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A B S T R A C T

In this work, trend estimates are used as indicators to compare the multi-annual variability of different
satellite chlorophyll-a (Chla) data and to assess the fitness-for-purpose of multi-mission Chla products as
climate data records (CDR). Under the assumption that single-mission products are free from spurious tem-
poral artifacts and can be used as benchmark time series, multi-mission CDRs should reproduce the main
trend patterns observed by single-mission series when computed over their respective periods. This study
introduces and applies quantitative metrics to compare trend distributions from different data records. First,
contingency matrices compare the trend diagnostics associated with two satellite products when expressed
in binary categories such as existence, significance and signs of trends. Contingency matrices can be further
summarized by metrics such as Cohen’s j index that rates the overall agreement between the two distri-
butions of diagnostics. A more quantitative measure of the discrepancies between trends is provided by the
distributions of differences between trend slopes. Thirdly, maps of the level of significance P of a t-test quan-
tifying the degree to which two trend estimates differ provide a statistical, spatially-resolved, evaluation.
The proposed methodology is applied to the multi-mission Ocean Colour-Climate Change Initiative (OC-
CCI) Chla data. The agreement between trend distributions associated with OC-CCI data and single-mission
products usually appears as good as when single-mission products are compared. As the period of analy-
sis is extended beyond 2012 to 2015, the level of agreement tends to be degraded, which might be at least
partly due to the aging of the MODIS sensor on-board Aqua. On the other hand, the trends displayed by the
OC-CCI series over the short period 2012–2015 are very consistent with those observed with VIIRS. These
results overall suggest that the OC-CCI Chla data can be used for multi-annual time series analysis (includ-
ing trend detection), but with some caution required if recent years are included, particularly in the central
tropical Pacific. The study also recalls the challenges associated with creating a multi-mission ocean color
data record suitable for climate research.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In a context of climate change and anthropogenic pressures of
various types bearing on ocean ecosystems (Roberts, 2003; Lotze
et al., 2006; Galloway et al., 2008; Fabry et al., 2008; Stewart et al.,
2010), marine phytoplankton are likely to be affected (e.g. Sarmiento
et al., 2004; Steinacher et al., 2010; Boyce et al., 2014) and their
evolution needs to be monitored and understood. Phytoplankton
being a keystone of marine ecosystems, chlorophyll-a concentration
(Chla) is listed as an Essential Climate Variable (ECV, Bojinski et al.,
2014) by the Global Climate Observing System (GCOS, 2011). Ocean
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color remote sensing allows us to follow the variations of the marine
near-surface phytoplankton at the scale of global oceans. But long
time series (i.e., of the order of multiple decades) are required to sep-
arate the signature of climate change from the background of natural
seasonal and inter-annual variability (Henson et al., 2010; Yoder
et al., 2010). Considering the typical lifetime of satellite platforms,
this implies the combination of successive missions into one data
record suitable to address climate time scales, in effect operating a
shift from a mission-centric approach to a variable-centric one.

Without underestimating the relevance of precursor missions
(Hovis et al., 1980; Zimmermann and Neumann, 1997; Kawamura
et al., 1998), it seems fair to say that the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS, McClain et al., 1998) heralded the beginning
of a systematic global monitoring of the ocean (McClain et al., 2004a):
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it was followed by other global-scale missions, and currently new plat-
forms are being launched or designed to ensure continuity, such as the
JointPolarSatelliteSystem(JPSS) fromtheNationalOceanicandAtmo-
spheric Administration (NOAA), which started in 2011, the Sentinel-3
program from the European Space Agency (ESA, Donlon et al., 2012)
with its Ocean and Land Colour Imager (OLCI), the Global Change
Observation Mission-Climate (GCOM-C) from the Japan Aerospace
Exploration Agency (JAXA), and the Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission from the National Aeronautics and Space
Administration (NASA). Following the availability of a multi-mission
data record, several investigations relied on multiple missions to study
time series of ocean color-derived variables going beyond the Sea-
WiFS period (Mélin et al., 2009, 2011; Kahru et al., 2012; Bélanger
et al., 2013; Coppini et al., 2013; Saulquin et al., 2013; Gregg and
Roussseaux, 2014; Park et al., 2015; Signorini et al., 2015; Soppa et al.,
2016). These studies showed an uneven level of attention to the issue
of inter-mission differences that appear to be variable in time and
space as well as being significant when creating climate data records
(Djavidnia et al., 2010; Mélin, 2010, 2011; Mélin et al., 2016a). These
differences may propagate artifacts into a combined multi-mission
data set, potentially affecting the conclusions that can be drawn from
a time series analysis, for instance regarding trends (Gregg and Casey,
2010; Beaulieu et al., 2013). A specific sensitivity study quantified how
close mission-specific Chla data from two satellite missions need to
be to allow a trend analysis with a combined data set (Mélin, 2016).
The study concluded that inter-mission biases of the order of 5%, if not
corrected, generally lead to a trend (represented by the slope of lin-
ear regression) significantly different from the trend obtained from a
reference series unaffected by these biases (this reference series was
built by operating a simple climatological bias correction before aver-
aging the data from the two missions). Moreover, the requirement
becomes more stringent with low Chla values, which implies that
analyses conducted in oligotrophic waters are extremely sensitive to
the effects of inter-mission differences.

Various initiatives have been carried out to create ocean color
time series spanning successive missions for different applications
(e.g. Kwiatkowska and Fargion, 2003; Maritorena et al., 2010; Pottier
et al., 2006; Mélin and Zibordi, 2007; Mélin et al., 2011; IOCCG, 2007).
Considering the background introduced above, constructing multi-
mission data records of Chla suitable for climate research is very
challenging. The availability of multi-mission data sets thus begs the
question of their fitness-for-purpose as climate data records (CDR),
that is to say, their capacity to fulfill the purpose of a time series
analysis suitable to reach robust climate-relevant conclusions.

This paper introduces a methodology to assess the fitness-for-
purpose of multi-mission ocean color CDRs by comparing trend
estimates obtained with a multi-mission time series and with single-
mission products, the rationale being that trend distributions associ-
ated with a multi-mission data set should be consistent with those
of all successive single-mission series when computed over a com-
mon time period. If this be the case, it might be considered safe to
conduct climate research on the time scales allowed by the multi-
mission time series. To the contrary, the occurrence of trends from
a multi-mission series that significantly differ from those of a sin-
gle mission indicates that undesirable artifacts have been introduced
in the construction of the combined data set and that its status as
a CDR is questionable. This reasoning relies on the assumption that
single-mission products are themselves CDRs and can be treated as
time series of reference free from temporal artifacts such as drifts
from insufficiently characterized calibration. It also implies that the
major challenge to achieving the status of CDR for a multi-mission
data set is represented by how single-mission products are com-
bined to create the CDR (Mélin, 2016). There is a solid basis for using
single-mission products as reliable series of reference, supported by
the efforts conducted by space agencies on the calibration of instru-
ments and their stability in time (Xiong et al., 2010; Eplee et al., 2012;

Cao et al., 2013; Eplee et al., 2015; IOCCG, 2013), even though some
caution should still be exercised. This is a key point because the con-
struction of multi-mission CDRs would be strongly jeopardized if the
temporal variations of single-mission products could not be trusted.
It is also worth mentioning that there is a lack of alternatives, since
time series of in situ data collected with the same protocol and at the
same location and suitable for trend analysis are likely to remain a
rarity.

Even if the methodology can be applied on any data and region, it
is illustrated here using the example of the Chla global data set devel-
oped by the ESA Ocean Colour (OC) component of the Climate Change
Initiative (CCI, Hollmann et al., 2013) that specifically aimed at pro-
ducing climate-quality data records from ocean color data. The data
are first described and briefly compared with single-mission prod-
ucts. The core of the paper is then a description of the methodology
and its application to the OC-CCI data set, whose distribution of trend
estimates is assessed using three complementary analyses.

2. Satellite data and methods

2.1. Single-mission products

Five single-mission Chla products were obtained from the NASA
distribution system in association with the missions SeaWiFS, the
ESA MEdium Resolution Imaging Spectrometer (MERIS) onboard the
Envisat platform (Rast et al., 1999), the Moderate Resolution Imag-
ing Spectroradiometer (Esaias et al., 1998) onboard the Aqua and
Terra platforms (MODIS-A and MODIS-T, respectively), and the Vis-
ible/Infrared Imager Radiometer Suite (VIIRS, Schueler et al., 2002)
onboard the Suomi National Polar-orbiting Partnership spacecraft.
All data sets are Level-3 gridded monthly Chla products with a spa-
tial resolution of a 12th-degree. The five missions were treated with
a common strategy for calibration and processed with the same
atmospheric correction (Franz et al., 2007). The product version cor-
responds to NASA reprocessing R2014 (R2014.0 for SeaWiFS and
MODIS-T, R2014.0.1 for MODIS-A, and R2014.0.2 for VIIRS; NASA,
2015) except for MERIS (R2012.1). One change from R2012 to R2014
was the adoption of the Ocean Color Index (OCI) algorithm for Chla
computation in oligotrophic waters (Hu et al., 2012), while the OC4
algorithm (O’Reilly et al., 2000) was retained for other conditions.

2.2. Multi-mission product

The multi-mission Chla monthly time series was obtained from
the OC-CCI version 3 data set (CCI, 2016a) that was the result of
merging data from SeaWiFS, MERIS, MODIS-A, and VIIRS. The data
from SeaWiFS and VIIRS were obtained from NASA as Level-2 files
(associated with reprocessing R20104.0 and R2014.0.1, respectively).
The OC-CCI processing included both Global and Local Area Cov-
erage (LAC and GAC) SeaWiFS imagery in its data stream. While
restricted by the operation of limited on-board recording capacity
and of download by ground stations, LAC data have a full 1-km
resolution, therefore bringing a much richer information content
(particularly around continental masses) than the sub-sampled GAC
imagery (Mélin et al., 2002). MODIS-Aqua data were obtained as
Level-1A (un-calibrated) data and then processed to attain the same
calibration as for NASA’s R2014.0, while MERIS data were from the
3rd ESA reprocessing (also input to NASA reprocessing R2012). Then
the atmospheric correction for MODIS-A and MERIS was performed
through the POLYMER algorithm (Steinmetz et al., 2011). Addition-
ally, cloud flagging for MERIS and SeaWiFS adopted an advanced
scheme (CCI, 2016b).

In the framework of the OC-CCI data stream, merging was car-
ried out at the level of the remote sensing reflectance RRS that were
first expressed on the wavebands of SeaWiFS through a band-shifting
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scheme (Mélin and Sclep, 2015). A bias correction was then oper-
ated using SeaWiFS as a data set of reference: a spatially-resolved
bias climatology was computed for each waveband using the period
of overlap between SeaWiFS on one hand, and MERIS and MODIS-A
on the other hand (2003–2007) (CCI, 2016c), so that the bias could
be removed on any grid point and day. The same operation was
done between VIIRS RRS and bias-corrected MODIS-A data (using the
period of overlap 2012–2013). This simple bias correction accounts
for the average spatial variability of the bias distribution as well
as its average annual cycle, and places the various RRS data on the
SeaWiFS baseline. Merging was then operated by simply averaging
band-shifted bias-corrected RRS data.

From the RRS distributions, Chla was computed using the same
approach as NASA for the reprocessing R2014, that is, combining
the OC4 and OCI algorithms. Additionally, the OC5 algorithm (Gohin
et al., 2002) was adopted in coastal regions, with the blending of the
open ocean and coastal conditions performed using a framework of
optical classes, whereby the algorithm outputs were weighted by the
relevant class memberships (Mélin et al., 2011; Moore et al., 2014).

Overall, the OC-CCI data stream shows commonalities with
single-mission products, but there are a few major differences, such
as the use of a different atmospheric correction for MODIS-A and
MERIS, a different cloud masking for MERIS and SeaWiFS, the adop-
tion of another Chla algorithm for coastal conditions and the inclu-
sion of LAC SeaWiFS data. These elements were then combined in a
complex way as the data went through the band-shifting and bias
correction procedures.

2.3. Trend estimates and comparison of trends

The methods employed for trend analysis were used in previous
works (Vantrepotte and Mélin, 2009, 2011) and are briefly summa-
rized here. For each grid point, the Chla monthly series first went
through a pre-processing step. If a month was associated with a miss-
ing value in more than 50% of the cases (i.e., the number of years),
then all values for that month were excluded, in practice creating an
annual cycle of varying length (≤12 months). If more than 30% of the
remaining data were missing, then the whole series was excluded;
otherwise missing values were filled in by an eigenvectors filtering
method (Ibañez and Conversi, 2002).

The calculation of the linear trend (expressed in % year−1) associ-
ated with the pre-processed series was performed after the removal
of its annual cycle (de-seasonalized series) (Vantrepotte and Mélin,
2009). The standard error of the associated slope b is a function of the
unexplained sum of squares of the linear regression and is written as
(Sokal and Rohlf, 1994):

sb =

√√√√√√√√
1

(N − 2)

N∑
i=1

(xi − (a + bti))
2

N∑
i=1

(ti − t̄)2

=

√
1

(N − 2)

(
s(x)2

s(t)2
− b2

)
(1)

where t and x represent the N-element series associated with time (of
average t̄) and geophysical data, respectively, and a is the intercept
of the regression, while s indicates the standard deviation operator.
The level of significance p of the trend was computed with a t-test
where t=b/sb and with N-2 degrees of freedom.

Trend estimates obtained by various time series can be compared
with a statistical test (Mélin, 2016). Considering the slopes of linear
regression b1 and b2 at a given location (and their standard errors
sb,1 and sb,2) associated with two satellite products, a t-test was used
to establish if b1 and b2 could be considered equal with a level of
significance P: when P was small, this hypothesis could be rejected
and the slopes were considered different (for clarity, the notation P
was preferred when comparing slopes, while p was used to quantify

the significance of a single trend). The t-test relied on the following
value:

t =
b1 − b2√
s2
b,1 + s2

b,2

(2)

with a degree of freedom df equal to:

df =

(
s2
b,1 + s2

b,2

)2

1
N1

s4
b,1 + 1

N2
s4
b,2

(3)

following Andrade and Estévez-pérez (2014, their equation 8). The
numbers of months N1 and N2 varied according to the coverage given
by each satellite product.

Other metrics were used to compare trend estimates; for the sake
of clarity they are introduced as results are presented in Section 4.

3. Comparison of products

Before addressing the trend estimates, the various products
introduced above were compared. First, it is worth stressing that,
notwithstanding significant differences, the various Chla products
are generally consistent in terms of global distribution (e.g. Djavidnia
et al., 2010) and this is also true for the OC-CCI products (Couto et al.,
2016). Even though the scope of this study was not to document dif-
ferences between products, providing general results in this respect
helped illustrating different periods in the data sets and some of their
characteristics. The unbiased relative difference x served to quantify
the average bias (relative difference) between two series (x1,i)i=1,N
and (x2,i)i=1,N:

x =
2
N

N∑
i=1

(x2,i − x1,i)

(x2,i + x1,i)
(4)

In the definition of x, the reference for the relative difference
(denominator) is the average of the two products, which avoids
arbitrarily selecting one product as reference, while numerically
preventing cases where only the denominator is close to zero.

Fig. 1 shows the globally-averaged relative difference x for a cer-
tain number of sensor pairs, while Fig. 2 illustrates differences of
OC-CCI Chla with respect to single-mission products. In general the
differences between single-mission products x are lower (in mod-
ulus) than 10%. The value of x between SeaWiFS and MODIS-A is
the smallest, oscillating mostly between ±5%; this is in line with
their recent common reprocessing and with the fact that these mis-
sions have gone through extensive characterizations. Differences are
higher when MERIS Chla are compared with SeaWiFS or MODIS-
A values (with MERIS Chla lower), which can be partly explained
by a different reprocessing version. The manifestation of deactivat-
ing the MERIS Offset Control Loop (OCL, operating a correction for
the instrument dark current) from December 2004 to October 2006
is also seen (Fig. 1). This underlines the sensitivity of ocean color
records to small changes in space-sensor calibration functions. Dur-
ing the first part of their overlap period (2003–2010), x comparing
MODIS-A and MODIS-T is mostly in the interval ±5%, but displays
larger oscillations in the following years. It is important to mention
that the MODIS-T mission has met difficulties in characterizing the
instrument and its calibration history (Franz et al., 2008) . In fact,
the calibration of MODIS-T is constrained using other ocean color
missions (Kwiatkowska et al., 2008), so that its data record does not
constitute a fully independent time series. Over the period 2012–
2015, the difference between MODIS-A and VIIRS averages 4.4% (with
VIIRS Chla lower). A factor potentially explaining larger oscillations
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Fig. 1. Time series of globally-averaged relative differences between Chla single-
mission products. The letters S, M, A, T, and V are associated with SeaWiFS, MERIS,
MODIS-A, MODIS-T, and VIIRS, respectively. The dotted vertical green lines show the
period when the MERIS OCL was deactivated (see text).

in x in the last years is the radiometric degradation of MODIS-A as
the sensor is aging (Meister et al., 2012; Meister and Franz, 2014).

When conducting the same exercise with OC-CCI data (Fig. 2),
several observations can be made. Differences between SeaWiFS and
OC-CCI Chla are the lowest (in modulus) with small oscillations. This
agreement is favored by two factors (see Section 2.2): first, by con-
struction the OC-CCI series should mostly reproduce the SeaWiFS
record over the years when only SeaWiFS data are available (up to
2002); then, for subsequent years, the bias correction scheme should
bring the products from the other missions largely in line with the
SeaWiFS record. In that respect, the bias correction appears to fulfill
its task since the temporal stability of the x series is remarkable even
when MERIS and MODIS-A data are added in the data stream (see
also Couto et al., 2016) . This being said, a residual effect can still be
noticed, the average x changing from −3.4 % over the period 1998–
2001 (when only SeaWiFS was available) to −2.6 % over the period
2003–2007.

Between 2002 and 2009, x between OC-CCI and MODIS-A Chla
(Fig. 2) is generally below 5% (in modulus) and negative (with excep-
tions in 2002 and from 2007), but larger oscillations (with x increas-
ingly negative) are noticed in the later part of the record, which again
might be partly explained by calibration issues. On average OC-CCI
Chla appears higher than MERIS values, which is coherent with the
comparison between SeaWiFS and MERIS data (Fig. 1); the signature
of the OCL deactivation period is also clearly seen. The difference
between OC-CCI and VIIRS Chla shows seasonal variations between
+4% and −6 %.

Of course these results would show significant regional varia-
tions (e.g. Djavidnia et al., 2010; Mélin, 2010), the analysis of which
is beyond the scope of this study and would deserve additional
dedicated studies. The existence of regional variations implies that
the methods developed to assess the trends associated with the
multi-mission data set need to accommodate a spatial dimension.
However, from the global average of x, some general characteristics
of the time series can be observed that are relevant for the rest of
the study. First, if considering SeaWiFS, MERIS and MODIS-A data,
the x series display a relative temporal stability, notwithstanding
some oscillations (and the OCL issue for MERIS). This further supports
the use of single-mission products as series of reference. But this
might not be fully applicable to recent years considering the issue
of aging associated with MODIS-A. Such a stability of the differences
with respect to OC-CCI data seems encouraging (in line with results
obtained with OC-CCI version 1 data, Couto et al., 2016) but the com-
parison with MODIS-A suggests that, again, including data of the last
years (say, after 2012) could lead to spurious results.

Fig. 2. Time series of globally-averaged relative differences between OC-CCI Chla and
single-mission products (with letters as in Fig. 1). The dashed vertical green lines show
the start and end date of the MERIS data stream, the dashed blue and light-blue lines
show the start of the MODIS-A and VIIRS data, respectively. The dotted vertical green
lines show the period when the MERIS OCL was deactivated (see text).

4. Assessment of trends in multi-mission data records

After having provided background information on the various
time series and their relative agreement (at least at global scale),
the study is now focusing on the assessment of trend distributions.
Trend results are mostly based on the period up to 2012, generally
using SeaWiFS, MERIS and MODIS-A before manifestation of its aging
(the case of more recent years is addressed subsequently). After a
description of observed trends, the methodology of trend assessment
follows three lines of analysis. First, the use of contingency matri-
ces is introduced to confront the main diagnostics of trend estimates.
Then trend slopes from different products are compared on a point-
by-point basis. Finally, trend spatial distributions are compared by
statistical tests.

4.1. Observed trends

The trends obtained for SeaWiFS over the period 1998–2007 are
presented in Fig. 3a. The analysis is limited to the ten years when
SeaWiFS functioned in an optimal way without data gaps, and only
statistically significant trends are shown (p < 0.05). Significant neg-
ative trends (that can reach −5% year −1) are observed generally
in oligotrophic subtropical gyres (except in the south Atlantic), as
well as in the northeast Atlantic, while significant positive trends
are noticed in various regions such as the southeast Pacific and
the Tasman Sea (Vantrepotte and Mélin, 2009, 2011; Vantrepotte
et al., 2011). The negative trends in Chla in the subtropical gyres
have attracted substantial attention (McClain et al., 2004b; Polovina
et al., 2008; Polovina and Woodsworth, 2011; Signorini and McClain,
2012), as they appeared consistent with hypotheses of a more
stratified and warming ocean (Doney, 2006).

The trend distribution obtained over 10 years (August 2002–
July 2012) using MODIS-A shows that several patterns have been
reversed (Fig. 3b). This is particularly the case in the subtropical
Pacific, with opposite patterns in the South Pacific, along the Equa-
tor in the western Warm Pool region, or in the northwest quarter.
The negative trends observed in the northeast Atlantic with SeaWiFS
are also replaced by a positive signal (with an extension northward
to Iceland), while significant positive trends have extended in the
northern Atlantic subtropics with respect to SeaWiFS. In the Indian
Ocean, the trends observed with SeaWiFS in the western part of the
basin and in the southern subtropical gyre (positive and negative,
respectively) are also reversed. The clear pattern of positive trend
found in the Tasman Sea is no longer significant over the following
period.
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a) b)

Fig. 3. Trends for a) SeaWiFS Chla over the period Jan. 1998–Dec. 2007, and b) MODIS-A Chla over the period Aug. 2002–Jul. 2012. Only significant trends (p < 0.05) are
represented. Grey shows land, while light-grey is associated with areas where the series are insufficient for analysis.

a) b)

Fig. 4. Trends for a) MERIS Chla, and b) MODIS-A Chla, over the period Aug. 2002–Jul. 2011. Only significant trends (p < 0.05) are represented. Grey shows land, while light-grey
is associated with areas where the series are insufficient for analysis.

In Fig. 4a, the trends associated with MERIS over 9 years (August
2002–July 2011) show a distribution very close to the results
obtained with MODIS-A over the same period (Fig. 4b). The dis-
tributions associated with MODIS-A over the two slightly different
periods (a difference of one year, Figs. 3b and 4b) generally agree but
some differences can be noticed. For instance, the feature of nega-
tive trends in the southern Indian Ocean is clearer over the period
2002–2011. For completeness, it is mentioned that the trend distri-
bution obtained with MODIS-T is also very similar to those shown by
MODIS-A or MERIS over 2002–2011 or 2002–2012 (not shown).

A first conclusion based on the comparison between MERIS and
MODIS is that trend distributions associated with the single-mission
products are remarkably consistent when computed over a com-
mon period. A similar conclusion is reached when comparing the
single-mission trends with those derived from the OC-CCI data sets,
computed over the same time intervals: January 1998–December
2007 in Fig. 7a, to be compared with the SeaWiFS results (Fig. 3a),
August 2002–July 2011 in Fig. 8a, to be compared with MERIS or
MODIS-A (Fig. 4), and August 2002–July 2012 in Fig. 9a, to be com-
pared with MODIS-A results (Fig. 3b) (the OC-CCI maps will be
further commented below, Section 4.4). However, these trend maps
only illustrates a qualitative agreement (when determined over a
common period). The comparison of two trend distributions requires

more quantitative criteria that are presented in the next sections. In
that context, the availability of almost a decade of coincident mea-
surements by MODIS and MERIS is a great asset as it provides a
comparison of reference, with which results obtained with multi-
mission products can be confronted. So the criteria of comparison are
first tested on the pair MODIS/MERIS, providing benchmark results,
before being applied to the OC-CCI data.

4.2. Contingency matrix

Beyond the visual agreement illustrated in the previous section,
trend distributions computed from two products over a common
period should provide the same kind of diagnostic over general
questions such as: “is Chla increasing or decreasing?”. Contingency
matrices (also termed multi-way tables, Sokal and Rohlf, 1994) are
used in statistics to summarize the relationship between several
diagnostic variables. Here, they can be used for the purpose of com-
paring the output of a trend analysis expressed in simple terms of
increase/decrease. First, each grid point of the global map is put
into one of four categories: negative or positive trend slopes for
both products, negative slope for one product and positive for the
other, and vice-versa. Then the contingency matrix summarizes such
a comparison of outcomes by summing the surface of the domain

Table 1
Contingency matrices comparing trend analysis outcomes. The comparison MODIS-
A/MERIS is made over the period Aug. 2002–Jul. 2011, MODIS-A/MODIS-T over
Aug. 2002–Jul. 2012. Percentage values quantify the amount of the ocean where the
diagnostics on the sign of trend slopes b apply.



144 F. Mélin et al. / Remote Sensing of Environment 203 (2017) 139–151

Table 2
Contingency matrices as in Table 1, but where diagnostics consider the significance of
the trends. ‘n.s.’ stands for non-significant; ‘∗ ’ indicates significant trends (p < 0.05).

(expressed in %) associated with these four categories. In the case
of the comparison between MODIS-A and MERIS trends (Aug. 2002–
Jul. 2011), the slope of linear regression b is of the same sign over
82.1% of the domain (sum of diagonal elements in Table 1) whereas
it differs over 17.8% of the domain. Comparing MODIS-A and MODIS-
T (Aug. 2002–Jul. 2012), the agreement in sign is fulfilled over 84.1%
of the ocean.

A more meaningful comparison takes into account the statisti-
cal significance of the trends, as presented in Table 2 with the three
following categories: non-significant trends, significant positive or
negative slopes. For the comparison MODIS-A/MERIS, the trend diag-
nostics agree for 80.7% of the domain, with 58.0% associated with
non-significant trends, and 22.7% with significant trends of the same
sign. To the contrary, 19.3% of the domain is characterized by a con-
trasted diagnostic but it is worth underlining that the worst case, that
is, significant trends for both products with opposite signs, almost
never occurs (0.017%). Similar results are observed when comparing
both MODIS data sets (Table 2).

For the sake of comparison, a similar analysis was conducted to
summarize the differences in trends observed between SeaWiFS and
MODIS-A over different periods (1998–2007 and 2002–2012, respec-
tively). In that case, 56.9% of the domain shows trends of opposite
signs. Considering the level of significance, significant trends of the
same sign are observed over 2.8% of the ocean only, whereas 10.4%
of the ocean is characterized by significant trends of opposite signs
(a very rare occurrence when series are compared over the same
period). These results confirm that Chla trends have indeed sub-
stantially changed from the period 1998–2007 to 2002–2012 as was
anticipated in Section 4.1 from a qualitative analysis of the trend
maps (Fig. 3).

A common way to synthesize a square contingency table is to
introduce the Cohen’s j index that quantifies the magnitude of the
agreement between two raters (Cohen, 1960; Viera and Garrett,
2005; Warrens, 2011). Considering a contingency matrix (qi,j)i,j=1,n
made of the proportions of n diagnostics given by two missions:

j =
q − qc

1 − qc
(5)

where q is the proportion of observed agreement (i.e., common
diagnostic from two raters) written as the sum of diagonal terms∑n

i=1 qi,i, and qc is the proportion of agreement expected from
chance alone, expressed by

∑n
i=1

(∑n
j=1 qi,j

∑n
k=1 qk,i

)
(Warrens,

2011). For a perfect agreement, j would reach 1 whereas values close
to 0 indicate an agreement not better than chance. Here the number
of diagnostics is n=3 (non-significant trend, positive and negative

significant trend) and the matrix terms qi,j are the percentage val-
ues (as in Table 2) divided by 100. The j index associated with the
comparison between MODIS-A and MERIS trends is 0.60, which indi-
cates a moderate-to-substantial agreement (Viera and Garrett, 2005).
Comparing MODIS-A and -T (Aug. 2002–Jul. 2012), j is 0.68 (sub-
stantial agreement). On the other hand, the comparison between the
SeaWiFS and MODIS-A trends computed over two partly overlap-
ping periods is equal to zero (−0.009), again in line with the clear
differences in trends observed over the different periods (Fig. 3).

A similar analysis was conducted with the OC-CCI record, com-
paring it with the series from SeaWiFS (Jan. 1998–Dec. 2007), MERIS
(Aug. 2002–Jul. 2011) and MODIS-A (Aug. 2002–Jul. 2012) over
their respective periods. Without considering the level of signifi-
cance, the slopes obtained with the OC-CCI product agree with the
single-mission products for approximately 85% of the domain (85.8%,
83.7% and 84.1%, respectively). When considering the significance
of the signals, this agreement is at least 80% (Table 3), the highest
being 82.3% when comparing OC-CCI with SeaWiFS (77% for MODIS-
T). These results are associated with j of approximately 0.64. As
when comparing trends associated with single-mission products, the
discrepancies in analysis outcomes are made of cases with trends
significant in one case and not the other, and virtually never happen
with significant trends of opposite signs.

As anecdotal result, it is worth noticing that trends are more often
positive than negative, regardless of the level of significance, the
period considered and the product (Tables 1 to 3).

4.3. Comparison of trend slopes

A more quantitative approach to compare trend estimates is
simply to analyze differences in trend slopes. For various pairs of
products, the differences in slopes computed for all grid points at
global scale are summarized in Fig. 5. Focusing first on the differences
between single-mission products, the comparison between MERIS
and MODIS-A trend slopes (period Aug. 2002–Jul. 2011) shows a
median difference close to null, an inter-quartile distance of 1.6%
year−1 and the 10th and 90th percentiles of the distribution of
approximately 2% year−1 in modulus (Fig. 5). Despite the limitations
noticed for MODIS-T data, the results are also given for the pairs
MODIS-A/MODIS-T (period Aug. 2002–Jul. 2012), with slopes associ-
ated with MODIS-T on average lower than those of MODIS-A (median
of −0.27% year−1); on the other hand, the inter-quartile distance is
lower (1.2% year−1).

When comparing the OC-CCI slopes with those of single-mission
products, results are very similar or better, with a median differ-
ence from 0.05% year−1 (comparison with SeaWiFS over 1998–2007)
to 0.27% year−1 (comparison with MODIS-A over Aug. 2002–Jul.

Table 3
Contingency matrices as in Table 2 but where OC-CCI trends are compared with
SeaWiFS (period Jan. 1998–Dec. 2007), MERIS (Aug. 2002–Jul. 2011) and MODIS-A
(Aug. 2002–Jul. 2012).
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Fig. 5. Statistics of differences between trend slopes obtained over a common period,
displayed as box-and-whiskers plots, with boxes indicating the 25th and 75th per-
centiles, the inner bar associated with the median, and the whiskers being the 10th
and 90th percentiles of the distributions. The acronyms S, M, A, T, and CCI are
associated with SeaWiFS, MERIS, MODIS-A, MODIS-T, and OC-CCI, respectively.

2012), and inter-quartile distance lower than 1.5% year−1. These
results indicate that the distributions of trend slopes obtained from
theOC-CCI data are very consistent with those of the single-mission
products over several periods. However, such an analysis does not
tell us how significant the differences in slope actually are, so the
addition of a statistical test in the comparison of trends is added in
the next section.

4.4. Statistical comparison

For each pair of time series, the level of significance P of the t -test
comparing trend slopes, introduced in Section 2.3 and related to Eqs.
(2) and (3), quantifies the degree to which two trend estimates differ.
In the description of results, the value of P is considered as a measure
of the difference between two slopes of linear trends: the smaller P is,
the more the slopes differ. Fig. 6 illustrates the P distribution for the
comparison MERIS versus MODIS-A (2002-2011): P values appear
low only in scattered and small areas (in the northern subtropical
Pacific and Atlantic or in the Baltic Sea), confirming the high degree
of coherence between the trend estimates associated with these two
missions. P is lower than 0.5 for 38.0% of the ocean, and lower than
0.05 for only 1.9% of the domain of analysis, which means that a very
small fraction of the ocean is characterized by significantly different
trends when these two products are considered.

Again, the comparison between the two single-mission products
is useful to assess the results obtained with OC-CCI Chla, displayed in
Figs. 7 to 9, when compared to SeaWiFS (1998–2007), MERIS (2002–
2011) and MODIS-A (2002–2012). As already noticed, the trends
derived from the OC-CCI series are remarkably consistent with the
SeaWiFS record (compare Figs. 3a and 7a), an agreement exempli-
fied by the distribution of P (Fig. 7b) that shows low values only for
rather small patterns in the northeast Atlantic, close to the northwest

Fig. 6. Level of significance P of the t-test comparing the slopes of linear regression
obtained for MERIS and MODIS-A over Aug. 2002 to Jul. 2011. Grey shows land, while
light-grey is associated with areas where the series are insufficient for analysis.

African coast and in the tropical southern Atlantic. The latter regions
are particularly challenging for atmospheric correction because of
cloud cover and dust inputs (Kaufman et al., 2005). Statistically sig-
nificant differences in trends (P < 0.05) are found only in 1.2% of the
domain (28.2% are associated with P lower than 0.5). Obviously, the
OC-CCI record is very close to SeaWiFS by construction for the ini-
tial part of the time series. But the introduction in 2002 of the data
records from MERIS and MODIS-A could have resulted in artifacts
in the OC-CCI trends because of inter-mission biases (Mélin, 2016;
Mélin et al., 2016b); the consistency between the OC-CCI and SeaW-
iFS trends (actually superior to that obtained when comparing MERIS
and MODIS-A) suggests that the OC-CCI processing stream (including
its bias correction) performs well.

The trends derived from the OC-CCI series also show a good
visual agreement with MERIS (2002–2011, Fig. 8) and MODIS-A
(2002–2012, Fig. 9), confirmed by the P distributions: in the com-
parison with MERIS, P is lower than 0.05 for 1.6% of the domain
(P < 0.5 for 35% of the ocean), while in the comparison with MODIS-
A, this is the case for 2.2% of the domain (P < 0.5 for 38% of the
ocean), results that are similar to those of the MERIS versus MODIS-A
comparison. However some distinct patterns of P can be seen, par-
ticularly in the tropical central Pacific south of the Equator (around
the meridian 135◦ W) and along the subtropical front in the South-
ern Ocean (Figs. 8b and 9b). In these cases, the patterns in trends
are actually similar but their amplitudes appear higher in the OC-
CCI product. Low P’s are also observed in the Baltic Sea when OC-CCI
and MODIS-A are compared (but this is also true for the comparison
MERIS/MODIS-A, Fig. 6).

4.5. Application with recent years

As explained above, the assessment of the trends derived from the
OC-CCI data essentially relied on the SeaWiFS, MERIS and MODIS-A
missions, considering the limitations associated with MODIS-T and
the short time interval available with VIIRS. Moreover, the use of
MODIS-A was restricted to the period 2002–2012, considering the
time series of the differences x seen in Section 3, and to avoid any
artifact associated with uncertain calibration after 2012. The OC-
CCI record extending to 2015, it appears worth discussing how the
resulting trends are affected, and possibly degraded, as more years
are included. This analysis has to rely on the last data years from
MODIS (A and T) and the first years of VIIRS, so that extreme caution
is due in the interpretation of the results.

Trends obtained from the OC-CCI data were compared with those
from MODIS-A over the periods from August 2002 to July of 2011,
2012, 2013, 2014 and 2015. From the contingency matrices, the share
of the ocean with differing diagnostics (i.e., trend significant for one
product and not for the other, and trends significant for both prod-
ucts but with different signs, see Section 4.2) regularly increases with
time, going from 18.4% for the period 2002–2011 to 23.3% for 2002–
2015, while j decreases from 0.65 to 0.55. The part of the ocean with
low P values also increases: P is lower than 0.05 for 1.6% of the ocean
for the period 2002–2011, increasing to 5.1% for 2002–2015, but the
part of the ocean with P lower than 0.5 stays rather constant (in
the interval 34.9%–38.2 %). This indicates that the patterns are rather
consistent between products but the magnitude of the trends and
their related level of significance tend to diverge as more years are
added, which is confirmed by an examination of the trend maps (not
shown).

The trends obtained by MODIS-A and MODIS-T were compared
over the same periods. The contingency matrices indicate that the
part of the ocean with differing diagnostics remains constant and
fairly low, between 16.1% and 17.4% (j between 0.62 and 0.68). From
the statistical comparison of trends, only 0.7–0.9 % of the domain
have P lower than 0.05 (from 29.8% to 32.7% for P < 0.5). These
results are consistent with the fact that the calibration of MODIS-T is
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a) b)

Fig. 7. a) Trends for OC-CCI Chla over the period Jan. 1998–Dec. 2007 (only significant trends, p < 0.05, represented), and b) level of significance P of the t-test comparing the
slopes of linear regression obtained for SeaWiFS and OC-CCI over that period. Grey shows land, while light-grey is associated with areas where the series are insufficient for
analysis.

a) b)

Fig. 8. a) Trends for OC-CCI Chla over the period Aug. 2002–Jul. 2011 (only significant trends, p < 0.05, represented), and b) level of significance P of the t-test comparing the
slopes of linear regression obtained for MERIS and OC-CCI over that period. Grey shows land, while light-grey is associated with areas where the series are insufficient for analysis.

tied to that of MODIS-A, but they suggest that MODIS-T can be used
for the purpose of evaluating OC-CCI data over a longer period.

A similar comparison was then made with OC-CCI and MODIS-
T data over the period from March 2000 to February of 2011, 2012,
2013, 2014 and 2015. The results appear degraded as soon as the
analysis goes beyond 2011: j is equal to 0.55 (which is already rel-
atively low) for the series 2000–2011 but between 0.50 and 0.52
if later years are included. From the associated contingency matrix,
differing diagnostics are observed over an approximately constant
(and fairly high) percentage of the ocean (26–27 %) when the period
includes years exceeding 2011, while it is 23% for the interval
2000–2011. The areas with significantly different trends (P < 0.05)

increase from 2.4% to 4.1% when data from March 2011 to February
2012 are included, and further increases when other years are added,
up to 6.5%. Again, these results are mostly due to differing magni-
tude and significance of the trends while the patterns are similar (see
Fig. 10 as an example for the period 2000–2015). Low P values are
prominently found in the central Pacific (in a similar area as when
comparing OC-CCI and MODIS-A), as well as in the northern subarctic
Pacific and Atlantic oceans.

The relative degradation of the results with the addition of the
latest years suggests that the comparison with data from VIIRS might
be of interest in spite of the short duration of this record. Statistics
were therefore derived by comparing the VIIRS series with MODIS-A,

a) b)

Fig. 9. a) Trends for OC-CCI Chla over the period Aug. 2002–Jul. 2012 (only significant trends, p < 0.05, represented), and b) level of significance P of the t-test comparing the
slopes of linear regression obtained for MODIS-A and OC-CCI over that period. Grey shows land, while light-grey is associated with areas where the series are insufficient for
analysis.
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a) b)

Fig. 10. Trends for a) MODIS-T Chla, and b) OC-CCI Chla, over the period Mar. 2002–Feb. 2015. Only significant trends (p < 0.05) are represented. Grey shows land, while
light-grey is associated with areas where the series are insufficient for analysis.

MODIS-T and OC-CCI data over the period January 2012 to December
2015 (four years). The part of the ocean with differing trend diag-
nostics is approximately 18% when comparing MODIS (-A or -T) with
VIIRS series (with j of approximately 0.65), while P is found lower
than 0.05 for 1.7–2.0 % of the ocean. When comparing OC-CCI and
VIIRS data, these statistics are 14.9% (associated with j as high as
0.72) and 1.3%, respectively, which means that the trends found
from both series are actually very consistent. The median difference
between trend slopes is only −0.3% year −1, which is very low con-
sidering that trend slopes tend to be higher over a short period. It
is worth recalling that over the considered time interval, the OC-CCI
data are mostly the result of merging VIIRS and MODIS-A data (the
MERIS mission ending in April 2012). The agreement is here illus-
trated with the trend maps associated with both products (Fig. 11).
It is underlined that the scale is extended with respect to other maps
to accommodate higher values of trend slopes associated with only
four years of data. There is a strong signature of a decreasing Chla in
the central and eastern tropical Pacific that is reminiscent of El Niño
events (e.g., Radenac et al., 2012) and at least partly explained by the
event taking place in 2015 (Stramma et al., 2016; Bell et al., 2016).
There is also a negative signal along the west coast of North America
that could be the result of the warm anomaly affecting the northeast
Pacific from 2013 to 2016 coupled with the impact of El Niño (Bond
et al., 2015; Cavole et al., 2016; Jacox et al., 2016).

The OC-CCI series now extends over 18 years, which is near-
ing the period required in tropical regions to detect anthropogenic
climate change over the signal of natural variability (Henson et al.,
2010). For completeness, Fig. 12 shows the trend map obtained
for OC-CCI Chla over October 1997–September 2015. Noticeable are
positive trends in the northern Atlantic and Pacific oceans, in the
southern Atlantic as well as along a horseshoe pattern that goes from
the western equatorial Pacific to mid-latitude South America and
then westward across the South Pacific. Negative patterns are noted

in the Indian Ocean, in some mid-latitude and equatorial Pacific
regions and in the subtropical gyre of the North Atlantic. Considering
the elements discussed above about the use of recent data, this trend
map is to be taken with appropriate caution and should be confirmed
by additional work.

5. Discussion

In this section, various aspects of the proposed methodology as
well as its application to the OC-CCI data are discussed.

5.1. Methodological considerations

This study described a protocol to estimate the consistency of
satellite Chla series from the point of view of their multi-annual
variations, with the objective of assessing the fitness-for-purpose of
multi-mission data sets as climate data records (CDR). The trend of
linear regression was adopted as a bulk indicator of multi-annual
variations that could be used in comparisons between data sets. It is
acknowledged that this indicator is a very crude descriptor of ocean
Chla multi-annual variability (Vantrepotte and Mélin, 2011) but such
trends are indeed expected to appear in ocean Chla series over cli-
mate temporal scales (Henson et al., 2010). Moreover this study
showed that a comprehensive comparison between products was
allowed by results from the trend analysis coupled with fairly sim-
ple methods applicable at global scale to satellite data. Particularly,
trends of linear regression can easily be compared through statisti-
cal tests at the same resolution as ocean color products. It is stressed
here that presenting, interpreting and understanding the observed
trends were not among the objectives of the present study.

The proposed method was applied to the OC-CCI Chla data set
in relation to single-mission products. After having set the stage by

a) b)

Fig. 11. Trends for a) VIIRS Chla, and b) OC-CCI Chla, over the period Jan. 2012–Dec. 2015. Only significant trends (p < 0.05) are represented. Grey shows land, while light-grey
is associated with areas where the series are insufficient for analysis.
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Fig. 12. Trends for OC-CCI Chla over the period Oct. 1997–Sep. 2015. Only significant
trends (p < 0.05) are represented. Grey shows land, while light-grey is associated
with areas where the series are insufficient for analysis.

presenting the time series through their globally averaged differ-
ences (Figs. 1 and 2, Section 3), the general approach was based
on comparisons between the trends obtained with OC-CCI data and
those associated with single-mission series. Considering the activi-
ties carried out by space agencies on the calibration of instruments
and their stability in time (Xiong et al., 2010; Eplee et al., 2012; Cao et
al., 2013; Eplee et al., 2015; IOCCG, 2013), single-mission series were
assumed free of spurious temporal artifacts so that multi-mission
series should reproduce the trends observed by single-mission prod-
ucts over common periods. In other words, the trends observed
from single-mission series were assumed to be sufficiently faithful to
reality to serve as benchmarks for multi-mission data (this point is
further discussed below). In that context, the use of an independent
series (i.e., not included in the multi-mission data set) would be ideal.
This was here attempted using the MODIS-T data (not included in
the OC-CCI data stream) but as mentioned above (Section 3) these do
not constitute a fully independent data record. More generally, the
number of ocean color missions is fairly limited for any given period
so that excluding one mission from merging is a serious limitation.
Moreover, as far as trends are concerned, the multi-mission series
should in any case agree with all available single-mission series over
the full time interval it covers.

Conversely, if trends shown by the multi-mission data disagreed
with results from single-mission products, it would be likely that
the construction of the multi-mission data set introduced artifacts in
the series that would preclude its use as CDR. It is however worth
stressing that a perfect agreement was not to be expected even if
the various data sets were perfectly consistent. First, undetected
artifacts affecting the single-mission data might still contaminate
merged products. Discrepancies could as well originate from dif-
fering temporal sampling: multi-mission data sets such as OC-CCI
showed a significantly improved coverage with respect to standard
single-mission products by relying on inputs from several missions
(Mélin et al., 2009; Maritorena et al., 2010; Couto et al., 2016). This
phenomenon is reinforced in the case of the OC-CCI data through
the use of more robust algorithms allowing more retrievals in chal-
lenging atmospheric conditions found in regions such as northwest
Africa, the Arabian Sea, the Red Sea (Racault et al., 2015) or the Gulf
of Guinea (Nieto and Mélin, 2017), and in fact low P values were
noticed offshore Africa when comparing SeaWiFS and OC-CCI trends
(Section 4.4, Fig. 7). A richer information content in the Chla series
might make trend detection easier with respect to patchier data
(Weatherhead et al., 1998). The question of properly including the
influence of temporal sampling in the assessment of trends observed
by multi-mission products would be worth additional work. In any
case, when comparing multi-mission and single-mission data, it is
useful to have a baseline for reference. In that context, the ocean

color community has the chance to have almost a decade of coinci-
dent ocean color data from two well-performing missions (MODIS-A
and MERIS). Processed with the same strategy and algorithms, they
may represent the best possible agreement to be expected from
two products. Additional overlapping data sets are available from
SeaWiFS, MODIS-T, and VIIRS.

Different criteria of comparison were presented that covered
several characteristics of trend distributions:

• contingency matrices, easily summarized by metrics such
Cohen’s j, were useful to reveal how much of the global ocean
shared the same diagnostic about the existence, significance
and signs of trends;

• the distributions of differences in trend slopes gave a quantita-
tive measure of the discrepancies between trends;

• maps of the level of significance P of a t-test quantifying
the degree to which two trend estimates differed provided a
statistical, spatially-resolved, evaluation.

With the calculation of a few bulk indicators and the P map, such a
framework allows the evaluation and comparison of candidate CDRs
(other examples are seen in Mélin et al., 2016b) and monitoring the
effectiveness of reprocessing efforts. By the same token, the evolu-
tion of these indicators as more years are added in the data stream
might reveal issues related to the most recent data in the merged
series and/or in the single-mission data records.

The proposed methodology could be applied in a straightforward
manner to other quantities, derived from ocean color (such as the
remote sensing reflectance or inherent optical properties), or from
other remote sensing sources. It could also be adapted to evaluate
how outputs from biogeochemical models represent long-term vari-
ability with respect to satellite products. The analysis relied mostly
on statistical indicators applied to trend distributions. The methodol-
ogy could therefore support the effort required to demonstrate that
a given data set fulfills the GCOS requirements in terms of tempo-
ral stability (GCOS, 2011). However it is highlighted that it is by no
means the only way CDRs should be evaluated. First, more advanced
statistical techniques could certainly be developed, particularly tak-
ing into account the uncertainties associated with the different
products. Then, following a complementary route, additional, more
qualitative, criteria can be listed (such as the main characteristics of
algorithms, or their applicability to all missions) to evaluate if a data
set meets the requirements for climate research (Sathyendranath
et al., 2017, this issue). More generally, comprehensive sets of met-
rics have been proposed to assess the maturity of data sets for
climate research (Bates and Privette, 2012) which are not considered
here.

5.2. Interpretation of the results

The application of these criteria to the OC-CCI data showed that
the agreement with single-mission products was similar to the con-
sistency shown by these products. The agreement of OC-CCI with the
SeaWiFS series (1998–2007) was remarkable with only 1.2% of the
domain of analysis characterized by P lower than 0.05 and a j index
of 0.66, while the differences in trend slopes were nicely centered
on zero (Fig. 5). When compared with MERIS or MODIS-A data over
August 2002–July 2011 or 2012, P was lower than 0.05 for approxi-
mately 2% of the ocean, and j was ∼0.64. However, an area of lower P
was observed in the south central equatorial Pacific, associated with
different magnitudes of the trends but not with differences in pat-
terns (Figs. 8 and 9). As baseline comparison, the agreement between
MODIS-A and MERIS over the period 2002–2011 could be summa-
rized by a proportion of the ocean with P < 0.05 of 1.9% and a j of
0.60. These results suggest that the OC-CCI record can be considered
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fit to conduct temporal analyses over the period 1997 to 2012 (with
some caution in the south central Pacific).

Considering that the OC-CCI data set relies on the SeaWiFS, MERIS
and MODIS-A data for its construction, this conclusion stating a
good agreement might have been expected, but this reasoning is
in large part misleading. In particular, trend detection based on
multi-mission (merged or concatenated) data appears extremely
sensitive to inter-mission biases (Mélin, 2016), so that the agree-
ment observed between OC-CCI data and single-mission products
by no means should be taken for granted. In fact the results have
evolved with the OC-CCI data set versions: for instance the compar-
ison between OC-CCI version 2 and MERIS or MODIS-A data did not
show the pattern of low P values in the south central Pacific, whereas
the agreement with SeaWiFS series was significantly degraded from
version 1 to version 2 (not shown) and improved again with version
3. Moreover, the methodology applied to other multi-mission data
sets that do not include bias corrections in their processing stream
showed much degraded results with respect to OC-CCI (see exam-
ples in Mélin et al., 2016b; Mélin, 2016), in some cases to the point
of being unsuitable for climate research. It might seem an easy task
to create a multi-mission data record consistent, as far as trends are
concerned, with single-mission data included in its construction, but
this is actually not the case. This further underlines that properly
addressing inter-mission differences remains a crucial issue in the
construction of multi-mission CDRs.

5.3. Single-mission records and the issue of recent years

In line with the work performed by space agencies on sensor
calibration, the assumption that single-mission series from SeaW-
iFS, MERIS and MODIS-A are free from spurious artifacts appears
fairly robust over the period 1997–2012, even though the signa-
ture of the deactivated OCL can be seen in the time series related
to MERIS (Figs. 1 and 2) and the MODIS-A band at 412 nm shows a
reduced confidence after 2007 (B. Franz, personal communication).
The assumption is further questioned over the recent period by cal-
ibration issues related to the aging of the MODIS-A sensor. MODIS-T
now presents an impressively long series but issues associated with
calibration over its life time (Franz et al., 2008) suggest great cau-
tion when analyzing its temporal variability while its dependence
to MODIS-A calibration (Kwiatkowska et al., 2008) limits its use
for independent assessments. In fact, the trend distributions asso-
ciated with MODIS-A and MODIS-T appeared very consistent, for
instance with a percentage of the ocean with P < 0.05 lower than 1%
regardless of the considered period. In the case of OC-CCI, extending
the series after 2012 meant a degraded agreement with respect to
MODIS-A, the part of the ocean characterized by P < 0.05 increasing
from 1.6% to 5.1% as four more years were included (2012 to 2015).
It is recalled that the OC-CCI data relied exclusively on MODIS-A and
VIIRS over the period from April 2012 (demise of MERIS) to 2015. Part
of this degradation in trend consistency might be due to the aging of
the MODIS-A sensor (Meister et al., 2012; Meister and Franz, 2014),
even though it can not be excluded that residual inter-mission dif-
ferences had an impact on the construction of the OC-CCI record. It
is also worth noting that this degradation happened largely in rela-
tion with the pattern of low P values observed in Fig. 9 in the central
Pacific south of the Equator: as more years were added, P further
decreased and the pattern spread. The rest of the ocean appeared
mostly unaffected. In conclusion it seems that the OC-CCI data are
suitable for temporal analysis, with more caution due (particularly in
the equatorial Pacific) as the time interval of interest exceeds 2012.
As a positive note, and considering a history of regular reprocess-
ing and progress, future improvements in the characterization of the
MODIS-A calibration including the final part of the data record are
possible.

Unfortunately, the period covered by VIIRS is still rather short and
with a small overlap with MERIS. The overlap with MODIS-A is more
substantial but it is a period when that instrument showed signs of
radiometric degradation. Nevertheless the comparison of trends over
four years of data gave an excellent agreement between products,
particularly when OC-CCI and VIIRS data were considered (the pro-
portion of the ocean with P < 0.05 being 1.3% and j equal to 0.72).
The only noticeable pattern with low P was again seen in the south
central Pacific. So, with some caution, the OC-CCI data record appears
appropriate to study inter-annual variability over the last few years.
These considerations highlight the challenges inherent to building
a multi-mission data record suitable for climate studies, challenges
that are compounded when using aging satellites or successive mis-
sions with little overlap. In particular properly bridging the period
from 2012 (arbitrarily taken as a date when MODIS data start los-
ing quality) to 2016 (when the overlap between VIIRS and OLCI is
initiated) seems critical. As a corollary, this study recalls the impor-
tance of operational missions to maintain ocean color time series
over multiple decades.

6. Conclusions

The detection of climate change signals above the natural vari-
ability requires long time series of ocean color data that can only
be obtained by combining data sets from successive missions. The
existence of inter-mission differences or other artifacts can easily
be transferred to a multi-mission time series and create spurious
signals in the derived trends (Mélin, 2016) so that methodologies
are required to detect these occurrences and ultimately to assess if
multi-mission data sets are suitable for climate investigations and to
inform interested users adequately. Such a methodology described
here relies on the comparison between trends associated with the
multi-mission data and those found for single-mission series. Under
the assumption that those are free from spurious temporal arti-
facts, the trends observed with the multi-mission data should be
consistent with the single-mission series. This agreement can be
evaluated with a three-fold approach with contingency matrices, the
direct comparison of the slopes and statistical tests. The following
conclusions are drawn:

• the proposed methodology, the outputs of which can be sum-
marized with a few statistics and a map (the P distribution),
offers suitable tools to evaluate the climate quality for trend
detection of multi-mission data records;

• when the approach is applied to the Chla data series from OC-
CCI, the results suggest that it can safely be used for temporal
analysis when limited to the period before 2012;

• when more recent years are included, the amplitude of the
trends might be affected by issues likely related to sensor insuf-
ficient characterization or degradation, but the trend patterns
seem preserved;

• nonetheless, the trends displayed by the OC-CCI series over the
short period 2012–2015 are very consistent with those of VIIRS.

Overall, the study shows encouraging results about our capac-
ity to create Chla climate data records. But creating climate-quality
single-mission series and ensuring a cross-mission consistency
allowing climate research is still a major task (Mélin and Franz, 2014)
that requires sustained efforts if we want to make best use of the first
twenty years of continuous ocean color data.
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