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The investigation of fluctuation phenomena in plasmas often necessitates the analysis of 
spatiotemporal signals. It is shown how such signals can be analyzed using the biorthogonal 
decomposition, which splits them into orthogonal spatial and temporal modes. The method, also 
referred to as the singular value decomposition, allows complex spatiotemporal patterns to be 
decomposed into a few coherent modes that are often easier to interpret. This is illustrated with two 
applications to fluctuating soft x-ray and magnetic signals, as measured in a tokamak. Emphasis is 
given to the physical interpretation of the biorthogonal components and their link with known 
physical models is discussed. It is shown how new insight can be gained in the interpretation of 
spatiotemporal plasma dynamics. 

I. INTRODUCTION 

The progress toward a better understanding on fluctua- 
tions in plasmas is closely linked to the development of ad- 
equate signal processing tools.’ Spectral-based techniques 
have so far proven to be indispensable to access signal fea- 
tures that are otherwise not readily observable.2 Although 
these techniques can be extremely powerful, they do not al- 
ways readily apply to spatially extended systems because 
they are monovariate, i.e., they handle only one variable at a 
time while freezing the others. The consequence is a delib- 
erate loss of information which may impede a better under- 
standing of the spatiotemporal plasma dynamics. A true de- 
scription of spatiotemporal signals therefore requires a 
multivariate analysis. 

Most multivariate signal processing techniques have 
been pioneered by research in the field of fluid dynamics3-6 
where they play an crucial role; some techniques have also 
originated in other fields such as particle physics.? We shall 
consider here one particular technique called the biorthogo- 
nal decomposition (ED) which is essentially an expansion 
into deterministic functions in time and in space. An early 
formulation is attributed to Lumley,3 although several closely 
related techniques have emerged in other domains. Some of 
them are the Karhunen-Loive expansion8 in statistical phys- 
ics, the proper orthogonal decomposition’ in probability 
theory, the principal component analysis” in multivariate 
analysis, and the singular value decomposition (SVD)” in 
numerical linear algebra. The BDL2,13 has originated in the 
context of nonlinear dynamics, where it has been used to 
study wave propagationsi and bifurcations in chaotic 
systems.15 The method is formally identical to the SVD but 

*‘Present address: Laboratoire de Physique et Chimie de Environnement, 
C.N.R.S., 3A Av. de la Recherche Scientifique, F-45071 Orlkans Cedex 2, 
France. 

we will keep its terminology, which is more appropriate for 
our purposes. 

Several techniques related to the BD have already been 
applied in plasma physics, but they were generally used as 
data reduction tools and not with the aim to examine the 
spatiotemporal behavior of the plasma. The principal compo- 
nent analysis was used on the Axisymmetric Divertor Ex- 
periment (ASDEX)‘6,17 and the Rijnhuizen Tokamak Project 
(RTP)16,18 tokamaks to reconstruct plasma equilibria and ex- 
tract plasma parameters. A method related to the principal 
component analysis was applied to magnetic signals in the 
High Beta Toroidal Experiment (HBTXlA) reversed-field 
pinch. &t9 In a context more in line with our purpose, the 
SVD was recently used with soft x-ray and magnetic field 
fluctuations in the Joint European Torus (JET).‘6,20 The latter 
experiment is as far as we know the first to present a space- 
time analysis of plasma signals. 

The purpose of this paper is to use the BD as a heuristic 
tool to characterize spatiotemporal fluctuations as they are 
measured in plasmas. A special emphasis will be given to the 
physical interpretation of the biorthogonal components, 
which has up to now received little attention. It will be 
shown how the method can provide new insight into the 
dynamical behavior of the plasma and furthermore allow 
some effects to be interpreted in the context of known physi- 
cal models. To this end, we will consider two applications to 
signals that have been measured on the Tore Supra16 toka- 
mak. The outline of this paper is as follows: in Sec. II the 
method is presented and its differences with respect to other 
approaches are examined. Some properties of the biorthogo- 
nal components are discussed in Sec. III. A first application 
to magnetohydrodynamic (MHD) fluctuations as observed in 
the soft x-ray emission is presented in Sec. IV A second 
application to the analysis of magnetic field fluctuations fol- 
lows in Sec. V. The results are discussed in Sec. VI, which 
also presents some outlooks. 
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II. THE BIORTHOGONAL DECOMPOSITION 

A detailed analysis of the biorthogonal decomposition 
and its mathematical properties can be found in Ref. 12. A 
brief introduction is given here with an emphasis on sampled 
signals. 

We consider a scalar quantity y(x,t) (e.g., electron tem- 
perature, electric potential, or magnetic field component) 
whose time evolution is measured simultaneously at M dif- 
ferent spatial locations. The signal is subsequently sampled 
and the data are assembled into an NXM matrix Y, in which 
the columns are time series 

(Y)ij=y(Xj,ti) with i=l,..., N, j= l,..., M. (1) 

This simple configuration can be generalized to vectorial 
quantities, to complex signals or to measurements in other 
(e.g., Fourier) spaces. The biorthogonal expansion consists in 
expanding the discrete signal y(Xj ,ti) into a set of modes 
that are orthogonal in time and in space 

(Y)ij= ?Z AkPk(Xj)+k(ti), 
k=l 

(2) 

with 

2 $k~fi)$l(ti)= 5 (Pk(xj)(Pl(xj)= 6kk[* (3) 
i=l j=l 

The finite number of modes K=min(N,M) determines the 
global dimension of the data set. Following the nomenclature 
introduced in Ref. 12, the spatial eigenmodes (Pk(xj) will 
thereafter be called topos and the temporal eigenmodes 
qk( ti) chronos. The weights A k are either positive or equal to 
zero and it is conventional to sort the series (2) in decreasing 
weight order. The BD is unique except when some of the 
weights are equal; this will be discussed below. 

The topos and the chronos are not predefined base func- 
tions, in contrast to a Fourier series expansion, but are cal- 
culated directly from the data. They satisfy the eigenequa- 
tions of the two point spatial and temporal scatter matrices of 
Y 

S .&‘k=&‘k 9 with S,=YTY, (4) 

%h=A$t+k> with S, = YYT, (5) 

where the superscript T denotes transposition. The scatter 
matrices S, and S, do not necessarily have the same size, 
unless N = M. However, they have the same rank and their K 
largest eigenvalues are identical, the subsequent ones being 
equal to zero. The positive semidefiniteness of these matrices 
explains why the weights are also positive or equal to zero. 
From these eigenequations a physical interpretation of the 
BD can be given, namely that it projects the data on an 
orthonormal basis which decorrelates both the time and the 
space series. Coherent structures such as traveling waves or 
macroscopic perturbations are significantly correlated in time 
and in space and should therefore appear more evidently in 
this new basis. 

The BD is in many aspects similar to techniques such as 
the principal component analysis, which are also based on a 

decomposition in eigensolutions of Eqs. (4) and (5). The 
main difference resides in the way the presence of degenera- 
ties in the spectra of the cross-correlation matrices is treated. 
Degeneracies occur whenever the signal has spatiotemporal 
symmetries such as traveling waves2t and thus represent an 
important feature. Their presence implies the existence of a 
subset of eigenfunctions which can be arbitrarily chosen, so 
that the one-to-one correspondence between the spatial and 
temporal components is lost. In this case, the signal cannot 
be fully reconstructed from its components. It is well known 
that signals which have identical scatter matrices are not nec- 
essarily identical; this indicates that some information about 
their space-time behavior is lost in calculating the scatter 
matrices. The missing information is recovered in the BD by 
using the isomorphism between the topos and the chronos as 
an additional constraint to Eqs. (4) and (5): 

YSok=Ak#k. (6) 

This one-to-one correspondence, which is in fact a dispersion 
relation, is an essential feature of the BD, making of it a 
deterministic tool which treats both space and time depen- 
dences simultaneously. Each topo will always correspond to 
a unique chrono, even when some of the weights are identi- 
cal. Techniques such as the principal component analysis fail 
to keep this unique correspondence because they formally 
treat the spatial and temporal behavior separately. 

An important property of the BD and its related tech- 
niques is their ability to concentrate most the signal features 
into a limited set of components only. For any L s K, the 
truncated expansion 

(qL)ij= i Akqk(Xj)@k(‘k(ti) 
k=l 

(7) 

is the best approximation in a least-squares sense of the data 
matrix Y among all possible sums of L components. In most 
cases, the weights are strongly ordered and the largest ones 
exceed the smallest ones by at least an order of magnitude. 
The components that are associated with large weights rep- 
resent highly correlated structures and reflect dominant fea- 
tures of the signal. They will be called significant compo- 
nents as opposed to those associated with small weights. The 
number of significant components has been suggested as a 
measure of space-time complexity for chaotic systems.22 

The BD appears here as an efficient data reduction tech- 
nique which reduces the number of degrees of freedom of the 
configuration space in which the signal evolves. Its ability to 
concentrate dominant features into a few spatial and tempo- 
ral modes makes it well suited for the analysis of spatially 
extended systems. Before presenting some applications, we 
proceed by discussing some of the physical inferences that 
can be made from the biorthogonal components. 

Ill. PROPERTlES OF THE BIORTHOGONAL 
COMPONENTS 

The key to the interpretation of a biorthogonal decom- 
position is an examination of its weight distribution. This 
allows one to assess the degree of compressibility of the data 
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FIG. 1. Simulated weight distribution showing K= 18 components and three 
dominant weights. 

but also provides valuable information on properties such as 
spatiotemporal symmetries, linear combinations between sig- 
nals, etc. 

Several parameters allow one to quantify the weight dis- 
tribution. We first define the global signal energy 

N M 

E=C C CY)&, 
i=l j=l 

which is equal to the sum of the squared weights 
K 

E=x A;. 
k=l 

The dimensionless energy 

pk=A;/E, (10) 

measures the relative amount of energy which is stored in 
each topo-chrono pair and is a useful quantity for comparing 
different data sets. It has the properties of a probability dis- 
tribution 

K 
ospk== 1 and c pk=l. (11) 

k=l 

In this context we also introduce the normalized entropy of 
the signal, defined as the entropy normalized to its maximum 
possible value 

(12) 

This parameter measures the degree of space-time complex- 
ity. It is equal to zero if and only if the signal is separable, 
i.e., when y(x,t)=y(x)u(t). The maximum value H=l is 
reached when all the components have equal weights. 

Several statistical tests based on the weight or on the 
dimensionless energy distribution allow the assessment of 
the number of significant components for a given data set 
(see for example Refs. 10 and 23). We shall follow here a 
more qualitative approach having in mind the application to 
experimental plasma signals. Figure 1 illustrates a typical 
weight distribution and reveals some characteristic features. 
It shows a strong ordering with at least three significant com- 

ponents, representing together 99.7% of the signal energy. As 
a consequence, most of the signal features are contained in 
the three dominant topo-chrono pairs. This is further sug- 
gested by the small global entropy which is equal to 
H=O.O& It is legitimate to ask whether the remaining com- 
ponents may still contain pertinent information. The answer 
is usually negative because of the omnipresence of signal 
noise. To show this we consider a deterministic signal y(x,t) 
and add noise to it 

YtxJl=yw)+ rl(&fl. (13) 

The noise sequence rl(x,t) is defined here as a random fluc- 
tuation which is neither correlated in time nor in space. Its 
distribution is taken to be normal N(O,C?). Note that the zero 
mean and the variance 13 apply both to time and space av- 
erages. It is reasonable to assume that the noise and the sig- 
nal are uncorrelated. When N and M tend to infinity, the 
scatter matrices become 

S,=~,+NCT~I, (14) 

s,= S,+A4a21, (15) 

where I denotes identity matrices. The presence of noise only 
appears in the diagonal of the scatter matrices and thus 
merely shifts their eigenvalues by a value which is propor- 
tional to 2. The weights of the noisy signal become 

A,2=/i:+La*, W-5) 

where L is the largest of N and M. This expression shows a 
tendency of the high-order weights to converge toward a 
constant value regardless of the true distribution of the sig- 
nal. Components whose weight exceeds ~6 are well sepa- 
rated from the noise and reflect the characteristics of the 
signal whereas components associated with small weights 
are noise dominated. The presence of noise therefore sets an 
upper bound to the number of significant components that 
can be reasonably extracted from an experimental signal. In 
practice, the signal-to-noise ratio is rarely known a priori 
and the upper bound is found by locating the transition from 
a steep to a flat weight distribution. More realistic conditions 
such as non-Gaussian noise or finite data sets tend to 
smoothen the weight distribution and transform its flat tail 
into a gentle slope. For this reason the number of significant 
components cannot always be determined unambiguously; in 
Fig. 1 for example, this number may vary from 3 to 5 de- 
pending on the criteria used. Some criteria for locating the 
onset of noise are given in Refs. 23 and 24. Once the signifi- 
cant components are identified, they can be used to reconsti- 
tute the signal, thereby leaving out a significant fraction of 
the noise. 

Another interesting property of the weight distribution 
shown in Fig. 1 is the presence of two identical and non- 
negligible weights A,=A,. This implies the presence of a 
degeneracy in the spectrum of the correlation function and 
can generally be ascribed to the existence of a spatiotemporal 
symmetry in the signaL2’ To illustrate this, we consider a 
sinusoidal traveIing wave 

y(x,t)=cY cos(wt-kx), 

which has the spatiotemporal syminetry 

(17) 
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y(x,t+hj)=y(x-xo,t)* (18) 

In the case where NwAt%l and MkAx%l (At and Ax are, 
respectively, the average sampling period and the average 
spacing of the channels) the temporal and spatial scatter ma- 
trices of the sampled signal are 

(Sx),= iNa COS k(xi-Xj), (19) 

(S,)ij= ~Mff’ COS W(ti-tj). (20) 

These rank 2 matrices only have two nonzero eigenvalues 
which are equal. In spite of an apparent arbitrariness in the 
definition of the eigenvectors, the topo-chrono pairs can be 
calculated unambiguously using the isomorphism (6). The 
weights are 

-, k=1,2, 
(21) 

and the corresponding topos and chronos are 

ql(Xj)= JZF sin(kxj), 

q2(xj)= $S COS(kxj), 

f@t(ti)= J2/N sin(wti), 

(22) 

(23) 

t&(tj)= July cos(otj). (25) 

In this particular case the biorthogonal components of the 
data matrix Y are identical to its discrete Fourier compo- 
nents. This is not true anymore when several traveling waves 
are superimposed. Waves with different frequencies or dif- 
ferent wave numbers appear as distinct pairs of biorthogonal 
components, each pair having two equal weights. The Fou- 
rier transform generally does not allow a superposition of 
traveling waves to be identified unambiguously,25 since it 
associates different wave numbers with each frequency. Such 
a reconstruction is made possible, however, when using the 
BD, using the procedure discussed in Ref. 12. It must be 
noted that waves with identical frequencies but different 
wave vectors (or alternatively identical wave vectors but dif- 
ferent frequencies) are not separated and appear as a single 
pair of biorthogonal components. Different examples based 
on numerical simulations are given in Ref. 20. The mixing of 
different traveling waves into a single pair of biorthogonal 
components does not impede their reconstruction as long as 
the wave vectors (or, respectively, the frequencies) are suffi- 
ciently different. 

In the more realistic case of traveling waves with slowly 
varying parameters, the topos and chronos merely reproduce 
the variations of the signal. For example, a temporal modifi- 
cation in the frequency 0/27r will appear in the chrono only 
but not in the topo. This property is particularly relevant for 
the analysis of transients and wavelets. 

These examples reveal some of the properties of the BD 
that allow one to quickly recognize particular features in an 
experimental signal. Although the method is very general 
and needs few assumptions, it has the drawback of not being 
scaling invariant. It is easy to see that the biorthogonal com- 
ponents are sensitive to the scaling of the data. This effect 

-1 0 i 
x/a 

FIG. 2. Poloidal cross section of the Tore Supra tokamak showing the po- 
sition of the plasma and the lines of sight of the two soft x-ray cameras. The 
dots indicate the position of the Mirnov coils; the high toroidal field side is 
to the left. 

has not been thoroughly investigated yet and the preprocess- 
ing of the data usually varies according to the nature of the 
experiment. A reasonable choice is to subtract the signal time 
average and normalize each channel by its standard devia- 
tion. If no background subtraction is made, the first compo- 
nent will just be the background itself and have an unusually 
large weight. A more appropriate normalization consists in 
dividing each signal channel by its noise level. This allows 
us to apply Eq. (16) and usually provides the clearest sepa- 
ration between significant and nonsignificant components. 
Another shortcoming of the BD is the difficulty to assign 
confidence intervals to its components. This difficulty can be 
ascribed to the high nonlinearity of the eigenvalue problems 
(4) and (5). A few results such as the asymptotic distribution 
of the weights for normal data can be found in the literature 
(see, for example, Ref. 10) but most statistical properties of 
the BD remain to be derived. 

The BD can in principle be computed by solving the 
smallest of the eigensystems (4) and (5) together with Eq. 
(6). This approach, however, is subject to numerical stability 
problems and a more robust algorithm based on the SVD is 
preferred. This algorithm26 yields directly the topos, the 
chronos, and the weights and requires approximately 
(NM)~/* operations. Its computational burden becomes sig- 
nificant when large data sets (typically NM >lO”) have to be 
analyzed but this problem can often be overcome by decom- 
posing the data into smaller subsets and analyzing each of 
these separately. 

IV. APPLICATION TO SOFT X-RAY EMISSION 
FLUCTUATIONS 

The soft x-ray emission of plasmas is often measured 
with high spatial and temporal resolution, which makes it a 
good candidate for a space-time analysis. The experiments 
to be described were carried out on Tore Supra, which is a 
circular cross-section tokamak with a minor radius a =0.78 
m and a major radius R=2.36 m. The soft x-ray emission is 
measured by two pinhole cameras (one vertical, one horizon- 
tal, with, respectively, 44 and 53 detectors each, see Fig. 2) 
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FIG. 3. Line-integrated soft x-ray emission measured along a central chord 
and a chord tangential to the sawtooth inversion radius. A deeply penetrating 
pellet is injected at t =7.65 s. 

with a minimum time resolution of 1 ,us. Local emission 
profiles are recovered using a projection on Zernicke poly- 
nomials, which is discussed in Ref. 27. 

The soft x-ray emission is mostly sensitive to the elec- 
tron density and temperature and is for that reason frequently 
used to monitor macroscopic MHD activity. Instabilities such 
as internal disruptions (or sawteeth) or single MHD modes 
are in general easily separated unless they occur simulta- 
neously, in which case their identification becomes cumber- 
some. This situation is exemplified by a discharge in which a 
deeply penetrating deuterium pellet is injected, see Fig. 3. 
The cooling of the pellet first causes the soft x-ray emission 
profile to collapse but a peaked profile is recovered by ap- 
plying 3 MW of ion cyclotron heating at the center of the 
plasma. After a l/2 s sawteeth reappear, followed by strong 
MHD oscillations which degrade the energy confinement of 
the plasma. This discharge is described in more detail in Ref. 
28. 

The different phenomena that appear in Fig. 3 are diffi- 
cult to disentangle and can only be identified after a careful 
and lengthy analysis of tomographic reconstructions. A Fou- 
rier analysis is not appropriate here since the signal is domi- 
nated by incoherent oscillations. The BD was applied to the 
line-integrated emission after subtracting the stationary level 
measured prior to the pellet injection; N=2000 time slices 
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FIG. 4. Weight distribution calculated from the perturbed soft x-ray emis- 
sion, with N=2000 time slices and M=97 channels. Only the 40 largest 
weights are displayed. 
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FIG. 5. The five dominant chronos and topos of the perturbed soft x-ray 
emission. Only topos of the vertical camera are displayed. Their spatial 
coordinate is defined as the intersection of the chords with the equatorial 
midplane. The stationary emission profile is shown for comparison with a 
dashed line and in arbitrary units. 

and M =97 channels were used. The resulting weight distri- 
bution is shown in Fig. 4 and reveals approximately five 
significant components containing together 99.92% of the 
signal energy. A large redundancy in the data is attested to by 
the narrowness of the distribution. In this case, almost ail the 
pertinent information contained in the signals can be recon- 
stituted using less than 7% of the initial amount of data. 

The five dominant topo-chrono pairs of the line- 
integrated soft x-ray emission are displayed in Fig. 5. Only 
the topos of the vertical camera are shown, using a spatial 
coordinate which is defined as the intersection of the chords 
with the equatorial midplane of the tokamak. The profile of 
the first topo is similar to that of the stationary emission 
although it has a stronger peaking which reflects the central 
temperature increase. Given its shape, we expect its corre- 
sponding chrono to be sensitive to sawtooth crashes. Saw- 
teeth are indeed apparent in the first chrono, which displays 
them much better than any of the raw signals. The second 
biorthogonal component, on the contrary, shows no sawteeth 
but fast Auctuations. Its topo is radially asymmetric and a 
tomographic reconstruction shown in Fig. 6 clearly reveals a 
dipole structure. It is usual to characterize such structures by 
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FIG. 6. Perspective plot of the reconstructed topos of the perturbed soft 
x-ray emission, showing the annular structure associated with the m=O 
topology of the sawteeth (topos 1 and 3) and the m =l topology of the 
rotating mode (topo 2). Only the central part of the plasma is displayed 
(-0.5-1~ CO.5 and -0.5<z/a CO.5) and the view is taken from a position 
below and outside of the chamber. The small peripheral annular structures 
are an artifact of the tomographic reconstruction procedure. 

approximating them by a Fourier decomposition in cylindri- 
cal geometry, using the poloidal (0) and toroidal (4) angles 

cp(r,e,~,1)=cp,,(r)exp[j(w,,t--n--ee)l. (26) 

The absence of toroidal resolution prohibits an assessment of 
the toroidal topology but poloidal mode numbers up to m =2 
can be resolved with the two cameras. The rotating dipole is 
identified as an m = 1 mode located near the sawtooth inver- 
sion radius. We already conclude that the BD has separated 
the dynamics of the sawteeth (whose dominant mode number 
is m =0) from the rotation of the m = 1 mode. Figure 7 shows 
how the mode rotation frequency and amplitude are affected 
by each sawtooth crash. The third topo-chrono pair is again 
radially symmetric and thus mostly sensitive to the sawteeth. 
Some cross-talk with the m = 1 mode can be observed, indi- 
cating that the BD does not fully separate the two effects. 
Furthermore, a slight departure from a purely symmetric ra- 
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FIG. 7. Time evolution of the m = 1 mode rotation frequency and amplitude. 
The first chrono is displayed for comparison and shows how each sawtooth 
affects the rotation. 
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dial profile must be noticed. This is ascribed to the outward 
shift of the plasma flux surfaces, which is induced by tht: 
central heating and causes the emission profile to lean out- 
wards. The fourth topo is asymmetric and its chrono mainly 
displays the first harmonic of the rotation frequency. Higher- 
order components have more complex topos and are increas- 
ingly affected by noise. The sixth component is about the 
largest which still reveals some macroscopic structures and 
marks the onset of noise, as could be expected from the 
break in the weight distribution. 

The BD appears here as a powerful tool for separating 
the features associated with different physical mechanisms 
on the basis of their spatial and temporal structures. An im- 
portant result is the possibility to reduce large data sets into 
small numbers of deterministic components that can be 
meaningfully compared. In this sense the BD allows existing 
results to be improved or at least to be illustrated in a more 
straightforward way. A typical example is the m = 1 oscilla- 
tion, which would have been more difficult to resolve by 
other means. An equally important result is the high repro- 
ducibility of the topos whose shape hardly changes if the BD 
is applied to shorter time windows. This strongly suggests 
that the different aspects of the observed dynamics are all 
described by a common and well-defined mechanism. This 
aspect will be further examined in Sec. VI. 

Although the nomenclature of the BD explicitly refers to 
spatiotemporal signals, the method can be applied to any 
kind of bivariate signal. It is most appropriate when the data 
contains redundancies as the salient features are then cap- 
tured by few modes. The BD of a set of totally uncorrelated 
data results in equally weighted components and no pertinent 
information can be gained in that case. In practice, the mini- 
mum size a data matrix should have depends on the amount 
of collinearity between the data; in many cases, significant 
results can already be obtained with sizes as small as K=4. 
We also point out that some features may be left unnoticed 
because they do not clearly appear in one particular compo- 
nent. Perturbations that are not separable such as radial ex- 
pansions or horizontal displacements of the emission profile 
cannot be expressed by a single topo-chrono pair and thus 
appear in several components. For this reason it may occa- 
sionally be necessary to repeat the BD for shorter time or 
space intervals in order to visualize a local change in the 
components. 

A different example of feature extraction is provided by 
the biorthogonal decomposition of the soft x-ray response to 
an injection of impurities. Figure 8 shows the emission mea- 
sured along two chords during an Ohmic discharge in which 
a small amount of nickel was injected. Laser-ablated impu- 
rity injection has become a standard method for studying 
impurity transportz9 and furthermore provides some insight 
into internal MHD instabilities.30 The temporal evolution of 
two line-integrated measurements depicted in Fig. 8 suggests 
the presence of an inverted sawtooth crash occurring shortly 
after the injection but does not give full evidence of it. Such 
inverted crashes are caused by a rapid impurity influx toward 
the center of the plasma. 

The BD was applied to the perturbed line-integrated 
emission with the aim to separate concurrent effects such as 
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FIG. 8. Line-integrated soft x-ray emission measured along a central chord 
and a chord tangential to the sawtooth inversion radius. Impurities are in- 
jected at r=9.58 s. 

the sawteeth and the perturbation caused by the impurity 
injection. Figure 9 shows the weight distribution as obtained 
from the vertical camera and suggests the existence of four 
significant components. The latter are plotted in Fig. 10 to- 
gether with the stationary emission profile. The first topo is 
just proportional to the stationary profile and reflects the glo- 
ba1 increase in emissivity due to the higher concentration of 
impurities. It is similar to the first topo of the previous ex- 
ampie, though not as peaked and asymmetric because no 
significant outward shift of the plasma flux surfaces occurs 
during this experiment. The second and third topo represent 
more complex radial structures which show an increasing 
number of nodes. The second chrono is particularly sensitive 
to sawteeth and clearly reveals the expected inverted saw- 
tooth crash 20 ms after the injection time. Again, such a 
feature is much better observed in the biorthogonal compo- 
nents than it could be in the raw signals. An unsuspected 
result is the presence of a rotating m = 1 mode which appears 
in the fourth component. It is well observed between subse- 
quent sawtooth crashes and also appears shortIy during the 
crashes. The larger mode amplitude observed after the injec- 
tion has already been reported”’ and mainly results from the 
global emission enhancement caused by the larger concen- 
tration of impurities. The apparent disappearance of the 
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FIG. 9. Weight distribution of the perturbed soft x-ray emission in the case 
of impurity injection, with N=2000 time slices and M =39 channels. Only 
components of the vertical camera are considered. 

chrono 
k= 

4. 

k= 

Y 

k: 

i(( 

.I 

top0 

:1 

fi: 

cpt(xl 

. 03 

0.1 

0 

:2 ,.,*., ,..' '.. . 03 
:' 

,! : . 
$9 

~: 

'0 

a!2 

23 P..,, 
,t,' .., . 09 

,' 
. ..' 't. 

~~ 

0 

-0.9 

:4 

. . I’-‘, ..; ‘.. 

!iL!!fl 
0.2 

,/ *, 
.. 

0 

-0.2 

0 1 

x/a 

FIG. 10. The four significant components of the perturbed and line- 
integrated soft x-ray emission during an impurity injection. Only topos from 
the vertical camera are displayed, together with the stationary emission pro- 
file (dashed line, arbitrary units). 

mode between the injection of the impurities and the inverted 
sawtooth is due to the hollowness of the emission profrle at 
that time, which prevents the central emission from being 
well resolved. 

V. APPLlCATlON TO MAGNETIC FIELD 
FLUCTUATIONS 

A different example of spatiotemporal dynamics is pro- 
vided by the magnetic field fluctuations that are measured 
outside a plasma. Such fluctuations are generaIly dominated 
by coherent oscillations which are generated by the rotation 
of magnetic islands inside the plasma. The poloidal compo- 
nent of the fluctuating magnetic field is measured in Tore 
Supra by arrays of Mirnov coils located at different poloidal 
and toroidal angles. The signals are low-pass filtered with a 
cutoff frequency at 12 kHz and subsequently sampled at 32 
EIz. We consider here a single array of 14 coils located in 
the same poloidal plane, see Fig. 2. 

Coherent oscillations of the magnetic field are usually 
identified by performing a Fourier transform on the signals 
and subsequently analyzing the poloidal or toroidal depen- 
dence of the calculated phases for each of the dominant 
frequencies.3’ This procedure is straightforward when the 
frequencies vary little in time but does not readily apply to 
transients. In the latter case, the spectra must be computed 
for short time intervals, which is statistically unfavorable. An 
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FIG. 11. A Mirnov coil signal showing the burst of MHD activity which is 
triggered by the crash of a monster sawtooth. 

example of transient MHD activity is provided by a dis- 
charge in which a monster sawtooth crash occurred. Monster 
sawteeth lasting for about 800 ms have been produced in 
Tore Supra by the combined application of lower-hybrid cur- 
rent drive and ion cyclotron heating.32 Each crash generates a 
strong burst of MHD activity, one of which is illustrated in 
Fig. 11. This sequence was analyzed with N=1140 time 
slices and M = 14 signals, after normalizing each coil signal 
to its standard deviation. The weight distribution, which is 
represented in Fig. 12, shows at least two pairs of values 
which are close enough to suggest the existence of spa- 
tiotemporal symmetries. Coherent oscillations are clearly ob- 
served in the six dominant chronos, which contain together 
97% of the signal energy, see Fig. 13. The corresponding 
topos are displayed for convenience in polar coordinates, in 
which the angular position is that of the coils and the radial 
coordinate the amplitude of the topo. 

From the discussion in Sec. III, it is clear that the six 
most significant components represent three rotating modes. 
Each mode consists of two oscillating topo-chrono pairs 
which are in quadrature (i.e., both topos and chronos are 
phase shifted by 7~/2). This separation into different fre- 
quency components is made apparent by the frequency 
power spectral density of the chronos, shown in Fig. 14. For 
a given time interval, the spectrum of the six dominant chro- 

FIG. 12. Weight distribution calculated from the Mirnov coil measurements 
during a monster sawtooth, with N = 1141 time slices and M  = 14 channels. 
At least two pairs of similar weights can be distinguished. 
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FIG. 13. Eight dominant topos and chronos of the magnetic field measure- 
ments displayed for a short time interval. The solid lines represent odd 
numbered components and the dashed lines even ones. Polar coordinates are 
used for the topos whose amplitude is normalized between 0.5 and 1.5. The 
positions of the Mirnov coils are indicated by dots. 

nos is narrow and dominated by a single frequency whereas 
higher-order terms have a broader spectrum. Three dominant 
frequencies can be identified, each of which appears in a 
different pair of components. The poloidal mode numbers of 
the topos can be inferred from the number of lobes which are 
observed in the polar representation and are, respectively, 
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FIG. 14. Power spectral density of the 14 chronos shown in Fig. 13. 
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FIG. 15. Time evolution of the amplitude and the angular frequency of the 
modes that are generated by the crash of the monster sawtooth. No particular 
mode activity is observed before the crash. Note the good time resolution of 
the mode parameters. 

m=3, 4, and 6. The higher concentration of lobes near the 
high toroidal magnetic field side is a well-known effect 
which is due to the toroidal geometry and to the off-center 
position of the mode with respect to the coil array.33 

Toroidal mode numbers can be obtained in a similar way 
by extending the analysis to Mirnov coils located at different 
toroidal angles. We finally identify three dominant MHD 
modes whose topologies are, respectively, (n,m) =(2,3), 
(3,4) and (4,6), in agreement with results obtained using a 
standard Fourier analysis. The poloidal mode number m =6 
is about the largest we can identify, given the finite angular 
resolution of the Mirnov coil array. The presence of other 
modes with different frequencies or topologies is not ex- 
cluded but their amplitude is too small for them to be iden- 
tified. Their existence is suggested by the power spectrum 
shown in Fig. 14. It is also supported by the weight distribu- 
tion which, unlike that of the soft x-ray emission, does not 
flatten at high values of k. As a consequence, not one of the 
14 biorthogonal components is fully noise dominated and 
each one contains pertinent information about the magnetic 
field fluctuations. 

Other parameters of the fluctuating signal can be calcu- 
lated by analogy with the example treated in Sec. III. The 
angular frequency and the amplitude associated with the 
three dominant pairs of components are 

k= 1,3,5, W I 

a(t,)= h,+;(ti)+$:cl(ti), k=lJS. (28) 

The time evolution of these parameters is shown in Fig. 15. 
No precursor is observed prior to the sawtooth crash, which 
is followed by a rapid slowing down of the rotation. From 
this figure, the damping rates of the different modes can be 
calculated with an excellent time resolution. 

It has been early recognized that magnetic islands tend 
to rotate only in the toroidal direction, with the same toroidal 
angular velocity.s4 This is supported by our results since the 
ratio between the angular frequency v and the toroidal mode 
number iz is exactly the same for the three dominant modes. 
Nevertheless, the possibility for islands to rotate in the po- 
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FIG. 16. Raw Mirnov coil signal showing mode activity and a discontinuity 
caused by a sawtooth crash. 

loidal direction or with different toroidal angular velocities 
cannot be completely ruled out. As pointed out in Ref. 12, 
the presence of more than one frequency component in the 
power spectrum of the chronos is generally an indication that 
the corresponding traveling waves propagate at different ve- 
locities. Such multiple frequencies are apparent in the power 
spectra of the high-order chronos shown in Fig. 14, and can 
also be observed in the dominant ones. Similar conclusions 
can in principle be drawn from the power spectral density of 
the topos, in which the presence of more than one mode 
number is also an indication of differing velocities. In our 
case, however, no assessment of the spectrum of the topos 
can be made since this would require a detailed knowledge 
of the distortions caused by the toroidal geometry. The spec- 
trum of the chronos will be discussed in future work. 

This example shows how different rotating modes can be 
separated by the BD without knowing a priori their fre- 
quency or the number of modes present. In contrast to spec- 
tral techniques, these modes are distinguished on the basis of 
their poloidal structure, which is invariant, and not on fre- 
quency considerations, which may evolve in time. A major 
improvement over a standard Fourier analysis is the absence 
of constraints on the time resolution, which can be freely 
chosen. This property allows us to resolve very short and 
transient phenomena. It can be used, for example, to confirm 
the constancy of the toroidal velocity ratio between the dif- 
ferent modes immediately after the sawtooth crash. 

A different aspect of the BD is illustrated by the foliow- 
ing example, in which we consider the MHD activity which 
occurs during a nor-ma1 sawtooth crash. The signals were 
recorded during an Ohmic discharge, in which some MHD 
activity was triggered by an injection of gas. The sequence 
which was analyzed shows a strong oscillation with a dis- 
continuity caused by the sawtooth crash, see Fig. 16. The 
weight distribution and the dominant biorthogonal compo- 
nents corresponding to this sequence are shown in Figs. 17 
and 18. We identify a strong m =2 oscillation in the first two 
terms, and a barely perceptible m=4 mode in the fourth and 
fifth ones. The third biorthogonal component does not have 
the properties of a traveling wave and reveals a short pertur- 
bation. It is interpreted as a gong mode3’ which is caused by 
the sawtooth crash occurring at that time inside the plasma. 
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FIG. 17. Weight distribution of the magnetic field measurements during a 
normal sawtooth, with N=400 time slices and M = 14 channels. 

This mode propagates in the poloidal and toroidal directions 
like the other modes but its duration is shorter than its rota- 
tion period. This explains why it appears in a single bior- 
thogonal component rather than two. In spite of its short 
lifetime, the poloidal topology of the gong is well resolved 
and the mode number is m=3. In JET, the dominant mode 
number of the gong was found to be equal to the integer part 
of the safety factor q+(a), as measured at the last closed flux 
surface.“” In our case qQ(a)=3.4 and the agreement is good. 
It must be noted that the m=2 mode shows no significant 
discontinuities during the sawtooth crash. 

We conclude from this example that the gong mode can 
be directly identified from the biorthogonal components. The 
BD has also been applied to other discharges and so far the 
mode numbers agree with the empirical predictions for 
safety factors in excess of 3. A surprising result, however, is 
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FIG. 18. Five dominant topos and chronos of the magnetic field measure- 
ments. The chronos 2 and 5 are not displayed since they are merely in 
quadrature with the chronos 1 and 4. The gong mode clearly appears in the 
third hiorthogonal component. 
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the observation of dominant m=3 mode structures for dis- 
charges whose safety factor drops below 3, down to 2.4. We 
finally point out that the separation of contending perturba- 
tions is possible provided that their poloidal mode numbers 
differ. If the poloidal topology of the gong had been identical 
to that of the m =2 mode, both would have appeared together 
in a single pair of biorthogonal components. In that case, 
however, the gong could still be recognized by a short burst 
in the chrono. 

VI. DISCUSSION AND OUTLOOKS 

The results that have been presented so far bear many 
similarities with those obtained in JET using the SVD2” and 
we recall that both approaches are formally identical. The 
framework of the BD, however, has been preferred to that of 
the SVD because this kind of analysis is not restricted to 
linear or stationary processes. Although the BD is essentially 
based on second-order moments of the data, it can be used as 
well to investigate nonlinear phenomena. Its ability to iden- 
tify macroscopic structures in fluctuating signals leads us to 
briefly discuss here a particularly relevant application, which 
is the search for organized behavior in plasma turbulence. 

The role played by coherent vortex structures in plasma 
transport processes has become an important research issue 
in the last decades. Numerical simulations”h’37 and 
experiments38-40 both lend support to their existence but 
most results have remained qualitative and inconclusive so 
far due to a lack of adequate analysis techniques. A major 
problem is the objective quantification of the degree of orga- 
nization in a turbulent regime. Although coherent structures 
are generally easy to visualize in spatiotemporal signals, it is 
much more difficult to formulate a test statistic capable of 
identifying and extracting them.41 Such a test statistic must 
be data adaptive if it is to detect coherent structures without 
a priori knowledge of their shape or location. The BD pos- 
sesses such data-adaptive properties, which makes it a useful 
complement to usual correlation and conditional averaging 
techniques. 

Although the application of the BD to the characteriza- 
tion of complex spatiotemporal dynamics has been advo- 
cated by several authors (see for example Refs. 42 and 43), 
the method has only recently been used in plasma physics. 
The first known application to plasma turbulence4 reports 
the analysis of spatiotemporal density fluctuation measure- 
ments in the scrape-off layer of the ASDEX and ADITYA16 
tokamaks. In these experiments, the existence of coherent 
structures in regimes of fully developed turbulence is clearly 
revealed by the BD. The method allows one to extract these 
structures, which can thereafter be characterized with statis- 
tical tools. Such preliminary results are encouraging and sug- 
gest that substantial progress can still be achieved in the 
analysis of spatiotemporal turbulence. 

An issue which has not been discussed yet is the physi- 
cal interpretation of the biorthogonal components. Indeed, 
techniques such as the BD and the principal component 
analysis are often criticized for the difficulty to interpret their 
components in physical terms. This criticism is generally jus- 
tified when the data matrix contains a mixture of different 
physical quantities. However, when the data set represents a 
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ments, we note the possibility to ease the reconstruction of 
local plasma parameters from line-integrated measurements. 
A major handicap common to most reconstruction techniques 
is the necessity to repeat them as many times as there are 
snapshots needed. This, however, can often be circumvented 
using the property of a reconstructed signal to be equal to its 
reconstructed biorthogonal components. In many cases, it is 
computationally much more advantageous to invert a few 
topos, which immediately provide access to the full time 
evolution, rather than inverting repetitively large numbers of 
profiles. 

FIG. 19. Orbit representation of the chrono pairs (&,I& and (I),,&), re- 
vealing Lissajou figures. The chronos of Fig. 13, measured after a monster 
sawtooth. have been used. 

VII. CONCLUSION 

single quantity, like in the preceding examples, a physical 
interpretation is often apparent. An early effort to provide a 
physical interpretation was made in meteorology where close 
links were found between principal components of pressure 
fields and eigensolutions of the differential equations that 
describe the dynamics of the atmosphere.” 

Among the different kinds of fluctuating signals that 
have been considered here, the soft x-ray emission has com- 
ponents that can be easily interpreted. The analogy, which is 
further discussed in the Appendix, reveals a strong link be- 
tween the radially symmetric topos and the eigensolutions of 
the plasma particle and heat transport operators. A character- 
istic signature of this analogy is the number of nodes in the 
topos, which increases with the order k. This analogy with 
spectral properties of transport operators also provides an 
explanation for the limited number of components that is 
needed to adequately reproduce the dynamics of the per- 
turbed soft x-ray emission. 

An analogy may also be made between the decomposi- 
tion of the magnetic field fluctuations and that of embedded 
time series.22 To this end, we consider the chronos presented 
in the first part of Sec. V and use orbit representations, see 
Fig. 19. The orbits described by the pairs (et ,&), (4$,$4) 
and ( I,$ ,I,&,) are circular, which simply expresses the fact that 
the chronos oscillate in quadrature and at a single frequency. 
The orbits involving chronos from different pairs indicate 
whether these oscillate independently. The orbit of (@r,$4), 
for example, reveals a limit cycle. From the identification of 
its Lissajou figure we conclude that the frequency ratio be- 
tween the (n,m)=(3,4) and (2,3) modes is exactly 1.5. The 
presence of a Lissajou figure instead of a diffuse cloud gives 
a direct evidence of a mode locking, i.e., the modes rotate in 
phase as if the plasma were a rigid body. The same conclu- 
sion pertains to the (4,6) mode whose frequency is exactly 
twice that of the (2,3) mode. The orbit representation also 
applies to the chronos of the soft x-ray emission but the 
proper correspondence must be given in the interpretation. 
The orbit ( e2 ,e4) is a partial Lissajou figure corresponding to 
the rotation of the m = 1 island; the space spanned by (@r ,JI3) 
has a different meaning and can be interpreted in terms of the 
temporal evolution of the profile shape. 

Finally, it must be mentioned that the BD is widely used 
in signal processing under the name SVD.45 Among the ap- 
plications that can be relevant to plasma physics experi- 

The ability of the BD to disentangle complex spatiotem- 
poral signals into coherent structures makes it a powerful 
tool for analyzing fluctuations in plasmas. The first reason is 
that it provides a full spatiotemporal description which splits 
the dynamics into spatial and temporal modes. Second, it 
concentrates the dominant dynamical features into a few 
number of modes only, thereby easing their interpretation. 

A first application of the BD to soft x-ray measurements 
shows that the apparently complex behavior of the emission 
profile can be decomposed into simple and reproducible 
modes. Using the BD, contending phenomena such as saw- 
teeth and MHD oscillations are clearly separated and there- 
fore easier to examine. The structure of the spatial modes is 
found to be directly related to the properties of the particle 
and heat transport mechanisms. This explains the low dimen- 
sionality of the soft x-ray signals, which only need a few 
modes to be adequately modeled. 

A second application to magnetic field fluctuations 
shows that different rotating MHD modes can be separated 
without knowing a priori their frequency or the number of 
modes present. A clear improvement over spectral techniques 
is obtained, owing to the fact that the BD treats both space 

and time dependences simultaneously. This allows, for ex- 
ample, the gong mode structure to be clearly identified. Fi- 
nally, it is shown how the data must be preprocessed in order 
to overcome the undesirable effects that may be caused by 
the lack of scaling invariance of the method. 

The BD has already been successfully applied in fluid 
mechanics to study the transition to turbulence. We believe 
that significant progress can be achieved in the understand- 
ing of plasma dynamics by using it with spatially resolved 
measurements, which are now becoming increasingly com- 
monplace. 
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APPENDIX: ANALOGY WITH EIGENMODE 
REPRESENTATION 

It is known in the context of perturbative transport 
analysis46’47 that the linearized dynamical response of plasma 
parameters such as the electron density and temperature can 
be described in terms of spatial eigenmodes fk(x), each of 
which is characterized by a decay time rk. The Laplace 
transform of this expression reads 

Yw)= c f&(X) s, 
&al 

(Al) 

where U(S) is the stimulus and s the Laplace variable. The 
inverse Laplace transform gives 

,,b-,t) = c fk(X)gk(t)* 
kzl 

W) 

The spatial components f&(x) turn out to be eigenfunctions 
of the operator which governs the dynamical response, hence 
the name eigenmode representation. A direct physical inter- 
pretation can be assigned to these eigenfunctions which can 
either be calculated analytically from transport models or 
measured experimentally; in both cases the result is an infi- 
nite set of functions whose number of nodes increases with 
k. 

The eigenmode decomposition (A2) is in many aspects 
similar to the BD since it also projects a spatiotemporal sig- 
nal onto a set of separable functions. This similarity clearly 
appears in Fig. 20, which compares the spatial components 
obtained by the two decompositions for a simulated signal. A 
diffusive transport model in cylindrical geometry was used to 
build a spatiotemporal set of data which was subsequently 
decomposed in eigenfunctions and topos. The discrepancies 
seen in Fig. 20 are due to the properties of the modes, which 
satisfy different constraints. The temporal components g&(t) 

are not orthogonal as opposed to the chronos; furthermore, 
their structure is partly known a priori, whereas the chronos 
are not predefined. 

Given the strong similarity between the BD and the 
eigenmode decomposition, we can attribute a physical mean- 
ing to the topos of the perturbed soft x-ray emission. The 

t(r) 
[a.u.] 

- vk(r) 
[a.u.] 

-1 -0.5 0 0.5 1 

r/a 

FIG. 20. Comparison between the radial eigenfunctions (gray line) and the 
topos (black line), as calculated from a simulated spatiotemporal signal in 
cylindrical geometry. 
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