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Abstract. The Henry's law constant is a key property neededand condensed phases (e@gldstein and Galbally2007).

to address the multiphase behaviour of organics in the atmoA significant fraction of secondary organics may dissolve
sphere. Methods that can reliably predict the values for thento the tropospheric aqueous phase, namely rain, clouds and
vast number of organic compounds of atmospheric interestleliquescent particles (e.gSaxena and Hildemanni996

are therefore required. The effective Henry's law constantFacchini et al. 1999. The resulting mass transfer is cur-
H* in air-water systems at 298 K was compiled from litera- rently suggested to contribute to acid production, organic
ture for 488 organic compounds bearing functional groups ofaerosol formation and the oxidant budget (d.glieveld and
atmospheric relevance. This data set was used to assess tBeutzen 1990 Walcek et al.1997 Blando and Turpin200Q
reliability of the HENRYWIN bond contribution method and Ervens et al. 2003 2008 Legrand et al.2003 2005 Yu

the SPARC approach for the determinationf. More- et al, 2005 Gelencser and Varg&005 Lim et al, 2005

over, this data set was used to develop GROMHE, a newHallquist et al, 2009.

Structure Activity Relationship (SAR) based on a group con- In atmospheric models, the partitioning of organics be-
tribution approach. These methods estimateHdgwith a tween the gas and the aqueous atmospheric phases is usu-
Root Mean Square Error (RMSE) of 0.38, 0.61, and 0.73ally described in the basis of Henry’s law (e.gacob et a.

log units for GROMHE, SPARC and HENRYWIN respec- 1989 Aumont et al, 2000 Herrmann et a).200Q 2005 Er-
tively. The results show that for all these methods the reli-vens et al.2003 2008 Pun et al.2002 Griffin et al,, 2003.
ability of the estimates decreases with increasing solubility.Henry’s law expresses the relationship between the solubility
The main differences among these methods ligfif pre- of a gas in a liquid and its partial pressure above that liquid:
diction for compounds withH* greater than 1DMatm~1.

For these compounds, the predicted values ofddgising S=HxP @)

GROMHE are more accurate (RMSE =0.53) than the estiyheres is the solubility (M), P is the partial pressure (atm)
mates from SPARC or HENRYWIN. and H is the Henry's law constant (Matm) at a given
temperature. Henry's law is a limiting law that strictly ap-
plies to ideally dilute solutions (e.d-evine 2002 Boethling
1 Introduction and Mackay 2000. Atmospheric models require a knowl-
edge ofH for every water soluble organic species described
The oxidation of hydrocarbons emitted in the atmospherein the chemical mechanism. Detailed gas phase or multi-
involves complex reaction sequences. This oxidation is aPhase chemical mechanisms involve a vast number of species
gradual process leading to the formation of oxygenated or{€.g.,Saunders et al2003 Aumont et al, 2005 Herrmann
ganic intermediates usually denoted as secondary organic® al, 2009. The collection of Henry's law constants re-
(e.g.,Atkinson, 2000. The fate of these secondary organ- quired to develop detailed models far exceeds the number
ics remains poorly quantified due to a lack of information Of species for which experimental data is available. For

about their speciation, distribution and evolution in the gasexample, the fully explicit oxidation mechanism developed
by Camredon et al(2007) for 1-octene includes.2 x 10°

species and the gas/aerosol thermodynamic equilibrium for

Correspondence td3. Aumont about 4<10° species. Reliable estimation methods fér
BY (aumont@lisa.u-pec.fr) are therefore required to design detailed mechanisms. To

Published by Copernicus Publications on behalf of the European Geosciences Union.


http://creativecommons.org/licenses/by/3.0/

7644 T. Raventos-Duran et al.: SAR to estimate the Henry’s law constants of organics

be useful, estimation methods must be applicable to a wide
range of organics, especially to multifunctional species gen- In this paper, we first describe the selection of the database
erated during the atmospheric oxidation of hydrocarbonsused to develop and/or assess the estimation methods. We
The aim of this paper is to identify a reliable method for then describe the development of GROMHE and finally anal-
estimating Henry's law constants for organic compounds ofyse the performance of the three methods considered for this
atmospheric interest in air-water systems. study.

Numerous structure activity relationships (SARs) have
been developed to determine the Henry's law constants in
a response to the difficulties associated with its laboratory2 Database
measurement, in particular, for compounds with higher sol-
ubility (Mackay and Shiu198% Russell et al.1992 Hine Usually the experimental values found in the literature are
and Mookerjeg 1975 Meylan and Howard1991 Suzuki expressed as effective Henry’s law constait$, which in-
et al, 1992. These SARs were reviewed and analysedcludes the hydration process. We differentiate the literature
by Dearden and Schuurmar{f8003. This study showed H* values from the intrinsié? values as detailed in the next
that the bond contribution method developed\Mbgylan and  section. The database of Henry's law constants was com-
Howard(1991) and updated in the frame of the HENRYWIN piled to include species representative of atmospheric oxida-
(HWIND) software Meylan and Howarg2000 was the most  tion processes occurring in the gas or agueous phase. Ta-
reliable method availableDearden and Schuurmaf2003 ble S1 (see the electronic supplement) lists the experimen-
analysed 700 compounds with HWINDb and founc&kaof  tal values selected in this study in units of Mathrand pre-
0.88 with a standard deviation of 1.03. Recently, a newsented as the logarithm &f*. The database includes 488
method, SPARC, has been developedHilal et al. (2008. organic compounds comprising a wide range of functional
This method is based on the product of the activity coefficientgroups detected in either gas or aqueous phase: nitrate, ni-
in wateryS° and the vapour pressuf®’ which are estimated  tro, peroxyacylnitrate, aldehyde, ketone, ester, ether, alcohol,
using intermolecular interactions in the pure liquid phase anchydroperoxide, peracid, carboxylic acid and halogen (e.g.,
in solution (e.g.Boethling and Mackay2000. Hilal et al. Finlayson-Pitts and Pitt200Q Seinfeld and Pandid997).
(2008 used an experimental database of 1222 compound3he number of species bearing a specific functional group
to test the air-to-watef/. Their results show that for sim- is given in Table 1. The availability of data for hydroper-
ple molecular structures, the standard deviation is within aoxides (3 species) and peracids (1 species) is limited and
factor of 2 but reaches a factor of 3 to 4 for more complextherefore it is difficult to assess the reliability &f* esti-
molecules having strong intramolecular and/or dipole-dipolemates for these groups of species. This is a limiting factor
interactions. since oxidation proceeds through the formation of such com-

The objective of this paper is to assess the reliability of pounds in remote conditions (or low N@onditions). Ad-
HWINb and SPARC methods. To this end an experimentalditional data for these groups of species would be especially
database of Henry's law constants was compiled. Speciavaluable to constrain structure activity relationships for at-
attention was given to select those compounds Withbove =~ mospheric applications. The database is also poor for mul-
10° Matm~1 which are soluble enough to have significant tifunctional oxygenated organics, although special care was
partitioning in the atmospheric aqueous phase (8gjnfeld  taken to be as comprehensive as possible in the collection of
and Pandis1997 Gelencser and Varga005. Furthermore, experimentald* for these groups of species. Data listed in
this database was used to develop a new SAR: the GROujpable S1 includeg* for 76 hydrocarbons, 231 monofunc-
contribution Method for Henry's law Estimate (hereafter tional compounds, 132 difunctional compounds and 49 com-
named GROMHE). HWINb, SPARC and GROMHE are pounds bearing at least 3 functional groups. Both aliphatic
all SARs based on a multiple linear regression approachand aromatic species were considered in the compilation and
The main difference between them relies on the selectiorthe data in Table S1 can be split into 393 aliphatic and 95
of descriptors (i.e. the predictors) used to estimdteThe  aromatic species. The constants included range front 10
descriptors chosen by SPARC are physical parameterto 1 Matm~1. Henry’s law constants depend on the type
(e.g. volume, molecular polarisability, molecular dipole, H of functional groups attached to the carbon chain and usu-
bonding parameters, dispersion interaction, induction inter-ally increase with the number of groups; for hydrocarbon
action, H bond interaction, entropic term, etc.) and quantunrspeciesH* ranges from 10 to 10~ Matm~ whilst for
mechanical calculations are required to determine theirmonofunctional organic compound$* ranges from 10%
values Hilal et al, 2009. HWINDb uses simple molecular to 1 Matm~2. Difunctionals compounds have the greatest
structural descriptors: the number and type of the chemicaftange ofH*, from 101 to 10° Matm.
bonds and in addition, some correcting factors. GROMHE Most of the Henry's law constants used in this study
follows a similar paradigm but is based on the number andwere collected from three different libraries; NISHtt:
nature of the functional groups present in the molecule (seé/webbook.nist.gov/chemistyythe Sander data revieut{p:
Sect.3.2). /Iwww.mpch-mainz.mpg.de/sander/res/henry.htrahd the
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Table 1. Descriptors for the model GROMHE, number of species in the database contributing to the descriptor and their related contribution,

standard error and statistical significance in the MLR.

7645

Training dataset All dataset

Descriptof - o

Number of  Contribution Standard p-Value Number of  Contribution  Standard p-Value

species Error species Error
Functional group and structural descriptors
# of hydroxy groups (-OH) 85 4.56 0.11 0.0000 120 4.56 0.09 0.0000
# of nitro groups (-NO2) 22 3.06 0.12 0.0000 27 3.02 0.10 0.0000
# of nitrate groups (-ONO2) 33 2.06 0.07 0.0000 44 2.04 0.06 0.0000
# of hydroperoxide groups (-OOH) 1 4.98 0.42 0.0000 3 4.87 0.24 0.0000
# of fluorine groups (-F) 15 0.60 0.10 0.0000 19 0.60 0.08 0.0000
# of chlorine groups (-Cl) 26 0.88 0.07 0.0000 51 0.87 0.06 0.0000
# of bromine groups (-Br) 15 1.04 0.10 0.0000 21 1.06 0.09 0.0000
# of iodine groups (-1) 7 1.15 0.18 0.0000 11 1.22 0.13 0.0000
# of aldehyde groups (-CHO) 18 2.63 0.12 0.0000 24 2.59 0.11 0.0000
# of ketone groups (-COR) 22 3.29 0.12 0.0000 35 3.16 0.10 0.0000
# of acid groups (-COOH) 27 5.11 0.11 0.0000 36 5.09 0.09 0.0000
# of peracid groups (-COOOH) 1 4.68 0.41 0.0000 1 4.68 0.40 0.0000
# of peroxyacyl nitrate groups (-PAN) 3 1.94 0.25 0.0000 5 1.93 0.19 0.0000
# of ether groups (-OR) 42 2.44 0.10 0.0000 52 2.40 0.09 0.0000
# of ester groups (-COOR) 37 2.79 0.10 0.0000 55 2.78 0.08 0.0000
# of formate groups (-HCOOR) 3 2.39 0.25 0.0000 4 2.36 0.21 0.0000
# of C atoms 345 0.49 0.02 0.0000 488 0.50 0.02 0.0000
# of H atoms 345 -0.31 0.01 0.0000 488 —0.31 0.01 0.0000
nfcd 26 —0.59 0.07 0.0000 37 —0.52 0.05 0.0000
nfaro 48 -1.10 0.07 0.0000 67 -1.12 0.06 0.0000
Group interaction descriptors
tdescriptor 98 -0.14 0.01 0.0000 138 -0.14 0.01 0.0000
caox-a 9 -1.78 0.17 0.0000 13 -1.77 0.13 0.0000
caox-b 8 —-1.31 0.18 0.0000 12 —1.09 0.14 0.0000
hyd-a 18 —0.63 0.13 0.0000 29 —0.60 0.10 0.0000
hyd-b 15 —1.00 0.18 0.0000 23 —1.03 0.14 0.0000
Correction factor descriptors

haloic-a 5 0.98 0.21 0.0000 10 0.97 0.15 0.0000
onitrofol 7 —2.72 0.23 0.0000 10 —2.66 0.19 0.0000
nogrp 52 —-0.31 0.11 0.0069 76 —-0.28 0.09 0.0028
Intercept - —-1.51 0.11 0.0000 - —-1.52 0.09 0.0000

2 See Sect. 3.2 for the meaning of the descriptor.

Environment Protection Agency HENRYWIN program  Most experimentalH* data in Table S1 are provided at
(Meylan and Howard2000 with a few additional values 298 K. A small number of species measured at 293K (20
taken from recently published papers (see Table S1 in theompounds, see Table S1) were also included to obtain a
electronic supplement). The data were taken from experibetter representation of multifunctional oxygenated species.
mental values either from direct or indirect measurementsThese values were corrected using the van't Hoff equation:
The indirect measurements are based on relationships be-
. . . - AHsoly 1 1

tween thermodynamic variables. In particular, for sparingly H29s= Ho93xeXp| ——— | =5 — 505 (2

e . . R 293 298
water soluble specieg]* is often estimated using the rela- ) ) _
tionship: H* = 5% / P° wheresS?, is the solubility for a sat- Where AHsoy is the desolvation enthalpy ardl is the gas
urated solution and? is the vapour above the pure com- constant. The desolvlanon enthalpiHso typically ranges
pound in the condensed phase. Becaiseand P° val-  from 10 to 100 kJmot- (e.g.,Kuhne et aI,.ZOQS. This span
ues are measured independently in the laboratory, we havef enthalpies leads to a decreaseHt ranging from 7 to

two sources that contribute to the uncertainty in the fidgal ~ 50% fora5Kincrease (i.e. from 0.03 to 0.3 log units). Here,
value Mackay and Ship1983). we assume a typical value of 50 kJ mbffor all species. For

each species measured at 293 K, the valuddfn Table S1

www.atmos-chem-phys.net/10/7643/2010/ Atmos. Chem. Phys., 10, 76882010
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was thus decreased by 0.15 log units. The uncertainty in the Most estimation methods were based on group contribu-

applied correction factor is small compared to the uncertaintion methods using lof* as the training data set. Equa-

ties from the SAR outputs and experimental data. tion (4) shows that for carbonylst* is a function of 2

For empirically based methods, the experimental uncerfundamental propertiesi and Khyg). If Knyg>> 1 then

tainties are transferred into the models’ uncertainties. HowdogH* ~ logH +logKhyqg. On the other hand, iKnyg < 1,

ever, uncertainties for the data reported in Table S1 arghen logH* ~logH. This conditional addition of lo&yq

hard to evaluate owing to the large number of experimentals hard to represent by a simple group contribution method

sources and the lack of reported experimental uncertaintiegvhich assumes additive groups. Here we estimated both

in many of the original paperf{ssell et a].1992. During Knyd and the intrinsid? for each carbonyl and used Equation

the compilation, we found that discrepancies in the measured to finally computeH *. Note that the method performance

H* value for a given compound often exceeded a factor of 2was assessed on the accuracyrf which is the primary

The discrepancies tend to increase with which indicates  property being investigated.

the difficulties of measuring the physical property for those A SAR was constructed to estimak&yq based on a mul-

species with very high Henry’s law constantdilal et al, tiple linear regression approach using the experimental data

2008 Mackay and Shiu1981). As a guideline, we assume shown in Table S2 as training set. This modelling approach

that the uncertainty is at least a factor of 2 for species havingassumes that the relationship between the dependent variable

H* above 16 Matm™1. yi (here Knyg) and the independent variables (here the
structural descriptors or predictors) is linear. The equation
for this model is given by:

yi =PBo+Brxyi+--+Bjxj i+ (5)

wherei stands for thé!” species in the database,; is the
Compounds containing carbonyl groups like aldehydes and” descriptors ang; are the regression coefficients (here
ketones may undergo significant hydration. Carbonyls comhe contributions) computed for the descripjorThe best-
bine with water molecules to form gem diols upon dissolu- fitting line for the observed data is calculated by minimising

3 Development of the GROMHE estimation method

3.1 Estimation method for hydration constants

tion according to the equilibrium: the sum of the squared errors, SSE:
>C=0+H0O <«— > C(OH)(OH) n
The equilibrium of the carbonyls between the hydratedSSE:Z(IogKhyd,est— IogKhyd,eXp)2 (6)
(> C(OH)(OH)) and non-hydrated > C=0) form is de- i=1
scribed by the hydration constakihyd: wheren is the number of species included in the database.
[> C(OH)(OH)] The descriptors were selected following their assessment in

> c=0] (3)  the multiple linear regression.

Previous studies have shown tifyq is well correlated
Table S2 (see the electronic supplement) shows the compiwith the inductive effect of the neighbouring groupse(
lation of the hydration constants for 61 aldehydes and/or keHenaff 1968 Betterton and Hoffmannl988. Therefore,
tones.Knyq is typically about 102 and 1 for simple ketones  Taft and Hammett were used as descriptors for aliphatic
and aldehydes, respectivelyknyq increases by 1 to 3 or- and aromatic compounds, respectively (see Table 2). Ham-
ders of magnitude when a strongly polar group is attachednett values for the various functional groups were obtained
to the carbon atom next to the carbonyl group. Hydration isfrom the data reviews dflansch et al(1995 andPerrin et al.
therefore a key parameter affecting the solubility of multi- (1987). We defined a “Hammett descriptor” (referenced as
functional carbonyl compounds. hdescriptorin Table 3) as the sum of the contribution of each

The partitioning of species that undergo hydration in watergroup:

is usually described with the effective Henry’s law constant

Khyd =

H*. The effective Henry’s law constant of a compound is descriptor = X0, + oy + Xop @)
defined as the ratio between the total dissolved concentratiowhereao om, o, are the Hammett sigma values for the func-
and its pressure: tional groups in ortho, meta or para positions relative to the

([> C=0] +[> C(OH)(OH)]) benzaldehyde group (see Table 2). Similarly, we defined a
H*= Poco =H(1+Kny) (4)  “Taft descriptor” ¢descripto) as:

>C=
where H is the intrinsic Henry’s law constant for the car- !descriptor = %o} €
bonyl. The values extracted from the literature and listed inyhereq* are the Taft sigma values for the functional groups
H L

Table S1 (see the electronic supplement) are theréforler ; pome by the molecule in relation to the carbonyl group
carbonyls. (see Table 2). Two additional molecular descriptors were in-

troduced to discriminate aromatic from aliphatic compounds

Atmos. Chem. Phys., 10, 7648654 2010 www.atmos-chem-phys.net/10/7643/2010/
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Table 2. Sigma Taft and Hammett values for organic functional groups (adapted from Perrin et al., 1981).

Functional group  Taft*® Hammettorthas, Hammett meta,, Hammett para,

ROH 0.62 0.13 -0.38 1.22
RNO, 1.47 0.74 0.78 1.99
RONG) 1.54 0.55 0.7 -
ROOH® 0.62 - - -
RF 1.10 0.34 0.06 0.93
RCI 0.94 0.37 0.24 1.28
RBr 1.00 0.39 0.22 1.35
RI 1.00 0.35 0.21 1.34
RCHO 2.15 0.36 0.44 0.36
RCOR 1.81 0.36 0.47 0.07
RCOOH 2.08 0.35 0.44 0.95
COOOH 2.08 - - -
PANC 2.00 - - -
ROR 1.81 0.11 ~0.28 0.12
ROCOR! 2.56 0.32 0.39 0.63
RCOOR® 2.00 0.32 0.39 0.63
HCOOR 2.90 - - -

2 Reportedr* is the inductive effect that the carbon bearing the functional group exerts on its direct neighbouring groups. According to Perrin eteat. {di9Bh)tional

groups attached to carbons at distant positions are determimed@s< (0.4)" wheren is the number of aliphatic carbons separating the functional groups. The 2 carbons forming
a C=C bond are counted as one C oﬁly?errin etal. (1981) gives* = 3.86 for the nitrate group. The value reported here*is-0.4x 3.86, estimated for the carbon bearing the
nitrate functional group to its neighbouring groups/alue set assuming thakooH = 6ROH: 9C(0)00H = FRC(0)OH: PAN = ORCOOCHS3 d Sigma for ester at the -O- sid®.

Sigma for ester at the -CO side.

and ketone from aldehyde groups. Table 3 provides the op- T T T T T

timised contribution for these 4 descriptors and Fig. 1 shows 6l _
the resulting scatter plot. The coefficient of determination is R2=0.906
R?=0.91. The reliability of the method was assessed using N=61
the root mean square error (RMSE) defined as: 4r- . =
18 2 3 A
RMSE= Y Z (lOQKhyd,est— |OgKhyd,exp) 9) E2r VA N
i=1 51 . ...
wheren is the number of species included in the database. or "es B .
The RMSE obtained is 0.47 log units. The method allows {
estimatingKhyq within a factor of 3. , L
3.2 Estimation method for the intrinsic Henry’s law _5 (') 5 "‘ é
constants log K
yd, exp

The GROMHE approach is similar to the method described_. . ' .

. . L Fig. 1. Estimated hydration constant versus experimental values.
by Suzuki et al.(1992 and is based on considering a The line is they = x line.
molecule as a collection of elemental constituents (functional
groups or atoms) whose contributions are computed using
a multiple linear regression (MLR). The original approach ] ]
by Suzuki et al.(1992 was developed for monofunctional & requirement to reduce the number of descriptors used as
species only. In GROMHE, the approach is extended toMuch as possible. An attempt was thus made to minimise the
multifunctional species using additional descriptors to ac-number of descriptors and to optimise the regression for the
count for group interactions. The identification of descriptors SPecies of atmospheric interest.
for the multiple linear regression is complex: increasing the The database was split into two sets: 70% of the data were
number of descriptors (increase in the degree of freedomysed as training set and the remaining 30% were reserved
usually leads to a better fit of the experimental data. How-for validation and were not used during the development of
ever, regression models are prone to over-fitting and there ithe method. The training data set was then used to compute

www.atmos-chem-phys.net/10/7643/2010/ Atmos. Chem. Phys., 10, 76882010



7648 T. Raventos-Duran et al.: SAR to estimate the Henry’s law constants of organics

Table 3. Descriptors for the model to estimate hydration constants"f]duciuve effec;t between functlongl grqups Was ("?)fplored as
and their related contribution, standard error and statistical signifi-2 Parameter linked to the overestimationffidentified in

cance (p-value) in the MLR. multifunctional species. Here, we introduced Sigma Taft
(o*) as a descriptor for aliphatic species (elgpnsch et aJ.
1995. Group interactions were taken into account by adding,

Descriptor Contribution  Standard Error p-Value : :
for each group, theo ¥ of the neighbouring group:
tdescripto® 1.27 0.07 0.0000 J
hdescripto? 0.50 0.17 0.0049 : N
Ketone flag? —2.50 0.17 0.0000 tdescriptor = ZZ“J’ (10)
Aromatic flag? ~ —1.58 0.24 0.0000 e
Intercept” 0.08 0.12 0.4968 wheretdescriptor is the parameter used as a descriptor for

the regression. Values far; are provided in Table 2 for
each of the 16 functional groups encountered in the database.
tdescriptor was found to be statistically significant for the

o ) _ prediction of H at the 99.9% confidence level (see p-value
the contribution of the descriptors selected for the regressiony, taple 1). The inclusion ofdescriptor in the set of

Species used for validation were randomly selected and argescriptors leads to a fairly good estimate#sffor multi-
given in Table S1 (see the electronic supplement). This rang,nctional compounds bearing nitro, nitrate and/or halogen
dom selection covered structurally diverse compounds réPgroups. HoweverH was still overestimated for multifunc-

resentative of all type of functional groups included in the g4 species bearing carbony! or hydroxyl moieties, so ad-
database (see Table 1). The effective Henry’s law constantgitional descriptors were introduced.

coIIe_cted_ in_ou_r data set were corrected for hydratio_n to o_le- Scatter plots showed that species with@=0)—C(X) <
termine intrinsic \{alues. Th_e structure activity relationship structure where X is an oxygenated moiety (carbonyl, alco-
(SAR) presented in the previous section was used systematl,| ether, hydroperoxide or nitro) have lowrvalues than
cally to derive the hydration constants for ketones and aldey, g icted by simple group addition. A specific structural de-
hydes and to compute the intrinsic Henry's law constait ( gorintor caox-ain Table 1) was therefore introduced to ac-
values. These derived intrinsi values were used as the .t for this effect. A similar trend was also observed when

training data set for the MLR analysis. Our model uses 28 . y moiety was located in thg position relative to the

independent descriptors, presented below. The list of debarbonyl group and was accounted for by the inclusion of

scriptors along with their contributions and standard errorsy o caox-bdescriptor. Similarly,H was found to be over-
are shown in Table 1. estimated for species having a functional group indher
Suzuki et al (1992 have shown that! can be estimated g position relative to an alcohol moiety. This effect might
for hydrocarbons and monofunctional species using the orqe Jinked to some intramolecular H-bonding (elgine and
ganic functionalities as descriptors along with the number OfMookerjee 1975 Hilal et al, 2008. This effect was taken
carbon and hydrogen atoms. We introduced 16 descriptorsnto account with the help of two additional structural de-
each corresponding to a distinct organic functionality idemi'scriptors:hyd-aandhyd-b The inclusion of these 4 descrip-
fied within the compounds comprising the study data set (segors was found to greatly imprové estimates for the multi-
Table 1), and two structural descriptors to account for thefynctional oxygenated species. However, a bias in predicted
number of hydrogen and carbon atoms. H was still found for 2 groups of species: o-nitrophenols
In contrast toSuzuki et al.(1992 who duplicated the de- and halogenated species bearing a carboxylic acid moiety in
scriptors to differentiate functionalities bound to an aromaticthe « position. Two additional descriptorkdloic-a, onitro-
chain from those bound to an aliphatic chain, we simply de-fol in Table 1) were introduced to correct this bias. This is
fined two additional descriptors to account for the number ofsimilar to the correction factors applied in the QSAR method
groups bound to an aromatic ring or an olefinic carbon re-developed byRussell et al(1992 and in the HENRYWIN
spectively, so as to keep the number of descriptors to a minmethod.
imum. These descriptors are referencedfaso andnfcdin The 27 descriptors listed above were all found to be sig-
Table 1. An MLR using these 20 structural descriptors wasnificant for the prediction off at the 99.9% confidence level
able to provideH estimates with ark? of 0.97 for the hy-  (see thep-values in Table 1). However, a small bias was
drocarbons and monofunctional species included in the databserved in the prediction @ for hydrocarbons and a fi-
set. nal descriptorifogrpin Table 1) was included to correct this
Extrapolation of our model using the 20 descriptors de-bias. The computed contribution fabgrpremains low and
fined above however leads to errors in the estimated valthis factor is the least significant in the regression (see the
ues exceeding 3 orders of magnitude for some difunctionalp-value in Table 1).
species. Additional descriptors were therefore included to Figure 2 shows the performance of GROMHE. The scat-
account for intramolecular group interactions. The mutualter plot for the training set in Fig. 2 shows that one species,

aSee Sect. 3.1 Flag is Boolean type set to 1 if the criterion is matched.
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Fig. 2. Scatter plot of estimated ldg* using GROMHE versus experimental I&#g for the training set (left panel) and the validation set
(right panel). The line is the = x line. The ) symbol represents oxo-acetic acid.

oxo-acetic acid, behaves as an outlier with Abgoveresti-  database. These final contributions agree with those com-
mated by 3 log units. This species was found to be overestiputed for the training data set within their statistical uncer-
mated by 6 log units using SPARC (see below). The reasorainties (see Table 1). The analysis of GROMHE predictions
of this large overestimation remains unresolved to us and wevere performed using the optimised contributions.
decided to remove that species from the GROMHE optimi- The overall performance of GROMHE is summarised in
sation training set. For the purpose of the intercomparisonthe scatter plot shown in Fig. 3a. The RMSE, MAE and
oxo-acetic acid was also removed from the statistical analyMBE are shown in Fig. 4 together with the box plot of er-
sis. The reliability of the predictions were assessed using theor distribution. The assessment was also performed for dif-
Root Mean Square Error (RMSE), determined as describederent subsets to identify possible bias for various groups of
previously in the context of the hydration constant assessspecies. Three categories of subsets were defined according
ment (see Equation 9), the Mean Absolute Error (MAE) andto: 1) the number of functional groups (hydrocarbons, mono-
the Mean Bias Error (MBE): functional, difunctional and multifunctional), 2) the aromatic

. or aliphatic structure of the molecule and 3) the range of the

MAE = EZ log Hy— |09ngp (11) Henry’s law constant to differentiate fairly insoluble species
niz1 (with H* below 1¢ Matm~1) from more soluble species
. (H* greater than IDMatm™1).
MBE = 1 3 (Iog HZ,—log ngp) (12) The coefficient of de.terminatioﬂ?2 between experimen-
ni= tal and predicted log* is 0.97 (see Fig. 3a). No significant

MBE was found for any of the subsets (see Fig. 4) and thus

The MAE. MBE and RMSE ) in Fig. 2 for th ~~~the GROMHE method seems to provide no systematic bias.
€ ' an are given in Fig. 2for the rain- gy o g scatter plots show that the error increases from sim-

ing and validation data sets. Figure 2 shows that the mode, le hydrocarbons to multifunctional species. The RMSE is
explains 97% of the total variance of the validation data set.0 30 for hydrocarbons and reaches a maximum of 0.52 for
Estimated log7* values for the validation set shows no sig- d: : . . L .

. ) o ifunctional species (see Fig. 4). Similarly, the error in pre-
nificant bias (MBE = 0.04). The RMSE for the validation set dicting logi* for more soluble compounds (i.e. more oxy-

Is 0.39, which corresponds to an estimation ability /6t gen substituted compounds) is significantly greater than for

e 2
W'th'fn a Lactorl_c()jf 2.'5' The RMS.E’.IMAE' r'\]/lBE anlﬂ Ival-d ‘ less soluble species. The RMSE is 0.33 and 0.53 for the sub-
ues for the validation set are similar to those calculated forg, ;¢ species having* below and above FMatm-L, re-

.. . . S
EQ::&Q'% set and show that the model is not 0Ver'f'tt%lspectiveIy. It was also observed that the method provides

better estimates for the aliphatic subset of species compared
to the aromatic subset (see Fig. 4). For the full database,
GROMHE finally gives fairly reliable logl* estimates, with

The previous section shows that GROMHE provides reliableRMSE of 0.38 and MAE of 0.27.

estimates o *. The contribution of the descriptors was op-

timised to obtain a more representative model using the full

wheren is the number of species included in the database

3.3 Analysis of GROMHE estimation method
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Fig. 3. Scatter plot of estimated versus experimentaHdgor (a) GROMHE method(b) HWINb method,(c) HWINb optimised method
and(d) SPARC-v4.2 method. The line is the= x line and the grey area represents agreement within one log unitxThgr(ibol represents
oxo-acetic acid.

4 Analysis of HWINb and SPARC estimation methods each method are shown in Figs. 5 and 6 together with the box
plot of error distribution.

HWINb, SPARC methods are able to estimaté for all the For the method HWIND, the scatter plotis shown in Fig. 3b
species selected in the database (see Table S1 in the eleand the performance in Fig. 5. The coefficient of determi-
tronic supplement)/* estimates from HWINb method were nation for logH¢; versus lodig,, is R?2=0.91. Hydrocar-
determined using the software EPIWIN stittp://www.epa.  bon and monofunctional compounds are well predicted with
gov/oppt/exposure/pubs/episuitedl.htmThe SPARC cal- a performance similar to GROMHE'’s performance. How-
culator pttp://sparc.chem.uga.edu/spagstimates indepen- ever, their prediction error is much larger for multifunctional
dently the intrinsicd and the hydration constaft,yg. These  compounds with RMSE above 1.0 log unit (see Fig. 5). A
two properties were jointly used to retrieve the effective bias was also found with a slight tendency towards overes-
Henry’s law constant* from Eq. (4). The values reported timation of logH* for difunctional species and underestima-
in Table S1 refer to the retrieved l84. The overall perfor-  tion for species having more than 2 functional groups. This
mance of the models HWINb and SPARC are summarised irprediction error shows a behaviour similar to that seen for
scatter plots (Fig. 3b and d). The RMSE, MAE and MBE for GROMHE, i.e. the error grows with increasing solubility.
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Fig. 4. Mean bias error (MBE), mean absolute error (MAE), root
mean square error (RMSE) and box plot for the error distribution
in the estimated lof* value with the GROMHE method. The
whiskers of the box plot show the 5th and 95th percentiles, the box
shows the second and third quartile and the red line gives the me-
dian value of the distribution.

dogef

HWINb optimised
*
est
o
|
m.

For the subset of species witti* above 18 Matm~1, the N < /e
RMSE reaches 1.1 log units which is twice the RMSE given & @0//;&01// SIS SIS S T8
by the GROMHE method. Furthermore, the error obtained <

with GROMHE for each subset is systematically lower than _
those obtained using HWINb. Fig. 5. Mean bias error (MBE), mean absolute error (MAE), root

. . mean square error (RMSE) and box plot for the error distribution in
The evaluation of HWINb method was made using the ine estimated logf* value with the HWIND (top panel) and HWINb

contributions provided by running the EPIWIN software. gptimised method (bottom panel). The whiskers of the box plot
These contributions are computed using another trainingshow the 5th and 95th percentiles, the box shows the second and
database. In an attempt to make a fairer inter-comparisonthird quartile and the red line gives the median value of the distri-
a multiple linear regression was performed to optimise thebution.

HWINb model to our database. The contributions of 47 de-

scriptors (35 bonds and/or fragments and 12 correction fac- ) L
tors) were revaluated to describe the structure of the 48gesults, a bias towards Iéf" overestimation is found for

molecules included in the database. The scatter plot obtaine@ifunctional species and towards underestimation for tri or
with the optimised HWINb model is shown in Fig. 3c and MOre functional species. Like GROMHE and HWIND the
the box plot in Fig. 5. The determination coefficieR? is reliability of SPARC estimates decreases with increasing sol-

0.96 compared to 0.91 for the original model. This optimised ubility. The error is about one order of magnitude for species

. _1 . .
model shows an improvement especially for the estimationh"’_“’Ing H* a_lbove 18 Matm _ (see Fig. 6). Here again, a
of logH* for the more soluble specie#l¢ > 103 Matm™1) fair comparison would require to revaluate the contribution
with an RMSE of 0.66 compared to 1.12 for the original of the SPARC descriptors using our database. However, the

model. The MBE was also considerably better showing noSPARC method is based in physical parameters which are
bias for all the data subsets. However. the RMSE and théjetermined using quantum mechanical calculations. These
MAE for the subset of species having at least 3 functionalcalcmationS are beyond the scope of this paper. Additional
groups still remain significantly lower for GROMHE. work would thus be required to evaluate the inherent per-

The correlation logi* estimated using SPARC versus ex- formance of the SPARC method before reaching any final

perimental log7* is shown in Fig. 3d. The coefficient of conclusions.

determinationk? is 0.94. SPARC performance is shown in

Fig. 6. SPARC and HWINb show similar reliability with 5 Conclusions

similar trends in the prediction of Idg* for the various sub-

sets. Hydrocarbons and monofunctional compounds are welh new group contribution method, GROMHE, was devel-
represented (RMSE 0.5) whilst errors become large for oped in this study to estimatd* for organic compounds
multifunctional species (RMSE 0.97). Similar to HWINb  at 298 K. A multiple linear regression was performed using
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