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Owing to the Taylor-Proudman theorem, it is generally believed that rotating flows should have
a two-dimensional dynamic for rapid background rotation. Yet, we show that two infinitely
long counter-rotating vertical vortices remain always unstable to three-dimensional perturbations
even for large rotation rate about the vertical axis. The dominant instability consists in quasi-
antisymmetric displacements of the two vortices. Its growth rate is independent of the rotation
rate when it is sufficiently large while the most amplified vertical wavelength scales like the
rotation rate. Direct numerical simulations show that the instability leads ultimately to a full
three-dimensional breakdown of the vortex pair.
In other words, a two-dimensional vortex pair will develop spontaneously three-dimensional

variations even in the limit of infinite rotation rate but the wavelength will tend to infinity. This
implies that the Taylor-Proudman theorem can be strictly valid only in vertically bounded flows.
The scaling for the wavelength is next generalized by showing that the typical vertical scale

in rapidly rotating unbounded flows is Lv ∼ Lh/Ro where Lh is the horizontal scale and Ro the
Rossby number. This scaling law is shown to derive from a self-similarity of the Navier-Stokes
equations for Ro � 1. The resulting reduced equations are identical to those obtained first by
Julien et al. (1998) and Nazarenko & Schekochihin (2011) by means of multiscale analyses in the
cases of rotating convection or turbulence.The self-similarity demonstrated herein suggests that
these reduced equations are valid for any rapidly rotating unbounded flow.

1. Introduction
The well-known Taylor-Proudman theorem states that rapidly rotating flows should be uniform

along the axis of rotation (here the vertical axis) (Greenspan 1968; Davidson 2013). This theorem
can be derived easily by assuming an inviscid, incompressible and unbounded fluid and by
considering the asymptotic limit of an infinitely rapid rotation compared to the timescale of fluid
motions.

Although the tendency towards vertically coherent flows is well observed, many experiments
and numerical simulations show that rapidly rotating flows are rarely purely two-dimensional
(see Julien et al. 1998; Sprague et al. 2006; Moisy et al. 2011; Davidson 2013; Godeferd &
Moisy 2015; Deusebio et al. 2014; van Kan & Alexakis 2020, and references therein). This may
originate from a violation of one assumption behind the Taylor-Proudman theorem, for example:
if the Rossby number is not sufficiently small, if boundary layers are present or if there are thermal
effects like in rotating convection.
However, when these assumptions are fulfilled, the Taylor-Proudman theorem is generally
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interpreted as a proof that vertical variations can not arise spontaneously in rapidly rotating
flows. In particular, the consensus is that three-dimensional instabilities are precluded in the limit
of large rotation rate. The elliptic instability is indeed commonly accepted to be stabilized for
rapid rotation even if, paradoxically, the theoretical expression for its growth rate is non-zero for
infinite rotation rate. One reason given is that the unstable vertical wavenumber band shrinks and
tends to zero for infinite rotation (Potylitsin & Peltier 1999; Sipp et al. 1999; Le Dizes 2000;
Godeferd et al. 2001). The case of the centrifugal instability is simpler since it is well established
that this instability is suppressed for large rotation rate (Kloosterziel & van Heijst 1991; Sipp
& Jacquin 2000). More generaly, Gallet (2015) and Seshasayanan & Gallet (2020) have proved
rigorously that two-dimensional turbulent flows bounded along the vertical direction are stable to
three-dimensional perturbations when the rotation is high enough.

However, when the flow is unbounded, some authors have argued that an exact two-
dimensionalisation can not occur even for infinite rotation rate because there always exist
three-dimensional inertial waves with the same timescale as advective motions so that they can
couple (Cambon et al. 2004; Nazarenko & Schekochihin 2011; Deusebio et al. 2014; Alexakis
& Biferale 2018; van Kan & Alexakis 2020).
In this context, we study in §2 the linear stability of two counter-rotating vortices whose axes

are aligned with the background rotation vector. Strikingly, we show that this two-dimensional
base flow remains unstable to three-dimensional perturbations when the rotation is rapid. The
growth rate of the dominant instability becomes indeed independent of the rotation rate when it
is sufficiently large while the dominant wavelength increases proportionally to the rotation rate.
Some Direct Numerical Simulations of the dominant instability are further presented in §3.
In §4, we next generalize the scaling law for the vertical wavelength by performing a scaling

analysis of the Navier-Stokes equations for large rotation rate in the case of an unbounded flow.
The results are summarized and discussed in §5.

2. Three-dimensional stability of a counter-rotating vortex pair in a rotating fluid
In this section, the three-dimensional stability of a counter-rotating vertical vortex pair in a

rotating fluid is analyzed as a function of the rotation rate, starting from the well-known non-
rotating limit (Leweke et al. 2016). The effects of the viscosity and the separation distance between
the two vortices will be also investigated.

2.1. Methods
We use the Navier-Stokes equations for an incompressible fluid with constant density ρ0 in a

frame rotating about the vertical axis ez at rate Ωb :

∂t u + u · ∇u + 2Ωb ez × u = −ρ0
−1
∇p + ν∆u, (2.1)

∇ · u = 0, (2.2)
where u = (ux, uy, uz ) is the velocity, p the pressure, ν the viscosity and (x, y, z) are the Cartesian
coordinates.
To perform the stability analysis, a base flow consisting in a quasi-steady vortex pair has

been first computed by integrating the two-dimensional Navier-Stokes equations initialized by
two counter-rotating Lamb-Oseen vortices with circulations ±Γ and radius R0, separated by a
distance b along the y direction. In the following, the length and time units will be taken as R0 and
2πR2

0/Γ, respectively. The numerical code uses a pseudo-spectral method with periodic boundary
conditions (Deloncle et al. 2008). Most of the aliasing errors are eliminated by truncating 95%
of the modes along each direction. Time advancement is carried out with the fourth-order Runge
Kutta scheme for the nonlinear term and exact integration for the viscous and diffusive terms.
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Lx × Ly

Nx × Ny

60 × 32
512 × 320

120 × 64
1024 × 640

240 × 128
2048 × 1280

120 × 64
512 × 320

120 × 64
1024 × 640

120 × 64
2048 × 1280

σ2πb2/Γ 0.4911089 0.4863921 0.4863124 0.4862474 0.4863921 0.4863918

Table 1. Non-dimensional growth rate σ2πb2/Γ when the domain sizes are varied keeping the mesh sizes
fixed (first three columns) and when the mesh sizes are varied while keeping the box sizes constant (fourth
to sixth columns) for b = 4, Re = 500, Ro = 0.8 and kR = 0.00448.

The time step is δt = 0.02. The horizontal size of the computational domain is chosen sufficiently
large: Lx = 120, Ly = 60+b in order to minimize the effects of the periodic boundary conditions.
Such large non-squared domain is necessary because the eigenmodes exhibit wide wave trains in
the x direction for large rotation rate. The resolution used is 1024 × 640. The Reynolds number
and the separation distance have been always set to Re = Γ/(2πν) = 500 and b = 4, except in
§2.2.2 when studying the effect of b and viscous effects.
At time evolves, the two vortices quickly adapt to each other and reach a quasi-stationnary

state in which the vortex pair propagates at constant speed (Sipp et al. 2000). Hence, the flow is
quasi-steady in the reference frame traveling at that speed. The base state used for the following
three-dimensional stability analysis has been taken as the flow at time t = 30 (figure 1a). The
characteristics of the vortices at that time have been obtained by fitting the vorticity field by the
least-square method to two Lamb-Oseen vortices with circulation Γ and separation distance b.
For example, for b = 4 and Re = 500, this gives R = 1.12, which is very close to the value given
for a single diffusing Lamb-Oseen vortex R =

√
1 + 4 × 30/Re ' 1.11. For each different base

state, the radius R has been determined by this method.
Using the same pseudo-spectral code, the equations (2.1-2.2) linearized around the basic state

have been then integrated for each axial wavenumber k with a white noise as initial conditions
and with the same horizontal resolution, i.e. 1024 × 640. After a sufficiently long integration
time, the perturbation consists solely in the eigenmode with the largest growth rate. Several tests
using different resolutions, time steps and box sizes have been carried out in order to check the
accuracy of the computations. As seen in the example given in table 1, the growth rate only varies
after the fourth significant digit when the box size is doubled, the resolution being fixed (third
column) or when the resolution is doubled while keeping the box sizes constant (sixth column).
The stability of a vortex pair at time t = 60 has been also computed for one set of parameters. The
growth rate curves obtained for the latter time and t = 30 differ by less than 2% demonstrating
the independence of the results with respect to the particular time chosen for the base flow.

2.2. Results
2.2.1. Effect of the rotation rate

Figure 1b shows the growth rate σ non-dimensionalized by the strain Γ/2πb2 of the most
unstable mode as a function of the vertical wavenumber k non-dimensionalized by the vortex
radius R for different Rossby numbers defined as

Ro =
Γ

2πR2Ωb
. (2.3)

When Ro = ∞, there are several independent peaks (dashed dotted lines). The peak at low
wavenumber corresponds to the well-known long-wavelength Crow instability (Crow 1970). The
dominant wavenumber is kR ' 0.246, giving a dominant wavelength λ ' 7.2b in agreement
with the scaling of the Crow’s theory (Crow 1970). The maximum growth rate σ ' 0.6Γ/(2πb2)
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Figure 1. (a) Vertical vorticity of the base flow ωzb for b = 4 and Re = 500. The contour level is 0.24.
(b) Non-dimensional growth rate σ2πb2/Γ as a function of the axial wavenumber kR for b = 4, Re = 500
and various Rossby numbers: Ro = ∞ ( – · –), Ro = 25.55 (– – –), Ro = 17 (—�—), Ro = 12.75 (—�—),
Ro = 8.50 (—◦—), Ro = 6.38 (—+—). The labels near the red points indicate the figure number where
the corresponding eigenmode is displayed. The symbols are used only to distinguish each curve and do not
represent all the data.

is slightly lower than inviscid Crow’s theory because Re is moderate. The vertical vorticity ωz

of the dominant eigenmode (figure 2a) displays a dipolar structure in each base vortex. Such
perturbation will displace the two vortices as a whole symmetrically as expected for the Crow
instability. The second growth rate peak around kR ' 0.9 (figure 1b) is small and corresponds to
an oscillatory instability due to the resonance of azimuthal waves m = 0 and m = 2 with the strain
(eigenmode not shown) as found for the Lamb-Chaplygin dipole (Billant et al. 1999). The third
and fourth peaks for kR = 2.13 and kR = 3.7 are related to the first and second antisymmetric
modes of the elliptic instability (Kerswell 2002; Leweke et al. 2016) (see the first mode in figure
3a). These wavenumbers agree with the theoretical values predicted for a weakly strained Lamb-
Oseen vortex in inviscid fluid: kR = 2.26 and kR = 3.96 (Sipp & Jacquin 2003; Leweke et al.
2016). The differences are probably due to viscous effects and finite ellipticity. The viscous effects
also explain why the maximum growth rate of the first elliptic peak σ = 0.97Γ/(2πb2) is lower
than the inviscid theoretical prediction σ = 9/16ε = 1.41Γ/(2πb2), where ε = 2.52Γ/(2πb2) is
the internal strain rate in the case of the Lamb-Oseen vortex (Sipp & Jacquin 2003; Leweke et al.
2016).
When the background rotation is slightly increased such that Ro = 25.55, the growth rate

(dashed line in figure 1b) increases for all wavenumbers and only two distinct peaks are then
present. The vertical vorticity of the eigenmode associated to the growth rate peak at low
wavenumber is no longer purely symmetric (figure 2b): the dipolar structure is much weaker
on the upper vortex which is cyclonic. This means that the instability will displace almost only
the anticyclonic vortex. This asymmetry can be analysed quantatively by decomposing the vertical
vorticity ωz into symmetric and antisymmetric parts as follows

ωzs =
(
ωz (x, y) + ωz (x, 2yc − y)

)
/2, ωza =

(
ωz (x, y) − ωz (x, 2yc − y)

)
/2, (2.4)

where yc is the y coordinate of the symmetry plane between the two vortices. The ratio Λ =∫ Lx

0

∫ Ly

0 ω2
zsdxdy/

∫ Lx

0

∫ Ly

0 ω2
zdxdy then varies from unity for a purely symmetric mode to

zero for a purely antisymmetric mode. As seen in figure 2g, Λ drops from unity for Ro = ∞ to
Λ = 0.73 for Ro = 25.55.
Similarly, the vertical vorticity of the eigenmode at larger wavenumbers kR = 2.13 is no longer

purely antisymmetric for Ro = 25.55 (figure 3b): this time, the elliptic mode is stronger in the
cyclonic vortex than in the anticyclonic vortex whereas a weak band surrounds the core of the
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Figure 2. Vertical vorticity (a,b,c) and vertical velocity (d,e,f) of the eigenmode corresponding to the first
growth rate peak at low wavenumber for b = 4, Re = 500 and different Rossby numbers: (a,d) Ro = ∞,
(b,e) Ro = 25.55, (c,f) Ro = 0.8. (g) Asymmetry ratio Λ and (h) ratio µ of the eigenmode of the first growth
rate peak as a function of Ro. The contour level is 0.24 for (a,b,c), 0.025 for (d,e) and 0.0074 for (f). The
eigenmode amplitude is normalized so that max( |ωz |) = 1. The red dashed lines are the isocontours where
the basic state vorticity ωzb is 0.05max(ωzb ).

Figure 3. Vertical vorticity of the eigenmode for kR = 2.13 for b = 4, Re = 500 and different Rossby
numbers: (a) Ro = ∞, (b) Ro = 25.55, (c) Ro = 8.50. The contour level is 0.24. The red dashed lines are
the isocontours where the basic state vorticity ωzb is 0.05max(ωzb ). The black thick dashed line in (b,c)
represents the contour where ωzb + 2Ωb changes sign.

latter vortex. When the Rossby number is decreased from Ro = 25.55 to Ro = 8.5, this mode
on the anticyclonic vortex becomes strong while the elliptic mode on the cyclonic vortex fades
out (figure 3c). Concomitantly, the growth rate continues to globally increase monotonically in
the band kR = [1, 4] (figure 1b) until Ro ' 4.25 and then it decreases and goes to zero around
Ro = 1.35 ± 0.05 (not shown). As seen in figure 3b,c, the mode on the anticyclonic vortex arises
in the vicinity of the line where the absolute vorticity ωzb + 2Ωb changes sign (thick black
dashed line). As shown by Sipp & Jacquin (2000) and Gallaire & Rousset (2006), this is an
inviscid criterion for the centrifugal instability in non-axisymmetric rotating fluids. The critical
value Ro ' 1.35 is also in good agreement with the critical Rossby number Ro = 1 predicted
by this criterion for the stabilization of the centrifugal instability. Viscous effects are certainly
responsible for the difference.
The growth rate curves for smaller Rossby numbers down to Ro = 0.2 are displayed on figure

4a. Only a focus on small wavenumbers is shown. The growth rate for Ro = 6.38 is plotted again
to serve as reference (solid line with + symbols). While the growth rate for any wavenumber was
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Figure 4. Non-dimensional growth rate σ2πb2/Γ as a function of the axial wavenumber kR (a) and kR/Ro
(b) for b = 4, Re = 500 and various Rossby numbers: Ro = 6.38 (—+—), Ro = 4.25 ( – · –), Ro = 3.19
(– – –) Ro = 1.59 (—�—), Ro = 0.8 (—�—), Ro = 0.4 (—◦—) Ro = 0.2 (—∗—). See caption of figure 1b
for other details.

globally increasing as Ro decreases when Ro > 8.5 (figure 1b), a different behaviour is observed
in figure 4a when Ro 6 4.25. Indeed, the growth rate peak located around kR ' 0.8 for Ro = 6.38
disappears but another peak emerges at lower wavenumber kR ' 0.06 for Ro = 4.25. As Ro
is further decreased, the maximum growth rate of this peak remains constant. In contrast, the
correspondingmost amplified wavenumber decreases dramatically as Ro decreases. Rescaling kR
by Ro (figure 4b), we can see that all the growth rate curves collapse for low wavenumbers near
the first peak. When Ro 6 0.8, the collapse is almost perfect for the whole growth rate curves.
This proves that the vortex remains unstable to three-dimensional perturbations as Ro → 0 but
the dominant wavenumber scales like Ro. The maximum growth rate is σ ' 0.5Γ/(2πb2), i.e. of
the same order as the maximum growth rate of the Crow instability in non-rotating fluid.
The associated eigenmode is almost antisymmetric (figures 2c) and consists in a dipolar

structure in each base vortex. Hence, this instability will displace the two vortices as a whole
in antisymmetric directions. As displayed in figure 2g, the asymmetry ratio behaves like Λ '
0.006Ro2 for Ro . 1 so that the eigenmode tends to a purely antisymmetric mode when Ro = 0.
For Ro 6 3.19, a second subdominant peak appears at slightly larger wavenumbers (figure
4a). The corresponding eigenmode resembles the one of the first peak except that it is quasi-
symmetric (figure 5) like for the Crow instability. The asymmetry ratio tends to unity as Ro→ 0
likeΛ ' 1−0.008Ro2 (figure 5g). It is also interesting to look at the vertical velocity field of these
eigenmodes (figures 2f and 5d,e,f). Compared to Ro = ∞ (figure 2d), uz extends well outside the
vortex cores and exhibits a wave train in the wake of the vortex pair (note the different scales in
figures 2d,e,f and 5d,e,f compared to figures 2a,b,c and 5a,b,c). In addition, it is worth to point
out that the ratio between the maximum vertical and horizontal velocities

µ =
max(|uz |)

max
(√(

u2x + u2y
)
/2

) , (2.5)

remains of order unity as Ro goes to zero (figures 2h and 5h).
Even if we have focussed on the region of small vertical wavenumbers in figure 4, we stress

that we have not observed any other type of instability at higher wavenumbers when Ro 6 1.

2.2.2. Effects of the separation distance and Reynolds number
Figure 6a shows the growth rate non-dimensionalized by Γ/2πR2 for different separation

distances b for a fixed low Rossby number Ro = 0.4 which belongs to the self-similar regime
found above. The maximum growth rate of the two peaks and dominant wavenumbers decrease
as b increases, meaning that the instabilities weaken as the vortices are more distant. The inset
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Figure 5.Vertical vorticity (a,b,c) and vertical velocity (d,e,f) of the eigenmode corresponding to the second
growth rate peak for b = 4, Re = 500 and different Rossby numbers: (a,d) Ro = 3.19, (b,e) Ro = 1.59,
(c,f) Ro = 0.2. The contour level is 0.24 for (a,b,c) and 0.038 for (d,e,f). (g) Asymmetry ratio Λ and (h)
ratio µ of the eigenmode of the second peak as a function of Ro. In (a,b,c,d,e,f), the red dashed lines are the
isocontours where the basic state vorticity ωzb is 0.05max(ωzb ).
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Figure 6. (a) Non-dimensional growth rate σ2πR2/Γ as a function of the axial wavenumber kR for
Re = 500, Ro = 0.4 and different separation distance b = 3 (· · · ·), b = 4 (——), b = 5 (– · –), b = 6 (– – –).
The inset displays the same curves in terms of the non-dimensional growth rate σ2πb2/Γ and wavenumber
kRb2/(RoR2). (b) Non-dimensional growth rate σ2πb2/Γ as a function of kR for b = 4 and Re = 200,
Ro = 0.30 (– – –), Re = 500, Ro = 0.4 (——), Re = 1000, Ro = 0.44 (· · · ·), Re = 2000, Ro = 0.47 (– · –).
In all the cases, the rotation rate is fixed to Ωb = 2 but the Rossby number varies slightly since the radius R
increases as Re decreases.

in figure 6a shows the same curves but when the growth rate is rescaled by the strain and the
wavenumber k by b2/(RoR). We can see that the growth rate peaks are approximately aligned
indicating that, together with the dependence with the Rossby number found above, the dominant
wavenumber scales like Rkmax ' 0.15Rob where Rob = Γ/(2πb2Ωb ) is a Rossby number
based on the separation distance b instead of the vortex radius R. The corresponding wavelength
scaling λmax ' 42R/Rob differs from the Crow instability one’s λmax ∝ b. Furthermore, the
maximum growth rate of the Crow instability scales like the strain Γ/(2πb2) while the inset of
figure 6a shows that this scaling does not collapse well the curves. A better collapse, but still rather
approximate, could be obtained by plotting σbn with an exponent n around 3/2 (not shown).
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Similarly, the dominant wavelength associated to the subdominant growth rate peak scales like
λmax ' 7R/Rob .
Finally, the effect of the Reynolds number is investigated in figure 6b for b = 4 and a fixed

rotation rate Ωb = 2 for which Ro = 0.4 ± 0.1. The growth rate increases with Re and tends to
saturate to finite values as Re becomes large, indicating that the instability is inviscid.

3. Direct Numerical simulations
To complement the linear stability analyses, we have performed some Direct Numerical

Simulations of the evolution of the quasi-antisymmetric displacement instability that is dominant
for low Rossby number. The aims are to confirm that the instability does indeed lead to a three-
dimensionalization of the vortex pair and to determine whether its nonlinear evolution continues
to follow the same dependence on the Rossby number as that found in §2. However, a detailed
analysis of the nonlinear saturation mechanism is left for future studies.
These DNS have been carried out for two Rossby numbers Ro = 1.53 and Ro = 0.76 for

the Reynolds number Re = 500. The separation distance has been taken as b = 3 because it
leads to a smaller most amplified wavelength than for b = 4 (see §2.2.2) and thus requires a
shorter computational domain in the vertical direction. For the sake of the computational cost,
the horizontal sizes of the domain Lx × Ly have been reduced to 60 × 31.5 keeping the same
horizontal mesh sizes. Table 1 (first column) shows indeed that the growth rate varies by less than
1% compared to the reference value obtained with the wider domain (second column).
The initial velocity field corresponds to the sum of the velocities of the base state and a

perturbation consisting in the dominant eigenmode. The amplitude of the perturbation has been
fixed such that its maximum vertical vorticity is 5% of the maximum vertical vorticity of the
base flow. The vertical size of the domain Lz has been adjusted to the most amplified wavelength
λmax for each Rossby number, i.e. Lz = 196.43 for Ro = 1.53 and Lz = 392.85 for Ro = 0.76.
The mesh sizes have been set to be almost isotropic. Thereby, the resolutions are Nx × Ny × Nz =

512 × 320 × 1600 for Ro = 1.53 and 512 × 320 × 3200 for Ro = 0.76. The truncation has
been reduced to 9/10 of the modes along each direction. The convergence has been checked by
increasing the resolution to 768 × 480 × 2400 for Ro = 1.53. The velocity at each point common
to both resolutions have been found to differ by less than 1% at any time.
Figure 7 shows three-dimensional contours and horizontal cross-sections of the vertical

vorticity for Ro = 0.76 at different times. A movie is available in the supplementary material.
While the vortex pair looks straight at t = 0 (figure 7a) since the perturbation is initially small, a
vertical bending of the vortices becomes clearly visible at t = 100 (figure 7e). In the horizontal
cross-sections at z = Lz/2 (figure 7h) and z = Lz (figure 7f), we see that the vortex pair propagates
obliquely and symmetrically with respect to the x direction. In contrast, the vortex pair continues
to propagate in the x direction at z = 3Lz/4 (figure 7g). Such behaviour, which is consistent
with the structure of the vertical vorticity of the eigenmode (figure 2c), is similar to the zigzag
instability one’s in strongly stratified fluid (Billant & Chomaz 2000; Deloncle et al. 2008). Note
that the simulation is performed in the traveling reference frame where the vortex pair is steady
at t = 0. Since the vortex pair slows down due to viscous effects, it thus moves backward in the x
direction in this reference frame.
At t = 130 (figure 7i), the vertical deformation has amplified and the vortex pair is now

traveling in almost opposite y direction at z = Lz/2 (figure 7l) and z = Lz (figure 7j). In between,
at z = 3Lz/4 (figure 7k), the vortex pair has kept its initial direction of propagation but two
tongues of opposite vertical vorticity wrap the external part of each vortex. Such emergence of
vertical vorticity is due to the stretching of the background vorticity by the vertical velocity,
i.e. the term 2Ωb∂zuz . The interactions between these tongues and the vortex cores initiate a
breakdown of the vortex pair into smaller three-dimensional structures. Indeed, we see in figure
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Figure 7. (a, e, i, m) Three-dimensional contours of the vertical vorticity ωz at different times in a Direct
Numerical Simulation for Ro = 0.76, b = 3 and Re = 500. Yellow and blue contours represent respectively
plus and minus 50% of the vertical average of the maximum vertical vorticity in each horizontal plane.
For each time, three horizontal cross-sections of the vertical vorticity in the planes z = Lz/2 (d, h, l, p),
z = 3Lz/4 (c, g, k, o) and z = Lz (b, f, j, n) are displayed. The location of these cross-sections are also
indicated by dashed lines with different color in (a, e, i, m). The times shown are: (a,b,c,d) t = 0, (e,f,g,h)
t = 100, (i,j,k,l) t = 130, (m,n,o,p) t = 160. Note that only a portion of the computational domain is shown.

7m, at t = 160, that the vortex pair becomes fully three-dimensional and the initial vortex cores
of the pair are strongly disorganized in the horizontal cross-sections (figure 7n,o,p).

Figure 8a displays the evolutions of the total horizontal and vertical kinetic energies Ekh =

〈u2x + u2y〉/2 (divided by 20 for convenience) and Ekv = 〈u2z〉/2, where 〈·〉 = (1/Lz )
∫
V
dV is the

volume integration per unit wavelength. In this way, these quantities are independent of the sizes
of the computational box. The vertical kinetic energy (black dashed line with circle symbols)
first grows exponentially and then saturates for t > 150 to a value of order unity. In contrast, the
horizontal kinetic energy (black solid line with circle symbols) always slowly decays. Although
the total horizontal kinetic energy is much larger than the vertical one, the inset in figure 8a shows
that the ratio µ (see 2.5) is of order unity at saturation, i.e. the maximum vertical and horizontal
velocities are of the same order of magnitude.
The corresponding evolutions of the total vertical and horizontal enstrophies Zv = 〈ω

2
z〉/2 and
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Figure 8. Evolution of the (a) kinetic energy and (b) enstrophy for two Rossby numbers: Ro = 0.76 (black
lines with circle symbols) and Ro = 1.53 (red lines with square symbols) for b = 3 and Re = 500. In (a),
the different lines correspond to horizontal and vertical kinetic energies Ekh (——) and Ekv (– – –). Note
that Ekh has been divided by a factor 20. In (b), the lines represent vertical enstrophy Zv (——), horizontal
enstrophy Zh (– – –) and 〈(∂yuz )2 + (∂xuz )2〉/2 (· · · ·). The inset in (a) represents the evolution of the ratio
µ defined in (2.5). The inset in (b) displays the evolution of the logarithm of the horizontal enstrophy Zh .
The straight solid line represents an exponential growth at rate 2σ.

Zh = 〈ω
2
x + ω

2
y〉/2 are shown in figure 8b. The horizontal enstrophy Zh (black dashed line with

circle symbols) grows exponentially until t = 160. The inset in figure 8b shows that the growth rate
of Zh is in good agreement with the linear stability analysis. The horizontal enstrophy saturates
when reaching a value comparable to the vertical enstrophy Zv (black solid line with circle
symbols) and then decays. In fact, the horizontal vorticity corresponds mostly to the horizontal
shear of the vertical velocity, i.e. ωx ' ∂yuz , ωy ' −∂xuz . Indeed, the black dotted line, which
displays 〈(∂yuz )2 + (∂xuz )2〉/2, is almost superposed to the curve of Zh (figure 8b). The vertical
enstrophy, while decaying by viscous diffusion for t < 100, re-increases momentarily between
t ' 110 and t ' 150. This is related to the appearance of the opposite vertical vorticity tongues
(figure 7i).
The three-dimensional evolution of the vertical vorticity for the Rossby number Ro = 1.53 is

almost identical to the one for Ro = 0.76 (see the movie in the supplementary material). The
evolutions of kinetic energies and enstrophies for Ro = 1.53 are also plotted in figure 8 (red
lines with square symbols). Remarkably, they are almost superposed to those for Ro = 0.76. This
demonstrates that the self-similarity evidenced in the linear stability analysis applies also to the
non-linear evolution of the instability. Altogether, this three-dimensional instability will therefore
develop similarly whatever Ro . 1 in unbounded flows.

4. Scaling analysis
In section 2, we have found that the dominant wavelength of the three-dimensional instability of

a counter-rotating vortex pair is inversely proportional to the Rossby number when Ro . 1. Here,
we generalize this result by showing that this scaling derives from a self-similarity of (2.1-2.2)
when the Rossby number is small. To this end, we consider a flow with characteristic horizontal
and vertical velocity scales U and W and typical horizontal and vertical lengthscales Lh and Lv .
The Rossby number Ro = U/(2ΩbLh ) is assumed to be small and the fluid is considered to be
unbounded. For the sake of clarity and simplicity, we consider an inviscid fluid but it will be
shown at the end that the following analysis applies equally to viscous flows.
In order to scale the equations (2.1-2.2) with ν = 0, we define dimensionless quantities denoted
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with prime as follows

uh = Uu′h, uz = Wu′z, p = 2ρ0ΩbUp′, x = Lh x ′, y = Lh y
′, z = Lv z′, t =

Lh

U
t ′. (4.1)

where the subscript h is used to denote the horizontal components of any vector. The magnitude
of the pressure has been fixed so as to balance the Coriolis force. The characteristic time scale has
been chosen to be the advective timescale along the horizontal Lh/U . Such hypothesis excludes
fast inertial waves with typical frequency O(Ωb ) but not those with a slow frequency of the order
of Lh/U. The primes will be dropped in the following in order to keep the notation simple.
The resulting dimensionless equations are

Ro
[
∂t uh + uh · ∇huh + αδuz∂zuh

]
+ ez × uh = −∇hp, (4.2)

Ro
[
∂tuz + uh · ∇huz + αδuz∂zuz

]
= −

δ

α
∂zp, (4.3)

∇h · uh + αδ∂zuz = 0, (4.4)

where α = W/U and δ = Lh/Lv . It is also convenient to write the equation for the dimensionless
vertical vorticity ωz

Ro
[
∂tωz + uh · ∇hωz + αδuz∂zωz

]
= αδ

[
Ro

(
∂zux∂yuz − ∂zuy∂xuz + ωz∂zuz

)
+ ∂zuz

]
.

(4.5)
In the following, we further assume a priori that the vertical Rossby number is small

Rov =
W

2ΩbLv
≡ Roαδ � 1, (4.6)

but no other assumption on the individual orders of magnitude of α and δ will be used. This
assumption together with Ro � 1 are sufficient to deduce the geostrophic balance from (4.2)

uh = −∇ × pez +O (Ro, Rov ) . (4.7)

The vertical vorticity is therefore

ωz = ∆hp +O (Ro, Rov ) . (4.8)

and the divergence equation (4.4) becomes

αδ∂zuz +O(Ro, Rov ) = 0. (4.9)

Hence, (4.9) implies the order of magnitude relation:

αδ 6 O(Ro), (4.10)

confirming the hypothesis (4.6) since Rov = Roαδ 6 Ro2. By inserting (4.8) into the equation
for the vertical vorticity (4.5) and by taking into account (4.10), we obtain at leading orders

Ro
[
∂t∆hp + uh · ∇h∆hp

]
= αδ∂zuz +O

(
Ro2

)
. (4.11)

By using (4.10), the momentum equation along the vertical (4.3) can be also simplified to

Ro
(
∂tuz + uh · ∇huz

)
= −

δ

α
∂zp +O

(
Ro2

)
. (4.12)

Remarkably, this equation combined with (4.11) close the problem and allow to find the leading
order solution in terms of (p, uz ). Hence, the system has been reduced from 4 equations and
variables to only 2 by simply using the two relations imposed by the geostrophic balance (4.7).
It should also be pointed out that no a priori assumption on the magnitudes of α and δ has been
necessary to derive these equations except (4.6).
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As shown by Julien &Knobloch (2007) and Nazarenko & Schekochihin (2011), the application
of the dominant balance or critical balance principles, respectively, to (4.11-4.12) implies αδ =
O(Ro) and δ/α = O(Ro). Note that the critical balance principle imposes that the typical time
scale of waves and advective motions should be of the same order (Nazarenko & Schekochihin
2011). These principles both lead to α = O(1) and δ = O(Ro). However, the key point developed
herein is that it is not necessary to invoke the dominant balance or critical balance principles to
obtain these relations. They can be derived rigorously from an invariance of the equations (4.11)
and (4.12). Indeed, if we do not use these principles and still consider that δ and α are arbitrary
and unknown, we can eliminate the Rossby number Ro, δ and α from (4.11) and (4.12) by the
simple rescaling z̃ = zRo/δ and ũz = αuz

∂t∆hp + uh · ∇h∆hp = ∂z̃ ũz, (4.13)

∂t ũz + uh · ∇h ũz = −∂z̃p, (4.14)
so that all the non-dimensional parameters have disappeared. This rescaling gives the same scaling
law for the vertical scale Lv as the critical or dominant balances: δ = Ro, i.e.

Lv ∼ Lh/Ro. (4.15)

Similarly, the rescaling of the vertical velocity is equivalent to state that the orders of magnitude
of the vertical and horizontal velocities are equal: α = 1, i.e. W = U. Therefore, the vertical
lengthscale in rapidly rotating flows is set by a self-similarity of the equations for Ro � 1 like in
strongly stratified fluids (Billant & Chomaz 2001).
A posteriori, it is straightforward to remark that the above self-similarity continues to hold in

presence of viscous effects because the laplacian of the viscous operator ∆ can be approximated
by ∆h since δ2 � 1. This explains why the scaling law (4.15) has been found to be well verified
in §2 even for a moderate Reynolds number Re = 500.
The reduced equations (4.11-4.12), or equivalently (4.13-4.14), with the addition of viscous

effects are identical to those obtained for rapidly rotating convection based on the dominant balance
principle (Julien et al. 1998; Julien & Knobloch 2007) or for rotating turbulence by invoking the
critical balance principle (Nazarenko & Schekochihin 2011). Nevertheless, we believe that the
present derivation based on a self-similarity is less heuristic and more general, thereby extending
their range of applicability.
Besides the scaling law (4.15) for the vertical lengthscale, we emphasize that two other

observations made in §2 are fully consistent with this scaling analysis: first, the growth rate
(figure 4b) and time evolution (figure 8) are independent of the Rossby number for low Rossby
number in agreement with the assumption that the characteristic timescale is Lh/U. Second,
the ratio (2.5) is of order unity (figures 2h, 5h and 8a) consistently with the scaling W = U .
Furthermore, these scaling laws imply ωx = ∂yuz + O(Ro), ωy = −∂xuz + O(Ro) as observed
in §3.

5. Conclusions and discussion
We have investigated the stability of a pair of counter-rotating vertical vortices in a fluid rotating

about the vertical axis with a particular focus on the limit of large rotation. The main question
being: is this flow totally stable to three-dimensional perturbations for large rotation rate?, as
generally argued based on the Taylor-Proudman theorem.

When the background rotation is slightly increased from zero, the Crow and elliptic instabilities
quickly loose their symmetry with respect to the plane between the two vortices. For moderate
rotation rate, the centrifugal instability arises on the anticyclonic vortex. For large rotation rate, we
have found a new instability of inviscid nature that consists in quasi-antisymmetric displacements
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of the two vortices. Its growth rate is independent of the Rossby number when Ro . 1 while its
dominant wavelength scales like λ ' 42R/Rob , where Rob = RoR2/b2. A subdominant quasi-
symmetric displacement instability is also present at smaller wavelengths. A similar scaling in
terms of Ro has been reported for the width of the unstable vertical wavenumber bands of the
instability of a rotating horizontal shear layer (Arobone & Sarkar 2012) and of an inertial wave
triadic instability (van Kan & Alexakis 2020). However, the dominant instability remains always
two-dimensional in these two cases.
Direct Numerical Simulations of the non-linear evolution of the dominant instability for low

Rossby number reveals that it triggers a full three-dimensional breakdown of the vortex pair.
Furthermore, the complete evolution of the instability follows the self-similarity with respect to
the Rossby number, i.e. not only its linear development.
In brief, we have found that some three-dimensional instabilities continue to exist with a finite

growth rate for vanishing Rossby number but their wavelength tends to infinity. Such three-
dimensional behaviour is consistent with the observations of a dimensional transition of rapidly
rotating turbulence when the vertical scale is large compared to the horizontal scale (Deusebio
et al. 2014; van Kan & Alexakis 2020). These results imply that the Taylor-Proudman theorem
can be strictly valid only for vertically bounded flows. In contrast, there is no contradiction with
the proof of Gallet (2015) that two-dimensional turbulent flows are stable to three-dimensional
perturbations for large rotation since a vertically bounded flow is assumed.
In the light of the stability analysis, we have performed a general scaling analysis for rapidly

rotating flows. Using only the hypotheses that the Rossby number is small and the flow unbounded,
we have been able to derive the scaling law for the vertical lengthscale Lv ∝ Lh/Ro directly from
a self-similarity of the Navier-Stokes equations. This property generalizes and strengthens the
previous heuristic multiscales analyses of Julien et al. (1998), Julien & Knobloch (2007) and
Nazarenko & Schekochihin (2011).
Interestingly, the growth rate of the displacement instabilities evidenced here does not scale

precisely with the external strain Γ/(2πb2) unlike the Crow instability. The understanding of this
feature is left for future work. It would be also of interest to study more precisely their nonlinear
evolutions and to analyse the stability of other vortex configurations since there is no reason to
believe that these instabilities are specific to a counter-rotating vortex pair.

I gratefully thank D. Guy and V. Toai for technical assistance, the anonymous referees for their
comments and S. Galtier and P. Augier for helpful discussions on the scaling analysis. This work
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