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Abstract. When the nominal algorithms commonly in use
in Space Agencies are applied to satellite Ocean Color data,
the retrieved chlorophyll concentrations in the Mediterranean
Sea are recurrently notable overestimates of the field values.
Accordingly, several regionally tuned algorithms have been
proposed in the past to correct for this deviation. Actually,
the blueness of the Mediterranean waters is not as deep as
expected from the actual (low) chlorophyll content, and the
modified algorithms account for this peculiarity. Among the
possible causes for such a deviation, an excessive amount
of yellow substance (or of chromophoric dissolved organic
matter, CDOM) has been frequently cited. This conjecture
is presently tested, by using a new technique simply based
on the simultaneous consideration of marine reflectance de-
termined at four spectral bands, namely at 412, 443, 490,
and 555 nm, available on the NASA-SeaWiFS sensor (Sea–
viewing Wide Field-of-view Sensor). It results from this test
that the concentration in yellow colored material (quantified
asay , the absorption coefficient of this material at 443 nm) is
about twice that one observed in the nearby Atlantic Ocean
at the same latitude. There is a strong seasonal signal, with
maximalay values in late fall and winter, an abrupt decrease
beginning in spring, and then a flat minimum during the sum-
mer months, which plausibly results from the intense photo-
bleaching process favored by the high level of sunshine in
these areas. Systematically, theay values, reproducible from
year to year, are higher in the western basin compared with
those in the eastern basin (by about 50%). The relative im-
portance of the river discharges into this semi-enclosed sea,
as well as the winter deep vertical mixing occurring in the
northern parts of the basins may explain the high yellow sub-
stance background. The regionally tuned [Chl] algorithms,
actually reflect the presence of an excess of CDOM with
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respect to its standard (Chl-related) values. When corrected
for the presence of the actual CDOM content, the [Chl] val-
ues as derived via the nominal algorithms are restored to
more realistic values, i.e., approximately divided by about
two; the strong autumnal increase is smoothed whereas the
spring bloom remains as an isolated feature.

1 Introduction

The blue color of the Mediterranean Sea is legendary and
rightly regarded as a sign of oligotrophic conditions. Sporad-
ically and intermittently, however, this trophic status is mod-
ified. Indeed, in the northern parts of the Western and East-
ern basins, vernal blooms develop leading to moderately high
chlorophyll concentrations, and to a color shift toward blue-
green shades typical of meso- to eutrophic regimes. Satellite
remote radiometry of Ocean Color is a technique which is
intended to detect and map such color changes and interpret
them in terms of optically influential constituents, in partic-
ular of phytoplankton abundance, quantified as chlorophyll
concentration, [Chl] (mg m−3).

Yet, the first applications of this remote sensing technique
to Mediterranean waters (using the data from the CZCS, the
Coastal Zone Color Scanner from NASA, operating during
the years 1979–1984) showed that the [Chl] retrieved from
space was a notable overestimate of the true concentration
as determined in situ (Gitelson et al., 1996; Antoine et al.,
1995). Bricaud et al. (2002) and Antoine et al. (2008, their
Fig. 14) arrived at the same conclusion when using the Sea-
WiFS data (Sea-viewing Wide Field-of-view Sensor). More
accurately stated, the empirical algorithms, based on the ratio
of ocean radiance (or reflectance) in the blue and green do-
mains, which were routinely used to quantify [Chl], failed in
the case of these waters. Not only remote radiometric deter-
minations, but also in situ spectral measurements of water-
leaving radiances, demonstrated that Mediterranean waters
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are “greener” than it would normally result from their (gen-
erally low) phytoplankton content (Claustre et al., 2002).

This often observed color “anomaly” motivated the devel-
opment of specifically tuned algorithms able to reconcile the
remotely sensed [Chl] (using various sensors) with the field
determinations, especially when [Chl] is low (D’Ortenzio et
al., 2002; Bricaud et al., 2002; Volpe et al., 2007). As also
noted by Gregg and Casey (2004), anomalous optical prop-
erties of the Mediterranean Sea (and Black Sea) entail a sub-
stantial and systematic positive bias of the nominal SeaWiFS
returns with respect to in situ [Chl] data. By applying a rather
tight criterion to the SeaWiFS data, Lee and Hu (2006, their
Fig. 3) also showed that if Case-1 waters prevail in Mediter-
ranean during summer, what they called “non-Case 1” waters
would be present in the Western basin in Spring and Autumn,
and in both (Western and Eastern) basins at wintertime. Ac-
cording to these authors, such departures from the Case-1
status would essentially be due to an increase in absorption
by the “colored -or chromophoric- dissolved organic matter”,
or equivalently, “yellow substance”. Beside the possible en-
hanced contribution of this absorbing material (e.g., Claus-
tre and Maritorena, 2003), the presence of abundant coccol-
iths, or the episodic injection of aeolian dust, or even imper-
fect atmospheric corrections, were also suggested as possible
causes for the persistent anomaly (Gregg and Casey, 2004;
Claustre et al., 2002).

Another study (Morel et al., 2007a), however, strongly
supported the hypothesis of an unusually high yellow sub-
stance content. This study was based on the consideration
of the spectral diffuse attenuation coefficient,Kd (λ). In-
deed, an anomaly was detected which consisted ofKd (λ)
values in the blue part of the spectrum systematically exceed-
ing the average values, that were expected from the [Chl] lev-
els. Moreover, this anomaly was found to steadily increase
when progressing into the UV domain, which is a typical trait
of yellow substance absorption. Correlatively, the irradiance
reflectance,R(λ), was distinctly depressed in the near UV
and blue parts of the spectrum, which can explain the failure
of the standard algorithms. The same study also showed that
the yellow substance absorption coefficient at 370 nm in the
Mediterranean Sea, turns out to be at least twice its value in
Pacific in spite of similar trophic conditions in terms of [Chl]
values, (Fig. 9, ibid.). Along the same line, the depth of the
euphotic layer is considerably reduced in the Mediterranean
Sea with respect to its integrated [Chl] content (Morel and
Gentili, 2004). Such a reduction can be explained if another
absorbing agent is present in notable concentration and com-
petes with algae in the bulk absorption process within the
water column (Morel et al., 2007a, their Fig. 4).

A recently developed tool (Morel and Gentili, 2009),
based on the simultaneous consideration of spectral marine
reflectance,R(λ), at four wavelengths allows the signatures
of yellow absorbing substances (or chromophoric dissolved
organic materials, denoted CDOM), and [Chl] to be disen-
tangled. This technique can be applied to the Mediterranean

Sea to determine if the CDOM content is above the expected
average level, and, as a consequence of such a positive de-
viation, if [Chl] could have been overestimated when using
classical algorithms (see e.g., Hu et al., 2006). By system-
atically applying this discriminating tool to remotely sensed
color data over the Mediterranean Sea, it will be possible to
examine how, and when the CDOM-related anomaly, if any,
is geographically and seasonally distributed within the West-
ern and Eastern basins of this Sea.

2 Methodology

The technique developed to separately assess the yellow sub-
stance absorption coefficient at a given wavelengthλ, here-
after denoteday(λ) (expressed as m−1), and the chloro-
phyll concentration, [Chl], was described in detail elsewhere
(Morel and Gentili, 2009). For completeness, the main fea-
tures are summarized below. In Case-1 waters, the above
quantities were empirically found to be on average related
through a non-linear relationship (Morel, 2009) of the form

ay(λ,[Chl]) = Y (λ)[Chl]0.63 (1)

where the termay was obtained through

ay(λ,[Chl]) = atot (λ,[Chl])−aw(λ)−ap(λ,[Chl]) (1’)

i.e., by subtracting the pure water absorption,aw(λ) and
the particle absorption,ap(λ, [Chl]), from the total absorp-
tion, atot (λ, [Chl]). The spectralaw(λ) coefficients were
adopted from Pope and Fry (1997), (from Morel et al., 2007c,
for λ=400 nm); ap(λ,[Chl]), the particle absorption coeffi-
cients (algal plus non-algal particles), increase along with
[Chl] according to power laws, which were adopted from
Bricaud et al. (1998); the total absorption coefficients,atot (λ,
[Chl]), also depending on [Chl], were obtained by inver-
sion of the spectral attenuation coefficient and spectral re-
flectance,Kd(λ, [Chl]) and R(λ,[Chl]), respectively (via
Eq. 3 in Morel, 2009). In Eq. (1), theY (λ) coefficient de-
creases exponentially withλ, according to

Y (λ) = Y (λ0)exp[−S(λ−λ0)] (2)

whereλ0 is a reference wavelength, andS is the slope of
the exponential decay for the spectral domain considered
(412–560 nm). Equation (1) was initially established (Morel,
2009) forλ=400 nm (Eq. 3)

ay(400,[Chl]) = 0.0650[Chl]0.63 (3)

By using Eq. (2) and lettingS=0.018 nm−1, the following
expressions

ay(412,[Chl]) = 0.0524[Chl]0.63 (3a)

ay(443,[Chl]) = 0.0316[Chl]0.63 (3b)

ay(490,[Chl]) = 0.0129[Chl]0.63 (3c)

ay(555,[Chl]) = 0.0040[Chl]0.63 (3d)
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can be derived for the particular wavelengths thereafter in-
volved in the modeling computations.

The above Eq. (1) represents an “average” relationship in
the sense that it statistically derives from a considerable num-
ber of optical data, namely theap(λ,[Chl]), Kd(λ,[Chl]), and
R(λ,[Chl]) coefficients, which were determined at differing
seasons, in several zones of the world ocean, with various
trophic situations corresponding to various [Chl] values. All
these determinations, however, were made in environments
well identified as belonging to Case-1 waters. More specifi-
cally, the average character of Eq. (1) results from the adop-
tion for the terms involved in Eq. (1’) of the mean empirical
relationships between the optical propertiesap(λ), Kd(λ),
R(λ), and [Chl] (Morel, 2009). The algorithms used with
ocean color data, either purely empirical, as OC4v4, or semi-
analytical, as OC4Me (Morel et al., 2007b) also rest on the
same average bio-optical situation; indeed, they make use of
the average relationships, either implicitly for OC4v4, or ex-
plicitly for OC4Me, which rests on the bio-optical model for
Case-1 waters (Morel and Maritorena, 2001, hereafter de-
noted MM-01). Therefore these algorithms provide an exact
[Chl] value only if the empirical relationships above are ap-
proximately verified.

The rationale behind the discriminating tool can be sum-
marized as follows. It relies on the consideration of the
reflectances,R, at 412, 443, 490, and 555 nm; they are
combined to form two ratios, namelyR(412)/R(443) and
R(490)/R(555), simply writtenR412

443 andR490
555. Within the

frame of the MM-01 model (slightly revised in Morel et al.,
2007b), a unique relationship betweenR412

443 and R490
555 ex-

ists and can be numerically established. This relationship is
graphically represented by the curve denoted8 = 1 in Fig. 1a,
b; it implicitly includes the average [CDOM]–[Chl] relation-
ship (i.e., Eq. 1 and the derived Eq. 3a to d).

A rather high variability, however, around Eq. (1) occurs
in natural environment, and the deviations observed in the
Mediterranean Sea with respect to the standarday(λ, [Chl])
values will be at the basis, and also the aim, of the present
study. To account for this variability, deviations are simu-
lated by introducing the factor8, which numerically modi-
fies the result of Eq. (1) (and thus of the derived Eq. 3a to d)
according to

ay(λ,[Chl]) = 8Y(λ)[Chl]0.63 (4)

where the number8 may be below or above unity, so that the
simulated departure may be either a deficit or an excess of
CDOM with respect to its reference [Chl]-dependent value.
When8 is given various discrete values differing from 1, the
ay(λ, [Chl]) absorptions values (Eq. 3a to d) are modified
accordingly. When these modified values are introduced into
the MM-01 model, a family ofR412

443–R490
555 relationships can

be produced. A family of such curves, generated for discrete
8 values, forms the “grid” which can be seen in Morel and
Gentili (2009, their Fig. 2); instances of these curves are also
displayed in Fig. 1a, b.

Fig. 1. Ratio of reflectance at 412 and 443 nm,R412
443, plotted as

a function of the ratioR490
555 (cf. Fig. 2, in Morel-Gentili, 2009);

the theoretical (black) curves are computed for the standard sit-
uation (8 = 1, Eq. 1), and when the yellow substance concentra-
tion is multiplied by 0.5, 2, or 5, with respect to its Chl-dependent
standard value (Eq. 4).(a) actual ratios determined at sea dur-
ing the Prosope, Minos, and Aopex cruises (data and informa-
tion available onhttp://www.obs-vlfr.fr/cdrom dmtt/pr main.htm
for Prosope, and onwww.Ifremer.fr/sismerfor Minos and Aopex)
; (b) same ratios derived from the SeaWifs data, during the whole
2006 year, taken as an example; for the 12 monthly composites,
the total number of pixels is 364 000; the number of occurrences is
visualized through the frequency color scale.

When R412
443 and R490

555 have been simultaneously de-
rived from measurements, at sea (Fig. 1a) or from space
(Fig. 1b), these couples of actual values can be compared
to those forming the family of curves, corresponding to
various 8 values. From this comparison, a value of the
factor 8 can be univocally determined. Practically, a
lookup table (available atftp://oceane.obs-vlfr.fr/pub/gentili/
CDOM-index-Table-interpol) allows such a determination to
be made through an appropriate numerical interpolation.

It is important to emphasize that the adopted reference
value,Y (λ), does not influence the result of Eq. (4), which
actually is determined by the product8 Y(λ). The scale for
8, in particular its (arbitrary) neutral point (8 = 1) depends
on the initial choice made forY (λ). Note also that the choice
of the S-value above is not crucial when deriving the8 factor
(sensitivity study in Morel and Gentili, 2009).

3 Dissolved and particulate absobing materials

The nature of the materials (beside phytoplankton) respon-
sible for the absorption in the blue part of the spectrum
deserves some comments. According to the way it is de-
rived, theay term actually refers to, and is predominantly
determined by, the absorption by the dissolved yellow sub-
stances (also called chromophoric dissolved organic mat-
ter, CDOM). However, those small sized non-algal particles
(colored detrital material), able to pass through GF/F filters
(effective pore size∼0.5µm), and thus not included inap,
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may also contribute to the formation of the presentay term
(discussion in Morel, 2009). Thereforeay may slightly ex-
ceed the absorption by “truly” dissolved materials (opera-
tionally defined as those able to pass through a membrane
filter with 0.2µm pore size). Note that the absorption coeffi-
cient (at 443 nm), as retrieved via the “GSM” method (Siegel
et al., 2002), and denotedaCDM by these authors (where
“CDM” stands for colored detrital material), describes the
absorption by the dissolved organic matter (i.e.,ay), plus the
absorption by non-algal (supposedly “detrital”) particles. At
least in principle,aCDM must exceed the absorption by dis-
solved materials, yet by a small amount (see discussion “Is
CDM dissolved or particulate?” in Siegel et al., 2002); it
also must exceed the presentay term by an even smaller
amount, since the tiny non-algal particles (those within the
0.5–0.2µm range) have already contributed to the formation
of ay (Eq. 1’). Actually, the histograms of theaCDM and
ay distribution within the global ocean (shown in Morel and
Gentili, 2009, their Fig. 7c–d,) show thataCDM is systemati-
cally larger thanay by a small amount, however (10–15%).

4 Data

SeaWiFS data (from NASA) are used in the present study,
mainly as monthly composites. Normalized water-leaving
radiances at 412, 443, 490 and 555 nm, which are already
corrected for the bi-directional effects, are converted into ir-
radiance reflectances by using the appropriate factors and re-
lationships (see Appendix and Eq. A-6 in Morel and Gentili,
2009); then the ratios of these irradiance reflectances,R412

443
andR490

555, are computed and introduced into the lookup table
mentioned above to derive the actual8 value by interpola-
tion.

The turbid coastal waters are identified through the en-
hancement of reflectance at 555 nm, itself due to an en-
hancement of scattering, when sediment are present. The
reflectance threshold above which turbid waters are detected
(Morel and B́elanger, 2006) is based on the upper limit of
the observed scattering-[Chl] relationship in case 1 waters;
beside of being [Chl] dependent, this threshold is also ge-
ometrically dependent (on the sun-zenith angle). The cor-
responding pixels (generally within coastal zones and river
plumes) are no longer considered in further analyses.

5 Results

When introduced into theR412
443–R490

555 plane, the ratios ob-
tained from recent radiometric field determinations in the
Mediterranean Sea (Fig. 1a) confirm the anomalously high
yellow substance content; indeed, from these data, the yel-
low substance index8 always exceeds 1. Ratios of SeaWiFS
reflectance also lead to the same conclusion (Fig. 1b). There-
fore the yellow substances concentration in this Sea would

systematically exceed what is expected from the [Chl] val-
ues by, at least, a factor 2 in most cases.

A map of the Mediterranean Sea is displayed in Appendix-
Fig. A1 together with the geographical names used in what
follows to describe the various regions and features.

5.1 Geographical distribution and temporal evolution
of the yellow substance index (8)

To ascertain the reality of a particular behavior of the
Mediterranean Sea, it seems appropriate to compare this Sea
to other geographical zones, submitted to a similar climate,
yet with differing circulation patterns and hydrographic con-
ditions. An instructive comparison can thus be obtained by
considering the contiguous zone in the North East Atlantic,
West of the Gibraltar Strait, at the same latitudes (between 30
and 45◦ N), and of similar size (5◦–35◦ W). To the extent that
this Atlantic zone, off the Iberian peninsula and Moroccan
coast (where coastal upwellings occur) might also be spe-
cial, the entire zonal stripe extending from 30◦ to 45◦ N and
encompassing the whole ocean (Atlantic and Pacific) is also
considered for reference.

In a first step, the comparison is based on the maps of the
8 factor within the Mediterranean and Atlantic zones, as de-
rived from the SeaWiFS monthly composites. Instances of
these maps are shown (Fig. 2) for the months of March and
August, selected because they correspond to contrasted sit-
uations in terms of biological activity (vernal blooms versus
oligotrophic summer conditions). In March, the lowest8

values (∼1.5–2) in the Mediterranean Sea are found south
of the island of Rhodes (between the islands of Crete and
Cyprus), and also off the Gulf of Lions, actually in those
locations where the main algal blooms are known to take
place (a weak bloom also occurs south of Sardinia). These
minima in8 do not indicate a lower CDOM content, but a
lower relative content, in as much as [Chl] has increased up
to∼0.5–1.5 mg m−3 within these localized blooms, while the
yellow substance absorption has remained rather unchanged.
Apart from these restricted zones, high8 values (>3) domi-
nate everywhere within the entire Mediterranean Sea. In con-
trast, low8 values prevail in the near Atlantic; there is even
a zonal belt (roughly centered on 38◦ N) where8 is slightly
below 1, also in coincidence with the vernal bloom. This
bloom, and the concomitant low8 values, migrate north-
ward during the following months (not shown).

The seasonal CDOM cycle in the Northern Hemisphere
steadily exhibits a minimum in summer (Siegel et al., 2002;
Morel and Gentili, 2009); consistently, in both the Atlantic
and Mediterranean zones, the8 values go through their
minimal level (∼1–2) around August. Higher values, how-
ever, are still present along the coast of Portugal (the seat
of a coastal upwelling), and within the Gulf of Lions (prob-
ably related to the Rhone river discharge). The Aegean
Sea, especially its northernmost part under the influence of
the water exiting the Black Sea through the Bosporus, is
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Fig. 2. Derived from SeaWiFS data for March (1st row) and Au-
gust 2006 (2nd row), distribution of the8 parameter within the
Mediterranean Sea (right column), and within the Near-Atlantic
(left column), between the latitudes 30◦ and 45◦ N (see color
scale). The black lines (the line between Tunisia and Sicily, and
the 38th parallel) are the limits adopted for the Eastern and Western
Mediterranean basins; the northern and southern sector in the Near
Atlantic are also delimited by the 38th parallel. The black pixels
correspond to waters identified as turbid. The frequency distribu-
tions of the pixels according to their8 values are shown in insert.

permanently a zone with very high8 values (no longer dis-
cussed). In the Black Sea, when not flagged as a turbid Case-
2 zone, the radiances at 412 nm are extremely low, and8

values always extremely high. The importance of the river
discharges (Danube, Don, Dnieper) into this Sea can ex-
plain such a situation, which is no longer examined in what
follows.

The temporal evolutions of the various quantities associ-
ated with the CDOM content and the algal biomass are com-
puted from the SeaWiFS monthly composites, and assem-
bled in Fig. 3. Mean monthly values for8, for [Chl] (before
and after correction, see later), and foray(443) are shown;
these quantities are spatially averaged within each of five ge-
ographical zones, which are delimited as follows. The west-
ern and eastern Mediterranean basins are separately consid-
ered. Actually (see Fig. 2), the eastern basin has been limited
northward by the 38◦ N parallel, which excludes the Aegean
and Adriatic Seas and part of the Ionian Sea; the influence of
the Black Sea and Marmora Sea (mentioned above), as well
as that of the often turbid Adriatic Sea are thus discarded.
With such borders, the two basins distinctly differ regard-
ing their mean latitude; the Eastern and Western basins are
located southward and northward of the 38◦ parallel, respec-
tively. For consistency, in particular with respect to solar il-
lumination conditions and thus seasonal variations, the same
38◦ N parallel is also used to distinguish a northern sector and
a southern sector within the near-Atlantic region. The zonal
belt around the globe from 30◦ to 45◦ N is not subdivided.

Globally, the Mediterranean8 values are systematically
above (up to twice) those in the neighboring Atlantic, or
those of the whole ocean within the zonal (30–45◦ N) belt
(Fig. 3, upper row). Nevertheless, the8 values are on aver-
age clearly larger than 1 everywhere within the belt, includ-
ing in the eastern Atlantic; accordingly, there would exist at
these latitudes a permanent excess of CDOM in comparison
with the mean oceanic “state” (i.e., the state corresponding
to 8 = 1). Actually, when the whole ocean is considered the
central (most frequent)8 value is well unity (histograms in
Morel and Gentili, 2009). In the Northern Hemisphere, how-
ever, and in particular at the latitudes considered,8 is always
above 1 (ibid., Fig. 5, and also Fig. 4 in Siegel et al., 2002).
This observation is here confirmed.

A second observation deals with the annual8 cycle within
the Mediterranean Sea: it is distinctly more featured than out-
side at the same latitudes. After a minimum extending from
June to September, the increase from October to December,
especially in the western basin, is steeper in the Mediter-
ranean Sea than in adjacent Atlantic. It must be noted that ex-
tended cloudiness and low solar illumination (which means
difficult atmospheric correction) prevent fully reliable data
from being derived in the northern part of the western basin
around the winter solstice; the same statement could be re-
peated for the Adriatic Sea (not discussed thereafter).

The second row in Fig. 3 shows the temporal change in
the monthly and spatially averaged algal [Chl] biomass, as
retrieved in each zone using the OC4v4 algorithm (O’Reilly
et al., 1998, 2000). Compared to the global Ocean, or to the
near-Atlantic zone, there are some important particularities
in the Mediterranean Sea. First of all, the [Chl] values in fall,
and then the [Chl] maximum during the bloom in the Western
basin (peaking in March) are higher than everywhere else.
In the Eastern basin, after an earlier bloom (in February),
an oligotrophic situation prevails over an extended summer
period, like in the corresponding Southern Atlantic sector.

5.2 Yellow substance absorption and chlorophyll
assessment

The ay(443) coefficient is then derived by inserting the ac-
tual 8 values into Eq. (4), to be written forλ=443 nm with
Y=0.0316 (cf. Eq. 3c); the [Chl] value to be inserted is the
one directly provided by the OC4v4 algorithm, which tac-
itly includes the8 = 1 hypothesis. Note that the absoluteay

values must be regarded with some caution, as they might
be affected by an inaccurate atmospheric correction, partic-
ularly at 412 nm (discussed later). Yet, relative comparisons
of theay(443) regional values, as made below, are safer.

The monthly meanay(443) values are displayed for each
region in the third row of Fig. 3. The seasonalay variations
are considerably more accentuated in the Mediterranean
basins than in their Atlantic counterparts; year-round, theay

values in the Mediterranean eastern basin are systematically
lower than those in the western basin. The prominent feature

www.biogeosciences.net/6/2625/2009/ Biogeosciences, 6, 2625–2636, 2009
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Fig. 3. From SeaWiFS data, seasonal course during the year 2006 of the monthly mean8 values (first row) for each of the five regions as
indicated in inserts; second row, for the same regions, monthly mean [Chl] values (mg m−3), as derived via the OC4v4 algorithm; third row,
monthly meanay (443) values (m−1); last row, corrected [Chl] values (see text) for the same zones. Vertical bars correspond to±1 standard
deviation.

is the broad winter maximum which occurs in the western
Mediterranean basin, starting in October and extending up to
May; these winteray values are almost twice those in the cor-
responding Atlantic sector. In contrast, the summer minima
in ay are practically identical in the western Mediterranean
and in the northern eastern Atlantic.

In the eastern Mediterranean basin, the winteray maxi-
mum is sharper and coincides with the Levantine algal bloom
(February). The summer (Jul-Aug-Sep) mean values in this
basin (ay(443) ∼0.013 m−1, Fig. 3) are hardly above those
(0.010 m−1) in the southern Atlantic zone, which themselves
are not far from those observed in the Sargasso Sea by Nel-
son et al. (2007). Indeed, these authors observed at 325 nm
yellow substance absorption coefficients amounting to about
0.06 m−1, approximately equivalent toay(443)∼0.01 m−1.
So, the eastern Mediterranean would be almost as blue as
the Sargasso Sea, at least in summer.

The seasonal cycles for 2006 within the Mediterranean
basins as well as within the Atlantic zones (Fig. 3) are
repeated from year to year without notable modifications
(Fig. 4). The remarkable differences in the CDOM index (8)
and concentration (ay), between the two geographical areas,
clearly appear to be permanent features. Interestingly, the
summeray(443) values in the Mediterranean basins and in
their Atlantic counterparts are practically identical; therefore,
the strong Mediterranean vs. Atlantic contrast (Fig. 4c, d) ul-
timately results from the differing yellow substance contents
in wintertime. As for the Mediterranean sea itself (Fig. 4c),
the two basins are not identical; in all seasons, theay(443)
coefficients of the western basin exceed those of the eastern
basin, by about 50%.
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Fig. 4. Time series over a 10-year period of(a, b) the8 factor, and
(c, d) of the absorption coefficient by yellow substance,ay (443).
Monthly averaged SeaWiFS data were used; they were separately
averaged for the Western and Eastern Mediterranean basins, and for
the Northern and Southern sectors within the Eastern Atlantic, as
indicated.

The absorption coefficients at 443 nm of the dissolved
plus particulate (detrital) organic matter, as retrieved via the
“GSM” method (Siegel et al., 2002) and denotedaCDM by
these authors, exhibit the same inter-regional differences;
they also follow the same seasonal patterns (not shown, vi-
sualized via the Giovanni toolhttp://reason.gsfc.nasa.gov/
Giovanni/). Compared to those ofay , theaCDM values are
slightly lower, particularly during the blooms, but they re-
main within the dispersion affecting theay values.

As already explained in detail (Morel and Gentili, 2009),
the variations in8 lead to biased estimates of [Chl] when
[Chl] is retrieved by applying standard algorithms, that im-
plicitly have included the hypothesis8 = 1. With 8 gener-
ally well above 1 in the Mediterranean Sea, and thus with
an excess of CDOM compared to the standard value as
prescribed by Eq. (1), the corrections result in diminishing
the OC4v4 [Chl] estimates (the converse holds true when
8 < 1). When8 ∼ 4, the correction can reach−50% (Fig. 9,
in Morel and Gentili, 2009). In both the Mediterranean
basins, such a halving happens in winter and early spring
(last row in Fig. 3), while the reduction is less in summertime
(∼ −20/30%). After correction, the [Chl] values, averaged
over the entire Eastern basin, would not exceed 0.12 mg m−3

in February–March, and remain almost constant (around
0.065 mg m−3) for the rest of the year, thus confirming the
oligotrophic status of this province. In the Western basin, the
bloom peaking in March is considerably reduced when cor-
rected (average value 0.25 mg m−3 versus the initial value
around 0.47 mg m−3); thereafter [Chl] remains roughly con-
stant amounting on average to∼0.12 mg m−3. Importantly,
the strong progressive increase in [Chl] from September to
January, that appears in both basins through the use of stan-
dard algorithms, is largely smoothed out after correction, in

such a way that the bloom in March (Western basin) emerges
as a more isolated feature. Actually, field data in the northern
part of the western basin (Marty et al., 2002; Antoine et al.,
2008) do not indicate a regular and so abrupt algal biomass
increase during autumn; instead they tend to support the cor-
rected values. It is also worth noting that the northern At-
lantic sector, where the8 anday values are notably below
those of Mediterranean, exhibits the most prominent [Chl]
peak during the spring bloom (in April), almost unaffected
by the CDOM correction; sometimes, the correction may be-
come positive, when8 is locally <1 (e.g., along the 38◦ N
line in Atlantic; cf. Fig. 2 for March 2006).

5.3 Yellow substance index and regionally
tuned algorithms

To reconcile the field and satellite determinations of [Chl] in
the Mediterranean Sea, regional algorithms were empirically
proposed; they were simply based on regression analyses of
blue-to-green reflectance ratios, such asR443

555 (in Gitelson et
al., 1996; or Bricaud et al., 2002), orR490

555 (in D’Ortenzio
et al., 2002), or MBR (Maximum band ratio, in Volpe et al.,
2007) versus field determinations of [Chl]. These empirical
relationships were used by these authors instead of the algo-
rithms regularly operated at global scale by Space Agencies.
They provided more realistic [Chl] values when compared to
the overestimated concentrations returned by the routine al-
gorithms. It is thus logical to examine to what extent the yel-
low substances excess detected in the Mediterranean is able
to perturb the returns of the standard algorithms, and correl-
atively, whether the empirically algorithms actually reflect in
their tuned version the influence of an excess in CDOM.

For that purpose, the bio-optical model for Case-1 wa-
ters (MM-01) is operated to get the spectral reflectance as
a function of [Chl], and produce the ratios of reflectances
which are successively considered in the MBR algorithm
(O’Reilly et al., 2000). The result is the semi-analytical
OC4Me555 algorithm (already presented in Morel et al.,
2007b), which differs only slightly from the purely empirical
algorithm OC4v4 employed with SeaWiFS data. The obvi-
ous advantage of using the semi-analytical approach (com-
pared to empirical approach) is the possibility of simulat-
ing “perturbations” and examining their effects. The first
perturbation here considered consists of increasing the par-
tial absorption due to CDOM (by letting8 > 1); the results
are graphically shown in Fig. 5a. Besides the unperturbed
nominal algorithm (i.e., when8 = 1), the curves correspond-
ing to 8 = 2 and 4 are also drawn. They can be compared
with the regional algorithms, which roughly agree with the
modeled algorithm when a doubling in CDOM (8 = 2) has
been introduced. This agreement demonstrates that the em-
pirically tuned algorithms actually reflect the influence of an
above average CDOM content, even if they were not pur-
posely developed under this hypothesis. Another scenario,
however, must be envisaged, by which CDOM would stay
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Fig. 5. Maximum band ratio algorithm (OC4Me555, Morel et al.,
2007b) for the retrieval of [Chl]; the nominal algorithm (black solid
curve) is for the average standard situation in terms of CDOM
content (i.e., when8 = 1); this content is doubled, or multiplied
by 4, for the dashed curve and the dotted black curve, respec-
tively. In (a), the green straight line represents the regionally tuned
algorithm, proposed and used by Bricaud et al., (2002), namely
[Chl]=2.094(R443

555)−2.357 the red straight line represents the region-
ally tuned algorithm, proposed and used by Gitelson et al. (1996),
namely [Chl]=0.914(R440

550)−1.86 The MBR algorithm (“MedOC4”)
proposed by Volpe et al. (2007) is represented by the blue curve. In
(b) , the dashed and dotted red curves are derived from the nominal
algorithm (black curve) when the particle backscattering is doubled
(9 = 2) or multiplied by 4 (9 = 4). the dashed and dotted black
curves are as in (a).

at its standard level, while the particle backscattering coeffi-
cient,bbp, would be modified. This hypothesis was already
examined in Morel and Gentili (2009): in this intent, they
introduced a perturbation, represented by9 (either <1 or
>1), which is the ratio of the modifiedbbp coefficient to its
standard, [Chl]-dependent, value. By operating the MM-01
model, the modified MBR↔ [Chl] relationships can be pro-
duced for various9 values, as it was made for8. Increasing
9 above 1 produces an effect in the same direction as that
observed when increasing8, but the amplitude of this ef-
fect is much lesser (Fig. 5b). For instance, the position (in
Fig. 5a) of the empirical algorithm proposed by Bricaud et
al. (2002) can be explained if the CDOM content is doubled
(as said above), but if the change in particle backscattering
is presumed to be the cause of the shifted algorithm, a more
considerable increase ofbbp must be considered (approxi-
mately by a factor9 = 5).

Nevertheless, it cannot be dismissed that the difference be-
tween the regionally derived relationships and the regular al-
gorithm does not reflect exclusively a change in yellow sub-
stance concentration. Indeed, an enhanced backscattering,
bbp, was hypothesized by Gitelson et al. (1996), whereas
the effect of calcite was also examined by D’Ortenzio et
al. (2002). Actually, the couples of wavelengths involved
in the maximum band ratio, or in the above empirical re-
gional algorithms (namely 443–555 or 490–555 nm), can-
not provide an efficient mean to discriminate the cause
of the anomaly (either CDOM, or backscattering). To be

Fig. 6. Computed relationships betweenR412
443 and [Chl], for the

standard situation (solid black curve, with8 and9 = 1), and for
the situations modified by increasing the CDOM content (dashed
and dotted black curves, with8 = 2 and 4, respectively), or mod-
ified by increasing the particle backscattering (dashed and dotted
red curves, with9 = 2 and 4, respectively). Superimposed are the
R412

443 and [Chl] values extracted from the pixels in the western(a)
and the eastern Mediterranean(b) basins during the 12 months of
the year 2006. The number of occurrences is visualized through the
frequency color scale; the total number of pixels represented in each
basin is about 1.4 105).

efficient a tool must involve the 412 nm band, which is
particularly sensitive to the yellow substances presence and
concentration. This is demonstrated by Fig. 6a, b, where the
modeledR412

443 ratio is plotted as a function of [Chl]. Be-
side the nominal relationship (when8 and9 = 1), are shown
the modified relationships, namely when8 = 2 and 4 (while
9 = 1), or when9 = 2 and 4 (while8 = 1). Changes in
the backscattering coefficient result in reduced modifications
compared to those induced by changes in CDOM. The Sea-
WiFS data (R412

443 and [Chl]) for the year 2006, taken as exam-
ples, are also displayed. Two features are particularly signif-
icant: i) the actualR412

443 ratios seldom reach the ceiling curve
which would correspond to a standard situation with8 = 1,
and ii) their distance from this curve is such that a (moderate)
excess of yellow substance is the most plausible explanation
to the observed departures, rather than a hugebbp increase
needed to generate departures of similar amplitude. Any-
way, if existing, such large excesses in backscattering would
have inevitably been detected (and the corresponding pixels
flagged) when the turbidity criterion was applied.

An additional confirmation of the crucial role of yellow
absorbing substance(s) can be found by comparing the distri-
bution of the same (SeaWiFS, 2006) data in Fig. 1b with the
theoretical curves of Fig. 2c in Morel and Gentili (2009). In
the latter, it can be seen that when [Chl] is<0.25 mg m−3 ap-
proximately (i.e., whenR490

555>2.5), the impact of changes in
9 becomes extremely weak. This is a logical consequence of
the predominance of the backscattering by water molecules
over the particle backscattering in this low-[Chl] range. Most
of the pixels in the Mediterranean Sea fall in this range, and
thus are rather insensitive to changes in9 (if any).
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6 Discussion and conclusion

The major initial motivation of the present study was to
understand why the ocean color radiometry applied to the
Mediterranean Sea has recurrently provided data contradict-
ing the historically acknowledged low Chlorophyll concen-
tration. This contradiction was maintained when contempo-
raneous [Chl] measurements performed at sea during several
cruises were compared to satellite returns (e.g., Claustre et
al., 2002). Among the potential causes invoked to account for
such a discrepancy, an “anomalously” high yellow substance
content compared to oceanic average values was a plausi-
ble candidate. This hypothesis has been tested by operating
and applying to SeaWiFS data a recently proposed method
capable of detecting such an excess. As a first conclusion,
it appears that a notable yellow substance excess does ex-
ist in both basins of the Mediterranean Sea when they are
compared with the neighboring Atlantic sectors. This excess
explains why the standard algorithms have generally overes-
timated [Chl], and also how regionally tuned algorithms have
been able to return more realistic values.

A first discussion necessarily deals with the accuracy of
the present results and their numerical significance. As al-
ready underlined when describing the method here employed
(Morel and Gentili, 2009), the quality of the retrieved marine
signal at 412 nm is crucial, as a component of theR412

443 ratio.
Unfortunately, beside the sensor calibration problem, achiev-
ing an accurate atmospheric correction at this wavelength is a
difficult task so that the assessment of the marine signal may
be affected. The difficulty actually increases when the air
mass increases, i.e., when the sun-zenith angle and the view-
ing angle increases (Wang, IOCCG Report, 2009). A recent
match-up analysis of satellite derived reflectances compared
with in situ radiometric observations (Antoine et al., 2008)
showed that the poorest performances are precisely observed
for this 412 nm channel. For the three major sensors (Sea-
WiFS, MODIS-A, and MERIS), the scatter of the satellite
values compared with field values (Fig. 9, and Tables 2, 3,
and 4, ibid.) is larger at 412 nm than at any other wave-
length, and in addition, the three sensors behave differently.
For instance, the MERIS reflectances at 412 nm are con-
siderably overestimated with an average MERIS-to-in situ
data ratio amounting to about 1.60 (and 1.32 and 443 nm).
In contrast, this ratio is closer to unity (0.92 for SeaWiFS,
and 0.90 for MODIS-A), likely because these sensors have
been vicariously calibrated on orbit, which is not yet the case
for MERIS. As an overestimate of the marine reflectance at
412 nm, and hence of theR412

443 ratio, leads to a reduction of
the 8 factor, and subsequently of theay(443) values, it is
not surprising that theay(443) values derived from MERIS
data (not shown) are systematically below those derived from
SeaWiFS; the divergence increases in winter when the sun-
zenith angle reaches its highest values (∼70◦ for MERIS,
according to its orbit phasing) in the northern part of the
Mediterranean basins. The examination of the atmospheric

correction performance at the bluest wavebands is a topic in
itself, and a difficult topic, out of the scope of the present
study. It is worth noting that the results here presented actu-
ally rest on the use of a single sensor and a single atmospheric
scheme, developed for SeaWiFS, which at least allows an in-
ternal consistency of the results to be preserved. This cau-
tion regarding the quality of the violet signal, however, has
to be kept in mind and justifies the previous recommendation
of considering the relative variations from zones to zones,
rather than the absoluteay(443) values.

Systematic and reliable field measurements ofay(443) in
the Mediterranean Sea and neighboring Atlantic are not yet
available to consolidate the satellite derived values. Some
ay(443) determinations near the Canary islands were pub-
lished (Babin et al., 2003) amounting to about 0.01 m−1,
whereas within and off the Rhone river plume values ranged
from 0.1 to 0.01 m−1. A few data obtained in the near sur-
face layer (and atλ=300 nm) in the NE Atlantic subtropical
gyre and in the oligotrophic Cyprus gyre (Eastern Mediter-
ranean) (Kitidis et al., 2006a, b) are compatible with those
obtained here at 443 nm. The uncertainties when extrapolat-
ing theay values (∼0.23 m−1), from 300 nm toward 443 nm,
prevent from going beyond a rough qualitative statement. In-
direct estimates via field values of the spectral reflectance
and attenuation coefficient in the blue and near UV domains
(Morel et al., 2007a), however, convincingly supported the
existence of high yellow substances content in the Mediter-
ranean Sea compared to that in Pacific Ocean.

Even if the enigmatic failure in the remote assessment of
[Chl] in the Mediterranean Sea, and the presumably peculiar
optical properties in this area have formed the main motiva-
tions of the present paper, it is difficult to dodge the issue
of the origin of such a singularity. A second discussion will
briefly deal with this geochemical aspect. The main specific
traits can be summarized as follows; i) the yellow substance
level in the Mediterranean Sea is about twice that of nearby
oceanic waters with similar trophic conditions, ii) the level is
higher in the western basin than in the eastern basin, and in-
side the western basin the level is higher in the northern zone
compared to the southern zone, iii) there is everywhere a pro-
nounced seasonal signal, mainly shaped by the strong de-
pression during summer, superimposed upon a background
of high values.

First of all, the sources and sinks of yellow substances in
the open ocean, as well as the (physical, chemical, biologi-
cal) interactions regulating its concentration and distribution
remain largely elusive (e.g., discussion in Nelson and Siegel,
2002). This general statement obviously continues to hold
true as far as the Mediterranean Sea is concerned. A clue,
perhaps, to get some insight into the question of a higher
CDOM content could be to examine what are the specifici-
ties of this semi-enclosed sea.

The possibility that such a CDOM background (and par-
ticularly its truly dissolved fraction) may have a significant
terrestrial component is to be considered. As suggested by
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Siegel et al. (2002) for instance, the differences in the bulk
concentration in the North Atlantic Ocean and in the North
Pacific Ocean could plausibly originate from differences in
riverine inputs, 3 times greater in the former zone than in
the latter. Is such a similar explanation applicable to the
Mediterranean Sea, and to the contrast between this sea and
the neighboring Atlantic?

To examine this question, the water discharge of the major
world rivers are considered; they are taken in Cauwet (2002),
and the oceanic areas in Sverdrup et al. (1963). From
these data it can be inferred that the annual mean river dis-
charges is equivalent to a layer of about 180 mm yr−1 for the
ocean within the Northern Hemisphere (including its Arc-
tic and Baltic regions), and 27 mm yr−1 for the ocean within
the Southern Hemisphere; note that such computations as-
sume that the two oceanic hemispheres are hypothetically
disconnected. The dissymmetry in the oceanic distribution
of CDOM, with higher mean concentration in the Northern
Hemisphere, compared to that in the Southern Hemisphere
(e.g., Fig. 4 in Siegel et al., 2002, and Fig. 5, and 6c in Morel
and Gentili, 2009) could thus originate from the dissymmetry
in the river impact. The same kind of computation for the en-
semble Mediterranean Sea plus Black Sea leads to an annual
river discharge equivalent to approximately 135 mm yr−1

(100 mm yr−1 in Mariotti et al., 2002).This value is thus be-
low the average for the entire Northern Hemisphere, that ad-
mittedly is geographically biased, by its arctic water budget.
Such a value, however, is probably above the typical values
for the same (30–45◦ N) band in the near-Atlantic, but this
assumption cannot be easily verified. Therefore, the river-
ine contribution in the formation of a high level in yellow
absorbing substances is a plausible explanation, but not a
decisive one.

An exceptional trait of the Mediterranean hydrology is the
formation of specific deep waters and bottom waters which
occur in winter within the coldest northernmost parts of the
basins. The most active convection occurs in the gulf of Li-
ons and results in the formation of the deep water for the
western basin. In north Aegean and Adriatic seas similar pro-
cesses lead to the formation of the deep water of the eastern
basin, whereas the Levantine intermediate water is formed
in the vicinity of the island of Rhodes (see e.g., Lacombe
and Tchernia, 1972). These zones are the seat of deep ver-
tical convections in winter, followed thereafter by vernal al-
gal blooms supported by the upward flux of nutrients. Dur-
ing the convection episodes, a vertical transport of deep (not
bleached) yellow substance occurs (Nelson and Siegel, 2002)
and may account for its enhancement within the upper lay-
ers, more accentuated in the western basin where the verti-
cal mixing process is more active than in the eastern basin.
The North-South dissymmetry in theay distribution is also
coherent with the N-S dissymmetry in the vertical convec-
tion processes. Actually, the maxima inay are progressively
built during the autumnal period, and apparently are associ-
ated with the erosion and deepening of the pycnocline, rather

Fig. A1. Map of the Mediterranean Sea and approximate lo-
cation of the geographical features mentioned in the text. The
meaning of the abbreviation is as follows (alphabetical order):
Ad = Adriatic Sea, Ae = Aegean Sea; AP = Algero-Provencal basin;
B = Black Sea; BS = Bosporus Strait; Cr = Crete island; Cy = Cyprus
island; GL = Gulf of Lions; GS = Gibraltar Strait; I = Ionian Sea;
L = Levantine basin; M = Marmora Sea; Sa = Sardinia; Si = Sicily;
T = Thyrrhenian Sea; Tu = Tunisia.

than with the vernal algal blooms which occur later, more
abruptly, and when stratification set up.

According to its latitude, the Mediterranean region expe-
riences a contrasted seasonal cycle, with high sunshine and
cloudless skies in summer, particularly in its southern parts
engaged into the semiarid climate belt. Combined with the
stratification of the water column, the strong solar flux in
summer is able to explain, via the photochemical bleaching
process, the precipitous decrease in both basins of8 anday

from their maxima in winter to a flat minimum extended from
July to September. A similar process comes into play every-
where at the same latitude, in Atlantic for instance. It appears
to be more marked in the Mediterranean Sea, but this appear-
ance is perhaps due to the fact that the initial (i.e., winter)
background in Mediterranean is higher than in Atlantic, so
that the winter-summer contrast is enhanced.

There are not presently adequate biochemical information
nor in situ determinations, including at depth, to consolidate
the above attempts to explain the yellow substance levels and
their cycles in the Mediterranean Sea and in the near At-
lantic. Nevertheless, their comparative detection, which was
the aim of the present work, is clearly established. The re-
sulting inaccuracy in the assessment of [Chl] is also demon-
strated, and, if not accounted for, leads to a non negligible
readjustment of the algal biomass estimate, and thus of the
productivity in this Sea.
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