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This study aimed to 1) assess the influence of the spatial configuration of nutrient
sources on nitrate (NO3-) and total phosphorus (TP) exports at the catchment scale,
and 2) investigate how relationships between landscape composition and landscape
configuration vary depending on catchment size.
We analysed NO3- and TP in 19 headwaters (1-14 km², Western France) every two
weeks for 17 months. The headwater catchments had similar soil types, climate, and
farming systems but differed in landscape composition (percentage agricultural land-
use) and spatial configuration. We developed a landscape configuration index (LCI)
describing the spatial configuration of nutrient sources as a function of their
hydrological distance to streams and flow accumulation zones. We calibrated the LCI’s
two parameters to maximise the rank correlation with median concentrations of TP and
NO3-.
We found that NO3- exports were controlled by landscape composition, whereas TP
exports were controlled by landscape configuration. For a given landscape
composition, landscape spatial configuration was  heterogeneous at small scales (<10
km2) but homogeneous at larger scales (>50 km2).
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Abstract  23 

Context 24 

Nitrogen (N) and phosphorus (P) exports from rural landscapes can cause eutrophication of 25 

inland and coastal waters. Few studies have investigated the influence of the spatial 26 

configuration of nutrient sources – i.e. the spatial arrangement of agricultural fields in 27 

headwater catchments – on N and P exports. 28 

Objectives 29 

This study aimed to 1) assess the influence of the spatial configuration of nutrient sources on 30 

nitrate (NO3
-) and total phosphorus (TP) exports at the catchment scale, and 2) investigate 31 
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how relationships between landscape composition and landscape configuration vary 32 

depending on catchment size. 33 

Methods 34 

We analysed NO3
- and TP in 19 headwaters (1-14 km², Western France) every two weeks for 35 

17 months. The headwater catchments had similar soil types, climate, and farming systems 36 

but differed in landscape composition (percentage agricultural land-use) and spatial 37 

configuration. We developed a landscape configuration index (LCI) describing the spatial 38 

configuration of nutrient sources as a function of their hydrological distance to streams and 39 

flow accumulation zones. We calibrated the LCI’s two parameters to maximise the rank 40 

correlation with median concentrations of TP and NO3
-. 41 

Results 42 

We found that NO3
- exports were controlled by landscape composition, whereas TP exports 43 

were controlled by landscape configuration. For a given landscape composition, landscape 44 

spatial configuration was highly heterogeneous at small scales (<10 km 2) but became 45 

homogeneous at larger scales (>50 km2).  46 

Conclusions 47 

The spatial configuration of nutrient sources influences TP but not NO3
- exports. An ideal 48 

placement of mitigation options to limit TP export should consider both the hydrological 49 

distance to streams and flow accumulation zones 50 

 51 

Keywords 52 

Eutrophication; landscape pattern; landscape organisation; landscape composition; 53 

heterogeneity; scaling 54 

  55 



3 
 

1. Introduction 56 

Excessive loads of nitrogen (N) and phosphorus (P) cause the eutrophication of marine and 57 

freshwater ecosystems (Dodds and Smith 2016; Le Moal et al. 2018), which threatens 58 

biodiversity and human activities (Steffen et al. 2015). In streams and rivers that drain 59 

agricultural landscapes, N and P originate mainly from fertilised agricultural fields. Water 60 

quality mitigation measures often result in reduced yields or increased production costs; 61 

hence, they decrease profitability for farmers (Withers et al. 2014). It is therefore necessary 62 

to locate mitigation options such as set-aside areas and buffer zones where they will be most 63 

effective (Cole et al. 2020). Mechanistic models (Casal et al. 2019; McDowell et al. 2014) 64 

and methods based on statistical analysis of landscape properties (Doody et al. 2012; 65 

Hashemi et al. 2018) have been used to optimise locations of mitigation practices. 66 

Most N and P enter the hydrographic network in headwater streams (Dodds and Oakes 67 

2008), which represent 90% of global stream length (Downing 2012) but are rarely 68 

monitored, except for research purposes (Bishop et al. 2008). At this scale, nutrient exports 69 

vary greatly in space (Abbott et al. 2018; Temnerud and Bishop 2005). While in large (>100 70 

km2) catchments, both N and P exports can be statistically related to proxies of agricultural 71 

pressure intensity, such as percentage of agricultural land-use or agricultural surplus (Dupas 72 

et al. 2015; Goyette et al. 2018), these relationships break down at the scale of headwater 73 

catchments (<20 km2) (Bol et al. 2018; Burt and Pinay 2005). The reason why the 74 

relationship between landscape composition and nutrient exports is scale-dependent is 75 

unclear. Identifying the factor(s) responsible for this loss of relationship, and the 76 

characteristic spatial scale at which it occurs, would help guide water quality mitigation 77 

measures at the catchment scale. In this article, we explore the hypothesis that the spatial 78 

configuration of nutrient sources – i.e. the spatial arrangement/distribution/organisation of 79 

agricultural fields, hereafter called “landscape configuration”, –influences N and P exports at 80 

the headwater catchment scale. For a given region, landscape configuration can be highly 81 

heterogeneous among headwater catchments but homogeneous among larger catchments 82 

(Abbott et al. 2018; Temnerud and Bishop 2005). If verified, these two hypotheses could 83 

explain the breakdown of the relationship between agricultural pressure intensity and nutrient 84 

exports at the headwater catchment scale. 85 

Several authors have reviewed the influence of landscape spatial configuration on nutrient 86 

loads at multiple scales (Lintern et al. 2018; Uuemaa et al. 2007). Metrics used in landscape 87 

ecology are based on the area/density/edge, shape, isolation, interspersion, and connectivity 88 

of patches, and they have been applied to predict water quality parameters at the catchment 89 

scale (Liu et al. 2020; Shi et al. 2013; Xiao et al. 2016). However, these approaches often 90 

rely on regressions of several landscape metrics and water quality parameters, which risks 91 
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over-fitting certain relationships and/or spurious correlations. Landscape spatial configuration 92 

can also be understood as the overlap and proximity of features such as streams, 93 

depressions, and flow accumulation areas to land-use patches (e.g. crops, forest fragments, 94 

urban fabric). In line with this concept, Peterson et al. (2011)) related parameters of stream 95 

ecological conditions to multiple spatially explicit landscape “topological” metrics and found 96 

that these spatially explicit methods clearly had more predictive power than landscape 97 

composition metrics. Staponites et al. (2019)), using similar metrics, suggested that the 98 

spatial organisation of nutrient sources (i.e. landscape configuration) influenced the transfer 99 

of reactive or labile water quality parameters (e.g. TP, NO2
- and PO4

3-), whereas percentages 100 

of land use (i.e. landscape composition) have more predictive power for more temporally 101 

stable water quality parameters (e.g. Ca2+, NO3
-, conductivity). These results are consistent 102 

with current knowledge on transfer pathways of nutrients in catchments, with deeper 103 

flowpaths for N species than for P species (Strohmenger et al. 2020), and explains why 104 

landscape features had less influence on NO3
- than P (Thomas and Abbott 2018). These 105 

landscape metrics, however, are relatively rigid, as topological influences (e.g. hydraulic 106 

distance to stream, surface flow accumulation, slope), whether considered in the metrics or 107 

not, cannot be weighted. In addition, certain topological features vary over a much wider 108 

range of values than others, which may obscure other features when no weighting coefficient 109 

is included in the landscape metric. For example, flow accumulation (which can have large 110 

values) can overshadow the influence of slope (which varies over a narrow range of values) 111 

in an index that considers both without weighting them.  112 

The idea that landscape configuration influences N and P loads is the basis for the concept 113 

of critical source area (CSA), i.e. the idea that a small percentage of the agricultural area 114 

(e.g. <20%) contributes disproportionately to the nutrients transferred to streams (e.g. 115 

>80%). CSAs are defined as the intersection of nutrient sources and hydrologically sensitive 116 

areas (Gburek and Sharpley 1998; Pionke et al. 2000). Initially defined at the sub-field scale, 117 

the concept of CSA was extended to larger scales; entire fields or subcatchments can also 118 

be CSAs (Buchanan et al. 2013b; Page et al. 2005; Reaney et al. 2019; Sharpley et al. 2011; 119 

Srinivasan and McDowell 2009). Substantial uncertainties remain, however, in their 120 

delineation at all scales (Doody et al. 2012). Validation at the sub-field scale can be based on 121 

observing erosion marks (Reaney et al. 2019) or tracers (Collins et al. 2012). However, 122 

studies that validate CSA delineation based on N or P concentrations in streams and rivers 123 

are rare and are based on only a few hydrologically contrasting headwater catchments 124 

(McDowell and Srinivasan 2009; Shore et al. 2014; Thomas et al. 2016a) or larger 125 

catchments for which land-use composition is already a good predictor (Giri et al. 2018). 126 



5 
 

To address the limits of “expert-based” delineation of CSAs and the rigidity of spatially 127 

explicit landscape metrics, we developed a stochastic, data-driven approach based on 30 128 

synoptic samplings of 19 agricultural headwater catchments to answer two questions: i) Does 129 

landscape configuration influence N and P exports?; and ii) Does the location of CSAs 130 

depend on the hydrological distance of the nutrient source to the hydrological network, their 131 

overlap with flow accumulation areas, or both? We then investigated why some relationships 132 

between water quality parameters and landscape composition metrics break down below a 133 

certain catchment size. For this, we studied how the relationship between landscape 134 

composition and configuration varied as a function of catchment size in 500 randomly 135 

selected subcatchments in the study area.  136 

2. Methods 137 

2.1. Study site 138 

The Yvel catchment is a 375 km2 agricultural catchment of Strahler order 5 in Brittany, 139 

western France (Fig. 1). The Yvel River is the main tributary of a three million m 3 water 140 

reservoir that has been subjected to cyanobacteria blooms since the 1970s (ODEM 2012), 141 

for which N and P are deemed responsible (Shatwell and Köhler 2018).  142 
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 143 

Fig. 1 Monitored subcatchments, land use in 2018, hydrography and roads in the Yvel 144 

catchment. The inset shows the location of Brittany, France, in western Europe 145 

The climate is temperate oceanic with mean annual precipitation (1998-2017) of 777 mm 146 

(sd=132 mm), mean annual temperature of 11.7°C (sd=0.5°C), and mean annual runoff of 147 

254 mm (sd=143 mm). The Yvel River’s discharge is monitored for 300 km 2 of its 375 km2, 148 

and monthly mean discharge varies from 157 L.s -1 in August to 5,600 L.s-1 in February. The 149 

hydrology is controlled by the dynamics of the shallow groundwater within unconsolidated 150 

weathered material that caps impervious schist bedrock (Casquin et al. 2020). The land use 151 

is dominated by arable fields (maize and winter cereals), which cover 54% of the catchment 152 

(Fig. 1). Grasslands (21%, mainly leys in rotation), forests (18%), and urban areas (6%) 153 

comprise the rest of the catchment area. Hedgerow density is 71 m.ha-1. Soils in the 154 

catchment are generally shallow (<100 cm), are well-drained in the upland part of the 155 

hillslope, and are often hydromorphic in valley bottoms. The elevation varies from 33-297 m 156 

above sea level. The centre of the catchment is the flattest area (most slopes <5%), with long 157 
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and regular hillslopes. In the north and south, the relief is more rugged, with shorter and 158 

steeper slopes. The southeast portion of the watershed of the catchment is forested and has 159 

the steepest slopes (5-15%). 160 

2.2. Subcatchment monitoring 161 

The monitoring strategy consisted of repeated synoptic sampling of 19 subcatchments (Fig. 162 

1). The 19 subcatchments were selected based on Strahler order (1-2), size (0.8-12.6 km2, 163 

mean=5.1 km2), absence of a wastewater treatment plant, and accessibility. Their 164 

percentage of agricultural land-use ranged from 17-94% (mean=74%), with mean slopes 165 

ranging from 2.7-6.6% (mean=4.9%). Together, these 19 subcatchments covered 28% of the 166 

Yvel catchment’s area. All 19 monitoring points were sampled approximately every two 167 

weeks from April 2018 to July 2019 (30 dates in total). Samples were filtered in situ 168 

immediately after sampling with cellulose acetate filters of 0.20 μm pore size for nitrate (NO3
-) 169 

analysis. All filters were rinsed in the laboratory with 20 ml of deionised water before use. An 170 

unfiltered water sample was also collected to analyse TP. The samples were transported to 171 

the laboratory in a cool box and then refrigerated at 4°C until analysis. TP was analysed 172 

within 48 h of sampling, while NO3
- was analysed within one week. TP was determined 173 

colorimetrically via reaction with ammonium molybdate (Murphy and Riley 1962) after 174 

digesting the samples in acidic potassium persulfate. The precision of TP measurements 175 

was ±13 μg.L−1, while that of NO3
- concentrations, analysed by ionic chromatography 176 

(Dionex, DX120), was ±4%. Hydrochemical data are available at 177 

https://www.hydroshare.org/resource/7c7d7f6dd1f14450883ae1c243c3c28f/ (Dupas 2020). 178 

2.3. Landscape configuration index 179 

We developed the landscape configuration index (LCI) (Eq. 1) to test the hypothesis that the 180 

hydrological proximity of agricultural areas to watercourses and their overlap with flow 181 

accumulation areas influence nutrient exports at the headwater catchment scale. For each 182 

monitored subcatchment, the index was calculated as follows: 183 

𝐿𝐶𝐼(𝑎,𝑏) =  

1
𝑛 × ∑ 𝐿𝑈𝑖 × 𝐹𝐴𝑐𝑐𝑖

𝑎 × 𝐹𝐿𝑆𝑖
−𝑏𝑛

𝑖=1

1
𝑁 × ∑ 𝐿𝑈𝑖 × 𝐹𝐴𝑐𝑐𝑖

𝑎 × 𝐹𝐿𝑆𝑖
−𝑏𝑁

𝑖=1

     (𝐸𝑞. 1) 184 

where a and b are calibrated parameters, i=1..n are the pixels of a subcatchment; i=1..N are 185 

the pixels of the entire catchment, FAcc i is the flow accumulation on pixel i (m2), FLSi (m) is 186 

the distance along the surface flow line from pixel i to the stream/ditch, and LUi equals 1 if 187 

pixel i is a source of nutrients (i.e. an agricultural area), otherwise 0. 188 

https://www.hydroshare.org/resource/7c7d7f6dd1f14450883ae1c243c3c28f/
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Fig. 2 details the calculations for two subcatchments with similar land-use composition, but 189 

whose LCI numerator varies by a factor of 2 when parameters (a, b) = (1.5, 1). 190 

 191 

Fig. 2 Steps used to calculate the index given a=1.5 and b=1.0 for 2 of the 19 monitored 192 

subcatchments. Note the logarithmic colour scale 193 

The denominator is a normalisation factor that corresponds to the mean value of the 194 

numerator for the entire Yvel catchment. When LCI > 1, a subcatchment’s nutrient sources 195 

are located predominantly in flow accumulation zones and/or near streams. For large values 196 

of a or b, the LCI assigns high weights to a small percentage of the area. We restricted the 197 

ranges of parameters a and b so that a few pixels with the highest Facc and lowest FLS 198 

would not control the values of LCI. We explored the parameter space for pairs of (a, b) for 199 

which the highest 5% of cumulative LCI in the landscape did not exceed 95% of the overall 200 

cumulative LCI. When b=0, we varied a within the range 0-2, whereas when a=0, we varied b 201 

within the range 0-4.  202 
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By construction, when a and b equal 0 for a subcatchment, its LCI equals its percentage of 203 

agricultural land-use (i.e. landscape composition) divided by the percentage of agricultural 204 

land-use in the entire Yvel catchment. For other values of a and b, the LCI indicates the 205 

landscape configuration. High values of parameter a increase the weight of pixels in flow 206 

accumulation zones in the LCI, while high values of parameter b increase the weight of pixels 207 

in near-stream zones. 208 

2.4. Spatial data sources and pre-processing 209 

2.4.1. Hydrographic network 210 

The hydrographic network consisted of both the “natural” stream network and the ditch 211 

network because 1) it is often difficult to distinguish a ditch from a rectified stream and 2) our 212 

synoptic sampling verified that most of the ditches were deep (> 1 m) and flowed in winter 213 

(high-flow season). Ditch networks are a shortcut between agricultural areas and the 214 

"natural" river network (Ahiablame et al. 2011; Buchanan et al. 2013a). Moreover, evidence 215 

suggests that ditches act as 1st order streams when considering nutrient spiralling and can 216 

retain and remobilise N and P (Dunne et al. 2007; Hill and Robinson 2012; Smith 2009). 217 

Thus, we considered them part of the hydrographic network. We used the road network as a 218 

proxy for the ditch network, as we observed that ditches bordered all roads in the study area. 219 

Streams (permanent and intermittent) and roads were extracted from vector data (accuracy 220 

of ca. 1.5 m) provided by the Institut National de l'Information Géographique et Forestière 221 

(IGN) at 1:25,000 scale. We converted these vector data to raster format and aligned them 222 

with the Digital Elevation Model (DEM) for later analysis. 223 

2.4.2. Digital Elevation Model  224 

The DEM, with a native resolution of 5 m (IGN 2018), was resampled to 10 m using cubic 225 

splines in ArcGIS 10.6. Filling was used to remove the depressions on hillslopes (Planchon 226 

and Darboux 2002), and the value "NA" was assigned to the pixels corresponding to roads 227 

and streams. We calculated flow accumulation and the hydrological distances to streams (i.e. 228 

following the surface flow paths) using the multiple flow direction algorithm (Qin et al. 2007). 229 

We chose this algorithm for its ability to generate realistic flow accumulation maps, unlike the 230 

D8 algorithm (O'Callaghan and Mark 1984). 231 

2.4.3. Nutrient sources 232 

We extracted the agricultural area from the national Land Parcel Identification System 233 

(Levavasseur et al. 2016). The data are provided as a vector dataset at the 1:5000 scale for 234 

each year since 2010 and contain field boundaries and a code that identifies the crop type. 235 

We used the 2018 dataset and verified the spatial accuracy of the agricultural area 236 

boundaries based on 50 cm orthophotos and the hydrography. We then rasterized this 237 
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dataset aligned with the DEM. We assigned the value 1 to agricultural areas and 0 to non-238 

agricultural areas. We included riparian buffer strips in agricultural areas because they are 239 

recent and have been fertilised for years, and are a well-documented legacy source of 240 

nutrients in headwater catchments (Gu et al. 2018).  241 

2.5. Optimisation of (a, b) parameters and interpretation 242 

For each pair (a, b) within the previously defined domain of exploration, we calculated 243 

Spearman’s rank correlation (Rs) between the LCI and median NO3
- and TP concentrations 244 

of each subcatchment (Figure 3). Since several of the subcatchments were intermittent, we 245 

calculated the median concentrations for the 22 dates (out of 30) when at least 17 of the 19 246 

subcatchments were flowing, so as not to bias calculation of the median. We focused on 247 

ranks rather than concentrations because several studies have shown that concentration 248 

estimates had high uncertainty when calculated with low-frequency data (e.g. Cassidy and 249 

Jordan 2011; Moatar et al. 2020), while the ranks of subcatchments could be predicted with 250 

high degree of confidence, as they are stable across flow conditions (Abbott et al. 2018; 251 

Dupas et al. 2019, Gu et al., 2020 - in review). The result interpretation was twofold: 252 

- The spatial configuration of sources was considered to have an effect if Rs for at least 253 

one pair (a, b) ≠ (0, 0) was significantly higher than that for (a, b) = (0, 0). 254 

- Optimal values of a and b were examined to assess the relative importance of 255 

hydrological distance to streams and flow accumulation on hillslopes. 256 

We then calculated the ratio of LCI with optimal (a, b) to LCI with (a, b) = (0, 0) for 500 257 

randomly selected subcatchments in the Yvel catchment, and analysed how the relationship 258 

between these two metrics evolved as catchment size increased. 259 

 260 

3. Results 261 

3.1. Comparison of land-use composition and configuration metrics as predictors of 262 

NO3
- and TP concentrations in headwater catchments 263 

Landscape composition (i.e. LCI with (a, b) = (0, 0)) predicted median NO3
- concentrations 264 

well (Rs=0.84, p<0.001) but not those of TP (Rs=0.33, p=0.18). Varying (a, b) did not 265 

substantially improved the prediction of median NO3
- concentration rank; thus, landscape 266 

composition predicted NO3
- exports well at the headwater catchment scale, and considering 267 

landscape configuration did not improve the prediction (Fig. 3A). For NO3
-, this result refutes 268 

our first hypothesis that the spatial configuration of nutrient sources influences nutrient 269 

exports. 270 
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 271 

 272 

Fig. 3 A) Optimisation plan for parameters a and b used to predict median concentration of 273 

nitrate (NO3
-) and total phosphorus (TP) in 19 headwater catchments. Rank correlations (Rs) 274 

not shown (blank) indicate (a, b) outside of the exploration domain. For each optimisation 275 

plan, black dots indicate 10% highest Rs, red square the best correlation B) Rs between 276 

median [TP] and 1) landscape composition and 2) optimised landscape configuration index 277 

(LCI). Annotations show LCI:median [TP] 278 
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The correlation between the percentage of agricultural land and median TP concentrations 279 

((a, b) = (0, 0)) was 0.35 (p=0.145) (Fig. 3B). This correlation improved as weights increased 280 

for sources near streams (Rs increased as b increased) and for sources that overlapped 281 

surface flow accumulation (Rs increased as a increased) (Fig. 3A). This confirms our first 282 

hypothesis that landscape configuration influences P exports, and agricultural areas near 283 

watercourses and that overlap surface flow accumulation areas result in larger P exports. 284 

The optimum correlation was obtained for a=1.4 and b=2.2 (Rs=0.81, p<0.001), at the limit of 285 

our field of exploration, which means that 5% of the area determined nearly 95% of the 286 

index. 287 

Using the same parameter exploration scheme, we optimised (a, b) for TP concentrations on 288 

each sampling date (Fig. 4C). The LCI with (a, b) ≠ (0, 0) always predicted TP concentrations 289 

better than landscape composition (Fig. 4A). The correlation between the optimised LCI and 290 

TP concentrations differed significantly (p<0.05) from 0 for all but one sampling date, except 291 

during the low-flow periods (Fig. 4B). 292 



13 
 

 293 

Fig. 4 Comparison of landscape composition and optimised landscape configuration index 294 

(LCI) as predictors of TP concentrations, for all sampling dates. (a) Spearman’s rank 295 

correlation (Rs), (b) -log10-transformed p-values (dashed line indicates p=0.05), and (c) for 296 

optimised LCI, parameters a and b applied to flow accumulation and inverse distance to the 297 

stream/ditch (d). Relative weight of the top 5% of weighted pixels. Grey areas represent low-298 

flow periods, when two or more sampled streams were dry 299 

During the low-flow season (Aug-Dec 2018) and beginning of the rewetting season (Jul 300 

2019), TP concentrations in the headwaters were not correlate with the optimised LCI 301 

(p>>0.05) (Fig. 4B). Note that 13 of the 19 streams were dry at the peak of the low-flow 302 

season (Fig. 1S). Outside the low-flow season, optimal values of parameters a and b were 303 

stable, varying little around a median value of 1.4 and 2.2, respectively. Therefore, the total 304 

weight of the top 5% of weighted area remained close to 95% (Fig. 4D), except during the 305 

low-flow season. The optimised LCI based on median TP concentrations, hereafter referred 306 

to as LCI-TP, appears to be a robust sensitivity index to determine TP CSAs across flow 307 

conditions. 308 
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3.2. Spatial aggregations of the LCI-TP 309 

The data-driven optimization of the LCI parameters to predict the ranking of exports at the 310 

catchment scale yielded an index that assigned nearly all of the weights (95%) to small areas 311 

(5%). Most of these areas (Fig. 5A) were located near streams and ditches, but their width 312 

varied. The CSAs often extended ca. 100 m or more into agricultural areas, especially on 313 

long and convex hillslopes. Using LCI-TP values at the pixel level, we calculated LCI-TPf ield 314 

as the mean LCI-TP of each agricultural field. The LCI-TPf ield (Fig. 5B) revealed that most 315 

fields were weak sources of P (i.e. LCI-TPf ield << 1), whereas a few fields were CSAs, as their 316 

LCI-TPf ield exceeded 10 and even 40. The associated histogram (Fig. 5C) followed a 317 

lognormal distribution, which confirms the high variability at the field scale (Q5-Q95=0.001-318 

14.087, sd=39.05). When the LCI-TP was aggregated into 1 km2 subcatchments (LCI-TP1km2) 319 

(Fig. 5D), its variability decreased drastically (Fig. 5F, min-max=0.17-5.38, sd=0.49). The 320 

number of subcatchments with LCI-TP1km2 > 1 was approximately the same as the number of 321 

subcatchments with LCI-TP1km2 < 1 (Fig. 5F, median=0.92), but the distribution remained 322 

lognormal. Following the same pattern, the LCI-TP aggregated into 25 km2 subcatchments 323 

(LCI-TP25km2) had even lower variability (min-max=0.71-1.36): at this scale the distribution 324 

was symmetrical (apparently normal), and no subcatchment could be considered a CSA. The 325 

information at the subfield scale (Fig. 5A) and field scale (Fig. 5B), which is relevant for 326 

farmers and catchment managers, was generated for the entire study area (https://antoine-327 

csqn.github.io/YV1.html). 328 

 329 

https://antoine-csqn.github.io/YV1.html
https://antoine-csqn.github.io/YV1.html
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 330 

Fig. 5 A) Excerpt of the study area, ca. 6 km × 2 km: top 5% (yellow) and 1% (red) of 331 

weighted pixels according to LCI-TP, B) Mean LCI-TP aggregated at the field scale (LCI-TP 332 

f ield), and C) histogram of associated values (note the log scale on the x-axis). D) LCI-TP for 1 333 

km2 subcatchments (LCI-TP1km2) and E) 25 km2 subcatchments (LCI-TP25km2) and associated 334 

histograms (F and G, respectively) 335 
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3.3. Homogenisation of the LCI-TP with increasing catchment size  336 

We delineated 500 subcatchments within the study area based on 500 points randomly 337 

generated over the hydrographic network. For each subcatchment, we calculated the LCI-TP 338 

(i.e. the LCI for a=1.4 and b=2.2), the landscape composition index (i.e. the LCI for a=b=0), 339 

and their ratio, which we examined as a function of subcatchment area (Fig. 6).  340 

 341 

Fig. 6 Stabilisation of the ratio of the LCI-TP (landscape configuration index (LCI) for a=1.4 342 

and b=2.2) to landscape composition index (LCI for a=b=0) as a function of area (square-343 

root-transformed x-axis) of subcatchments in the study area (points) 344 

This ratio varied greatly (0.02-3.37) for subcatchments smaller than 10 km2, the typical size 345 

of 1st or 2nd order stream catchments but varied less (0.55-1.53) for subcatchments of 10-50 346 

km2. The high variability in this ratio, even for heavily farmed subcatchments, indicates that 347 

the landscape can still be optimised at this scale. For catchments larger than 50 km², which 348 

corresponds to 4th order rivers in the study area, the ratio converged to 1. The main 349 

implication is that for headwater catchments (<50 km2) the correlation between landscape 350 

composition and configuration (as defined by the LCI-TP) is weak and non-significant (Fig. 351 

2S), while for larger catchments the correlation is strong (R2 near 1) (Fig. 2S). 352 

 353 

4. Discussion 354 

4.1. Spatial configuration of nutrient sources influences P but not N exports 355 

Landscape composition is a strong predictor of median N concentrations, while landscape 356 

configuration as defined here, seems to have no influence (Fig. 2A). This result agrees with 357 

previous research that indicates a strong correlation between metrics of agricultural N 358 

pressure intensity, such as N surplus or N concentrations in streams (Dupas et al. 2015; 359 
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Kronvang et al. 2005), leaving little space for other controlling factors, such as landscape 360 

configuration. However, distributed process-based modelling of N fate in agricultural 361 

catchments has shown that landscape configuration can have a of second-order influence on 362 

N concentrations (Beaujouan et al. 2002; Casal et al. 2019; McDowell et al. 2014), which 363 

may not have been captured in our study. P concentrations are not related to landscape 364 

composition (Bol et al. 2018) or even P inputs (Dupas et al. 2015; Frei et al. 2020) in 365 

headwater catchments. Multiple factors influence P transfers to streams: soil type and P 366 

content (Djodjic et al. 2004), tile-drainage (King et al. 2015a; King et al. 2015b), small ponds 367 

and hillside storage reservoirs (Schmadel et al. 2019), in-hillslope depressions (Smith and 368 

Livingston 2013), leaks from septic tanks (Withers et al. 2011) and livestock buildings, bank 369 

erosion (Kronvang et al. 2012), and ditch-dredging management (Smith and Pappas 2007). 370 

While hedgerows have little influence on N transfers at the catchment scale (Benhamou et al. 371 

2013; Thomas and Abbott 2018), it is difficult to quantify their combined effects on P 372 

transfers. Without considering these factors, our optimised LCI ranked the headwater 373 

catchments reasonably well according to their P exports (Fig. 2B), although the residuals 374 

may have been due to these other factors. We demonstrate that the spatial configuration of P 375 

sources in the landscape is critical to understand P transfer from land to streams in 376 

headwater catchments. The influence of the spatial configuration of nutrient sources on P but 377 

not N concentrations in agricultural headwater streams results in high variability in N:P ratios 378 

in these ecosystems and has many consequences on stream algae communities (Pringle 379 

1990; Stelzer and Lamberti 2001). 380 

The observation that landscape spatial organisation influences N and P transfers is not new. 381 

Nonetheless, our approach differs from previous studies that used single or multiple 382 

regression of several landscape metrics compiled in FRAGSTATS (McGarigal and Marks 383 

1995) to predict nutrient exports at the catchment scale. Despite the large body of studies 384 

that use these landscape metrics (Bu et al. 2014; Lee et al. 2009; Ouyang et al. 2014; Zhang 385 

et al. 2019), no robust cause-effect relationships emerge, and many of them give conflicting 386 

results (Wang et al. 2020). Three reasons may explain why these studies, taken together, 387 

are not conclusive: i) the many pairwise or multiple regressions between water quality 388 

parameters and landscape metrics generate spurious correlations that are not generally 389 

discussed, ii) landscape metrics depend greatly on the resolution of GIS input data, and iii) 390 

the studies do not consider the topological dimension, which is fundamental for explaining 391 

hillslope-to-stream transfers and landscape configuration (Thomas et al. 2016b). Several 392 

approaches have integrated this topological control with the hypothesis that nutrient sources 393 

near streams (Sliva and Dudley Williams 2001; Yates et al. 2014) and/or that overlap flow 394 

accumulation areas (Peterson et al. 2011; Staponites et al. 2019) have a disproportionally 395 
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higher influence on nutrient exports than other areas. While these approaches still depend on 396 

the spatial resolution of GIS data, they are “hypothesis-driven” rather than purely “data-397 

driven”, which decreases the risk of spurious correlations. A longstanding weakness of these 398 

approaches, however, is their rigidity due to the lack of calibrated parameters. For example, 399 

the HAiFLS index (Peterson et al. 2011) and Flow-A index (Staponites et al. 2019) included 400 

both the distance to streams and flow accumulation, but the latter dominates the index value 401 

by construction, because it varies more than the former, and neither index allows both factors 402 

to be weighted by calibrated coefficients. The stochastic approach in the LCI developed here 403 

is more flexible, and we show that both hydrological distance and flow accumulation 404 

influence P transfer. 405 

4.2. Spatial variability and temporal stability of critical source areas 406 

The strongest correlation between median NO3
- concentrations and LCI was for (a, b) = (0, 407 

0), which shows that each source (agricultural area) contributed the same, regardless of its 408 

distance to streams or overlap with flow accumulation areas. This confirms the need to 409 

consider the entire catchment to reduce N loads in agricultural catchments. For median P 410 

concentrations, the optimal was found for (a, b) = (1.4, 2.2), a value for which 5% of the 411 

agricultural area concentrated 95% of the weight assigned by our index at the 10 m-pixel 412 

resolution. These values are similar to those found by Thomas et al. (2016a)), who classified 413 

1.6-3.4% of the catchment area (during median storm events) and 2.9-8.5% (during upper-414 

quartile events) as prone to P transfer, based on a CSA model that also considered land use 415 

and topography as input variables. Summing the LCI-TP at the field scale indicates that the 416 

20% of fields at highest risk represent 85% of the total weights, which are the fields on which 417 

mitigation measures should be prioritised. The distribution is asymmetrical, with 69% of fields 418 

having a mean LCI-TPf ield less than 1. This information at multiple scales can be a tool to 419 

maximise ecosystem services at the catchment scale, by reorganising landscapes to 420 

decrease P transfer without increasing the percentage of set-aside areas (Doody et al. 421 

2016). 422 

The shape and location of the sub-field CSAs overlap both the mandatory riparian buffer 423 

strips (5 m according to local application of the European Union Nitrate Directive (DREAL 424 

2018)) and in-hillslope CSAs based on the Topographical Wetness Index. Because most 425 

buffer strips in the study area were installed recently, we included them in P sources as they 426 

were enriched in P before conversion (Dodd and Sharpley 2016; Gu et al. 2017; Gu et al. 427 

2018; Jarvie et al. 2017; Roberts et al. 2012). The location and shape of the CSAs indicate 428 

the need for new shapes of buffer zones, with variable widths and locations along ditches as 429 

well. Because buffer strips are critical sources of nutrients at the headwater catchment scale, 430 

they require new management practices. Potential solutions include sowing species that can 431 
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capture more P (William M. Roberts 2019), mowing and exporting the residues each year 432 

(Fiorellino et al. 2017), and applying amendments that have high P-sorbing ability (Borno et 433 

al. 2018). 434 

The temporal stability of the optimal parameters (a, b) for TP during the flow period is 435 

consistent with the spatial stability concept (Abbott et al. 2018), but is contrary to the concept 436 

of variable source areas (Collick et al. 2015; Dahlke et al. 2012). Our interpretation of this 437 

temporal stability is that even though the soil-to-stream connectivity varied temporally during 438 

the sampling period, the TP concentrations observed may reflect the remobilisation of 439 

sediments transferred during rare erosion events. Observing storm events that result in 440 

surface transfers requires frequent observations (Cassidy and Jordan 2011). During the low-441 

flow dates, the correlations with LCI-TP were not significant: different sources and sinks likely 442 

dominate the influence of agricultural areas and their configuration, which predominates 443 

during the flow period. Leaks from septic tanks or animal buildings and desorption from 444 

sediments are the most likely sources of P during this ecologically sensitive period, while 445 

hydrological disconnection, uptake, and sedimentation can be sinks of P (Lannergård et al. 446 

2020; Sandstrom et al. 2020). 447 

4.3. Landscape homogenisation with increasing catchment size: consequences for 448 

management, monitoring, and modelling 449 

When means were aggregated into 1 km2 subcatchments, which is the typical size of a 1st 450 

order catchment in the study area, the LCI-TP showed high spatial variability (Fig. 5D, 5F). 451 

As mentioned, this variability decreased as the aggregation size increased (Fig. 5E, 5G), and 452 

landscape composition was weakly correlated with landscape configuration for catchments 453 

smaller than 50 km2 but strongly correlated for those larger than 50 km2 (Fig. 6, Fig. 2S). 454 

These results explain, at least partially, why relationships between water quality parameters 455 

and landscape composition metrics break down below a certain catchment size (Bol et al. 456 

2018). They also shed light on the long-standing difficulty in scaling from nutrient export 457 

models at the field scale to those at the catchment scale: the spatial configuration of the 458 

nutrient sources can be critical. 459 

The variability in the LCI-TP in small subcatchments and its homogenisation in larger 460 

catchments is the expression of a degree of unstructured heterogeneity (i.e. randomness) of 461 

the spatial configuration of agricultural areas (Musolff et al. 2017). Some almost entirely 462 

agricultural subcatchments have a TP sensitivity index less than 1, while some mixed-land-463 

use catchments have a TP sensitivity index greater than 1. The latter provides the 464 

opportunity to introduce structured heterogeneity, i.e. to reorganise agricultural activities 465 

spatially to reduce P transfers to streams (Musolff et al. 2017). 466 
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These results have implications for both modelling and monitoring. Semi-distributed models 467 

that simulate P exports from an entire catchment with simulation units smaller than 50 km 2 468 

should include a coefficient to represent the spatial configuration of the agricultural areas. A 469 

distributed model should consider ditches (as they are the entry point of P into the 470 

hydrographic network) and, especially, the spatial variability in P sources. When monitoring 471 

subcatchments that are smaller than the homogenisation threshold and have similar 472 

agricultural land-use composition, the observed differences in P loads cannot be related 473 

directly to the agricultural practices or soil properties. The spatial configuration of agricultural 474 

areas appears to exert a major control on median P concentrations. This is particularly 475 

important for targeting measures to the most cost-effective fields (Doody et al. 2016) and 476 

could increase in importance due to the recent development of innovative financial tools to 477 

improve water quality, such as payment for ecosystem services schemes, whose obligation 478 

to achieve results is increasing (Hejnowicz et al. 2014). Our research provides a data-driven 479 

method to identify CSAs and thus the most cost-effective fields on which to implement 480 

mitigation measures. 481 

The 50 km2 landscape homogenisation threshold found in this study is similar to the 18-68 482 

km2 stream-concentration thresholds found by Abbott et al. (2018) for the Rance and Haut-483 

Couesnon catchments, also located in western France. We assume that the optimised 484 

coefficients and homogenisation threshold would vary with the topo-climatic conditions and 485 

agricultural landscape characteristics. More research is needed to confirm this connection 486 

between landscape configuration and P loads in different environmental settings. Given the 487 

high heterogeneity of landscape configuration, this research calls for a spatially dense 488 

monitoring network of headwater catchments. We also recommend using the LCI to 489 

investigate the influence of landscape configuration on other water contaminants that are 490 

transferred mainly by surface flow paths, such as pesticides and faecal bacteria. 491 
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