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Abstract 

The current demand for alternative water sources requires the incorporation of low-cost 

composites in remediation technologies; these represent a sustainable alternative to more 

expensive, commercially used adsorbents. The main objective of this comprehensive field-

scale study was to incorporate the layered double hydroxides (LDHs) into the hybrid biochar-

based composites and apply an innovative material to remediate As/Sb-rich mine waters. The 

presence of hydrous Fe oxides (HFOs) within the composite enhanced the total adsorption 

efficiency of the composite for As(V) and Sb(V). The kinetic data fitted to a pseudo-second 

order model. Equilibrium experiments confirmed that the composite had a stronger interaction 

with As(V) than with Sb(V). The efficient removal of As(V) from mine water was achieved in 

both batch and continuous flow column systems, reaching up to 98% and 80%, respectively. 

Sb(V) showed different behavior to As(V) during mine water treatment, reaching adsorption 

efficiencies of up to 39% and 26% in batch and column experiments, respectively. The 

migration of Sb(V) in mine water was mostly attributed to its dispersion before it was able to 

show affinity to the composite. In general, the proposed column technology is suitable for the 

field remediation of small volumes of contaminated water, and thus has significant 

commercial potential. 

Graphical abstract 
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1. Introduction 

 

Currently, more and more areas are facing water shortages due to excessive demands, 

climate change, and the contamination of water resources [1-3]. Simultaneously, there is a 

pressing need for new cost-effective water treatment methods that promote the involvement of 

readily available materials in remediation technologies. As biochar has been proven to be an 

efficient biomaterial regarding the removal of organic and inorganic substances from water, 

biochar-based technologies are becoming a promising tool within water remediation measures 

[4-8]. The limited removal efficiency of pristine biochar for anions can be enhanced by 

surface modification using various minerals, reductants, organic compounds, or nanoparticles 

through their fixation on the surface of biochar or trapping inside its pores. [9-15]. 

One of the possible minerals suitable for biochar modification are synthetic layered double 

hydroxides (LDHs). They are becoming increasingly important as they have been recently 

widely used in biomedicine, electrochemistry, catalysis, materials and polymer chemistry, or 

environmental remediation [16, 17]. The main mechanisms governing the retention of metals 

and metalloids via LDHs (complexation, electrostatic interactions, reduction, and surface 

precipitation) depend on their large specific surface area and stability, positive surface charge 

and high anion sorption efficiency [18-25]. To improve selective removal of metal cations 

from contaminated waters, modification of LDHs with different intercalated anions (CO3
2-

, 

NO3
-
, S5

2-
 and MoS4

2-
) as efficient binding sites for metals has been performed over a broad 

pH range. Metals could be adsorbed either as various coordinated complexes in LDHs 

interlayer region or precipitated on surface as hydroxides or carbonates [26-28]. Moreover, 
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LDHs layers offer protective space for intercalated anions against oxidation so they can work 

well as regulating redox centers [29, 30]. 

For application of LDHs in water remediation processes, the presence of various ions is 

critical to control LDHs aggregation and to develop stable suspensions. Each specific anion 

affects the charging and colloidal stability of the LDHs. Stronger multivalent anion adsorption 

on the positively charged LDHs surface reduces more surface charge density, which amplifies 

the attractive van der Waals forces between LDHs particles. The electrophoretic mobility of 

LDHs decreases and their rapid aggregation leads to the colloidal instability of the LDHs 

suspension [31, 32]. Dilution of stable suspensions could also very effectively induce 

aggregate instability and the rapid sedimentation and separation of the LDHs, which facilitate 

its higher removal from contaminated water [33]. 

Nowadays, the challenge of producing cost-effective and sustainable composites needs to 

be urgently addressed. Hence incorporation of LDHs into the hybrid biochar-based 

composites is one of the ways to achieve either a better chemical stability of the LDHs or to 

synergize the adsorption of contaminants [34]. Efforts have been made to reduce LDHs 

production costs by incorporating boron mud/red mud or residual acidic solutions from the 

galvanizing process into their synthesis [35-37]. Possible applications of LDH-biochar 

composites include cleaning local water pollution, such as mine water from abandoned 

galleries and open adits. One of the greatest environmental concerns in former mining areas is 

the oxidative weathering of arsenopyrite (FeAsS) and stibnite (Sb2S3) [38-41], which can lead 

to pollution from the toxic oxyanions As(V) and Sb(III/V) in surface water and surrounding 

alluvial sediments. It has been proposed that the highly efficient adsorption of co-occurring 

As(V) and Sb(V) in mine waters could be achieved by modifying biochar’s surface with 

ferric-based LDHs [42, 43]. Indeed, LDHs of different compositions have been successfully 

used to treat As-contaminated waters [18, 44-47]. 
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This field scale study emphasized a unique approach by reusing cheap waste materials, i.e., 

readily available Fe-rich sludges, to produce a new, efficient, and innovative composite. 

Certified woody biochar modified by Mg-Fe LDHs, hereafter referred to as “composite,” was 

prepared, tested, and applied to clean local As/Sb-rich outflows from open mine adits. The 

rates of As and Sb adsorption efficiency were determined to assess the benefits of using the 

prepared composite to remediate mine water. Furthermore, an improved LDHs synthesis by 

reusing waste materials could promote the preparation of multifunctional composites which is 

hopefully leading to their more efficient field applicability for As/Sb-rich mine water 

treatment. 

 

2. Materials and Methods 

 

2.1. Composite synthesis and characterization 

 

Mg-Fe LDHs were prepared from Fe-rich sludges originating from previous black coal 

mining; they were collected from a hereditary adit (Oslavany, Czech Republic). Certified 

woody biochar NATURE CARBON (ENERGO Zlatá Olešnice s.r.o.) [48] was used as a 

carrier to precipitate Mg-Fe LDHs with hydrous Fe oxides (HFOs) during the synthesis of the 

composite (Table S1). The synthesis consisted of a modified co-precipitation protocol that has 

been previously described for pristine Mg-Fe LDHs with a molar Mg:Fe ratio of 4:1 [18, 49]. 

To obtain required Mg-Fe ratio, input Fe concentration was fixed by Fe-rich extract dilution 

prior each composite synthesis. Thus, Fe amount was known and reproducible for each 

synthesis and a normative procedure of Fe recovery from sludges is applicable even for 

composite synthesis on a larger scale in pilot plant conditions. Complete synthesis protocol is 

described in detail in SI. Subsequently, the composite was analyzed to determine the bulk 
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chemical composition; pHH2O, pHPZC, cation exchange capacity (CEC), surface area (SBET), 

volume of micropores (Vmicro), mesopores surface area (Smeso), and total pore volume (Vtot) 

(Table 1). The mineralogical structure of the composite was determined by X-ray Diffraction 

(XRD; Bruker D8 Discover diffractometer). Scanning Electron Microscope (SEM) images 

and chemical compositions of mineral phases were obtained with a variable-pressure SEM 

(Tescan Vega 3XMU) that was equipped with an energy dispersive spectrometer (EDS; 

Bruker X’Flash 5010). After the contact with mine waters, the chemical composition of the 

composite was characterized with an electron probe microanalyzer (EMPA; CAMECA SX-

100) equipped with four wavelength dispersive X-ray spectrometers (WDSs). The Fe solid 

speciation in the composite was determined by X-ray absorption spectroscopy (XAS) 

measurements at LUCIA beamline (SOLEIL Synchrotron, France) (Table S2) [50, 51]. Each 

methodological approach is provided in SI. 

 

2.2. Sampling sites and mine water collection 

 

Two specific localities, strongly impacted by Sb sulfides released from mining ore over the 

last two centuries in Slovakia, were selected to evaluate the composite efficiency (see SI). 

During 2018-2019, As and Sb rich drainage waters from adits and tailings ponds (sample 1), 

as well as mine water outflows from open adits (sample 2) were collected (Figure 1, Table 

S3). Considering the specific pH-Eh conditions of mine waters and in accord with previous 

studies, dissolved [HAsO4]
2-

 and [Sb(OH)6]
-
 were assumed to be mostly present [40, 52-54]. 

Therefore, the aqueous speciation of As and Sb was accepted to be As(V) and Sb(V), 

respectively, in this study. Moreover, mine waters with different Fe contents were collected 

for in situ composite application. Thus, the role of dissolved Fe in natural attenuation of 

contaminants was considered while evaluating the efficiency of the composite. 
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2.3. Batch experiments 

 

Kinetic (i) and equilibrium (ii) batch experiments using synthetic solutions prepared from 

(HAsNa2O4) × 7 H2O and KSb(OH)6, were performed to measure the total amounts of As(V) 

and Sb(V) adsorbed on the composite (i) at an initial concentration of 10
-4

 mol L
-1

 for both 

As(V) and Sb(V) with 1 g L
-1

 of composite in suspension (sampled at selected time intervals 

over days, see SI and Table S4, Figure S1-S2), and (ii) at different initial concentrations of 

As(V) and Sb(V) (50, 100, 150, 200, 250, and 500 mg L
-1

) with 10 g L
-1 

of composite in 

suspension after reaching equilibrium (24 hours and 48 hours for As(V) and Sb(V), 

respectively; SI and Table S5 and Figure S3). Consequently, kinetic batch experiments were 

conducted with samples 1 and 2 to evaluate the adsorption efficiencies of the composite for 

As(V) and Sb(V) (SI). 

 

2.4. Column experiments 

 

Laboratory column experiments were set-up based on the optimization of parameters (flow 

rate, mass of composite, and column dimensions) to provide the most effective removal of 

As(V) and Sb(V) from mine waters in a flow-through system (Table S6). Dynamic flow 

adsorption testing was conducted at small and large scales (SI and Figure 2a) to monitor the 

adsorption efficiency of the composite and test the final arrangement for column technology 

intended for its field application. The slight differences in parameters (Table 2) resulted from 

changes made due to actual technical possibilities or limitations. The pH, Eh, conductivity, 

and temperature were determined periodically for the mine water from the supply tank, after 
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aeration, after filtration, and after treatment (Table S7-S10). The elemental concentrations 

were analyzed by ICP-OES and ICP-MS. 

 

2.5. Field application 

 

The composite was field-tested using a mobile double-column technology combining three 

technological operations: aeration, filtration, and adsorption (see SI for details, Figure 2b-c). 

In general, outflows of mine water were continuously pumped into the aeration tank and 

filtration column filled with filter quartz sand to remove undissolved particles or precipitated 

Fe oxyhydroxides. Pre-treated mine water was injected into the adsorption column (AC) filled 

with a mixture of quartz sand and the composite in an optimal mass ratio of 15:1, according to 

the laboratory experiments. The treated effluent, untreated inlet mine water, mine water from 

the aeration tank, and effluents from the filtration column were sampled regularly after 100 to 

200 liters had flowed through the column device. For collected samples, pH, Eh, conductivity, 

temperature, and the concentrations of elements were measured as previously described 

(Tables S11-S12). The concentration data from the continuous flow column experiments were 

evaluated using breakthrough curves (BTCs). 

The total adsorption efficiencies of the column technology for As(V) and Sb(V) (%) were 

calculated from the total treated volume of mine water. The AC capacity, qj (mg g
-1

), was 

calculated as: 

 

   
  
 
 

      
∫ (  

  
   

 
 
 )  

 

 
                                                             (Eq. 1) 

 

where qj is the concentration of metal j in the adsorbent (mg g
-1

), cj
f
 is the feeding 

concentration of j in the mine water (mg L
-1

), Q is the flow rate through the column (mL min
-
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1
), ms is the mass of material in the column (g), cj

out
 is the outlet concentration of j in the mine 

water (mg L
-1

), and t is the time at which the feeding concentration of j is equal to 95% of its 

outlet concentration [55]. The integral term of Eq. (1) was calculated through numerical 

integration using the ORIGIN 2020 software. 

 

3. Results and Discussion 

 

3.1. Composite characterization 

 

One of the main challenges in precipitating Mg-Fe LDHs during the composite synthesis is 

ensuring the reusability of Fe sludges to minimize the use of chemical reagents. The phase 

identification of the composite revealed that it had a low degree of crystallinity. Only two 

broad peaks with low intensity were detected at values of 2Θ (approximately 11.42 and 22.87; 

these values were typical for pristine 4:1 Mg-Fe LDHs as previously reported by Hudcová et 

al. [18]. Additional characterization by SEM/EDS highlighted the heterogeneous distribution 

of Mg-Fe LDHs on the biochar surface and high Fe content in the newly formed precipitates 

(27.80 wt% of Fe on average, Figure 3a, b, Table S13). Indeed, the observed high Fe 

concentrations indicated the additional precipitation of intermediate amorphous Fe-rich 

products. The linear combination fits performed on the Fe XANES spectra confirmed that 

31% and 69% of the total Fe in the composite was related to pristine Mg-Fe LDHs and HFOs, 

respectively Similar results were confirmed for Mg-Fe LDHs with 39% and 61% of the total 

Fe related to pristine Mg-Fe LDHs and HFOs, respectively (Figure 3c, Table S2). This 

observation agreed with the findings of Jaśkaniec et al. [56]. It supports the precipitation of 

thermodynamically metastable Fe oxyhydroxides during the synthesis of LDHs at room 

temperature, since reusing low-cost waste materials decrease the purity of intended LDHs. 
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Therefore, the composite represented a mixture of Mg-Fe LDHs, HFOs, and biochar, where 

each phase might have had a positive effect on the adsorption of As(V) and Sb(V) [6, 18, 47, 

57, 58]. As HFOs have been recognized to strongly sequestrate As(V) and Sb(V) agents in the 

environment, their presence likely favored the enhancement of the total adsorption efficiency 

of the composite. The determination of As(V) and Sb(V) speciation in the interactions with 

the different phases of the composite will require more sensitive methods, including nano-

XRF mapping and µXANES; this needs to be considered for future studies. 

 

3.2. As(V) and Sb(V) removal from mine waters 

 

The rate of simultaneous removal of As(V) and Sb(V), their different initial concentrations, 

and their competitive behaviors were considered under the specific Eh-pH conditions of mine 

water samples (Table S3). The As(V) adsorption rate increased with decreasing initial As(V) 

concentrations in mine water samples. Based on equilibrium batch experiments, the As(V) 

adsorption data were sufficiently described by the L-class Freundlich isotherms (R
2
 > 0.956, 

Table S5, Figure S3), which points to multilayered As(V) adsorption controlled by the 

heterogeneous adsorption sites with different free energies of sorption [59, 60]. The intensity 

of adsorption (n < 1) revealed that As(V) adsorption became less favorable with increasing 

amounts of As on the surface of the composite; which is in agreement with the adsorption 

kinetic experiments with mine waters. It can be stated that the rate of As(V) removal by the 

composite at high As concentrations might have been limited by (i) the number of free active 

sites on the surface of the composite and (ii) the competitive adsorption between As(V) and 

Sb(V) [42, 54, 61, 62]. Both, the As(V) and Sb(V) kinetic models best fitted a pseudo-second 

order reaction model (Table S4, Figure S1-S2). This indicates an inclination towards 

chemisorption as adsorption was the rate limiting step on the composite [63]. Indeed, surface 
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complexation has been previously shown to be one of the main anion-sorption mechanisms 

for both LDHs and LDH-biochar composites [18, 25, 47, 64-66]. Inner-sphere complexes 

have also been indicated between As(V)/Sb(V) and HFOs [67-69]. Since the Langmuir model 

fitted better the adsorption data for Sb(V) (R
2
 > 0.954) than the Freundlich model, the surface 

of the composite is assumed to contain homogenous adsorption sites with equal affinity for 

Sb(V) [60, 70, 71]. 

A slightly higher maximum sorption capacity was determined for Sb(V)  

(Qmax =24.99 mg g
-1

) in comparison with As(V) (Qmax = 20.98 mg g
-1

). Despite the difference 

in sorption capacity is not very significant, it revealed that longer contact time within 

equilibrium experiments plays an important role in the Sb(V) behavior (see SI). Slow, and 

long-term increasing trend in Sb(V) adsorption pointed out that Sb(V) needs more time to 

achieve the complete surface saturation. If vacant sites for adsorption on the surface of 

composite are still available, the adsorbate will be adsorbed more showing higher Qmax values. 

Despite magnetic and Fe-loaded biochars have demonstrated a promising capacity to adsorb 

As(V) in mine waters, wastewaters, and neutral drainages through electrostatic interactions 

and specific adsorption onto Fe-loaded particles [72-74], the presented composite appeared to 

be able to adsorb more As(V) than previously reported LDH-modified biochar [25, 65, 66] 

and Fe-impregnated biochar [75 - 79] (Table 3). 

 

3.3. Adsorption efficiency of the composite 

 

The composite demonstrated higher affinity of binding sites for As(V) (b = 0.375) as 

compared to Sb(V) (b = 0.017) via fitting by the Langmuir isotherm model and thus indicated 

a better selectivity for As(V) in comparison with Sb(V). This was also reflected in the high 

efficiency of the adsorption kinetic for As(V), achieving the adsorption of 96% and 98% of 
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total As(V) in 24 hours for samples 1 and 2, respectively. Ninety percent of As(V) was 

already adsorbed in the first ten minutes for sample 2, which reached a plateau of 98% in two 

hours. Contrary to As(V), only 34% of the total Sb(V) was adsorbed in 24 hours in sample 1. 

A similar 39% was observed for Sb(V) in sample 2, even where the Sb(V) concentration 

exceeded that of As(V).  

In general, the Eh-pH conditions of treated mine water (see SI) control both the As(V) and 

Sb(V) speciation, their mobility and attenuation and the surface charge of the composite. 

While pH of mine water could indirectly affect the speciation of As by regulating the 

saturation indices of dissolved Fe, Eh controls the adsorption of both As(V) and Sb(V) [80]. 

Based on results reported in the published literature, the adsorption of oxyanions including 

As(V) by LDHs or by various biochar-based composites tends to decrease with increasing pH, 

especially at pH above 6, while competing with OH
-
 for adsorption positions. Moreover, due 

to the instability of the LDHs structures at very low pH, the oxyanions adsorption could be 

decreased as well [43, 44, 45, 81]. Consistence efficiency of LDH-based materials or 

nanostructured composites for Sb(V) in a range of pH from 3 to 10 indicates a lower pH-

dependency of Sb(V) adsorption [42, 82]. Unlike most of the studied adsorbents, unusually 

high pHPZC (10) of the composite presented in this study allows to maintain the surface of the 

composite positively charged over a broad range of pH values. Thus, physical adsorption of 

dissolved [HAsO4]
2-

 and [Sb(OH)6]
-
 under restricted pH (7-8) of treated mine water can be 

promoted due to the favorable electrostatic interactions [28, 42]. 

Interferences of As(V) and Sb(V) with other aqueous species need to be also considered. 

The natural pH of mine water and the buffering effect of Mg-Fe LDHs promoted the 

precipitation of carbonates onto the composite surface (Table S14-S15). Carbonate showed 

little effect on the sorption of Sb(V) [83], though the mobility of As(V) and Sb(V) can be 

slightly decreased via sequestration with carbonate minerals [84, 85]. However, the results of 

Jo
ur

na
l P

re
-p

ro
of



12 
 

XRD and EMPA show neither As(V) or Sb(V) adsorption on carbonates nor formation of 

calcium arsenates and calcium-antimony phases. 

Batch experiments conducted for 160 days have confirmed the improvement of composite 

efficiency toward Sb(V) via extending the time of the interaction with mine water (Figure 

S4). Besides, while maintaining the same conditions of kinetic experiments, the composite 

presented higher As(V) and Sb(V) adsorption efficiency than pristine woody biochar used for 

composite synthesis. Additionally, adsorption efficiency of the composite was compared 

within this work with woody biochar coated by Fe- oxides or amorphous Mn- oxides, 

nanostructured carbon, or commercially used granulated active carbon (Figure 4). Composite 

showed better efficiency, which makes it more efficient material for further field applications 

in mine water remediation. 

 

3.4. Post-cleaning of mine water 

 

3.4.1. BTCs: laboratory and field scale column experiments 

Efficient As(V) removal by the composite was afforded in the primary stages of the 

experiments, followed by the gradual growth of the BTCs (Figure 5). In the case of Sb(V), 

two-phase, asymmetric BTCs were observed at both laboratory and field scales. A rapid 

initial rise of cOUT c0
-1

 was followed by very gradual growth till the feed concentration. In 

general, no significant differences were observed in the shapes and gradients of BTCs taken 

from small- and large-scale laboratory experiments, and within the field application. As 

depicted in Figure 5, about 200-300 bed volumes passed through the column on all three 

scales during column experiments. A complete saturation of the columns was reached for 

Sb(V) after ~230 - 300 bed volumes in sample 1 on laboratory scale. The columns could 

similarly treat ~ 220 bed volumes of Sb(V) within the field application before the saturation 
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point was achieved in sample 2. Based on treatable bed volumes, composite appears to be less 

efficient in comparison with biochar-supported MnFe2O4 magnetic nanocomposite or other 

nanostructured composites [81, 82]. However, the composite beds were not fully exhausted 

for As(V) and the binding sites did not become saturated at low As(V) inlet concentrations in 

mine water (mean 2.12 mg L
-1

 and 0.03 mg L
-1

 in samples 1 and 2, respectively). To obtain 

the complete concentration-volume profile for As(V), the experiments would need to be 

conducted for a much longer period and higher volume of mine water could have been 

treated. 

When compared the treatable volumes for As(V) and Sb(V) at breakthrough point (cOUT c0
-

1
 =0.5), thirty times higher bed volume for As(V) in comparison with Sb(V) reflects better 

performance of composite for As(V). This observation is consistent with the mutual effects 

observed in batch studies. The same similarity of adsorption results between batch and 

column experiments was also observed by Qiu et al. [86] via using a reusable granular TiO2, 

providing evidence that both oxides and biochar-based composites with LDHs could be used 

for simultaneous removal of As(V) and Sb(V) from mining wastewater. 

 

3.4.2. Adsorption efficiency of the technological column device 

Column experiments performed on the composite revealed the adsorption of As(V) and 

Sb(V) under the actual environmental conditions of mine waters. The average contents of As, 

Sb, and Fe reached up to 2.12, 0.41, and 3.91 mg L
-1

, respectively in sample 1 (pH 7.5) and 

0.03, 1.05, and 0.05 mg L
-1

, respectively in sample 2 (pH 7.7). In both cases, As and Sb 

concentrations exceeded the limits for surface waters according to the Regulation of the 

Government of the Slovak Republic No 269/2010 (0.0175 and 0.025 mg L
-1

 for As and Sb, 

respectively). 
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The adsorption efficiencies of the technological column device for As(V) and Sb(V) 

removal in the dynamic system were 80% and 26%, respectively, for sample 1. Here, the 

presence of free aqueous Fe (Table S11) led to the precipitation of fresh Fe oxyhydroxides, 

which can naturally reduce As(V) concentrations in mine water [54, 61]. Therefore, the 

arrangement of aeration and filtration within the column technology was essential for 

removing non-dissolved phases prior to the evaluation of the AC efficiencies (66% and 19% 

for As(V) and Sb(V), respectively). However, aeration and sand filtration in particular 

increased the total adsorption efficiency of the column device, though the proportion of 

scavenged As(V) within the filtration step was significantly higher than that of Sb(V) (Figure 

6). The very low concentration of dissolved Fe in sample 2 (Table S12) means that the Sb(V) 

adsorption (25%) could be solely attributed to the AC processes. 

In general, the adsorption of Sb(V) onto the composite was limited in the continuous flow 

setting. Moreover, qj values, as determined from the BTCs, were 0.16 and 0.37 mg g
-1

 for 

samples 1 and 2, respectively. It is well known that flow rate is the most critical parameter 

that influences metalloid adsorption [87, 88]. Therefore, one of the reasons for the low 

column capacity could have been the influence of flow rate, which was approximately 75 – 92 

times higher (90-110 L hod
-1

) than in the laboratory large scale experiments. Previous studies 

have confirmed that the presence and mobility of soluble Sb(V) oxyanions in mine water are 

preferably controlled by the kinetics of the formation of secondary Sb minerals [39]. Thus, 

Sb(V) migration in mine water is more attributable to dispersion as dissolved aqueous forms, 

rather than its affinity to suspended particulate matter, alluvial sediments, or HFOs deposited 

from discharged mine water [38, 89, 90]. Therefore, despite the natural attenuation of Sb(V) 

through either dilution or adsorption onto Fe oxyhydroxides [91, 92], the application of 

column technology with an effective composite provided an appropriate post-cleaning tool for 

mine water, prior to its draining into surface waters. 
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3.5. Engineering implications and benefits of the composite 

 

This study aimed to examine the behavior of the composite in a fixed bed column and its 

performance when applied to mine water remediation. Consistent results between laboratory 

experiments and in situ application confirmed steady adsorption behavior of the composite for 

As(V) and Sb(V). Incorporating the composite into an engineered column device proved a 

promising, easy-to-operate, and efficient way to suitably complement passive mine water 

treatment, which is the current remedial strategy in Slovakia. To design a set of batch reactors 

in possible combination with column devices, it will be necessary to consider the impact of 

torrential rain, which can drastically increase mine water effluent yields. This could 

negatively affect the steady performance of the composite (Figure 5e). The benefits of the 

proposed column device include its flexible and ease of transport, which allow it to be used in 

less accessible places. The operative combination of aeration, filtration, and adsorption can be 

optimized regarding the type of treated water. For higher efficiency, the device allows the 

connection of two sorption columns in series mode. As the column device was designed for 

the controlled post cleaning of small volumes of water (approx. 1 m
3
 per day), it could be 

useful also for ensuring water consumption in households or smaller businesses using treated 

water as an alternative source for irrigation or watering. 

After the field application of the composite, the output concentrations of As(V) and Sb(V) 

in mine waters remained above the limits for surface waters stipulated by the Government 

Regulation of the Slovak Republic (Nr.269/2010). However, column device was able to 

successively produce about 14 bed volumes of clean water before being beyond the critical 

limit value of As for irrigation water (0.05 mg L
-1

). Further studies will be required to 

maintain an efficiency over time. 
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The composites applied in mine water remediation are further considered as waste and 

should be collected, segregated, and safely disposed as per the environmental legislation 

available in a specific country. The treatment of contaminated composites in Slovakia is 

carried out in accordance with a valid waste disposal directive (Act No. 79/2015 Coll.). Due 

to the higher toxic substances content, there are two possible ways of composite handling: (i) 

landfilling as a hazardous waste with no previous treatment (if the content of selected 

contaminants is less than 1 wt%); (ii) processing and reusing it similarly to ferrous scrap at 

steel manufacturing plants. If appropriate, composite can be recommended for solidification 

with the aim of its further safe storage. In addition, composites provide economically 

important and viable Sb recovery sources, which is also in accordance with the strategic 

approach to accessing critical raw materials by the European Union. 

 

4. Conclusions 

 

The composite proposed in this study proved to be a consistent and innovative remediation 

tool for specific environmental loads such as mine water; it used on-site post-cleaning column 

technology designed particularly for the treatment of small volumes of local effluents. 

Following the idea of alternative Mg-Fe LDHs preparation, Fe-sludge was used to minimize 

production costs. The production of Mg-Fe LDHs was limited because of the precipitation of 

amorphous secondary Fe oxyhydroxides. However, their presence improved the composite’s 

retention efficiencies for As(V) and Sb(V). Field experiments showed that the total efficiency 

of the mobile column technology was higher for As(V) than for Sb(V) regarding their 

removal from mine water (80-100% for As and 25-26% for Sb). The higher efficiency for 

As(V) resulted from the continuous flow settings and differences in behavior between As(V) 

and Sb(V), the latter was preferably controlled by the kinetics of the formation of secondary 
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Sb minerals. Further studies into the detailed aqueous speciation of Sb might help to further 

reveal this difference. The proposed technology can be easily transported and can also be used 

in less accessible locations. 
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Figure 1: Mine water sampling sites. 
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igure 2: The small-scale (solid line) and large-scale (solid and/or dashed line) laboratory 

column experiment (a): peristaltic pumps (1, 6) aeration tank (2) air blower (3) filtration 

column (4) storage tank (5) adsorption columns (7, 8) collector (9). The field scale column 

technology (b): peristaltic pumps (1, 6, 11) aeration tank (2) aeration element with air blower 

(3, 4) filtration column (5) barometers (7, 13) valve (8) storage tank (9) adsorption column 

(10) flowmeter (12) mobile platform (14) electricity supply (15). A mobile double-column 

set-up (c). 
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Figure 3: BSE images (a), XRD patterns (b) and Fe K-XANES patterns (c) of the composite. 

Mg-Fe LDHs from Fe-rich sludge (1); biochar (2); carbonates formed after the field 

application of the composite (3). HFOs and pristine Mg-Fe LDHs were used as references for 

Linear Combination Fits. 
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Figure 4: As(V) (a, b) and Sb(V) (c, d) adsorption kinetics in mine waters (error bars 

represent standard deviation of the average for the composite and Mg-Fe LDHs). Comparison 

with pristine and modified biochar, and with commercially used materials for water treatment. 
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Figure 5: Breakthrough curves in a small, large, and field scale, respectivelly on sample 1 (a, 

c, e) and sample 2 (b, d, f). 
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Figure 6: Comparison of the adsorption efficiency (%) of the whole technological column 

device with the adsorption column (AC) for As(V) and Sb(V). 
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Table 1: Feedstocks and characteristics of the composite. 

 Laboratory Condition Pilot Plant Condition 

Input Reactants   

Dilluted Fe-leachate (1:1) (mL) 200 4000 

MgCl2 × 6H2O (g) 30.5 609.8 

Biochar (g) 12.5 250 

2.5 M KOH (mL) 400 8 000 

Yield of composite (g) 35 700 

Composite   

Biochar fraction (mm) < 0.5 0.5 - 2 

SBET (m
2
 g

-1
) 274 215 

Smeso (m
2
 g

-1
) 209 130 

Vtot (mm
3

liq g
-1

) 274 271 

Vmicro (mm
3 

liq g
-1

) 37 46 

CEC* (cmol
+
kg

-1
) 113.5 ± 0.9 152.4 ± 8.4 

pH H2O** 9.9 ± 0.03 10.5 ± 0.008 

pH PZC 10.1 10.4 

FeTOT (g kg
-1

) 205.2 247.2 

MgTOT (g kg
-1

) 76.0 78.6 

KTOT (g kg
-1

) 13.1 24.8 

CaTOT (g kg
-1

) 8.3 6.5 

MnTOT (g kg
-1

) 2.4 1.8 

AlTOT (g kg
-1

) 1.4 1.4 

* CEC (± SD) could be overestimated by releasing K and Mg from the composite. 

** Presented as average ± SD. 
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Table 2: Parameters of the laboratory and field scale column experiments. 

Parameter 

Small Lab. Scale Large Lab. Scale Field Scale 

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 

Composite (g) 1 2 21 21 2 000 2 000 

Quartz sand (g) 9 18 317 317 30 000 30 000 

Composite/sand ratio 1:9 1:9 1:15 1:15 1:15 1:15 

Flow rate (mL min
1-

;  

L hod
-1 

for field scale) 

2 2 20 20 85-138 89-93 

Adsorption bed high (cm) 8 11 19.7 19.7 75 75 

Adsorption bed width (cm) 1 2 4.2 4.2 19 19 

Bed volume 279 263 348 300 179 262 

Aeration pre-treatment no no yes yes yes yes 

Mine water total volume (L) 8.64 8.16 96.4 83.1 3 936 5 757 
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Table 3: A comparison of the adsorbed amount (Qmax) of As(V) and Sb(V) on different LDH- 

and Fe-based biochar composites. 

 LDHs or Fe-based materials Origin of biochar Qmax (mg g
-1

) Reference 

As (V) Mg-Fe LDH/HFO Wood  21.0 This study 

 Ni/Mn LDH Pine wood 6.52 [56] 

 Ni/Fe LDH Pine wood  4.38 [57] 

 Cu/Al LDH Corn stalk 14.9 [33] 

 Zn/Al LDH Corn stalk 16.1 [33] 

 Mg/Al LDH Corn stalk 10.4 [33] 

 Zero valent iron Red oak 15.6 [66] 

 Zero valent iron Switchgrass 7.92 [66] 

 FeCl3 Corn straw 6.80 [67] 

 FeCl3 Wood ash 5.78 [63] 

 Goethite Hickory chips 2.16 [68] 

 Maghemite Cottonwood 3.15 [69] 

 Fe-Mn oxide Pine wood 3.44 [70] 

Sb (V) Mg-Fe LDH/HFO Wood  25.0 This study 

 Fe oxide Biosolid 39.7 [71] 

 FeCl3 Biosolid 31.5 [71] 
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Highlights: 

 The composite was prepared from Fe-rich sludge and certified woody biochar. 

 Efficient As and Sb removal in batch and continuous flow column systems. 

 Successful field application of the composite for local mine water treatment. 

 Continues flow columns are complementary to passive geochemical barriers. 
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