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Abstract. Numerical modelling offers a unique approach to understand how tectonics, climate and surface pro-
cesses govern landscape dynamics. However, the efficiency and accuracy of current landscape evolution models
remain a certain limitation. Here, I develop a new modelling strategy that relies on the use of 1D analytical
solutions to the linear stream power equation to compute the dynamics of landscapes in 2D. This strategy uses
the 1D ordering, by a directed acyclic graph, of model nodes based on their location along the water flow path to
propagate topographic changes in 2D. This analytical model can be used to compute in a single time step, with an
iterative procedure, the steady-state topography of landscapes subjected to river, colluvial and hillslope erosion.
This model can also be adapted to compute the dynamic evolution of landscapes under either heterogeneous or
time-variable uplift rate. This new model leads to slope–area relationships exactly consistent with predictions
and to the exact preservation of knickpoint shape throughout their migration. Moreover, the absence of numerical
diffusion or of an upper bound for the time step offers significant advantages compared to numerical models.
The main drawback of this novel approach is that it does not guarantee the time continuity of the topography
through successive time steps, despite practically having little impact on model behaviour.

1 Introduction

While the elevated but incised landscapes of mountain belts
testify to the cumulated actions of tectonics, erosion and cli-
mate, unravelling how these processes act and interact to
shape the Earth’s surface remains one of the most challeng-
ing issues in Earth sciences (e.g. Molnar and England, 1990;
Willett, 1999; Whipple, 2009; Steer et al., 2014; Croissant
et al., 2019). Numerical models have been pivotal to under-
standing how topography and erosion respond to spatial and
temporal changes in climate and tectonics (e.g. Howard et al.,
1994; Whipple and Tucker, 1999; Tucker and Whipple, 2002;
Carretier and Lucazeau, 2005; Thieulot et al., 2014; Crois-
sant et al., 2017). At the mountain scale, numerical mod-
els generally account for geomorphological processes using
effective and reduced-complexity erosion laws such as the
stream power incision model (SPIM) for rivers (e.g. Howard
et al., 1994) and diffusion for hillslopes (e.g. Roering et al.,
1999). In particular, the SPIM is popular in landscape evo-
lution models (LEMs) as its physical expression resolves

to a non-linear kinematic wave equation, which offers sim-
ple finite-difference or finite-volume solutions in 1 and 2D
(e.g. Pelletier, 2008; Braun and Willett, 2013; Campforts and
Govers, 2015; Campforts et al., 2017). Despite these benefits,
these numerical solutions have several drawbacks: (1) their
stability or consistency requires the use of a small time step
that must respect the Courant condition, i.e. that an erosional
wave cannot travel over a distance greater than one or a few
node spacings during one time step, and (2) they are prone
to numerical diffusion and therefore only offer approximate
solutions. Numerical schemes in 2D have recently been de-
veloped to reduce the time-step dependency on grid spac-
ing (Braun and Willett, 2013) or numerical diffusion (Camp-
forts and Govers, 2015). In 1D, evolution of river profiles
can be derived using analytical solutions determined by the
method of the characteristics (Luke, 1972, 1974, 1976; Weis-
sel and Seidl, 1998; Whipple and Tucker, 1999; Lavé, 2005;
Pritchard et al., 2009; Royden and Taylor Perron, 2013).
These solutions have been successfully used in formal inver-
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sion of river profiles (Goren et al., 2014a; Fox et al., 2014;
Goren, 2016), but they have been largely ignored in forward
landscape evolution models, despite their inherent exact ac-
curacy. This likely results from the apparent absence of an
analytical solution in 2D.

In this study, I extend the applicability of these 1D ana-
lytical solutions to 2D problems by developing a new type
of landscape evolution model based on analytical solutions.
I first demonstrate how this model, that I refer to as Salève,
can be used to compute – in a single time step – a steady-
state topography in 2D. I then develop a dynamic version of
Salève to solve for transient landscape changes under hetero-
geneous or time-variable uplift. Last, I demonstrate the abil-
ity of Salève to accurately model the propagation of knick-
points in LEMs and to account for river, colluvial and hills-
lope erosion.

2 From a 1D to a 2D analytical solution to the
stream power law

Most LEMs require the computation of river water discharge
as the main driver of river erosion and sediment transport.
While flow algorithms based on physical considerations of-
fer more accurate solutions (e.g. Davy et al., 2017), wa-
ter routing in 2D LEMs is generally achieved using sim-
ple flow algorithms, like the steepest slope (O’Callaghan
and Mark, 1984) or the multi-flow direction (Quinn et al.,
1991; Freeman, 1991). The Fastscape algorithm, and other
graph-based approaches, offers a very efficient means to or-
der nodes along the steepest water flow path and to compute
river discharge and drainage area (Braun and Willett, 2013;
Schwanghart and Scherler, 2014). A single receiver and po-
tentially several donors are attributed to each node of the to-
pographic grid to recursively build a node stack (or graph)
from the outlet node to the crest nodes of each catchment.
Each node is therefore associated with its outlet node through
a single flow path. These flow paths represent 2D trajectories
in the (x, y) space that can be converted to pseudo-1D trajec-
tories (i.e. to directed acyclic graphs) using the node order-
ing of the stack. For instance, local river slope along the wa-
ter flow can be computed by simply differentiating elevation
over the distance along the river length l between successive
nodes. The 2D LEMs solving for river erosion using a single
flow algorithm and local river slope or water discharge are
therefore fundamentally solving a 1D problem, based on a
2D description of the flow. To be more accurate, they actu-
ally solve for a series of 1D problems, with one 1D problem
for each catchment connected to an outlet.

In 1D, a classical detachment-limited approach to describe
the rate of change in river elevation change z with time t is
the SPIM (Howard and Kerby, 1983; Howard, 1994; Whipple
and Tucker, 1999; Lague, 2014):

∂z(l, t)
∂t
= U (l, t)−K ′(l)Qw(l)m

(
∂z(l, t)
∂l

)n
, (1)

where U is the uplift rate, K ′ the erodibility, Qw = rA the
water discharge with A the drainage area, r the mean daily
runoff, and m and n are two exponents. This equation can be
cast in a more commonly used form, as a function of drainage
area, by defining an effective erodibility K =K ′rm:

∂z(l, t)
∂t
= U (l, t)−K(l)A(l)m

(
∂z(l, t)
∂l

)n
. (2)

This equation corresponds to a non-linear kinematic wave
equation with a celerity C(l)=K(l)A(l)m(∂z(l, t)/∂l)n−1

representing the speed at which information propagates
along the river (e.g. Rosenbloom and Anderson, 1994; Weis-
sel and Seidl, 1998; Whipple and Tucker, 1999; Royden and
Taylor Perron, 2013). Following Royden and Taylor Per-
ron (2013), this migrating information can be referred to as
slope patches. Integrating the inverse of this celerity along
the river path, from the river outlet at l = 0 to a point of co-
ordinate l along the river, defines the river response time:

τ (l)=

l∫
0

1
C(l′)

dl′ =

l∫
0

1
K(l′)A(l′)m(∂z(l′, t)/∂l′)n−1 dl

′. (3)

Using this response time and assuming a constant but poten-
tially heterogeneous uplift rate U (l) or a uniform but poten-
tially variable uplift rate U (t), river profile elevation can be
derived analytically assuming A is known (see derivation in
Royden and Taylor Perron, 2013). As I intend to implement
a solution in a LEM, the solution needs to remain practical.
In particular, it is noticeable that the response time and celer-
ity become independent of local river slope S(l)= ∂z(l, t)/∂l
when n= 1, which is a classical choice in forward or inverse
landscape evolution models (e.g. Goren et al., 2014a; Fox et
al., 2014). Under this condition and assuming a constant and
homogeneous uplift rate U , the steady-state river profile ele-
vation is

z(l)=z(0)+Uτ (l)= z(0)+U

l∫
0

1
KA(l′)m

dl′,

with z(0)= zbase, (4)

and with zbase the base-level elevation. Note that this solution
is asynchronous as steady state is achieved for an increas-
ing response time in the upstream direction. Importantly, as
the flow network is not known a priori, this integral solution
still requires one to numerically compute a flow network and
drainage area over a discretized grid. In the following, I adapt
this formalism to develop two modelling approaches which
either computes the steady-state topography of a landscape
or solves for its dynamic evolution (Fig. 1).

3 A single time step iterative solution to
topographic steady state in 2D

This solution (Eq. 4) can be extended to spatially variable
uplift rate U (l) by simply using the response time of the re-
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Figure 1. Overview of the algorithms used for the (a) steady-state
and (b) dynamic simulations.

ceiver node τR(l) and its elevation zR(l):

z(l)=zR(l)+U (l) (τ (l)− τR(l)) for l > 0,

and z(0)= zbase. (5)

Obviously, this operation needs to be performed iteratively
and in the correct node order, from the outlet node towards
the upstream direction using the node stack or graph (Braun
and Willett, 2013; Schwanghart and Scherler, 2014). Ignor-
ing hillslope processes, I use this solution to attempt com-
puting the steady-state topography with Salève in a single
iteration (Fig. 2). The initial topography consists of a flat sur-
face with a random noise discretized by a regular grid. I use
m= 0.5, corresponding to the classical unit stream power,
U = 10 mm yr−1, K ′ = 1×10−6 yr−1, r = 5/365 m d−1 and
a square model domain of extent L= 10 km with a reso-
lution of 50 m, corresponding to npt = 40.401 points. Flow
over the topography is computed using the single-flow algo-
rithm provided by TopoToolbox (Schwanghart and Scherler,
2014), which efficiently exploits the directed acyclic graph
structure of the flow network (Phillips et al., 2015).

The obtained solution looks very roughly like a clas-
sical steady-state topography, and yet it is not strictly at
steady state (Fig. 2). Indeed, during this first iteration, the
scheme used (Fig. 1a) imposes the constraint that rivers de-
velop over the flow network defined by the initial topogra-
phy and, in turn, does not ensure that the nodes located on
the same crest of two juxtaposing catchments share the same
response time or the same elevation. This leads to an exces-
sive elevation as some rivers have planar length greater than
predicted. This is the main limit of this 1D algorithm that
cannot ensure the optimality of the 2D organization of the
river network at steady state after only one iteration (Fig. 2).

However, repeating this operation by computing the to-
pography and then updating the flow network (i.e. by com-
puting the steepest slope, node order, and drainage area or
discharge) after each iteration leads to a steady-state topog-
raphy after a few tens of iterationsNiter (Fig. 2). To assess the

convergence of this iterative procedure, I define the degree of
crest disequilibrium 1zcrest as being the average of the abso-
lute difference of elevation between crest nodes of juxtapos-
ing catchments. I find that 1zcrest follows a rapid decay with
Niter until reaching a slower decay phase when Niter ≥ 40.
1zcrest never reaches 0 m, even after 100 iterations, as dif-
ferences of elevation can remain along the two sides of the
crests, as in other LEMs, due to the non-continuity of the spa-
tial discretization for grid-based models (Fig. 2c). However,
the model reaches a stable solution at Niter = 127. Note that
running the same model but with a different initial topogra-
phy leads to a variability of this required number of iterations
due to the initial configuration of the flow network.

Changing U , K and L while keeping npt constant does
not lead to a significant change in the number of iterations
required to reach steady state (Fig. 3). This shows that the
convergence of this algorithm is independent of the model
parametrization. However, increasing the number of points
npt leads to an increase in the number of iterations required to
reach steady state, which scales with n0.5

pt , or in other words
with the number of nodes in one of the horizontal dimen-
sions (Fig. 3). This scaling emerges due to the more numer-
ous numbers of local (i.e. among direct neighbours) permu-
tations of the crest location required to reach a stable fluvial
organization when increasing npt.

The new algorithm developed in Salève presents sig-
nificant advantages compared to finite-difference schemes,
which are fundamentally limited by the time step 1t that
must respect the Courant conditions 1t < k1x/max(C(l)),
with k equal to ∼ 0.1 or to 100 for explicit or implicit
schemes, respectively (e.g. Braun and Willett, 2013). There-
fore, these finite-difference solutions are doomed to use
shorter time steps and a larger number of iterations when
considering finer resolutions. On the contrary, this analyt-
ical LEM converges towards steady state with roughly the
same number of iterations, independently of the celerityC(l),
which is set byK , A (i.e. L2) andm. The number of required
iterations, however, increases with n0.5

pt , which is equivalent
to an increase with decreasing 1x = L/n0.5

pt when L is con-
stant, as in classical finite-difference schemes. Moreover, this
steady-state modelling approach is compatible with spatially
variable U , K and r .

4 A 2D dynamical model with analytical accuracy

I now explore the use of this analytical model in dynamic
simulations with Salève (Fig. 1b). I first consider the case
of potentially heterogeneous but constant uplift rate U (l). A
transient solution for river elevation z(l, t) at a specific time t
can be computed using Eqs. (4) or (5) by simply thresholding
the response time so that for every node τ (l, t)=min(τ (l), t).
It results in the following:

z(l, t)=zR(l, t)+U (l) (τ (l, t)− τR(l, t)) for l > 0,

and z(0, t)= zbase. (6)
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Figure 2. Modelled steady-state topographies obtained after (a) 1 (left panel), 10 (middle panel) and 50 (right panel) iterations. (b) The
steady-state topography is obtained after 127 iterations. (c) Convergence of the iterative algorithm inferred from the degree of crest dis-
equilibrium 1zcrest, computed as the average of the absolute difference of elevation between crest nodes of juxtaposing catchments. Red
dot indicates model shown in panel (b). Note that in panel (a), the colour map is bounded by the maximum elevation of the steady-state
topography shown in panel (b).

This solution therefore enables computation of the time evo-
lution of a landscape under potentially heterogeneous erodi-
bility, uplift and runoff (or precipitation) rates. Thresholding
the response time enforces that the uplift rate is considered
null before the beginning of the simulation. The limitation
of non-optimality of the planar organization of flow network
remains as in the steady-state solution. However, this limita-
tion can be solved by simply updating the river network, the
node order, the steepest slope and water discharge after each
time step, as in any other LEMs. As the time step is not con-
strained by numerical stability issues, such as the Courant
condition, it can be chosen only based on the rate of flow
network reorganization linked to river capture and piracy.
Note, however, that in the dynamic Salève models, flow net-
work reorganization will lead to an immediate topographic
reorganization, to respect Eq. (6). Indeed, time evolution of
the elevation in Salève should not be seen as a continuous
time evolution of a same topography, which would evolve by
erosion under different time and space distributions of water
discharge (e.g. as in other LEMs), but as a succession of to-
pographic realizations which respect that the distribution of

elevation is set by the flow network. In other words, Salève
does not fully guarantee the time continuity of the topogra-
phy through successive time steps, despite practically having
a limited impact on model behaviour as I will demonstrate
later.

I here run a simulation, using the same parameters as
in the steady-state simulation, over a duration of 500 kyr
(Fig. 4). The time steps 1t = 2 and 0.2 kyr correspond to
about 45 and 4.5 times the Courant condition, respectively.
Because implicit finite-difference solutions to the SPIM also
remain numerically stable for time steps longer than the one
imposed by the Courant condition, I also run simulations us-
ing an implicit solution with the same parameters and time
steps and compare them to the results of the Salève simula-
tions. The implicit solution is computed following Eq. (22) in
Braun and Willett (2013). I also compare Salève with results
obtained with an implicit solution using a time step 1t =
0.002 kyr, corresponding to a Courant condition of 0.45.

The final topographies, i.e. at steady state, obtained with
Salève or with the implicit solution share roughly the same
statistical properties in terms of vertical and horizontal orga-
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Figure 3. Influence of model parameters and geometry on the con-
vergence towards a steady-state landscape. (a) Uplift rate U was
varied between 10−4 and 1 m yr−1. (b) Erodibility K was varied
between 1× 10−7 and 1× 10−3 yr−1. (c) Model length L was var-
ied between 0.1 and 100 km. (d) The number of model points npt
was varied between 1.2× 103 and 0.4× 106. (e) The relationship
between the number of iterations required to reach steady state and
npt follows a power law with an exponent 0.5 (blue line).

nization. The time evolution of the mean elevation (mean(z))
and maximum elevation (max(z)) is similar in all the mod-
els, even if the steady-state value is higher by ∼ 50 for
mean(z) and ∼ 500 m for max(z), with the implicit solution
(Fig. 4c). Moreover, the fluvial network and hence the to-
pography modelled with Salève reach a stable configuration
once at steady state, with no subsequent vertical or horizon-
tal changes. Topographic stability occurs when the model
time t becomes greater or equal to the response time τ (l)
of all the model nodes, and in particular the ones located on
crests (Fig. 4b). This is particularly true if1t is small enough
to allow the horizontal organization of the fluvial network
to evolve concomitantly with its vertical component. On the
contrary, the topography simulated by the finite-difference

models continues to evolve after steady state, in particular the
maximum elevation max(z), with larger variations for mod-
els with longer time steps, which occurs due to catchment
reorganization and numerical noise.

Moreover, erosion rates E first increase more slowly and
then more rapidly in Salève than with the implicit solu-
tions before reaching steady state (Fig. 3d). In particular,
the second phase is due to longer upstream distances and
erosional response times in the topographies simulated with
the implicit solution than with Salève (Fig. 3f). This is at
least partly due to the dependency of the transient phase du-
ration on 1t for finite-difference models (Braun and Wil-
lett, 2013). Geometrically, longer transient phases are as-
sociated with fluvial networks with longer upstream dis-
tances, i.e. distances to the outlet, in the implicit models
with longer time steps compared to implicit models with
shorter time steps or to Salève models (Fig. 3e). These re-
sults also show that the response time of the landscapes is
shorter than with other 2D LEMs as it is equal to the 1D re-
sponse time, based on the flow network length at steady state,
when the time step used is sufficiently short to allow progres-
sive reorganization of the fluvial network (e.g. model with
1t = 0.2 kyr).

Erosion rates in Salève, calculated by differencing eleva-
tion between successive time steps and subtracting the con-
tribution of uplift, are significantly more variable, in partic-
ular for the model with the shorter time step 1t = 0.2 kyr
than with the implicit solutions. This variability highlights
phases of fluvial network reorganization which lead to im-
mediate topographic reorganization, due to time discontinu-
ity, and therefore to an immediate increase in erosion rates.

In terms of horizontal organization, all the Salève and im-
plicit models lead to the same Hack’s law (Hack, 1957),
which relates, through a power-law relationship, the down-
stream maximum river length Lr with catchment area: Lr ∝

Ah. A least-square fitting gives an exponent h of 0.65±
0.01 for Salève and the implicit models at steady state,
with no dependency over 1t . In terms of vertical organiza-
tion, the slope–discharge relationship obtained with Salève
at steady state fits perfectly with the predicted one, S =
(U/K)1/nQ−m/n, while the implicit solution shows a signif-
icant spread, in particular at low drainage area or discharge,
which increases with 1t (Fig. 3d). Using 1t = 0.02 instead
of 2 kyr leads to a slightly better consistency between the im-
plicit and Salève solution, including the slope–discharge re-
lationship and the temporal evolution of elevation.

5 Application: time-variable uplift and knickpoint
propagation

I now investigate the case of time-variable but homogeneous
uplift rateU (t). Following Royden and Taylor Perron (2013),
this case leads to additional complexity as the uplift rate,
when the slope patches were initiated, must be tracked during

https://doi.org/10.5194/esurf-9-1239-2021 Earth Surf. Dynam., 9, 1239–1250, 2021
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Figure 4. Dynamic behaviour of the Salève model. (a) Time evolution of the modelled topography after 50 (left panel), 150 (middle panel)
and 500 kyr (right panel). Time evolution of the (b) max elevation, (c) mean elevation and (d) mean erosion rate for Salève, using a time step
of 1t = 2 kyr (black line) and 0.2 kyr (dashed black line) and for the implicit solution with 1t = 2 kyr (blue line), 0.2 kyr (green line) and
0.02 kyr (red line). The uplift rate U is shown in panel (d) with a cyan line. (e) Slope–discharge distributions at steady state (at 500 kyr) for
the three models compared to the predicted relationship (cyan line). No binning is done, and all the model nodes are represented in panel (d).
(f) Histograms of upstream distances d (left panel) and response times τ (right panel) for the different models at steady state.

upstream migration. In a LEM, this is performed by com-
puting, at the specific time t , what I refer to as the uplift
memory map Umem(l, t)= U (t − τ (l, t)). It is not equivalent
to a classical uplift map and corresponds to the uplift rate
when the slope patches were formed. I remind the reader
here that the response time is bounded by actual model time
τ (l, t)=min(τ (l), t). The elevation at a time t is then simply

computed in the upstream direction, starting with the river
outlets, as

z(l, t)=zR(l, t)+Umem(l, t) (τ (l, t)− τR(l, t)) for l > 0,

and z(0, t)= zbase. (7)

As in the heterogeneous uplift case, this solution is easily
implemented in a LEM by updating the river network and its

Earth Surf. Dynam., 9, 1239–1250, 2021 https://doi.org/10.5194/esurf-9-1239-2021
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Figure 5. Dynamic evolution of the topography and knickpoint migration over 500 kyr. The initial uplift rate U = 10 mm yr−1 is doubled
after 250 kyr. (a) Topography before the increase in uplift at 50 (top panel), 125 (middle panel) and 225 kyr (bottom panel). (b) Topography
after the increase in uplift at 300 (top panel), 400 (middle panel) and 500 kyr (bottom panel). (c) Temporal evolution of the longest river
profile shown at every time step (except the first one), with the “winter” and “autumn” colour map showing river profiles before and after the
increase in uplift. (d) Temporal evolution of the uplift (blue squares) and erosion (red circles) rates.

properties after each time step. I also emphasize here that the
previous model example (Fig. 4) is already a specific case
of a time-variable uplift rate, with a change in uplift rate
which occurs at the beginning of the simulation, leading in
turn to a simpler formalism (Eq. 6). In the following, I focus
on demonstrating the ability of the model to simulate and
track knickpoints.

Discrete temporal changes in uplift rates or in base-level
elevation can lead to sharp ruptures in the slope of river pro-
files, generally referred to as knickpoints (e.g. Rosenbloom
and Anderson, 1994; Whipple and Tucker, 1999; Steer et al.,
2019). Finite-difference solutions to the stream power equa-
tion inherently lead to a progressive numerical diffusion of
knickpoints during their migration, even with n= 1, while
the algorithm developed here preserves the shape of knick-
points. To illustrate this advantage, I run a simulation with the
same parameters as in the steady-state case, except that U is
raised from 10 to 20 mm yr−1 at 250 kyr for a total model
duration of 500 kyr (Fig. 5). Compared to previous models,
the model is here restricted to an extent of 10 km over 2 km,
with only one boundary (left) that is considered as possible
outlets for water. This setting limits fluvial network reorgani-
zation (or time discontinuity) and in turn allows for tracking
geomorphological features during the evolution of the land-
scape. I use a time step of 25 kyr, which is about 500 times
greater than the time step imposed by the Courant condition,
clearly above the range of time steps compatible with nu-
merical solutions. Despite this, the knickpoints formed at the
outlets of the model at 250 kyr, at the onset of the increase
in uplift rate, are accurately modelled, i.e. with analytical ac-
curacy, throughout their propagation (Fig. 5c). The shape of

the knickpoint is also kept throughout its migration. I also
highlight here that, due to the model setting with only one
outlet boundary, which limits river reorganization (and time
discontinuity), erosion rates are smoother than in Fig. 4.

6 Solving for river and hillslope dynamics

In previous sections, I have considered the steady-state and
dynamic solutions of landscapes subjected only to river ero-
sion following the SPIM. However, these analytical solutions
can be extended to simulate the dynamics and morphology of
colluvial valleys and hillslopes. Indeed, a power-law scaling
for the slope–area relationship is observed in colluvial val-
leys, which suggest they could obey a similar erosion law
as Eq. (1), but with different m and n exponents (Lague
and Davy, 2003). A solution with m= 0.24 and n= 1, but
considering a non-negligible incision threshold, was found
to best explain the geometry of colluvial valleys in the Si-
walik Hills of Nepal for drainage area between 7× 10−3

and 1 km2, representing the thresholds in drainage area be-
tween colluvial valleys and hillslopes or rivers, respectively
(Lague and Davy, 2003). Below the area transition between
colluvial valleys and hillslopes, the power-law scaling for the
slope–area relationship becomes flat, due to landsliding and
mass wasting processes, or reverts where hilltops are convex
(Ijjasz-Vasquez and Bras, 1995; Tarolli and Dalla Fontana,
2009). Once again, this hillslope domain could be geometri-
cally modelled using the SPIM with different m and n, e.g.
withm= 0 and n= 1, to model hillslopes following a critical
angle of repose Sc. I do not argue here that these laws nec-
essarily encapsulate the processes controlling colluvial and
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hillslope erosion (e.g. Tucker and Bras, 1998; Densmore et
al., 1998; Roering et al., 1999; Lague and Davy, 2013; Jean-
det et al., 2019) but that this framework can approximate the
observed geometrical relationships between slope and area.

Practically, considering three different erosion laws, for
river, colluvial valleys and hillslopes, simply requires chang-
ing the value ofK ,m and n in the definition of celerity in the
response time equation (Eq. 3) for each of the different do-
mains, separated by thresholds in discharge or drainage area.
Keeping n= 1 for simplicity leads to the following set of re-
sponse time equations:

τ (l)=

l∫
0

1
K1(l)A(l)m1

dl′

for l < l1,

τ (l)=

l1∫
0

1
K1(l)A(l)m1

dl′+

l∫
l1

1
K2(l)A(l)m2

dl′

for l1 < l ≤ l2,

τ (l)=

l1∫
0

1
K1(l)A(l)m1

dl′+

l2∫
l1

1
K2(l)A(l)m2

dl′

+

l∫
l2

1
K3(l)A(l)m3

dl′

for l > l2, (8)

where A(l1) and A(l2) are model parameters that define the
threshold areas for river to colluvial valley and for colluvial
valley to hillslope transitions, and (K1, m1), (K2, m2), and
(K3, m3) are the K values and m exponents for rivers, col-
luvial valleys and hillslopes, respectively. I emphasize here
that the colluvial law used here is only inspired from the col-
luvial law described in Lague and Davy (2003), as it neglects
the incision threshold which lead to a non-linear behaviour.
Figure 6 shows the steady-state topographies obtained when
considering river, colluvial and hillslope erosion. Consider-
ing these additional erosion laws leads, as expected, to dif-
ferent scaling in the slope–discharge relationships, separated
by thresholds in discharge or drainage area. These thresholds
should be chosen to ensure (1) the continuity of the slope–
discharge relationship and (2) the slope is equal to Sc when
A≤ A(l2). I emphasize, once again, that the models devel-
oped here lead to slope–discharge relationships with exact
accuracy, at steady state, due to the use of analytical solu-
tions. Other analytical solutions can be considered to account
for hillslope processes such as the one developed in the DAC
model (Goren et al., 2014b).

7 Discussion and conclusion

Based on previous analytical developments (e.g. Royden and
Taylor Perron, 2013), I have designed a new method to solve
for the steady-state topography or the dynamic evolution of a
landscape in 2D, following the SPIM, with analytical preci-
sion. The model can solve in a single time step, using an iter-
ative scheme, the steady-state topography of a landscape un-
der homogeneous or heterogenous conditions (i.e. uplift rate,
erodibility and runoff). Iterations are required to optimize the
planar organization of the river network and crest positions,
starting from a random network. The number of iterations
required for the convergence of the scheme only depends on
the number of nodes discretizing the surface topography and
only scales with n0.5

pt , independently of other model parame-
ters. Moreover, the model can also solve for the dynamic evo-
lution of a landscape under either heterogeneous but constant
or time-variable but homogeneous conditions. The dynamic
and steady-state Salève models can solve for river, colluvial
and hillslope erosion, if the associated erosion laws lead to
slope–area (or discharge) relationships that can be modelled
using a linear SPIM. The two main benefits of this new model
are (1) its analytical accuracy that enables suppression of nu-
merical diffusion and, for instance, the maintenance of the
shape of knickpoints and (2) the absence of an upper bound
for the time step that is not limited by the Courant condi-
tion. Contrary to any other state-of-the-art LEMs using the
SPIM (e.g. Braun and Willett, 2013; Carretier et al., 2016;
Campforts et al., 2017; Hobley et al., 2017; Salles, 2018), the
time-stepping strategy in Salève can be chosen only based
on physical considerations, such as the rate of river network
reorganization, and not on numerical ones. All these advan-
tages make Salève unique in its ability to efficiently model
landscape evolution. In addition to its use in landscape evolu-
tion modelling, Salève could offer new opportunities to gen-
erate terrains for applications in computer graphics (e.g. Cor-
donnier et al., 2016); to infer the time and space evolution
of uplift by inverting landscapes in 2D (e.g. Pritchard et al.,
2009; Roberts and White, 2010; Goren et al., 2014a; Fox et
al., 2014; Croissant and Braun, 2014) including river, collu-
vial valleys, and hillslopes; to predict thermochronological
ages from landscape evolution (e.g. Braun et al., 2014); or
to validate the accuracy of numerical schemes used in other
LEMs. The model is fast as it makes use of the optimized
flow routing algorithm provided by TopoToolbox (Schwang-
hart and Scherler, 2014).

The developed scheme, that uses 1D analytical solutions,
is limited to flow networks that can be topologically classi-
fied as 1D node stacks or graphs (Braun and Willett, 2013), as
resulting from a steepest slope flow routing algorithm. This
excludes, for instance, recent models accounting for flow
algorithms based on physical considerations (Davy et al.,
2017). The main limitation of this new approach is that re-
organizations of the river network, such as catchment piracy,
will not lead to transient phases of erosion, as the river el-
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Figure 6. Steady-state topographies obtained with Salève considering only (a) stream power incision (m= 0.5) in rivers (like in Fig. 1),
(b) stream power incision (m= 0.5) in rivers and colluvial erosion (m= 0.24), and (c) stream power incision in rivers (m= 0.5), colluvial
erosion (m= 0.24), and hillslopes following a critical slope (m= 0) of Sc = 30◦. To better highlight relief, elevation is represented by
transparency over the raster of hillshade. (d) Slope–discharge distributions for these three models.

evation is directly updated to its optimal elevation for each
node where t ≤ τ (l, t). The response time of the modelled
landscapes is therefore shorter than with other 2D LEMs as
it is equal to the 1D response time based on the flow network
length at steady state. Moreover, the flow network topology
is updated at every iteration or time step, in the steady-state
or dynamic modes, respectively, while other strategies, based
on physical criterion, could be adopted (Goren et al., 2014b).
If many dynamic LEMs use the same approach (e.g. Braun
and Willett, 2013), this is a critical aspect of the convergence
speed and computational time in the steady-state mode, and
future work should focus on accelerating it.

The Salève model is also not designed for horizontal tec-
tonic displacement (e.g. Braun and Sambridge, 1997; Steer
et al., 2011; Miller et al., 2007) that displaces nodes rela-

tive to the location of the base-level condition. Moreover,
Salève is a purely detachment-limited model which does not
consider the role of sediment transport and deposition in
landscape dynamics. Only the linear SPIM with n= 1 has
been considered in this study, while some observations sup-
port non-linear models with greater values for n (e.g. Lague,
2014). These limitations also emphasize that analytical so-
lutions to landscape dynamics, such as Salève, represent a
complementary approach to other “numerical” LEMs, which
are in essence more versatile and allow for tackling coupled
or complex scientific problems which characterize geomor-
phological systems.

Extending the Salève algorithm to non-linear SPIMs rep-
resents a challenging and non-trivial perspective that requires
accounting for more complex analytical solutions with over-
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lapping or stretching river profiles for n > 1 or n < 1, re-
spectively (Royden and Taylor Perron, 2013). Using Salève
to simulate the impact of both a heterogeneous and time-
variable uplift rate has not been attempted and might also
result in convergence issues. Moreover, using an even more
efficient algorithm to route water also represents a promising
avenue (e.g. Barnes et al., 2014). This is critical for Salève
that can use a time step much greater than the Courant con-
dition and for which the main computational limit is the flow
routing algorithm. Therefore, no computational time bench-
mark was done for this new model, as the computation of
elevation changes, even on large grids, is negligible com-
pared to flow routing. In turn, solving for individual time
steps in this model takes a similar amount of computational
time as in other similar LEMs using the same flow routing
algorithm (e.g. Braun and Willett, 2013; Schwanghart and
Scherler, 2014). Yet, the advantage of this new model is its
ability to use longer time steps while preserving analytical
accuracy and consistency. Lastly, Salève represents the first
attempt to use analytical solutions to model the dynamics of
landscapes in 2D using the SPIM. Because little modifica-
tions are required to implement this solution in other LEMs, I
believe the strategy developed in this paper could be adapted
and further developed to make LEMs more efficient and ac-
curate.

Code availability. A MATLAB version of the
model can be accessed through a Zenodo repository:
https://doi.org/10.5281/zenodo.4686733 (Steer, 2021). It is
delivered with a routine to solve for the stream power law using an
implicit finite-difference solution.
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