

seismic data, magnetic data), previously synthesized in geological maps (Lefort et al., 1997; 127 

Chantraine et al., 2003).  128 

The English Channel includes a succession of Permo-Triassic to Early Jurassic basins 129 

oriented WSW-ENE (e.g. Evans, 1990), setting up on a Paleozoic basement previously affected 130 

by the Variscan orogeny (Early Carboniferous; Ziegler, 1987; Matte, 2001; Ballèvre et al., 131 

2014; and references therein), being located in the outer part of the Ibero‐Armorican Arc (Matte 132 

and Ribeiro, 1975; Ballèvre et al., 2014; Cochelin et al., 2017, Authemayou et al., 2019 and 133 

references therein). The English Channel has been reactivated during the Pyrenean orogeny 134 

(e.g. Evans, 1990; Le Roy et al., 2011).  135 

The Armorican continental shelf is characterized by a 30-km thick crust including 136 

various outcropping lithologies (granites, metasediments, high pressure units), mainly inherited 137 
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from the Variscan orogeny (e.g.: Chantraine et al., 2003; Ballèvre et al., 2014). The structural 138 

pattern of the Armorican shelf is characterised by large-scale WNW-ESE to NW-SE trending 139 

transcurrent fault systems, alike the South Armorican Shear Zone (SASZ) in the Armorican 140 

Massif (e.g., Chantraine et al., 2003; Paquet et al., 2010; Guillocheau et al., 2003; Thinon et al., 141 

2009, 2018). Outcrops of Variscan basement are frequent along the inner part of the Armorican 142 

shelf, however, thick Mesozoic and/or Tertiary sediments covers the outer part of the North 143 

Biscay and Aquitaine shelves. As a result, the main crustal structures of the inner Armorican 144 

shelf along the south Brittany and Charente coast are well known and mapped (e.g., Chantraine 145 

et al., 2003; Paquet et al., 2010; Thinon et al., 2009, 2018), in contrast to the structure of the 146 

outer part of the shelf (Fig. 1).  147 

The Aquitaine shelf includes the E-W trending Parentis basin delimited to the South by 148 

the Paleozoic basement of the Landes High (Fig. 1). As imaged by seismic data and calibrated 149 

by drilling results, the Parentis Basin is a thick asymmetric Mesozoic-Cenozoic basin (up to 15 150 

km thick, e.g., Bois et al., 1997; Biteau et al., 2006; Tugend et al., 2014; 2015a) sitting on highly 151 

thinned continental crust (locally less than 10km thick, Bois et al., 1997; Tugend et al., 2015a). 152 

The stratigraphic architecture of rift sequences is largely controlled by the occurrence of the 153 

thick Triassic salt layer (Ferrer et al., 2009; Jammes et al., 2010a; Lagabrielle et al., 2020) 154 

allowing the decoupling of deformation between supra-salt formations and the underlying 155 

basement (as shown in the analogous Columbrets Basin, Ethève et al., 2018). The Parentis Basin 156 

is bounded to the South by one or several normal faults (e.g., Ferrer et al., 2008; Jammes et al., 157 

2010a; Tugend et al., 2015a) that controlled the observed crustal thinning interpreted as 158 

resulting in metamorphism and magmatism (Bois et al., 1997). Based on the interpretation of 159 

ECORS seismic profiles, several authors suggested that the Cretaceous rifting of the Parentis 160 

basin was largely controlled by the Variscan tectonic framework of the Paleozoic basement 161 

(e.g. Bois et al., 1997, Gariel et al., 1997). The Landes High, located between the Parentis Basin 162 
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and the onshore Basque-Cantabrian Basin, corresponds to a relatively weakly thinned 163 

continental block (Bois et al., 1997; Roca et al., 2011; Tugend et al., 2014). Only the uppermost 164 

part has been sampled and included clays and magmatic rocks like ophites under the thin Upper 165 

Cretaceous-Triassic sedimentary cover (DANU and TARANIS wells). The southern part of the 166 

Meso-Cenozoic cover is affected by the North-Pyrenean frontal thrust system (e.g., Ferrer et 167 

al., 2008).  168 

The North-Iberian shelf that borders the Bay of Biscay to the South is narrower than the 169 

Armorican continental shelf and its structure varies from west to east. Onshore of the northern 170 

Iberian shelf, a large part of the outcropping rocks emplaced prior to, during or subsequently to 171 

the Variscan history with different Variscan domains being distinguished. Of particular interest 172 

is the boundary between the Central Iberian Zone (CIZ) and the West Asturian-Leonese Zone 173 

(WALZ), which is marked by a set of magnetic anomalies (Fig. 1; Ayarza et al., 2004). To the 174 

west, the North-Iberian shelf is characterized by a ~30 km thick crust imaged along the IAM 175 

12 refraction profile (Alvarez-Marron et al., 1997; Fernandez- Viejo et al., 1997) and segmented 176 

by a series of NW-SE transfer faults (Deregnaucourt & Boillot 1982). To the east, the northern 177 

Iberian shelf hosts the thick Early Cretaceous Asturian basin delimiting the narrow Le Danois 178 

Bank from the main shelf to the south (Gallastegui et al., 2002; Cadenas & Fernandez-Viejo, 179 

2017). The structure changes again east of the Torrelavega and Santander canyons (Pedreira et 180 

al., 2007), interpreted as bounding a N-S to NNE-SSW soft transfer zone formed during the 181 

Early Cretaceous rifting and subsequently reactivated during the orogeny (Roca et al., 2011). 182 

Despite the identification of rift related structures and basins (e.g. Cadenas et al., 2018), the 183 

present-day morphology of the North-Iberian shelf is largely controlled by the inversion and 184 

partial under-thrusting of the Bay of Biscay distal margin and oceanic domain below the Iberian 185 

plate during the Pyrenean orogeny (Fig. 1) (e.g., Boillot et al., 1979; Alvarez-Marron et al., 186 

1997; Gallastegui et al., 2002; Roca et al., 2011, Pedreira et al., 2015).  187 
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 188 

2.1.3 Pyrenees Domain 189 

Inland, the northern edge of the Aquitaine foreland basin (Charentes region) formed 190 

over a Palaeozoic basement whose structuring, likely complex, is difficult to constrain, since it 191 

is not exposed. Nevertheless, two different geological features have previously been identified 192 

and interpreted (Montigny and Allegre, 1974; Maillet, 1977; Santallier, 1981; Mercier et al., 193 

1985; Triboulet and Audren, 1985; Girardeau et al., 1986; Lefort et al., 1997): (i) a NW-SE 194 

Carboniferous basin called the Saintes-Cognac Graben ; and (ii) N140-oriented band of late 195 

Proterozoic to Early Paleozoic mafic/ultramafic rocks. Further to the south, the Pyrenean-196 

Aquitaine structural framework is characterized by the occurrence of several crustal to 197 

lithospheric scale structures, most of which are interpreted as inherited from the Variscan 198 

orogeny. They correspond to ~ N110 trending structures including the « Flexure Celtaquitaine » 199 

(BRGM et al., 1974). This structure is interpreted as a major Variscan thrust complex in 200 

between pre-Variscan metasediments and Carboniferous basins (Lefort et al., 1997; Rolet, 201 

1997). Its geometry is poorly constrained and different mapping have been proposed (BRGM 202 

et al., 1974; Lefort et al., 1997; Rolet, 1997; Serrano et al., 2006). N110 trending structures 203 

such as Audignon, Antin-Maubourguet and Percorade ridges are salt tectonic structures 204 

formerly interpreted as Albian-Cenomanian in age (Mauriaud, 1987; Serrano et al., 2006), and 205 

recently reinterpreted as  already initiated during the Late Triassic – Hettangian rifting stage 206 

(Issautier et al., 2020). 207 

A second set of structures trends in a N20 to NE-SW direction, like for instance the 208 

Pamplona and Toulouse-Villefranche faults (e.g. Razin, 1989 ; Rolet 1997 ; Larrasoaña et al., 209 

2003). These structures are believed to strongly control both the segmentation of the Early 210 

Cretaceous rift basins and their subsequent inversion initiated in the Late Cretaceous (Pedreira 211 

et al., 2007; Roca et al., 20011; Tugend et al., 2014 ; 201b; Canérot, 2017; Saspiturry et al., 212 
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2019; Issautier et al., 2020; Ducoux et al., 2021; Lehujeur et al., this volume). Some of these 213 

are interpreted as partly inherited from the Late Variscan stage and/or Triassic-Hettangian 214 

rifting (Serrano et al., 2006; Tugend et al., 2014; Saspiturry et al., 2019; Issautier et al., 2020). 215 

Due to their successive reactivations, the geometry of these structures is not always clear. Our 216 

knowledge is mainly derived from sub-surface observations, provided by field data, drillholes, 217 

or seismic data and the in-depth extent of these structures and their impact on different crustal 218 

domains are sometimes unknown, imprecise or debated.  219 

2.2  Previous magnetic compilations 220 

Three published magnetic compilations cover the Bay of Biscay and the western part of 221 

the Aquitaine basin (including the Parentis Basin and Landes High areas) (Fig. 2). The Grid 222 

Aeromagnetic and Marine Magnetics of the north Atlantic and Artic (GAMMAA5) is a 223 

compilation from marine and airborne magnetic surveys with a grid resolution of 5 km and 224 

without corrections for the non-uniform altitude of the observation points (Verhoef et al., 1996). The 225 

World Digital Magnetic Anomaly Map (WDMAMv2) (Lesur et al., 2016) also compiled marine 226 

magnetic campaigns and aeromagnetic surveys. The resolution of the grid is 3 arc minutes for 227 

an altitude of 5 km above continental areas and at sea level for marine areas. The Earth Magnetic 228 

Anomaly Grid (EMAG2v3) compiled satellite, marine and airborne magnetic surveys with a 2 229 

arc min resolution at 4 km altitude (Maus et al., 2009 and Meyer et al., 2017). 230 

The result of these previous compilations is shown in Figure 2 for the Bay of Biscay 231 

domain and Landes-Parentis subset area. The GAMMAA5 compilation has a slightly higher 232 

resolution but there are no data onshore. WDMAM has a good resolution both offshore and 233 

onshore but shows visible artefacts, which are probably due to the merge of data sets with 234 

different resolutions. The EMAG2v3 compilation has no obvious artefacts but, as the 235 

compilation was made at 4 km above the sea level, the anomalies are smoothed, removing the 236 

high frequency content which bears crucial information to map structural domains. Therefore, 237 
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it appears that none of these existing compilations are suitable to perform a comprehensive 238 

intermediate resolution onshore-offshore geophysical characterisation and geological 239 

interpretation of the rifted margins of the Bay of Biscay. 240 

 241 

3 New magnetic compilation 242 

3.1  Datasets  243 

We used 104700 km of marine profiles and seven aeromagnetic surveys (Fig.3) acquired 244 

by industrial and academic partners in the sixties and eighties (Table 1). Given their age, the 245 

nature of available data is very different, including raw data, grids and paper maps. 246 

3.1.1 Marine magnetic data 247 

Various institutions and ships acquired the marine data used in the compilation. 248 

Magnetic data have been extracted from the world data service for Geophysics 249 

(https://www.ngdc.noaa.gov/mgg/mggd.html) and the French National Oceanographic Data 250 

Centre (SISMER). We added two campaigns: ZEE GASCOGNE (Pautot, 1992) and 251 

ZEEGASC2 (Le Suave, 1997). In total, 156 marine magnetic campaigns and 104 700.km are 252 

integrated in our study (Fig. 3). 253 

3.1.2 Aeromagnetic data 254 

The compilation also integrates seven aeromagnetic surveys acquired between 1962 and 255 

1983 by SHELL, ESSO and the Institut de Physique du Globe de Paris (IPGP) (Le Borgne et 256 

al., 1971). The two first surveys (Table 1, 1-2) were acquired with a fluxgate magnetometer and 257 

the other ones used an absolute cesium-vapor optically pumped magnetometer. The spacing 258 

between the lines is highly variable, ranging from 1.2 km to 20 km and the altitudes of the 259 

surveys range from 500 m to 1500 m (See table 1 for acquisition parameter of each survey). 260 

The first six surveys were available as paper maps only. 261 

about:blank
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 Year Survey 

name 

Operator  Reference code Sensor 

elevation (m) 

Line 

spacing (km) 

Strategies to 

compute map 

at 500 m  

1 1962 Lands Shell 1014 610 2 downward 

continuation 

2 1963 Lorient - 

Arcachon 

Shell 2087 600 20 downward 

continuation 

3 1966 Plateau 

continental 

Atlantique 

Shell 2502 500 4 - 

4 1968 Sud 

Gascogne sud 

ESSO 2577 1500 8 equivalent 

layer 

5 1968 Sud 

Gascogne nord 

ESSO 2577 500 4 -  

6 1969 Gascogne IPGP IPG41 500 10 - 

7 1983 Sud 

Aquitaine 

ESSO 6200 780 1.2/3.6 downward 

continuation 

8  156 marine surveys 0  upward 

continuation 

 262 

 263 

Table 1 : Main characteristics of the dataset covering the Bay of Biscay and surrounding 264 

continental shelves. 265 

 266 

3.2  Methods 267 

Each dataset required its specific processing to homogenize the data and prepare it for 268 

the compilation. The processing was performed with the Applimag Software (Matlab codes 269 

developed by M. Munschy at the Institut Terre et Environment de Strasbourg).  270 

3.2.1 Processing of the datasets 271 

For marine datasets, a manual selection of 707 profiles with magnetic data was made. 272 

Then, the regional field of the year of the survey was substracted from each dataset using the 273 

IGRF-12 model (Thébault et al., 2015). To minimize the errors in the dataset, we applied the 274 

same strategy that on the airborne dataset: Levelling. For the levelling correction, first, the 275 

crossover points are measured (3727 crossing points, for 707 profiles). Next, the differences at 276 
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crossover points between two profiles are computed. Lastly, a constant apply to each profile is 277 

measured by a linear inversion to minimized the differences at the crossover points (Luyendyk, 278 

1997). The standard deviation of the crossovers was reduced from 45.7 nT to 28.1 nT by the 279 

levelling. Lastly, the overall dataset was interpolated on a grid of 500 m cell size using a 280 

gradient method algorithm (D’Errico, 2006). 281 

For the aeromagnetic datasets, six of the seven surveys were only available as magnetic 282 

isolines on paper maps. These maps were georeferenced and digitized in a GIS, carefully 283 

checked and gridded (D’Errico, 2006).  284 

 285 

To restore each grid at an altitude of 500 m, we applied two strategies for the 5 grids 286 

which were initially not at this elevation: upward/downward continuation (Baranov, 1957) and 287 

equivalent layer (Dampney, 1969). The first method transforms the magnetic grid (at altitude ℎ) 288 

in the wavenumber domain and applies an operator of continuation to another altitude ℎ + 𝑠0. 289 

𝐹(𝑢, 𝑣, ℎ + 𝑠0) = 𝐹(𝑢, 𝑣, 𝑠0)𝑒
−√𝑢2+𝑣2𝑧 ( 1) 

 290 

with u and v being the spatial frequencies in the north and east directions and z the 291 

altitude of the survey. For the downward continuation, z is negative and this operator increases 292 

the amplitude of the high frequencies and rapidly becomes unstable. For survey 4 (Sud 293 

Gascogne Sud), the distance between the two surfaces is equal to 1000 m, so an equivalent 294 

approach was privileged. In order to derive the equivalent source magnetization from the initial 295 

magnetic grid a zeroth-order Tikhonov regularization was applied (Tikhonov and Arsenin, 1977; 296 

Oliveira et al. 2013, equation 4) 297 

𝑝 = 𝐺𝑇(𝐺𝐺𝑇 + 𝜇𝐼)−1𝑑, ( 2) 
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Where p is the magnetic property of the equivalent source, G is the matrix of Green’s 298 

functions, 𝜇 is a regularizing parameter, I is an identity matrix and d is the magnetic observations. 299 

A source depth of 3500 m and source spacing of 1000 m was used.  300 

3.2.2 Compilation procedures 301 

The merging of the 8 resulting grids (7 for the aeromagnetic datasets and 1 for the 302 

compilation of the 154 marine magnetic datasets) at an altitude of 500 m was computed with 303 

the suturing tool  GridKnit (Geosoft, 2013). The “suture” method was used to stitch the grids 304 

together. Figure 4 displays the result of the merge of all datasets at an altitude of 500 m. In the 305 

Landes-Parentis area, this compilation has a higher resolution than previous magnetic 306 

compilations (Fig. 2), but the anomalies in continental areas (Spain and France) are not 307 

complete.  308 

 309 

The Bay of Biscay compilation was continued upward from the altitude of 500 m to 310 

3000 m. A second magnetic compilation was computed at an altitude of 3000 m (Fig. 5) 311 

merging our compilation with the magnetic map of Spain (Ardizone et al, 1989) and the 312 

magnetic map of France (Le Borgne and Le Moüel, 1969).  313 

3.2.3 Potential field transforms 314 

To help geological interpretations, the compilation of magnetic grids was reduced to the 315 

pole. This operation compensates the skewness of magnetic anomalies and enables the extrema 316 

value to be located vertically to their causative sources – as far as their magnetization is mainly 317 

induced (Fig. 6). The study area is large (>500 km²), so a variable reduction to the pole was 318 

computed (Cooper and Cowan, 2005) in order to take into account the variations of orientation 319 

of the regional magnetic field. 320 
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Three transforms were applied to the anomalies reduced to the pole: the analytic signal, the 321 

tilt angle and the first order vertical derivative (Fig. 7).  322 

The analytic signal or total gradient of the anomaly is used to locate 3D magnetic bodies 323 

like intrusions for example; it has the property to locate the anomalies vertically to the causative 324 

sources whatever the type of magnetization of the source (induced or remanent). The analytic 325 

signal (Roest et al., 1992) is expressed as 326 

 𝑆𝐴(𝑥, 𝑦, 𝑧) = √(
𝜕𝑇(𝑥, 𝑦, 𝑧)
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 being the partial derivatives of the grid in the x, y and 327 

z directions. 328 

The tilt angle is efficient for structural interpretation as it allows the mapping of both 329 

strong and weak contrasts of magnetization. It is written as (Miller and Singh, 1994): 330 
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 331 

The first vertical derivative is used to localise the edge of magnetic bodies. This 332 

transformation removes long wavelength anomalies and highlight shallow structures. 333 

 𝐷𝑉(𝑥, 𝑦, 𝑧) =
𝜕𝑇(𝑥, 𝑦, 𝑧)

𝜕𝑧
.  ( 3). 

 334 
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4 Results and interpretations  335 

4.1 Magnetic interpretation: synthetic cases 336 

To help the interpretation of the compilation maps, we characterized the magnetic 337 

anomalies according to three types of potential field source geometries: 3D (close to spherical 338 

sources), 2.5D (elongated sources) and 2D (highly extended in one direction). These 3 types of 339 

source geometries were modelled as synthetic cases (Fig. S1, supplementary material) in order 340 

to show the cartographic signature of each type of source in the four magnetic maps we 341 

produced (the magnetic anomaly reduced to the pole, its first order vertical derivative, analytic 342 

signal and tilt angle). Both the induced and remanent magnetization were modelled, using 343 

respectively the average IGRF of the study area, and a remanent magnetization which we 344 

arbitrarily fixed at D=-30°, I=50°. 345 

Using these characteristic synthetic signatures, the magnetic compilation maps were interpreted 346 

in terms of 3D / 2,5D / 2D sources (Fig. 7a, b, c) and comments on the remanent character of 347 

some anomalies are given in the next section. Overall, the patterns produced by the cartographic 348 

repartition of these 3D / 2,5D / 2D sources, highlight regional geological domains displaying 349 

varied “magnetic textures” (Fig. 7d and Fig. 8) which are also discussed in the following 350 

section. 351 

 352 

4.2 Magnetic signature of crustal domains from the new compilation 353 

The mapping of the different crustal domains of the Bay of Biscay and Pyrenees was 354 

previously derived mainly from gravity inversion results and scattered seismic data (Fig. 1, 355 

Thinon et al., 2003, Roca et al., 2011; Tugend et al., 2014; Ruiz et al, 2017; Cadenas et al., 356 

2018). Our interpretation of the magnetic signal in terms of 3D / 2,5D / 2D sources (Fig. 7d) 357 

enabled us to characterize the magnetic texture of the different crustal domains (Fig. 1), precise 358 
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their boundaries and clarify the offshore continuation of major crustal structures mapped on 359 

land or from seismic data interpretations.  360 

The interpretation of different magnetic sources reveals lateral variations between the 361 

different crustal domains previously identified, but also within them (Fig. 7d): the oceanic 362 

abyssal plain (domain I), the OCT (domain II) and the continental domains of the Western 363 

Approaches margin (domain III) and the North and South Armorican margin (domains IV and  364 

V, respectively).  365 

4.2.1 Oceanic domain of the Bay of Biscay  366 

The new magnetic compilation confirms the V-shape of the Bay of Biscay oceanic 367 

domain (domain I, Fig. 8) characterized by a series of strong magnetic anomalies (over 100 nT, 368 

Fig. 6).  This series of high intensity magnetic anomalies terminate against the boundary with 369 

the mapped OCT domain of the Western Approaches and northern Armorican margins. The 370 

boundary between the OCT and oceanic domain is marked by a weak 2D anomaly, which has 371 

previously been interpreted as part of the M-series (M4: Sibuet et al., 2004). However, 372 

numerous studies now show that the continentward limit of the first oceanic crust cannot be 373 

used as an isochron in plate reconstruction (Eagles et al., 2015). Also, as already highlighted 374 

by Thinon et al. (2003), no linear anomaly can be interpreted at the emplacement of the M0 375 

pick of Sibuet et al., (2004). Therefore, the previously interpreted isochron magnetic anomalies 376 

from the M-series should be re-investigated in future studies prior to any conclusion. 377 

 378 

As in previous compilations, an E-W trending linear anomaly is observed in the centre 379 

of the Bay of Biscay abyssal plain (Fig. 6 and 7). This anomaly is commonly interpreted as the 380 

marine magnetic anomaly 34 young (A34y). This anomaly seems to end at 8°W of longitude. 381 

To the East, the pattern of the magnetic anomalies changes. There, a series of anomalies 382 
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oriented NW-SE in the northern part and WSW-ENE in the southern part, is observed and 383 

interpreted as delineating the eastern V-shape termination of the unambiguous oceanic domain 384 

(at ~6°W; Fig 7D). Bathymetric data show that the WSW-ENE trend of magnetic anomalies 385 

that characterises the southern domain I is actually located below the present-day slope of the  386 

North Iberia margin, whose morphology is conditioned by the Cenozoic accretionary prism 387 

formed during convergence (Fig. 8A). Except for the A34, the number and amplitude of 388 

magnetic anomalies appear to be greater east of 8°W longitude than to the west.  389 

4.2.2 Ocean-Continent transitional domain of the Bay of Biscay 390 

The magnetic signature of the OCT domain of the Bay of Biscay (Doman II in Fig. 8b) 391 

is highly variable in the new magnetic compilation, displaying magnetic signatures with three 392 

different shapes (2D, 2.5D and 3D, Fig. 6 and 7). To the west, the Western Approaches OCT 393 

and the western part of the Armorican OCT (IIa, Fig. 8) are characterized by weak 3D anomalies 394 

(Figure 7), with intensities below 50 nT (total magnetic intensity, Fig. 4). There, the OCT is 395 

interpreted as being composed of weakly serpentinized exhumed mantle based on seismic 396 

velocities (7.4-7.5 km.s-1 ; Thinon et al., 2003). In the eastern part of the Armorican basin four 397 

punctual and strong 3D magnetic anomalies greater than 150 nT are observed (IIb, Fig. 8). In 398 

this part of the OCT a series of isolated volcanic edifices have previously been identified in the 399 

sub-domain IIb (Thinon et al., 2003), one of them coinciding with a 3D magnetic anomaly 400 

(Figure 8). The other strong 3D anomalies visible in the sub-domain IIb do not coincide with 401 

identifiable shallow crustal structures such as seamount, which could indicate that their sources 402 

are deeper. The sub-domains IIb and IIc (Fig. 8) are delimited by a NE-SW alignment of 3D 403 

magnetic anomalies with intensities ~100 nT (total magnetic intensity, Fig. 4). The eastern end 404 

of the OCT is marked by a series of magnetic anomalies interpreted as resulting from 2.5D 405 

sources (Fig. 7) that delineate a V-shape pattern in the sub-domain IIc (Fig. 7, 8). The southern 406 
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part of this pattern of high intensity magnetic anomalies partly occurs below the present-day 407 

slope of the North-Iberian margin.  408 

 409 

4.2.3 Continental domains of the Bay of Biscay passive margins 410 

The new magnetic compilation on the continental shelf of the North Biscay margin 411 

highlights five continental domains with different magnetic signatures (Fig. 8): the English 412 

Channel and the Western Approaches margin (III), the North Armorican margin (IV), the South 413 

Armorican margin (Va and Vb) and the Aquitaine margin (VI). 414 

Between the British Isles and France (III), the Western Approaches margin and the 415 

English Channel are mainly characterized by NE-SW linear magnetic anomalies (2D), with 416 

intensities of ~50 nT. These anomalies extend to the Meriadzek Terrace (M in Fig. 8B), a 417 

continental spur at the edge of the Western Approaches margin (Thinon, 1999), where their 418 

direction changes to WSW-ENE. This whole set of anomalies coincides with the southern limit 419 

of the English Channel basins and the Ouessant-Aurigny Fault System (OAf; e.g. Evans, 1990; 420 

also referred to as Iroise fault by Le Roy et al., 2011).  The OAf would be the southern boundary 421 

of the English Channel basins system, called here the Ouessant system (Os). 422 

Off Brittany, the continental shelf of the North Armorican margin (IV) is characterized 423 

by SW-NE linear magnetic anomalies but they are more discontinuous (Figure 8A) and of lower 424 

intensities (of about 20 nT, total magnetic intensity, Fig. 4). The boundary of domain IV is 425 

mapped along a 2D magnetic anomaly identified in the prolongation of the Ophiolite of Cap-426 

Sizun oceanic suture (Ballèvre et al., 2009), a Variscan structure in-between the Audierne and 427 

South Armorican blocks identified onshore at Cap-Sizun (South Brittany coast, Figure 8B). The 428 

identified Sizun system (Sis) is mapped across the continental shelf and delimits the North and 429 

the South Armorican margins.  430 
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The northern part of the South Armorican margin (Va) is weakly magnetic. Rare and 431 

weak E-W to NW-SE magnetic anomalies are identified as well as long wavelength magnetic 432 

anomalies. No magnetic lineament is clearly identifiable at the location of the major NW-SE 433 

structures affecting the Tertiary sedimentary cover and the Variscan basement, such as the 434 

Concarneau Fault system (CFS), linked to the N140° Kerforne fault (Thinon et al., 2009, 2018). 435 

Next to the shelf-break and the coastline (off Nantes city), rare NW-SE magnetic lineaments 436 

are visible.  437 

The southern part of the South Armorican margin (Vb) presents linear magnetic 438 

anomalies (2D), mainly oriented NW-SE, with intensities of ~20 nT. Most anomalies coincide 439 

with major structures affecting the Variscan basement reactivated during the Pyrenean 440 

convergence (e.g., Yeu-Oléron faults; Paquet et al., 2010; Thinon et al., 2018). Onshore, several 441 

NW-SE magnetic lineaments coincide with major structures such as the Jonzac anticline (JA in 442 

Fig. 8B). They are often interrupted and offset, displaying “in relay” geometries. Sometimes, 443 

some E-W to ENE-WSW magnetic lineaments are identifiable (off Oleron island). This 444 

distribution is similar to that to the Variscan structures mapped in the Armorican Massif, such 445 

as the South Armorican Shear Zone (SASZ). Not all faults drawn on the million-scale 446 

geological map of France (Chantraine et al., 2003) coincide with a magnetic anomaly. This is 447 

particularly true of those identified in the Cenozoic sedimentary cover (Guillocheau et al., 2003; 448 

Paquet et al., 2010) questioning their impact at crustal scale.  449 

The number of identified magnetic anomalies in the sub-domain Vb is higher than in 450 

the sub-domain Va. The proposed boundary between the sub-domains Va and Vb, here referred 451 

to as the Loire system (Ls) corresponds to (i) an increase of magnetic intensity in the Va sub-452 

domain, and (ii) the presence of a strong magnetic anomaly at the shelf break, which display 453 

sigmoid-like or horse-tail like geometry towards the NW. The Loire system (Ls) seems to 454 
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extend in the OCT domain based on the number of single anomalies in the sub-domains IIb and 455 

IIc. 456 

In domain (VI), weak 2D (N-S to N160 trending) and 3D magnetic anomalies are 457 

observed, most being identified over the Landes High and in the southern part of the Parentis 458 

Basin in the 3000 m compilation (Figure 5). The boundaries of the domain VI are not clearly 459 

outlined by magnetic anomalies. The proposed Bordeaux system (Bs) is defined at the 460 

emplacement of a change in magnetic trends (from NW-SE to NNW-SSE) and an increase of 461 

magnetic intensities towards the sub-domain Vb. E-W oriented, the Bs is interpreted to delimit 462 

the Parentis Basin to the North. In our compiled grids, a series of magnetic anomalies 463 

interpreted as related to 3D sources are observed over the Landes High and western part of the 464 

Aquitaine basin (Figure 7). Most of, their intensites are over ~100 nT and they are distributed 465 

along NW-SE to NNW-SSE trends (Fig. 7, 8, 9). The Taramis well, located on top of one of 466 

these anomalies (Figure 9), sampled Triassic to early Liassic magmatic rocks (Ophites: 467 

Curnelle, 1983). In the western Aquitaine Basin, some of these anomalies coincide with salt 468 

diapirs (Bastennes-Gaujacq, Dax, Fig. 9), within which ophite bodies are locally embedded (Le 469 

Pochat and Thibault; 1977). These spatial correlations and the 3D geometry inferred for the 470 

source of these anomalies suggest that these magnetic anomalies could at least partly mark the 471 

emplacement of a series of ophite bodies. These intrusions are well known in the Pyrenean-472 

Aquitaine domains, as the result of the Late Triassic – Hettangian rifting stage (Azambre et al., 473 

1987; Rossi et al., 2003). 474 

 475 
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4.2.4 Onshore continental domains: Aquitaine basin, Pyrenees and Basque-Cantabrian basin  476 

A series of magnetic anomalies and trends are also observed inland along the Pyrenean 477 

orogen, in the Aquitaine and Basque Cantabrian Basins (Figure 9) and the geometry of the 478 

source causing these anomalies is interpreted as being either 2D or 3D (Figure 7,9).  479 

The limit between the Early Cretaceous European necking zone (Fig. 1 and 8, Tugend 480 

et al., 2014) and the proximal European margin domain is materialized by a N110 trending 481 

anomaly well marked on the Tilt angle map on the northern side of the Pyrenees (Fig. 9a). 482 

Further north, another N110 oriented anomaly (CAF in Fig.9a) can be correlated to the 483 

Celtaquitaine Flexure, interpreted as a major Variscan suture between different 484 

paleogeographic domains (BRGM et al., 1974; Rolet, 1997). The E-W trending Celtaquitaine 485 

Flexure at north of the Aquitaine basin becomes N-S to NNW-SSE trending further to the west 486 

where it seems to join the N140° South-Armorican Yeu-Oléron Variscan faults, also correlated 487 

with magnetic trends (Figure 9). North of the Aquitaine basin, a series of medium anomalies 488 

are observed, roughly parallel to the previously described Celtaquitaine flexure. Those 489 

anomalies could partly have indirect relation with far field compressional structures formed 490 

during the Pyrenean orogeny (e.g. Jonzac Anticline and Saintes-Barbézieux, La Tour Blanche, 491 

Blessac and Périgueux anticlines (TBPA) and the Gavaudun-Monsempron Flexure (GMF), 492 

Platel, 1986, 1987). However, the magnetic signal is most likely originating from Variscan 493 

basement heterogeneities such as the NW-SE elongated Saintes-Cognac Carboniferous Basin 494 

(Lefort et al., 1997) that favored the localization of later folding. South of the Celtaquitaine 495 

flexure, N110 magnetic lineaments with an intensity of ~20 nT are observed and tentatively 496 

correlated to the Antin-Maubourguet ridge (AMR, Serrano et al., 2006) ; and the Roquefort 497 

anticline (RA, Cuvillier et al., 1951) (Figure 9) but most likely to underlying undetermined 498 

basement structures. 499 
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A series of magnetic anomalies interpreted as related to 3D sources are observed along 500 

the Basque-Cantabrian and Pyrenean orogen (Figure 9). They mostly occur within the 501 

interpreted former exhumed mantle domain, now punctually sampled in the Pyrenean orogen 502 

and the inverted Basque Cantabrian Basin (Figure 1, Tugend et al., 2014). Among these 503 

magnetic anomalies, the largest one is observed in the Basque Cantabrian Basin, in the Biscay 504 

synclinorium, at the location where Cretaceous volcanic rocks are cropping out (Figure 9: 505 

Castanares et al., 1997, 2001; Carracedo et al., 1999). Coherently with this spatial correlation, 506 

this anomaly has previously been modelled and interpreted as generated by magmatic intrusions 507 

in the lower crust during the Early Cretaceous rifting, later uplifted during the Pyrenean orogeny 508 

(Pedreira et al., 2007). Smaller magnetic anomalies are observed in the Cantabrian-Pyrenean 509 

junction where granulite and mantle rocks are cropping out near Ziga (Figure 9; DeFelipe et al., 510 

2017; Lescoutre et al., 2021). Magnetic anomalies of a similar shape but of slightly higher intensity 511 

are also observed in the Pyrenean orogen close to mantle outcrops and/or volcanic rocks (Figure 512 

9). The N110 trend of magnetic anomalies observed in the Pyrenees is shifted to the north 513 

relative to the rift axis of the Basque Cantabrian Basin (Fig. 1, 9). The Pyrenean rift system is 514 

known to be segmented by a series of SSW-NNE to SW-NE transfer zones. Such transfer zones 515 

or accommodation zones may delimit different arms of the rift system (i.e., between the Basque-516 

Cantabrian Basin and Western Pyrenees) or segment smaller-scale depocenters  (i.e. Arzacq-517 

Mauléon Basin) (e.g., Pedreira et al., 2007; Jammes et al., 2009; Roca et al., 2011; Tugend et 518 

al., 2014; 2015b; Masini et al., 2014; Canérot, 2017; Saspiturry et al., 2019; Issautier el al., 519 

2020; Lescoutre and Manatschal 2020; Lescoutre et al., 2021; Ducoux et al., 2021) but their 520 

geometry and lateral extent is not always clear due to successive reactivations. A small-scale 521 

shift is observed between the magnetic anomalies of the Mauléon and Chainons Béarnais areas, 522 

possibly related to the transverse fault mapped near the Urdach lherzolite body (ULz in figure 523 

9, e.g., Duée et al., 1984; Fortané et al., 1986; Jammes et al., 2009; Debroas et al., 2010; 524 
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Lagabrielle et al., 2010; Lagabrielle et al., 2019) and interpreted as controlling its exhumation 525 

during rifting (Canérot, 2017).  526 

The magnetic anomaly observed at the eastern termination of our magnetic compilation 527 

is located near Saint-Gaudens (SG, Figure 9) and shows an intensity up to 150 nT. It is 528 

superimposed to a well-known gravity anomaly (Grandjean, 1992), interpreted as generated by 529 

a piece of sub-continental mantle (Casas et al., 1997) that was likely previously exhumed in the 530 

Baronnies Basin during the Early Cretaceous hyperextension of the Pyrenean rift system (Clerc 531 

and Lagabrielle 2014; Tugend et al., 2015b). The strong magnetic anomaly of Saint Gaudens is 532 

not incompatible with this assumption; however, forward modelling or an inversion of the 533 

magnetic anomaly would be required to confirm this hypothesis. The western end of this 534 

anomaly coincides with the Eastern Crustal Lineament (ECL in Fig. 9, Angrand et al., 2018), a 535 

transverse structure responsible for the northern shift of the Frontal Pyrenean Thrust in Baronies 536 

basin compared to the Mauléon basin. The mapping of the Eastern Crustal Lineament matches 537 

the shift observed between the SG magnetic anomaly and another dipolar magnetic anomaly 538 

(~150 nT) emplaced in the North Pyrenean Zone at the easternmost end of the Chainons 539 

Béarnais area. Several ophites and lherzolites bodies crop out in this area (Fig. 9, Castéras, 540 

1970) and could possibly contribute to the magnetic signal. The hypothesis of a magnetic 541 

anomaly zone across the Oléron-Lourdes-Saint Gaudens band related to volcanic intrusions was 542 

proposed by Azambre et Pozzi (1982). Nevertheless, the existence of two sub-continental 543 

mantle bodies from either side of the ECL suggest the occurrence of a major transfer zone 544 

between two of the North Pyrenean hyperextended basins: Mauléon and Baronnies.  545 

 546 
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5 Contribution of the new high resolution magnetic map for geological 547 

interpretations 548 

The analysis of the new magnetic compilation and the different potential field 549 

transforms applied to it enabled (1) to precise the limits of the different structural domains of 550 

the Bay of Biscay and adjacent continental shelves, (2) to clarify the Bay of Biscay passive 551 

margin segmentation and extent of transfer zones, (3) to show lateral variations in the magnetic 552 

signature of the OCT and (4) to highlight the location of some structures in the continental crust.  553 

5.1 Crustal domain boundaries  554 

The new compilation of magnetic anomaly data improves the identification of magnetic 555 

anomalies on the Bay of Biscay and helps clarifying the eastern termination of the unambiguous 556 

oceanic domain. The boundary between the oceanic domain and OCT was previously mapped 557 

based on seismic data (Thinon et al., 2003) and crustal thickness variations determined from 558 

gravity inversion (Tugend et al., 2015), but the scarcity of seismic data in the oceanic domain 559 

west of 6°W hampered a robust mapping of this area. The magnetic signature of the north-560 

Iberian OCT and oceanic domains is observed under the present-day slope of the North Iberian 561 

margin (Fig. 7 and 8). This observation is consistent with the underthrusting /proto-subduction 562 

induced by the Iberia-Europe convergence previously described (e.g. Alvarez-Marron et al., 563 

1997; Fernandez-Viejo et al., 1998; Gallastegui 2000; Roca et al., 2011; Pedreira et al., 2007, 564 

2015; Tugend et al., 2014; Ruiz et al., 2017; Cadenas et al. 2018).  565 

5.2 Segmentation – transfer zones - inheritance  566 

Previous authors linked the segmentation observed in the Bay of Biscay to the presence 567 

of transfer zones (Fig. 1; Deregnaucourt and Boillot 1982; Thinon, 1999; Pedreira et al., 2007; 568 

Roca et al., 2011, Tugend et al., 2014). Thanks to the new magnetic compilation, we attempted 569 

to precise the segmentation of the Bay of Biscay region using variations in the magnetic signal. 570 
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Changes in the magnetic signal are observed over continental domains (proximal, necking and 571 

hyper-thinned crust, Fig. 7 and 8), and in the OCT. Transfer zones played an important role in 572 

the segmentation of the margin during rifting (Tugend et al., 2015b), but they also influenced 573 

the distribution of the Pyrenean deformation in the OCT (Thinon et al., 2001; Tugend et al., 574 

2014), on the continental shelves and inland (Pedreira et al., 2007; Thinon et al., 2008; Roca et 575 

al., 2011). Based on the trend and extent of these transfer zones, as well as on the regional 576 

geological knowledge, we propose that these transfer zones partly formed along structures (of 577 

crustal scale or possibly lithospheric scale) inherited from the Variscan orogeny as previously 578 

suggested by Tugend et al., 2014 for some of them. The effect of these transfer zones is 579 

sometimes observed in the OCT where they may locally control the exhumation of the mantle 580 

(Ouessant system) or the emplacement of volcanic /magmatic bodies (Sizun system). These 581 

transfer zones do not affect the limit between the OCT and the oceanic crust (Fig. 8, Tugend et 582 

al., 2014) and hence had no influence on the emplacement of the crust of the oceanic 583 

lithosphere. 584 

 It should be noted that changes in the architecture observed in the vicinity of these 585 

transfer zones are not abrupt but progressive, explaining why they are sometimes referred to as 586 

“soft” transfer zones (Roca et al., 2011). At one location (between sub-domains IIb and IIc), an 587 

alignment of 3D magnetic anomalies is observed in the OCT in the continuation of the 588 

interpreted NE-SW Loire system transfer zone, suggesting that this anomaly is not solely due 589 

to inherited continental trends. Because of the nearby presence of volcanic bodies (Thinon et 590 

al., 2003), we hypothesize that magmatic intrusions could possibly be emplaced along the 591 

transfer zone as suggested in the Gulf of Lion by Canva et al. (2020).   592 

 593 
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5.3  Variability of the OCT magnetic signature: magmatic events during propagation? 594 

Seismic data already enabled the distinction between the northern and southern segment 595 

of the Armorican margin and its OCT (Thinon et al., 2003). In sub-domain IIa (Fig. 8), the 596 

basement of the OCT is interpreted as exhumed serpentinized mantle (Thinon et al., 2003; 597 

Tugend et al., 2014, 2015) and is directly onlapped by sedimentary sequences (Thinon et al., 598 

2002). In the OCT sub-domain IIb (Fig.8), an enigmatic and debated seismic unit (seismic unit 599 

3C, Thinon et al., 2003) is observed, and is possibly part of the OCT basement (Gillard et al., 600 

2019). The occurrence of punctual magnetic anomalies of strong intensity in the eastern part of 601 

the Bay of Biscay, partly coinciding with volcanic seamounts, could suggest that the 602 

emplacement of exhumed mantle characterizing the OCT of the South Armorican margin is 603 

associated with more magmatic material (IIb, IIc) than in the North Armorican margin (IIa). In 604 

the North Armorican margin, reflection and refraction seismic data together with the crustal 605 

thickness distribution determined from gravity inversion, suggest that magmatism occurs close 606 

to the limit between the OCT and the oceanic crust at the end of rifting (Thinon et al., 2003; 607 

Tugend et al., 2014). The occurrence of magmatic material intruding the exhumed mantle has 608 

also been suggested to characterize the OCT of the eastern part of the North Iberian margin 609 

based on the atypical velocities structure deduced from seismic refraction experiments (Roca 610 

et al., 2011; Pedreira et al. 2015; Ruiz et al., 2017). This increasing occurrence of magmatism 611 

in the eastern part of Bay of Biscay OCT seems to coincide with the V-shape pattern of high 612 

intensity magnetic anomalies observed east of the termination of the oceanic domain (east of 613 

6°W, Fig. 7 and 8).  614 

Onset of oceanic spreading is unlikely to be synchronous throughout the entire Bay of 615 

Biscay and a slightly younger age is suggested for the formation of the eastern part of the Bay 616 

of Biscay OCT (Tugend et al., 2014; 2015b; Cadenas et al., 2020), as expected during the 617 

propagation of continental breakup. A direct consequence is that the M3 anomaly identified by 618 
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Sibuet et al., (2004) at the boundary between the OCT and oceanic crust is unlikely to be an 619 

isochron. Based on these findings, we interpret the V-shaped pattern of magnetic anomalies as 620 

magmatic intrusives and extrusives emplaced at the tip of the Bay of Biscay oceanic propagator 621 

during the eastern propagation of continental breakup and tentative localisation of the boundary 622 

between the Iberian and European crusts in the future Pyrenees (Tugend et al., 2015b). This 623 

failed tentative propagation is supported by the interruption of the continuity of the A34 624 

anomaly east of 8°W and the change in the distribution of magnetic anomalies between the 625 

western and eastern parts and the northern and southern parts of the oceanic domain (Fig. 8).  626 

 627 

5.4 Contribution of magnetic data to the knowledge of in-depth structures in the 628 

continental crust 629 

The E-W Mesozoic Parentis basin is not characterized by strong magnetic anomalies. 630 

This observation do not favour the hypothesis of a highly heterogeneous crustal basement 631 

beneath the Parentis basin or constituting the Landes High basement, induced by metamorphism 632 

and magmatism (Bois et al., 1997). A very thick Mesozoic sedimentary cover as observed in 633 

the Parentis Basin could potentially mask the magnetic anomalies, but the sedimentary cover is 634 

thin over the Landes High as Paleozoic formations were sampled at a rather shallow depths 635 

(DANU well at 1339m depth). Rifting in the Parentis Basin was probably not accompanied by 636 

a significant magmatism. Over the Landes High and southwestern part of the Aquitaine Basin 637 

a series of NNW-SSE trending magnetic anomalies are identified on the 500 m altitude high-638 

resolution compilation (Fig. 8). They seem to correlate with the emplacement of Triassic-early 639 

Liassic sub-volcanic rocks (Ophites), drilled over the Landes High basement (Curnelle, 1983; 640 

TARANIS well) and cropping out in salt diapirs (Fig. 9, Bastennes-Gaujacq, Dax, Le Pochat 641 

and Thibault; 1977).  642 
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A significant contribution of this compilation relates to the “Celtaquitaine flexure” 643 

geometry. Previous mapping indicated a roughly E-W structure with poor signal in its western 644 

portion. We rather propose here that this E-W trend, clearly visible in the eastern Aquitaine 645 

basin domain changes to the west to follow the typical NW-SE trend of the Armorican shelf.  646 

 647 

6 Conclusions 648 

New intermediate resolution onshore-offshore magnetic anomaly maps were compiled 649 

in this study and will be available for further studies. They result from the careful compilation 650 

of 154 marine and 7 airborne magnetic data sets acquired across the Bay of Biscay and 651 

surrounding continental shelves. The resulting regional magnetic compilations at 500 and 3000 652 

m of elevation have been enhanced by potential field transforms to facilitate the comparison 653 

and correlation with known geological features and highlight unknown structures. The main 654 

conclusions that result from our study are the following: 655 

1) Magnetic anomaly maps and their enhancement by operators such as the analytic 656 

signal, tilt angle and vertical derivative are consistent and can be used to improve the structural 657 

mapping of the area.  658 

2) Some of the magnetic anomalies and magnetic trends observed inland in the Western 659 

Pyrenes and the Aquitaine Basin are tentatively correlated to geological structures previously 660 

mapped or locally drilled (e.g., Triassic extrusives over the Landes High). Of particular interest 661 

is the identification of magnetic trends in the vicinity of the interpreted Celtaquitaine flexure, 662 

which are used to refine its mapping from the Aquitaine basin to the southern Armorican shelf. 663 

3) Magnetic trends and changes in the magnetic signature are observed over the 664 

Armorican shelf. They seem to occur in the continuation of well-known geological structures 665 
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previously mapped onshore and in the inner shelf and are tentatively correlated to observed 666 

changes in the North Biscay passive margin segmentation.  667 

4) Lateral variations of the magnetic signature in the Ocean Continent Transition are 668 

also evidenced and are tentatively interpreted as related to magmatism emplaced in the eastern 669 

OCT during the aborted plate boundary propagation.  670 

We identified a series of correlations between magnetic anomalies and geological 671 

features previously mapped from fieldwork and/or seismic data. However, in order to 672 

characterize the geological origin of the magnetic signal, forward modelling and inversions of 673 

each identified correlation is required. 674 

 675 

  676 
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  1101 
Figure 1 : Map of the rift domains preserved in the Bay of Biscay and their fossil analogues 1102 
from the Pyrenean domain (after Tugend et al., 2014, 2015 including updates from Yang et 1103 

al., (2020) towards Goban Spur and from Druet et al., 2018 and Cadenas et al., 2018 across 1104 

the North Iberian margin). The mapping of offshore structures is based on Thinon, 1999; 1105 

Thinon et al., 2003, 2009, 2018; Deregnaucourt et al., 1982; and Tugend et al., 2014). Aqui. 1106 
M. : Aquitaine margin. CIZ: Central Iberian zone. WALZ: West Asturian-Leonese zone; 1107 

NASZ: North Armorican Shear Zone; SASZ: South Armorican Shear Zone; VF: Ventaniella 1108 

Fault zone. PTz: Pamplona Transfer zone. STz : Santander Transfer zone (from Roca et al., 1109 

2011). Red points correspond to the picking of marine magnetic anomalies A34y (Seton et al., 1110 
2014). 1111 

 1112 
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 1113 

 1114 

 1115 
Figure 2 : Total field magnetic anomaly maps of previous compilations (GAMMAA5, 1116 

WDMAMv2 and EMAG2V3 - plotted with the same color scale). The upper panel present the 1117 

three grids for the Bay of Biscay domain and the lower panel a zoom over the Landes-Parentis 1118 

area. 1119 

 1120 

 1121 
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Figure 3 : Marine magnetic track lines (in black) and limits of the seven aeromagnetic surveys 1122 

(coloured polygons) whose label numbers refer to table 1. 1123 

 1124 

 1125 
 1126 

Figure 4 : The new magnetic compilation map at 500 m of the Bay of Biscay (left side) . Zoom 1127 
on the Landes-Parentis area (right side). 1128 

 1129 

 1130 

 1131 

Figure 5 : The new magnetic compilation map at 3 000 m of the Bay of Biscay (left side) . 1132 
Zoom on the Landes-Parentis area (right side). 1133 

 1134 

 1135 

 1136 
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 1137 

Figure 6 : Reduction to the pole applied to the total magnetic intensity maps at 500 m and 1138 
3000 m of the Bay of Biscay and encompassing continental areas. The lower panel shows a 1139 

zoom over the Landes-Parentis area. 1140 
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 1141 

Figure 7 : A) Analytic signal magnetic map after RTP; B) Tilt angle magnetic map after RTP; 1142 

C) Vertical derivative magnetic map after RTP; D) Magnetic interpretation on the vertical 1143 

derivative map with Figure 1 in the background.. 1144 
 1145 

 1146 

 1147 
 Figure 8 : A) Magnetic signature superimposed on crustal domains. B) Segmentation, 1148 

crustal domains and major structures of the Bay of Biscay region. Crustal domains defined by 1149 
magnetic signatures: Oceanic (I), Ocean-Continental Transition (IIa, b, c); III Western 1150 

Approaches margin; IV: North-Armorican margin; V: South Armorican margin (a) off south 1151 

Brittany, (b) off Oléron city; VI Aquitaine margin; VII: Aquitaine basin; (1) Oceanic crust, (2) 1152 
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Oceanic crust with underplated serpentinized mantle, (3) OCT with exhumed serpentinized 1153 

mantle, (4) OCT with exhumed serpentinized mantle with a possible intruded magmatism 1154 

(with strong magnetic anomalies) (from this study in accordance with Pedreira et al. (2015) ), 1155 

(5) hyper-thinned continental crust, (6) thinned continental crust, (7) seamount volcanic 1156 
edifices on seismic data coinciding to magnetic anomalies, (8) Strong magnetic anomalies 1157 

associated to subvolcanic rocks (ophites) in the Variscan basement (TARAMIS well), (9) 1158 

Strong magnetic anomalies often associated to the exhumed serpentinized mantle or lower 1159 

crust, (10) Observed major crustal structures with magnetic signatures, (11) Observed major 1160 
structures, (12) Major magnetic lineament uncorrelated to known structures, (13) 1161 

Segmentation of continental crustal domains and (14) their extension in the OCT : Ouessant 1162 

system (Os), Sizun system (Sis) and Loire system (Ls), (15) A34 magnetic anomaly (Seton et 1163 

al., 2014), (16-17) Observed and supposed boundary of the Biscay oceanic crust, (18-19) 1164 
Observed and supposed boundary between the OCT and the continental domain, (20-21) 1165 

Observed and supposed boundary between the hyper-thinned and thinned continental domain. 1166 

Triangle: Ophites sampled by wells (112 ODP leg 12;TARAMIS); blue names indicate: 1167 

localities (Cap Sizun, Nantes city, Yeu, Oléron). AMR: Antin-Matourget ridge; BTz: Barlanes 1168 
transfer zone; CAF: Celtaquitain flexure (redrawn from the new magnetic compilation); CFS: 1169 

Concarneau Fault System linked to N140° Kerforne fault; CIZ: Central Iberian zone; ECL: 1170 

Eastern Crustal Lineament; JA: Jonzac Anticline; M: Meriadzek Terrace; OAf: Ouessant-1171 

Aurigny fault (Evans 1990, or Iroise fault according to Le Roy et al., 2011); PTz : Pamplona 1172 
Transfer zone; SASZ and NASZ: South and North Armorican Shear Zone; SBS: Saintes-1173 

Berbézieux Syncline; STz : Santander Transfer zone (from Roca et al., 2011); Vf: Ventaniella 1174 

Fault; WALZ: West Asturian-Leonese zone. The dashed rectangle correspond to the location 1175 

of figure 9. 1176 
 1177 
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 1178 
 1179 
 Figure 9 : A) Tilt angle magnetic map after RTP of the Aquitain margin and the Aquitaine 1180 

basin (domains VI and VII). B)Vertical derivative magnetic map after RTP of the Aquitain 1181 

margin and the Aquitaine basin (domains VI and VII) ; C) Simplified geological map of 1182 

Pyrenees  with major structures defined by magnetic signatures; Triangle: eruptive rocks 1183 
sampled by TARAMIS well; AMR: Antin-Matourget ridge; Bb: Baronnie basin;  BC:Basque-1184 
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Cantabrian anomaly; Pedreira et al., 2007); BG: Bastennes-Gaujacq; BTf: Barlanes transfer 1185 

fault; CAF: Celtaquitain flexure (redrawn from the new magnetic compilation); D:Dax 1186 

diapir; ECL: Eastern Crustal Lineament; BENP: Boundary between the European Necking 1187 

and Proximal domains; GMF: Gavaudun-Monsempron Flexure; PTz : Pamplona Transfer 1188 
zone; RA : Roquefort Anticline; TBPA: Tour Blanche-Blessac and Périgueux Anticlines; fault; 1189 

ULz: Urdach lerzolites; SG: Saint-Gaudens anomaly. 1190 

 1191 
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6 Supplementary material 1193 

 1194 

 1195 
Figure 10 : Synthetic cases with three source geometries (3D sphere, 2.5D segment and 2D 1196 

line) for induced (D=0°,I=60°) and remnant magnetization (D=-30°,I=50°) . The first row of 1197 

maps corresponds to total magnetic intensity map. The second row corresponds to the 1198 

reduction to the pole, with induced magnetization assumption. The third row corresponds to 1199 

the vertical derivative. The fourth row corresponds to the vectorial analytic signal or total 1200 
gradient. The last row corresponds the tilt angle maps. 1201 


