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Abstract 15 

Bacterial decomposition of organic matter in soils is generally believed to be mainly 16 

controlled by the access bacteria have to organic substrate. The influence of bacterial traits 17 

on this control has, however, received little attention. Using the concentration-dependent 18 

Monod growth model, we develop a bioreactive transport model to screen the interactive 19 

impacts of dispersion and bacterial traits on mineralization. Bacterial traits primarily involved 20 
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in the bacterial response to the substrate concentration, such as the maximum specific 21 

uptake rate and efficiency, the adaptation time of the uptake rate and the initial population 22 

density, are considered. We compare the model results with two sets of previously 23 

performed cm-scale soil-core experiments in which the mineralization of the pesticide 2,4-D 24 

was measured under well-controlled initial distributions and transport conditions. Bacterial 25 

dispersion away from the initial substrate location induced a significant increase in 2,4-D 26 

mineralization. It reveals an increase of specific uptake rates at lower bacterial densities, 27 

more than compensating the decrease of specific uptake rates caused by substrate dilution. 28 

This regulation of bacterial activities by density, caused by the local depletion of substrate 29 

by competing bacteria, becomes dominant for bacteria with an efficient uptake of substrate 30 

at low substrate concentrations (a common feature of oligotrophs). Such oligotrophs, 31 

commonly found in soils, compete with each other for substrate even at remarkably low 32 

population densities. The ratio-dependent Contois growth model, which includes a density 33 

regulation in the expression of the uptake efficiency, is more accurate and convenient to 34 

calibrate than the substrate-dependent Monod model, at least under these conditions. In 35 

view of their strong interactions, bioreactive and transport processes cannot be handled 36 

independently but should be integrated, in particular when reactive processes of interest are 37 

carried out by oligotrophs.  38 

Keywords: biodegradation of organic matter; heterogeneous spatial distributions; 39 

bioreactive transport model; competition for substrate; bacterial traits; ratio-dependent 40 

growth 41 
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1. Introduction 42 

Organic carbon is involved in most ecological functions provided by soils (Bünemann et al., 43 

2018). Its cycling in soil depends upon the activity of microorganisms. Soluble organic 44 

molecules are taken up as substrates by specific populations of soil bacteria, and degraded 45 

inside the cells by endoenzymes to provide carbon and energy. This is precisely the case for 46 

the 2,4-Dichlorophenoxyacetic acid (2,4-D) used in this study as a generic model compound 47 

(Don and Weightman, 1985; Pieper et al., 1988; Boivin et al., 2005). Bacterial degradation of 48 

soil carbon has generally been modeled with the Monod equation, where the specific 49 

substrate uptake rate is controlled by substrate concentration and bacterial traits such as 50 

the maximum specific growth rate, the yield (or carbon use efficiency) and the “maximum 51 

specific uptake efficiency” (e.g. Monod, 1949; Sinton et al., 1986; Cheyns et al., 2010). With 52 

the Monod equation, at the lowest substrate concentration, the specific uptake rate is 53 

linearly proportional to the substrate concentration. The proportionality factor is referred to 54 

here as the “maximum uptake efficiency” and it reflects the maximal ability of the cell to 55 

capture substrate molecules that collide with its membrane (Button, 1978, 1983). The 56 

maximum uptake efficiency can also be understood as the volume from which a cell can 57 

harvest substrate per unit of time, as used in some studies (Desmond-Le Quéméner and 58 

Bouchez, 2014; Nunan et al., 2020; Ugalde-Salas et al., 2020). Each bacterium is assumed to 59 

be exposed to the whole substrate concentration of its surroundings, without any limitation 60 

by the population density (Lobry and Harmand, 2006). 61 

The direct contact (exposure) between bacteria and substrate depends on their spatial 62 

distributions (Holden and Firestone, 1997; Nunan et al., 2007). Bacteria and substrate are 63 

both heterogeneously distributed as a result of numerous biotic and abiotic processes 64 
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(Dechesne et al., 2014; Kuzyakov and Blagodatskaya, 2015). There are complex feedback 65 

loops between these distributions, dispersive transport processes such as diffusion and 66 

hydrodynamic dispersion (Madsen and Alexander, 1982; Breitenbeck et al., 1988), and the 67 

bacterial activity itself such as consumption and growth (Poll et al., 2006). 68 

Aggregated bacterial distributions, as observed at the mm-scale for 2,4-D degraders (Vieublé 69 

Gonod et al., 2003), have been shown to decrease degradation rates when the distribution 70 

of substrate is homogeneous, because of local substrate depletion (Pallud et al., 2004; 71 

Dechesne et al., 2010). Yet, the role of bacterial metabolic traits on the impact of bacterial 72 

and substrate distributions on degradation remains mostly unknown, especially when 73 

substrate and bacteria are heterogeneously and dynamically redistributed in soils over 74 

µm-to-cm scales by numerous spatial disturbances (Madsen and Alexander, 1982; 75 

Breitenbeck et al., 1988; König et al., 2020). We investigated the extent to which bacterial 76 

activity and transport processes can be treated independently or should be integrated to 77 

characterize, understand and predict degradation under various advective, diffusive and 78 

dispersive conditions. The simultaneous characterization of the impacts of bacterial traits 79 

and transport parameters through their mutual interactions is methodologically challenging. 80 

It requires several well-controlled experiments in comparable degradation conditions, with 81 

specific spatial distributions of substrate and degraders in specific transport conditions, and 82 

a spatiotemporal monitoring of the different carbon pools.  83 

Among the scarce relevant datasets (e.g. Dechesne et al., 2010), we used the two sets of 84 

cm-scale soil-core experiments performed by Pinheiro et al. (2015, 2018), in which the 85 

degradation of 2,4-D under different initial spatial distributions and transport conditions was 86 

measured in similar repacked soil columns. Mostly reported independently, they have shown 87 

Jo
urn

al 
Pre-

pro
of



5 

 

first that the proximity between bacteria and the initial location of a heterogeneously 88 

distributed substrate exerts a strong control on mineralization. Mineralization was greater 89 

when bacteria were close to the initial location of substrate, even though most of the initial 90 

dissolved substrate diffused away from its initial location. This was attributed to the fact that 91 

bacteria located far from the initial substrate location were only exposed to highly diluted 92 

substrate concentrations (Babey et al., 2017). However, the hydrodynamic dispersion of 93 

both bacteria and substrate away from their initial location caused a greater than four-fold 94 

increase in the mineralization of substrate that was not leached out, to the point that it 95 

almost reached the same performance as in homogeneous conditions in which there was no 96 

dilution (Pinheiro et al., 2018). The surprising increase in mineralization suggests a regulation 97 

of mineralization by population density compensating the effect of substrate dilution, the 98 

activity of bacteria being enhanced when their density is diluted by the dispersive 99 

percolation events. While such regulations by bacterial density have not yet been considered 100 

in soils, presumably because of the extremely low apparent bacterial densities found in soils 101 

(Young et al., 2008), they are well known in bioreactors, where they are usually modeled by 102 

the ratio-dependent Contois growth law (Contois, 1959; Harmand and Godon, 2007). 103 

In order to determine the relevance of the putative bacterial decomposer density effect on 104 

decomposition, we developed a quantitative approach to model the two sets of experiments 105 

within the same unified framework (section 2). We assessed the relevance of previously 106 

developed models, improved the calibration of a Monod-based model and investigated an 107 

alternative Contois-based model (section 3). We discuss the implication of the results on the 108 

controlling factors of soil organic carbon cycling, on the relevant bacterial growth models 109 

and on the possible bacterial strategies (section 4). 110 
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2. Models and methods 111 

2.1. Experiment scheme, geometry and initial distributions 112 

We briefly introduce the experiments performed previously and highlight aspects of the 113 

experiments that are important for the modeling (Fig. 1). The full experimental setting is 114 

presented in the supplementary materials (Fig. S1 and Table S1) for the sake of 115 

completeness. Soil columns were packed with two homogeneous or heterogeneous 116 

arrangements of soil cubes, either sterilized, or hosting the indigenous microbial 117 

communities (referred to as “degraders”) and amended with 14C-labelled 2,4-D (referred to 118 

as “substrate”). Two sets of experiments, referred to as “hydrostatic” and “percolation” 119 

conditions, were performed respectively with only substrate diffusion (Pinheiro et al., 2015), 120 

or with additional substrate and bacterial advection and dispersion caused by water 121 

percolation (Pinheiro et al., 2018). The initial locations of the bacteria and substrate were 122 

set in the model according to the experimental conditions (Fig 1A). Initial concentrations 123 

used in the model are detailed in Table 1. In the experiments, the mass of mineralized 14C 124 

derived from the degradation of the labelled 2,4-D was monitored at the core scale during 125 

at least two weeks (Fig. 1B). These data were used to confront the model processes with a 126 

physical system, as detailed in section 2.5. 127 

2.2. Bioreactive model 128 

The bioreactive model extends the model published by Babey et al. (2017) (Fig. 2) to account 129 

for Contois growth law as an alternative to Monod’s. The sorption processes, the bacterial 130 

lag phase and the biomass recycling described below were previously discussed and their 131 
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use justified in Babey et al. (2017) to consistently represent the experimental data. The r(∙) 132 

notation expresses the reaction rates of the biochemical dynamics that are expressed as 133 

follows: 134 

𝑟(𝑆) = 𝑘𝐴𝑆 𝐴 − 𝑘𝑆𝐴 𝑆 − 𝑘𝑅 𝑆 −
𝜇

𝑦
𝐵 + 𝑚𝑡 𝜒 𝐵 

(1) 

𝑟(𝐴) = 𝑘𝑆𝐴 𝑆 − 𝑘𝐴𝑆 𝐴 (2) 

𝑟(𝑅𝑆) = 𝑘𝑅 𝑆 (3) 

𝑟(𝐶𝑂2) =
(1 − 𝑦)

𝑦
𝜇 𝐵 (4) 

𝑟(𝐵) = 𝜇 𝐵 − 𝑚𝑡 𝐵  (5) 

𝑟(𝑅𝐵) = 𝑚𝑡(1 − 𝜒)𝐵 (6) 

All variable and parameter definitions are listed in Table 1. The dynamics of the specific 135 

growth rate µ are given, for the Monod-based model, by:  136 

𝜕𝜇

𝜕𝑡
= 𝛼 (𝜇𝑚𝑎𝑥

𝑆

𝜅𝑀 + 𝑆
− 𝜇) (7) 

and, for the Contois-based model, by: 137 

𝜕𝜇

𝜕𝑡
= 𝛼 (𝜇𝑚𝑎𝑥

𝑆 𝐵⁄

𝜅𝐶 + 𝑆 𝐵⁄
− 𝜇) = 𝛼 (𝜇𝑚𝑎𝑥

𝑆

𝜅𝐶𝐵 + 𝑆
− 𝜇)  (8) 

where µ = 0 at t = 0. 138 

The dissolved substrate S is either reversibly adsorbed to soil particles (pool A) or irreversibly 139 

adsorbed (pool RS) (Eqs. (1), (2), (3)), or taken up by bacteria B (Eq. (1)) and metabolized into 140 

CO2 (Eq. (4)) and new biomass B (Eq. (5)). kSA and kAS are the reversible sorption coefficients. 141 

kR is the irreversible one. Bacteria death occurs at a constant rate mt (Eq. (5)) and a fraction 142 

of the bacterial necromass is considered to return to the dissolved substrate pool S to 143 

account for biomass recycling (Eq. (1)), while the rest is transformed to biotic residues RB 144 

(Eq. (6)). The remobilization of carbon previously absorbed by bacteria is necessary to 145 
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adequately predict the slower dynamics of mineralization that takes place once most of the 146 

dissolved substrate has been consumed, observed after 5 days in homogeneous experiments 147 

and after respectively 3 or 10 days in the heterogeneous hydrostatic or percolation 148 

experiments. This remobilization is modeled in the form of a biomass recycling in order to 149 

be consistent with the model previously published in Babey et al. (2017), but similar effects 150 

could be achieved by other mechanisms, like a slower mineralization of biogenic residues 151 

(Fig. S9). Its impact on the final mineralization does not account for more than 10% of the 152 

substrate that is not leached out. The adsorbed substrate and biotic residues form the pool 153 

of insoluble carbon A + RS + RB. The substrate S is consumed by bacteria B according to their 154 

specific uptake rate (1/y)·µ expressed either by the substrate-dependent Monod growth law 155 

(Eq. (7)) (Monod, 1949) or by the ratio-dependent Contois growth law (Eq. (8)) (Contois, 156 

1959). y is the yield coefficient and relates the specific uptake rate (1/y)·µ to the specific 157 

growth rate µ. µmax is the maximum specific growth rate. κM and κC are Monod and Contois 158 

constants respectively. The effective uptake is delayed by the accommodation rate α, which 159 

explicitly takes into account the “memory” effects of the bacteria when adapting to new 160 

conditions (Patarinska et al., 2000). This delay is necessary to capture the mineralization lag 161 

time at the beginning of the experiments (see Fig. S10). Over long time periods (𝑡 ≫ 1/𝛼), µ 162 

follows the exact expression of the Monod or Contois equations. All modeled pools (S, B, 163 

CO2, A, RS and RB) were expressed as carbon concentrations in µg·g-1 (mass of carbon per 164 

mass of dry soil) considering a soil water content of 0.205 g·g-1 (mass of water per mass of 165 

dry soil), a bulk density of the soil column of 1.3 103 g·l-1 (mass of dry soil per apparent soil 166 

volume) and an average bacterial dry weight of 2.8 10-13 g corresponding to 1.49 10-13 g of 167 

carbon per cell. These values of water content and bulk density were those set up in the 168 

experiments, the latter corresponding to a water potential adjusted at -31.6 kPa (pF 2.5). 169 
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The average bacterial weight was assumed based on Dechesne et al. (2010) and Pinheiro et 170 

al. (2015). The water-filled pore space (54%, volume of water per volume of pores) was such 171 

that oxygen was not considered a limiting factor for 2,4-D degradation. 172 

2.3. Reactive transport model 173 

The transport model is based on the diffusion model of Babey et al. (2017) to which 174 

advective-dispersive processes explored in the experiments of Pinheiro et al. (2018) are 175 

added. Bacterial leaching out and dispersion were observed only in the percolation 176 

experiments while the substrate was also reported to diffuse. Hydrodynamic leaching and 177 

dispersion were modeled independently, as they result from, respectively, bypass flow 178 

through large pores and complex hydrodynamic dispersion processes coming not only from 179 

usual flow mechanisms but also from large saturation variations and local redistribution of 180 

moisture in the pore network. Due to the lack of adequate experimental data to characterize 181 

the details of the dispersion process, we applied a simple isotropic dispersion coefficient. 182 

Complementary numerical simulations show that other anisotropic dispersion 183 

parameterization are only weakly sensitive (Fig. S3 and S4). Bacterial and substrate 184 

transports were described with the same advective and dispersive parameters. This 185 

assumption did not significantly alter the results (Fig. S5 and S6). Coupled to the equations 186 

of the bioreactive model ((1)-(8)), the full reactive transport model is given by:  187 

𝜕𝑆

𝜕𝑡
= 𝑟(𝑆) + ∇(𝑑𝑑𝑖𝑓𝑓∇𝑆) +  𝐺 (∇(𝑑𝑑𝑖𝑠𝑝∇𝑆) − 𝜈 𝑆) (9) 

𝜕𝐵

𝜕𝑡
= 𝑟(𝐵) + 𝐺 (∇(𝑑𝑑𝑖𝑠𝑝∇𝐵) − 𝜈 𝐵) (10) 
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𝜕𝑈

𝜕𝑡
= 𝑟(𝑈) for U = A, RB, RS and CO2 (11) 

where ddiff is the effective molecular diffusion coefficient of S, ddisp is the effective 188 

hydrodynamic dispersion coefficient of S and B and ν is their leaching rate. Note that the 189 

dispersion coefficient ddisp mostly affected the spreading of bacteria, given that substrate 190 

was mainly spread by diffusion, as noted in section 2.3 and confirmed by consistent results 191 

from equivalent models without hydrodynamic dispersion of S (Fig. S7 and S8). Effective 192 

diffusion and dispersion processes were assumed to be isotropic and uniform at the 193 

column-scale. Dispersion and leaching were active only during the observed 1-hour 194 

percolation events at days 0, 3 and 6 as controlled by the function G defined as:  195 

𝐺(𝑡) = 1      𝑡 = [0d – 0d1h]; [3d – 3d1h]; [6d – 6d1h] 

𝐺(𝑡) = 0      otherwise. 

(12) 

No-flow boundary conditions were imposed at the edges of the soil core (∇S = 0 and ∇B = 0) 196 

during periods outside of the percolation events. The transient evolutions of the water 197 

content and their effects on concentrations were not considered because of the short 198 

duration of the percolation events (1 h) and the absence of detectable effects on the 199 

experimental mineralization curve around the percolation events (Fig. 1D). Hydration 200 

conditions were considered constant, constrained by the water potential adjusted 201 

to -31.6 kPa. No bacterial mobility was observed in the hydrostatic experiments, suggesting 202 

that the bacterial mobility observed in the percolation experiments resulted primarily from 203 

hydrodynamic dispersion.  204 

Carbon pools concentration dynamics were simulated on a 3 × 6 × 6 regular mesh grid. 205 

Although the shape of the grid was slightly different from that of the cylindrical soil-core, it 206 
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did not have any observable impact (Babey et al., 2017). We recall that substrate and 207 

bacteria were initially co-located in the same cube(s). Each cube was considered to be 208 

physically, chemically and biologically homogeneous. Diffusion and dispersion were 209 

simulated using a finite-difference scheme (Iserles, 2009) and coupled with the bioreactive 210 

model, itself solved by the 4th order Runge-Kutta integration method function of MATLAB 211 

(Shampine and Reichelt, 1997). The coupling of transport and bioreactive models was 212 

achieved with a sequential non-iterative operator-splitting method, in which the equations 213 

are resolved within each time step in a sequence of one transport step followed by one 214 

bioreactive step (Carrayrou et al., 2004; Lagneau and van der Lee, 2010). The time steps were 215 

smaller than the characteristic diffusion and reaction times to avoid any coupling issues. 216 

2.4. Exploratory screening 217 

Parameters and their values are listed in Table 1. Sorption parameters and the diffusion 218 

coefficient were set at values that were calibrated and validated by Babey et al. (2017) in 219 

independent experiments without degradation. The mortality rate and the biomass recycling 220 

yield were also kept at the values calibrated in Babey et al. (2017) as they were considered 221 

to be well constrained by the residual mineralization dynamics of the homogeneous 222 

hydrostatic experiment (Fig. 1D). The four biological parameters primarily involved in the 223 

biological response of bacteria to the concentration of substrate were determined to be 224 

(1/y)·µmax, α, B(t=0) and either (1/y)·µmax/κM for the Monod-based model or 225 

(1/y)∙µmax/(B(t=0)∙κC) for the Contois-based model. Each of these four parameters were 226 

sampled over 7 logarithmically-distributed values within the theoretically and physically 227 

relevant ranges given by Babey et al. (2017), and all possible combinations of values were 228 
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screened (Table S2). We recall that the “maximum uptake efficiency” (1/y)·µmax/κM 229 

characterizes the specific bacterial uptake of substrate at the lowest substrate concentration 230 

(Button, 1991), while the maximum specific uptake rate (1/y)·µmax characterizes the 231 

bacterial uptake at the highest substrate concentration. Note that the uptake yield y was 232 

fixed at the value calibrated by Babey et al. (2017) with a high degree of certainty. The initial 233 

maximum uptake efficiency (1/y)·µmax/(B(t=0)∙κC) in the Contois-based model was 234 

screened in the same range as (1/y)·µmax/κM. The accommodation rate α of the degrader 235 

response ranged from a negligible delay of few minutes (α = 934 d-1) to a prolonged delay of 236 

around 10 days (α = 9.34 10-2 d-1). B(t=0) values were screened around the initial 237 

experimental measurements of the tfdA gene copy number, assuming that one tfdA 238 

sequence corresponded to one bacterium. They ranged over two orders of magnitude to 239 

account for the uncertainty of the conversion of tfdA copy number into alive 2,4-D degraders 240 

(Bælum et al., 2006, 2008). Bacterial density in the uptake efficiency expression will also be 241 

expressed in g·l-1 (mass of bacteria per volume of water) for a more direct comparison with 242 

the relevant literature. 243 

The spatial distribution of bacteria observed at the end of the experiments could not be used 244 

to determine the effective dispersion coefficient ddisp (Fig. S2). While they qualitatively 245 

ascertained that bacteria spread orthogonally to the percolation direction, experimental 246 

data were not sufficiently resolved to be used quantitatively. The dispersion coefficient was 247 

thus screened over 10 values ranging from no dispersion (ddisp = 0) to complete instant 248 

homogenization of the soil core (ddisp = inf) (Table S2). In order to analyze the result of 249 

bacterial dispersion in terms of distance from the initial location of the substrate, we 250 

compute the root-mean-square displacement of bacteria, defined as the root-mean-square 251 
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of their spreading during the duration Δt of one percolation event and expressed as 252 

√6 𝑑𝑑𝑖𝑠𝑝 ∆𝑡 (Stana, 2020). The effective diffusion coefficient ddiff had been calibrated 253 

independently from percolation conditions (Pinheiro et al., 2015; Babey et al., 2017). The 254 

leaching rates ν were determined based on the experimental masses of leached 14C (Pinheiro 255 

et al., 2018) (Table 1). Detailed values for the screened parameters are listed in Table S2.  256 

2.5. Model to data comparison 257 

The comparison between the results of the model and the experimental data was based on 258 

the core-scale data of mineralization deduced from the carbon mass mCO2 of 14CO2 emissions: 259 

𝑚𝐶𝑂2
(𝑡) =  ∫ 𝐶𝑂2(𝑥, 𝑡)𝑑𝑥

𝑉

 

 

(13) 

with V the volume of the soil cores. Mineralization at a given time t was expressed as the 260 

carbon mass of cumulated 14CO2 emissions (𝑚𝐶𝑂2,𝑞(𝑡)) per initial carbon mass of 261 

14C-substrate S  (𝑚𝑆,𝑞(𝑡 = 0)) where the index q identifies the experiment at hand. Indices 262 

1, 2, 3 and 4 are respectively given to the homogeneous hydrostatic, heterogeneous 263 

hydrostatic, homogeneous percolation and heterogeneous percolation experiments. 264 

Data-to-model adequacy was assessed for each of the experiments by a classical root-mean-265 

square evaluation function Jq comparing the modeled mineralization of Eq. (4) to the 266 

measured mineralization at the nq available sampling times ti:  267 

𝐽𝑞 = (
1

𝑛𝑞
∑ (

𝑚𝐶𝑂2,𝑞
𝑚𝑜𝑑 (𝑡𝑖) − 𝑚𝐶𝑂2,𝑞

𝑑𝑎𝑡𝑎 (𝑡𝑖)

𝑚𝑆,𝑞(t = 0)
)

2𝑛𝑞

𝑖=1

)

1
2

 
(14) 
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Discrepancies over the full set of experiments J1234 were thus expressed as:  268 

𝐽1234 = (
1

4
∑ 𝐽𝑘

2

4

𝑘=1

)

1
2

 
(15) 

Following the systematic parameter screening described in section 2.4, the parameter set 269 

minimizing J1234 was determined and referred to as the set calibrated on both hydrostatic 270 

and percolation experiments. The measurement errors were in average 1.7 times higher in 271 

the percolation experiments than in the hydrostatic experiments. This was assumed to be 272 

due to differences in experimental setup between the two sets of experiments of Pinheiro 273 

et al. (2015, 2018). This error difference contributed to limit the weight of the percolation 274 

experiments when determining the best-fitting parameter set over the whole set of 275 

experiments (J1234). We made the choice to give an equal weight to all experiments by only 276 

taking into account the average CO2 values.  277 

3. Results 278 

3.1. Model calibration 279 

The calibration of the bioreactive transport model carried out using only the hydrostatic 280 

experimental data (Babey et al., 2017) led to a minimal discrepancy between data and model 281 

of J12 = 0.023 (Fig. 3-A1 and A2). This pre-existing parameterization was used to provide blind 282 

predictions of the percolation experiments, with the effective dispersion coefficient ddisp as 283 

an additional fitting parameter. It gave a reasonable prediction of mineralization in the 284 

homogeneous percolation experiment (J3 = 0.038, Fig. 3-A3) but failed in the heterogeneous 285 

percolation experiment (J4 = 0.151, Fig. 3-A4), regardless of the dispersion coefficient values. 286 
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The smallest discrepancy J4 was surprisingly obtained without any bacterial dispersion 287 

(ddisp = 0) in contradiction with the bacterial spread observed in the experimental data 288 

(Fig. S2). The final predicted mineralization was highest when bacteria remained aggregated 289 

close to the initial location of the substrate. The highest predicted mineralization was 290 

however four times lower than the experimental data. The large gap between the 291 

experimental data and the modeled scenario suggests that bacterial proximity to the initial 292 

substrate location is not the underlying explanatory mechanism for the high mineralization 293 

rates. On the contrary, it suggests that mineralization might rather be increased by the 294 

dispersion of bacteria towards more diluted substrate concentrations, and that the identified 295 

bacterial traits do not match this increase of mineralization with dispersion. 296 

In order to investigate the capacity of the reactive transport model to fit both hydrostatic 297 

and percolation experimental data, the biological parameters ((1/y)·µmax/κM, (1/y)·µmax, α, 298 

B(t=0)) and the dispersion coefficient (ddisp) were calibrated on both hydrostatic and 299 

percolation experiments following the screening approach given in section 2.4 to minimize 300 

J1234. The mineralization dynamics were adequately predicted in all four experiments with 301 

the biological parameter set giving the lowest overall discrepancy (J1234 = 0.032) and a 302 

non-zero dispersion coefficient (ddisp = 1.78 10-4 m2∙d-1) (Fig. 3, Table 2). The non-zero 303 

dispersion coefficient indicates that the calibrated model accounts for a positive impact of 304 

bacterial dispersion on degradation. The model results suggest that this effect is necessary 305 

to successfully predict the high degree of degradation in the experimental data. Compared 306 

to the parameters calibrated only using the hydrostatic experiments, the parameter set 307 

calibrated on both hydrostatic and percolation experiments also displayed a much higher 308 

maximum uptake efficiency (1/y)·µmax/κM = 26.5 g·µg-1·d-1 (mass of dry soil per mass of 309 
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bacterial carbon per unit of time) (Table 2). The systematic exploration of the parameter 310 

space showed that high maximum uptake efficiency was a common feature of the 1% 311 

best-fitting parameterizations over both hydrostatic and percolation experiments (smallest 312 

J1234), with values of 159 and 26.5 g·µg-1·d-1, corresponding respectively to 1.73 104 and 313 

2.89 103 l·g-1·d-1 (volume of water per mass of bacteria per unit of time). It underlines the 314 

essential role of the maximum uptake efficiency for modulating the impact of dispersion on 315 

degradation, further detailed and explained in section 3.2.3. 316 

3.2. Analysis of the controls exerted on degradation by substrate dilution and 317 

bacterial density 318 

The effect of dispersion on degradation differed greatly between the two calibrated sets of 319 

biological parameters described in section 3.1. We therefore conducted a more systematic 320 

investigation of the coupled impact of bacterial dispersion and bacterial traits on 321 

degradation, revealing its control by substrate dilution and bacterial density.  322 

3.2.1 Impact of dispersion on degradation 323 

We used the mineralization at the end of the experimental time (day 24) as a proxy for 324 

degradation and determined its sensitivity to dispersion, as a function of the 325 

parameterization of bacterial traits. Fig. 4 shows the impact of the dispersion coefficient ddisp 326 

on the final predicted mineralization for the two calibrated biological parameter sets, all 327 

other parameters being kept constant (thick red and blue lines). For the biological parameter 328 

set calibrated on hydrostatic experiments, the final mineralization decreased monotonically 329 

with dispersion (Fig. 4, red line). For the parameter set calibrated on both hydrostatic and 330 

percolation experiments, the final mineralization first increased, reached a maximum around 331 
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ddisp ≈ 10-4 m2·d-1 and then decreased (Fig. 4, blue line). These two kinds of behaviors were 332 

observed regardless of the parameters α, (1/y)·µmax and B(t=0) as long as (1/y)·µmax/κM 333 

remained the same (Fig. S12). The non-monotonic impact of dispersion on degradation 334 

highlights the existence of an optimal bacterial dispersion for which mineralization is the 335 

highest. The comparison between the red and blue lines on Fig. 4 suggests that the optimal 336 

dispersion value depends on the bacterial uptake efficiency. Note that, although the optimal 337 

dispersion value varied with time due to the spatial dynamics of both bacteria and substrate 338 

(Fig. S14), it tended towards a limit that was mostly reached within 4 to 7 days and is thus 339 

represented at day 24 on Fig. 4.  340 

3.2.2 Double control of degradation by substrate dilution and bacterial density 341 

The non-monotonic effect of bacterial dispersion on degradation is an unusual and key 342 

feature of the model calibrated on both hydrostatic and percolation experiments. In the 343 

following we will present an explanation for how such relationships between dispersion and 344 

degradation could arise, resulting from a non-monotonic spatial substrate profile, itself 345 

derived from the respective effects of substrate dilution and bacterial density. 346 

In the model, the instant exposure of bacteria to their substrate is maximal if all the bacteria 347 

are located inside the voxel(s) with the highest substrate concentration. In the hydrostatic 348 

calibrated parameter set, the profile of substrate concentration primarily resulted from its 349 

initial heterogeneity (bell-shape red curve on Fig. 5A and pseudo bell-shape red curve on 350 

Fig. 5B). The flux of substrate reaching each bacterium was therefore mostly determined by 351 

the distance between the bacterium and the initial location of substrate. The exposure of a 352 

single bacterium to the substrate decreased with its distance from the substrate initial 353 

location. This effect is referred to as “substrate dilution”. In these cases (Fig. 5A and B), 354 
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mineralization was mainly regulated by substrate dilution, and therefore reduced by 355 

bacterial dispersion (Fig. 4, blue line). However, for the parameter set calibrated on both 356 

hydrostatic and percolation experiments, local degradation by aggregated bacteria reshaped 357 

the substrate spatial profile, thus critically changing the voxel(s) with the highest substrate 358 

concentration. The bacteria aggregated at their initial location consumed the substrate much 359 

faster than it was replenished by backward diffusion and dispersion, creating a critical 360 

inversion of the substrate gradient, which led to an intra-population competition for 361 

substrate (Fig. 5C). The competition was critical for bacterial densities as small as 3.5 10-3 362 

g·l-1 (Fig. 5C). In contrast, the dispersion of bacteria reduced competition by diluting the 363 

highest bacterial densities, thus flattening the substrate gradient inversion induced by 364 

bacterial local degradation, resulting in a better overall exposure of bacteria to the substrate 365 

concentrations, and thus an enhanced mineralization (Fig. 5D). In these cases (Fig. 5C and 366 

D), mineralization was mainly regulated by bacterial density, or in other words by the 367 

distances among bacteria. The relationship between bacterial density and the limitation of 368 

their exposure to the substrate is not instantaneous and is mediated by the local depletion 369 

of the substrate concentration. This is expressed in the model equations through the 370 

dependence of bacterial activity µ(t) on substrate concentration S(t) (Eq. (7)) and the 371 

dependence of the substrate concentration S(t) on degradation µ(t)∙B(t) (Eq. (1)), within 372 

each voxel. However, when bacterial dispersion was too great, substrate dilution became 373 

the dominant control again. This suggests that an optimal bacterial spatial spread exists for 374 

which the dilution of substrate is compensated by the dilution of high local bacterial 375 

densities. The modeled scenario illustrated by the two calibrated parameter sets were also 376 

observed for most of the other parameter sets. The optimal dispersion coefficient for the 377 

300 best-fitting parameterizations to both hydrostatic and percolation experiments (smallest 378 
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J1234 values) was on average ddisp ≈ 2 10-5 m2·d-1 (Fig. S15), corresponding to a 379 

root-mean-square displacement of bacteria of 1.5 to 3.5 mm during each percolation event. 380 

3.2.3 Effect of bacterial uptake efficiency on the impact of dispersion on degradation 381 

A non-monotonic substrate concentration profile only occurs when bacterial degradation 382 

locally depletes the substrate faster than it is replenished by diffusion. This area of high local 383 

competition for substrate results from either high local densities of bacteria or high 384 

competitiveness or both. Bacterial competitiveness is related to their maximum uptake 385 

efficiency (1/y)·µmax/κM, which also describes their capacity to maintain their activity and 386 

growth under dilute substrate concentrations (Healey, 1980; Button, 1991; Lobry et al., 387 

1992). Bacteria with high maximum uptake efficiency are thus expected to benefit more 388 

from dispersion. Fig. 6 shows the optimal dispersion coefficient as a function of the 389 

maximum uptake efficiency, with all other parameters equal to those of the model calibrated 390 

on both hydrostatic and percolation experiments. The optimal dispersion coefficient, 391 

defined as the dispersion coefficient maximizing the final mineralization, increased with the 392 

maximum uptake efficiency. For small maximum uptake efficiencies of 30 l·g-1·d-1 and below, 393 

mineralization was highest in the absence of dispersion, suggesting a regulation dominated 394 

by substrate dilution. For larger maximum uptake efficiencies, dispersion impacted positively 395 

mineralization, suggesting that degradation shifted from being regulated by substrate 396 

dilution to being regulated by bacterial densities, as bacteria were both more prone to 397 

competition between themselves and more efficient under diluted substrate conditions. In 398 

other words, the proximity to other bacteria constrained activity more than the proximity to 399 

the substrate initial location enhanced it. This combined effect of the maximum uptake 400 
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efficiency and the bacterial dispersion on degradation was a general relationship common 401 

to all parameterizations (Fig. S16). 402 

3.3. The Contois-based model as an alternative to Monod 403 

Given that degradation is regulated by both substrate dilution and bacterial density, and that 404 

their relative importance is modulated by bacterial uptake efficiency at the lowest substrate 405 

concentration, (1/y)·µmax/κM, we investigated the relevance of the Contois model by 406 

applying the calibration methodology of section 2.5, as used in section 3.1. The interest in 407 

the Contois growth law (Eq. (8)) stems from the inclusion of a regulation by density in the 408 

expression of the uptake efficiency at the lowest substrate concentration, becoming 409 

(1/y)·µmax/(B(t)·κC). 410 

In comparison with the Monod-based model, the predictions of the experimental 411 

observations of Pinheiro et al. (2015, 2019) were facilitated with the Contois-based model, 412 

on three levels. First, the Contois-based model captured the degradation dynamics better 413 

than the Monod-based model, especially for the 1% best-fitting parameterizations (smallest 414 

J1234 values) (Fig. S17). The calibrated Contois-based model had an overall discrepancy of 415 

J1234 = 0.022 (Fig. 7), which was smaller than the lowest value of J1234 = 0.032 obtained for 416 

the calibrated Monod-based model (Fig. 3). Second, the parameter sets that fitted 417 

homogeneous experiments also performed well under heterogeneous conditions, as long as 418 

the dispersion coefficient ddisp was calibrated as well (Fig. S18).  It is an important advantage 419 

as it confers a better capacity to predict degradation kinetics for heterogeneous and varying 420 

distributions, once the model is calibrated in homogeneous conditions, which are more 421 

appropriate for the experimental measurement of bacterial parameters. Besides, using a 422 
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dispersion coefficient value different from the calibrated one weakened the predictions of 423 

the mineralization dynamics but not the predictions of the mineralization after 24 days, 424 

which remained satisfying regardless of the dispersion coefficient. More precisely, the 425 

prediction of the final mineralization became mostly independent of the dispersion 426 

coefficient, as shown for the calibrated model (Fig. 8). This is because, in the Contois model 427 

at low substrate concentrations, the number of active bacteria in a soil volume is exactly 428 

counterbalanced by the regulation of their uptake efficiency by population density (Eq. (8)), 429 

resulting in limited effects of bacterial spreading on overall mineralization (Fig. 8, constant 430 

part of the curves).  431 

4. Discussion 432 

4.1. Relevance of density control for 2,4-D degradation and soil carbon cycling 433 

4.1.1 Density control of soil oligotroph bacteria 434 

Bulk soil and highly-diluted environments are usually found to be dominated by bacteria with 435 

high maximum uptake efficiency, also called oligotrophs (Fierer et al., 2007; Nunan et al., 436 

2020). Their high maximum uptake efficiency differentiates their life-history strategies and 437 

conditions their ability to thrive in resource poor environments (Button, 1993), also 438 

assimilated to K-strategy (Tecon and Or, 2017), by opposition to copiotrophic bacteria 439 

adapted to rich environments (r-strategy). The maximum uptake efficiency values of the 1% 440 

best-fitting parameter sets were of the order of 103-104 l·g-1·d-1 (volume of water per mass 441 

of bacteria per unit of time), within the range proposed by Button (1991) to define 442 

oligotrophs. Similar or higher maximum uptake efficiency values of the order of 443 
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104-105 l·g-1·d-1 have been reported for soil oligotrophs (Ohta and Taniguchi, 1988; Zelenev 444 

et al., 2005). Values up to 1.64 105 have been reported by Tuxen et al. (2002) for 2,4-D 445 

degraders in an aerobic aquifer and even greater values might also be possible (see section 446 

S5). The high maximum uptake efficiencies predicted in section 3.1 for the best-fitting 447 

parameterizations are therefore a plausible bacterial trait among 2,4-D degraders as well as 448 

bulk soil bacteria in general. It suggests that density control might be relevant for a 449 

component of soil bacteria, which would benefit from dispersion as suggested by Fig. 6. The 450 

calibrated model has shown in section 3.2.2 that the values of densities from which 451 

competition became critical were around 3.5 10-3 g·l-1, corresponding to 7.5 10-7 g·g (mass of 452 

bacteria per mass of dry soil), ranging in the low end of usual total soil bacterial densities 453 

(Raynaud and Nunan, 2014; Kuzyakov and Blagodatskaya, 2015). This suggests that 454 

competition might play a significant role even under the low bacterial densities observed in 455 

bulk soils, at least in similar substrate conditions. Reciprocally, the model suggests that 456 

competition for substrate between copiotrophic bacteria only appears at much larger 457 

population densities, such as those found in soil biofilms (Holden et al., 1997, Or et al., 2007). 458 

Interestingly, copiotrophic bacteria have been reported to cohabit with oligotrophic bacteria 459 

even in diluted environments (Gözdereliler et al., 2012). Results from the screening suggest 460 

that, for densities of copiotrophs as low as for oligotrophs, their impact on overall 461 

decomposition in dilution-dominated environments would be much lower due to their 462 

poorly adapted uptake efficiency (Fig. 4A). Conversely, this striking density regulation might 463 

be one of the main limitations of the overall population densities in soils. Note that this 464 

density regulation occurs within a single population with homogeneous biological constants. 465 

Spatial heterogeneities and low substrate concentrations, common in bulk soil, may indeed 466 
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shift competition from the inter-population level to the intra-population level (Pfeiffer et al., 467 

2001; Roller and Schmidt, 2015).  468 

4.1.2 A new perspective on Regulatory Gate hypothesis 469 

Density regulation might partially contribute to explain the common paradox of the apparent 470 

uncoupling between the overall mineralization of a soil volume and the size of its microbial 471 

population (Kemmitt et al., 2008). The rate of soil carbon mineralization remains the same 472 

even if 90% of the microbial decomposers are killed. This observation is commonly explained 473 

by the Regulatory Gate hypothesis, where mineralization is assumed to be controlled by an 474 

abiotic process, such as desorption or diffusion, that limits the availability of the substrate, 475 

resulting in mineralization rates that are independent of the degrader abundance. We 476 

propose that the density regulation of decomposition in oligotrophic environments may 477 

contribute to this phenomenon, through competition for substrate or other biological 478 

interactions. In the case of competition-related density regulation, it reduces the 479 

dependence of the overall carbon mineralization on degrader abundance, as any increase of 480 

population density counterbalances the effect of the increased population size. Note that 481 

the involved abiotic process, namely the substrate diffusion backward to bacteria (see 482 

section 3.2), is well limiting but only in situations of high bacterial competition. 483 

4.2. Relevance of the ratio-dependent Contois model in soils 484 

As argued in section 3.3, ratio-dependence might facilitate decomposition modeling in the 485 

soil conditions typical of the experiments analyzed here. The Contois model’s (1/y)·µmax/κCB 486 

calibrated in homogeneous conditions might be used in heterogeneous conditions more 487 

reliably than the Monod model’s (1/y)·µmax/κM, at least for soil systems in which the 488 
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competition for the substrate plays a substantial role within the degrader population. The 489 

similarity between κM and κCB suggests the need to consider population density when 490 

measuring the apparent maximum uptake efficiency of soil bacteria to avoid 491 

underestimating it by unintentionally including density regulation. Moreover, the better 492 

predictions obtained with the Contois model in the soil conditions represented by the 493 

experiments suggest that the Contois ratio-dependence includes not only the effect of 494 

competition for substrate at the scale of measurement, but it can also reasonably reflect 495 

other density processes such as the spatial variability of bacterial distributions at finer scales 496 

related to their high degree of local aggregation in microcolonies (Raynaud and Nunan, 497 

2014). Moreover, ratio-dependence may also include the cumulative effects of ecological 498 

interactions other than competition (Sibly and Hone, 2002). Note that the methodological 499 

approach used in this study for both Monod and Contois models is based on an effective 500 

representation of concentrations and parameters at the mm- to cm-scale of measurements. 501 

These effective concentrations and parameters conceptually integrate the smaller-scale 502 

processes highlighted by other studies (Ebrahimi and Or, 2014; Portell et al., 2018; Tecon et 503 

al., 2018). Such microscale processes should be addressed for further generalization beyond 504 

the conditions of the soil experiments analyzed here. Despite its advantages, Contois models 505 

have also a drawback with the fact that the modeled uptake efficiency of bacteria 506 

approaches infinity for low densities, which does not correspond to any physical nor 507 

biochemical process (Gleeson, 1994; Abrams, 2015). However, this side effect mostly affects 508 

a negligible fraction of the bacteria and the substrate, as it was the case in the soil conditions 509 

represented by the experiments. 510 
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Further work is required to confront the relevance of the Contois model to other soil 511 

systems. To the best of our knowledge, ratio-dependent growth models such as the Contois 512 

model have not yet been considered for the modeling of microbial degradation in soils. 513 

However, the Contois growth equation is generally accepted to be more appropriate than 514 

the Monod equation for modeling immobilized, heterogeneously distributed or mixed 515 

microbial cultures (Arditi and Saiah, 1992; Harmand and Godon, 2007), all of which are 516 

characteristics of soils. The regulation of individual activity by population density has 517 

frequently been justified as a “crowding effect” associated with high population densities 518 

leading to competition for substrate (Lobry and Harmand, 2006; Harmand and Godon, 2007; 519 

Krichen et al., 2018). However, little is known about possible density regulation when 520 

apparent microbial densities are low, as is observed in bulk soil (Raynaud and Nunan, 2014; 521 

Kuzyakov and Blagodatskaya, 2015), although some studies have mentioned 522 

ratio-dependence in highly-diluted environments such as aquifers (Hansen et al., 2017). As 523 

discussed in section 4.1.1, the high maximum uptake efficiencies commonly observed for soil 524 

bacteria adapted to oligotrophic environments are relevant to draw attention on the 525 

potential significance of density control at low densities in oligotrophic soils, and thus 526 

ratio-dependent models, among which the Contois model is a consistent choice.  527 

4.3. Hypothetical relationship between bacterial traits and their spatial 528 

strategies 529 

Density regulation might be at the origin of a relationship between bacterial oligotrophy, 530 

their location in soil and their mobility strategy. Soil copiotroph bacteria have a maximum 531 

uptake efficiency mostly between 100 l·g-1·d-1 (Button, 1991) and 800 l·g-1·d-1 (Daugherty and 532 
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Karel, 1994; Zelenev et al., 2005). For copiotrophs with maximum uptake efficiency values 533 

below 288 l·g-1·d-1, bacterial dispersion was largely detrimental to their activity (Fig. 4 blue 534 

line, Fig. 6), in agreement with the results of Pagel et al. (2020), suggesting that copiotrophs 535 

have more aggregated distributions than oligotrophs. The negligible mineralization even 536 

without dispersion (Fig. 3-A4) also highlights the fact that copiotrophs are particularly 537 

inefficient at degrading substrates that diffuse in the environment, as also evidenced by 538 

Babey et al. (2017). To maintain significant activity, soil copiotrophs are likely to remain 539 

immobile in the close surroundings of the substrate source or any immobile substrate, likely 540 

attached to surfaces or embedded in EPS matrices. If not, they would be dispersed towards 541 

more diluted area where their low maximum uptake efficiency would result in negligible 542 

uptake. On the contrary, to survive and develop, soil oligotrophs should be able to easily 543 

disperse and escape high competition areas. Given that soil is a poor and heterogeneous 544 

environment, this dispersion would be essentially passive (Nunan et al., 2020), through 545 

advective processes for example. We therefore suggest the existence of a theoretical 546 

relationship between proximity to substrate sources (respectively remoteness), copiotrophy 547 

(respectively oligotrophy) and attachment (respectively mobility). 548 

5. Conclusions 549 

Heterogeneous distributions of degraders and substrate in soils strongly control soil organic 550 

matter degradation through their interactions with the bacterial activity. Taking 2,4-D as a 551 

model organic solute substrate for soil bacteria, we investigated the coupled effects of 552 

bacteria and substrate distributions on one side and bacterial traits on the other side on 553 

substrate degradation. The analysis of published experiments with contrasted spreading 554 
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conditions of both bacteria and substrate reveals that, in addition to the distance of bacteria 555 

from high substrate concentrations, mineralization is also surprisingly limited by the 556 

bacterial density even under the low bacterial densities commonly observed in bulk soils. 557 

Moreover, the impact of bacterial dispersion on solute substrate degradation can shift from 558 

negative to positive depending on the bacterial maximum uptake efficiency. The activity of 559 

soil oligotrophs may be mostly regulated by bacterial density rather than by substrate 560 

dilution, echoing the population size paradox regularly observed. It follows that the 561 

ratio-dependent Contois model might be more relevant to model bulk soil mineralization in 562 

the heterogeneous conditions investigated than the substrate-dependent Monod model. To 563 

predict the impact of spatial distributions on degradation in oligotrophic soil, and more 564 

particularly the impact of bacterial dispersion, we suggest that bacterial densities might be 565 

a more useful measurement than the volumes of soil devoid or occupied with bacteria. With 566 

respect to the current lack of direct microscale data on microbial processes and distributions, 567 

we propose some key perspectives on the bacterial kinetics and distributions. 568 
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Tables 817 

Table 1. 818 

Values and range of values of the reactive transport model. The effective dispersion 819 

coefficient ddisp applies only to heterogeneous percolation experiments. B(t=0) is the initial 820 

density of bacteria in the natural cubes. It is considered 1.6 times smaller in the percolation 821 

experiments than in the hydrostatic experiments according to the initial experimental 822 

measurements. 823 

Parameter description Symbol Unit 
Fixed values and 
admissible ranges 
for screening 

initial 
substrate 
concentrati
on 

hydrostatic 
experiments 

S(t=0) 

µg∙g-1 (mass of substrate 

carbon per mass of dry soil) 
0.825 b 

percolation 
experiments 

µg∙g-1 6.52 b 

reversible adsorption 
coefficient 

kSA d-1 0.09207  

reversible desorption 
coefficient 

kAS d-1 4.361  

irreversible 

adsorption coefficient 
kC d-1 0.01296  

uptake yield y - 0.5206  

maximum specific 
uptake rate 

(1/y)·µmax d-1 [0.0190 – 19.5] 

uptake efficiency  
at the lowest substrate 
concentration 

(1/y)·µmax/κ a 

where κ is κM or 

B(t=0)∙κC 

g∙µg-1∙d-1 (mass of dry soil per 

mass of bacterial carbon per 
unit of time) 

[0.0152 – 159] c 

accommodation 

rate 
α d-1 [0.00934 – 934] 

initial 
degrader 

hydrostatic 
experiments 

B(t=0) 
µg∙g-1 (mass of 

bacterial carbon per mass of 
dry soil) 

[0.0161 – 1.61] d 
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population 
density 

percolation 
experiments 

B(t=0) µg∙g-1 [0.0101 – 1.01] d 

mortality rate mt d-1 0.0602  

biomass recycling yield χ - 0.6010  

effective diffusion 
coefficient 

ddiff m2∙d-1 1 10-5  e  

effective dispersion 
coefficient 

ddisp m2∙d-1 [0 – ∞] 

leaching 
rates 
(days 0; 3; 
6) 

homogeneous 
experiments 

ν - 

0.108; 0.226; 0.180  

heterogeneous 
experiments 

0.107; 0.223; 0.178  

a The half-saturation constant κ corresponds to κM for the Monod-based model and B(t=0)∙κC 824 

for the Contois-based model (where B(t=0) is the value from the hydrostatic experiments). 825 

b The initial substrate concentration S(t=0) is set equal to the 14C-2,4-D concentration 826 

amended in the experiments. 827 

c The values of (1/y)·µmax/κ correspond to ranges of [1.65 – 1.73 104] l·g-1·d-1 (volume of 828 

water per mass of bacteria per unit of time) 829 

d The values of B(t=0) correspond respectively to ranges of [1.48 10-4 – 1.48 10-2] g∙l-1 (mass 830 

of bacteria per volume of water) for the hydrostatic experiments and [9.24 10-5 – 9.24 831 

10-3] g∙l-1 for the percolation experiments. 832 

e The value of ddiff has been calibrated on a 3 × 6 × 6 grid in similar conditions (Babey et al., 833 

2017). 834 

  835 
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Table 2.  836 

Parameters for the Monod-based model calibrated by the screening approach (section 2.2) 837 

on the hydrostatic experiments only (Babey et al., 2017) and on both hydrostatic and 838 

percolation experiments, and for the Contois-based model calibrated on both hydrostatic 839 

and percolation experiments, as described in section 2.4 840 

Parameter symbol Unit 

Monod model calibration Contois 
model 

calibration 
on both 

hydrostatic & 
percolation 
experiments 

on the sole 
hydrostatic 

experiments 

on both 
hydrostatic & 
percolation 
experiments 

(1/y)·µmax d-1 1.22 9.73 4.86 

(1/y)·µmax/κ a 

g∙µg-1∙d-1 (mass of 

dry soil per mass of 
bacterial carbon per 
unit of time) 

2.65 b 26.5 b 2.65 b 

α d-1 9.341 10-1 9.34 10-2 9.34 10-2 

B(t=0) 

hydrostatic 
experiments 

µg∙g-1 (mass of 

bacterial carbon per 
mass of dry soil) 

1.61 10-1 3.23 10-2 3.76 10-1 

percolation 
experiments µg∙g-1 1.01 10-1 2.01 10-2 2.34 10-1 

ddisp m2∙d-1 0 c 1.78 10-4  c 10-5  c 

J1234 - 0.079 0.032 0.022 

a The half-saturation constant κ corresponds to κM for the Monod-based model and 841 

B(t=0)∙κC for the Contois-based model (where B(t=0) is the value from the hydrostatic 842 

experiments). 843 

b Values of (1/y)·µmax/κ correspond respectively to 2.89 102, 2.89 103 and 2.89 102 l·g-1·d-1 844 

(volume of water per mass of bacteria per unit of time). 845 
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c The corresponding spreading values induced by the hydrodynamic dispersion 846 

(root-mean-square displacements) for each percolation events are respectively 0, 3.8 and 847 

0.91 mm, to be compared to the 25 mm radius of the soil column. 848 
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Figure captions 1 

Fig. 1. Model experimental design, geometry and initial distributions (A) based on previously 2 

performed experiments in hydrostatic (Pinheiro et al., 2015) and percolation (Pinheiro et al., 3 

2018) conditions. The red and green arrows refer respectively to the 2,4-D and degrader 4 

modeled displacements. (B) Experimental cumulated production of CO2 (adapted from 5 

Pinheiro et al. (2018, 2015), permission for reproduction granted by Elsevier). 6 

 7 

Fig. 2. Graphical representation of the biochemical model and carbon fluxes identified by the 8 

arrows. Under low substrate concentrations S, the specific uptake rate (1/y)·µ becomes 9 

equal to S·(1/y)·µmax/κM, where (1/y)·µmax/κM is referred to as the “maximum uptake 10 

efficiency”. 11 

 12 

Fig. 3. Mineralization dynamics predicted with the Monod-based model calibrated on the 13 

hydrostatic experiment only (A) and on both hydrostatic and percolation experiments (B). 14 

The related experimental setups are indicated in the top right corner of each graph. The 15 

agreement between experiments and model is indicated by the value of discrepancy J 16 

displayed at the bottom and can be visually assessed by the proximity between the black line 17 

and the dots representing respectively the model results and experimental data. The red line 18 

refers to the carbon mass of substrate remaining in the soil core. In the percolation 19 

experiments (A3,4 and B3,4), around 51% of the initial mass of 14C was lost through leaching 20 

at each percolation events (t = 0, 3 and 6 days, blue arrows). The carbon balance among the 21 
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different pools is detailed in Fig. S11. Note that the reversible sorption eventually accounted 22 

for less than 2% of the initial carbon mass and therefore did not significantly alter the results. 23 

 24 

Fig. 4. Influence of the dispersion coefficient ddisp on mineralization predicted at day 24 25 

mCO2(t=24) for the biological parameter set calibrated on the sole hydrostatic experiments 26 

(A, thick red line) and on both hydrostatic and percolation experiments (B, thick blue line). 27 

Note that for the model calibrated on both hydrostatic and percolation experiments, the 28 

value of ddisp leading to the highest final mineralization (ddisp = 1.78 10-4 m2·d-1, thick blue 29 

line) is also equal to its calibrated value leading to the best adequacy with mineralization 30 

kinetics (Table 2). Note that the optimal dispersion value remains the same when 31 

representing the remaining dissolved substrate instead of the mineralization (Fig. S13). 32 

 33 

Fig. 5. Predicted substrate and bacterial spatial concentration profiles after6 days of 34 

diffusion and dispersion in the conditions of heterogeneous percolation experiment, in 35 

which bacteria and substrate are initially located exclusively in the central cube (between 0 36 

and 3 mm). Results are simulated on a 9 × 18 × 18 grid obtained by subdividing the 3 × 6 × 6 37 

grid used for the screenings. The results are represented for the parameter set calibrated 38 

using only the sole hydrostatic experiment, either with a moderate dispersion 39 

(ddisp = 1.78 10-4 m2·d-1) (A) or with the calibrated dispersion (no dispersion) (B), and for the 40 

biological parameter set calibrated on both hydrostatic and percolation experiments, either 41 

without dispersion (C)  or with the calibrated dispersion (ddisp = 1.78 10-4 m2·d-1) (D). On one 42 

hand, bacteria are exposed to smaller substrate concentrations if they are far from the 43 
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source (right part of the substrate concentration profiles). On the other hand, bacteria 44 

undergo competition if they are too close from each other (left part of the substrate 45 

concentration profiles). In (C), the bacteria aggregated below d consume the substrate faster 46 

than it is replenished by backward diffusion and dispersion. The total number of bacteria 47 

within the whole soil column at day 6 is similar in (A), (B), (C) and (D), respectively equal to 48 

6.0 105, 9.5 105, 11.5 105 and 11.3 105. The final mineralization at day 24 is however strongly 49 

different between scenario, reaching respectively 3.2%, 5.3%, 9.1% and 24.7% of the initial 50 

mass of 14C. 51 

 52 

Fig. 6. Dispersion coefficient giving the highest predicted mineralization at day 24 as a 53 

function of maximum uptake efficiency, all other parameters equal to those of the model 54 

calibrated on both hydrostatic and percolation experiments. 55 

 56 

Fig. 7. Mineralization dynamics predicted with the Contois-based model calibrated on both 57 

hydrostatic and percolation experiments. For representation and legend, see Fig. 3. The 58 

carbon balance among the different pools is detailed in Fig. S11. 59 

 60 

Fig. 8. Influence of the dispersion coefficient on mineralization at day 24 for the 61 

Contois-based models calibrated on the sole hydrostatic experiments (thick red line) and on 62 

both hydrostatic and percolation experiments (thick blue line). For representation and 63 

legend, see Fig. 4. 64 
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1 

 

Highlights 1 

- The impact of spatial distributions on decomposition depends on bacterial traits  2 

- Decomposition can be reduced by competition between bacteria even at low densities 3 

- Bacterial density regulation counterbalances substrate accessibility regulation 4 

- Regulation of decomposition by bacterial density is more acute for oligotrophs 5 
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