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Abstract: In this paper, we introduce two novel models for processing real-life satellite images to quantify and then 

visualise their magnetic structures in 3D. We believe this multidisciplinary work is a real convergence between 

image processing, 3D visualization and solar physics. The first model aims to calculate the value of the magnetic 

complexity in active regions and the solar disk. A series of experiments are carried out using this model and a 

relationship has been indentified between the calculated magnetic complexity values and solar flare events. The 

second model aims to visualise the calculated magnetic complexities in 3D colour maps in order to identify the 

locations of eruptive regions on the Sun. Both models demonstrate promising results and they can be potentially 

used in the fields of solar imaging, space weather and solar flare prediction and forecasting.  

Keywords: Active Regions, Solar Disk, Solar Flares, Magnetic Complexity, Energy, Satellite 

Images, 3D Sun. 

 

Abbreviations MDI: Michelson Doppler Imager; SOHO: Solar and Heliospheric Observatory; ESA: European Space 

Agency; NASA: National Aeronautics and Space Administration; NGDC: 

National Geophysical Data Center; GIF; Graphic Interchange Format; 

NOAA: National Oceanic and Atmospheric Administration; OpenGL: 

Open Graphics Library; ASAP: Automated Solar Activity Prediction. 

Manuscript
Click here to download Manuscript: Omars Manuscript.doc Click here to view linked References

http://www.editorialmanager.com/tvcj/download.aspx?id=59169&guid=12b94e47-c8d3-4e5f-8ee1-ea56de1dd275&scheme=1
http://www.editorialmanager.com/tvcj/viewRCResults.aspx?pdf=1&docID=1002&rev=0&fileID=59169&msid={A535544A-492E-478D-850B-9CB7BCD5AAD6}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

1. Introduction 

Research and interest in the field of space weather and solar activities is growing because of the 

significance of their potential impact on human lives and activities. The term space weather is 

applied to the space environment around the Earth and all the way to the Sun. Space weather is 

defined as the “conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and 

thermosphere that can influence the performance and reliability of space-born and ground-based 

technological systems and can endanger human life or health. Adverse conditions in the space 

environment can cause disruption of satellite operations communications, navigation, and 

electricity power distribution grids, leading to a variety of socioeconomic losses” [1] [2] [3]. In 

the past, few solar activities have affected the Earth and caused notable damage. In March 1989, 

power grids in north-east Canada collapsed during a great geomagnetic storm which left millions 

of people without electricity [4]. Another large event occurred during the end of Ocober 

beginning of November 2003 period, when the largest ever recorded X-ray flare occurred, 

known as the Halloween solar storm. It damaged 28 satellites, knocking two out of commission, 

causing airplane routes to be diverted and power failures in Sweden and other countries [5] [6]. 

Thus, there is an urgent need to develop preventative measures capable of reducing the risks 

associated with space weather events, by introducing either a system design or efficient warning 

and prediction systems [3] [7]. This will allow industries at risk to take preventave measures to 

avoid or mitigate the consequences of these events. Space weather and solar activities are both 

directly influenced by the Sun. As such it is important to study the Sun and its activities in order 

to have a good underdanding of its influence on space weather [1]. Solar flares are the most 

remarkable solar activities which drive space weather and affect the terrestrial enviromnent as 

they spew vast quantities of radition and charged particles into space [8] [9]. Flares are defined 

as sudden, rapid, and intense variations in brightness that occurs when the magnetic energy that 

has built up in the solar atmosphere is suddenly released, over a period lasting from minutes to 

hours. Flares emit strong radiation such as radio waves, X-rays and gamma rays, and energetic 

particles (protons and electrons) [10]. Solar flares mostly occur in active regions, as such, it is 

important to study active regions in order to have a good understanding of flares. Active regions 

are regions on the Sun usually form with sunspots, and they are studied in order to forecast solar 

activities. Solar active regions are associated with particularly strong and complex magnetic 
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fields, which emerge through the photosphere into the chromosphere and corona. This creates 

suitable conditions for the release of enormous amounts of energy in the form of solar flares. 

Understanding this energy is important as it aids the prediction of solar eruptions, such as solar 

flares as well as other solar activities.  

The work presented here demonstrates recent developments in our ongoing efforts to design a 

web-based, automatic and real-time system for predicting and forecasting solar flares. Two new 

models are introduced in this paper. Both models were executed using daily solar images 

captured by MDI (Michelson Doppler Imager) instrument on board of the SOHO (Solar & 

Heliospheric Observatory) satellite [11]. The first model introduces a method to calculate the 

magnetic complexity in active regions and in the solar disk for the purpose of solar flare 

prediction. The magnetic complexity calculation model is based on the famous physical Ising 

model [12]. The Ising model has been modified to fit the nature of this application. The method 

introduced here is the latest updated version, which is better fitted to imitate the property of the 

magnetic fields connections in active regions. More details about the original Ising model and 

the earlier models can be found in our previous publications [13] [14]. The magnetic 

complexities were calculated for number of different groups of active regions and solar disk 

samples. Then, their values were plotted against flare events that have occurred during the same 

period and location. This has revealed a clear relationship between the recorded magnetic 

complexities and flare events. The second model visualise the solar disk, active regions, and the 

calculated magnetic complexity in 3D colour maps. This model reconstructs the studied 

magnetogram image and represents it for 3D view. Also the model can view 3D colour map of 

active regions according to their polarity or to the calculated magnetic complexity. This can 

identify the potentially eruptive regions. The models proposed in this paper offer a new approach 

to observe solar images for the purpose of solar flare prediction and forecasting. 

This paper is organized as follows: solar data sources are introduced in section 2. Section 3 

introduces the magnetic complexity calculation model and how it has been used to calculate the 

magnetic complexity in active regions and in the solar disk. Section 4 describes the 3D 

visualisation model. Finally, the conclusion and future work is discussed in section 5. 
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2. Solar Data 

2.1. Satellite Images 

SOHO/MDI magnetogram images have been used in this work. These images are captured by 

MDI (Michelson Doppler Imager) instrument, which is on board the SOHO (Solar and 

Heliospheric Observatory) satellite. SOHO is a project of international cooperation between ESA 

(European Space Agency) and NASA (National Aeronautics and Space Administration). 

SOHO/MDI magnetogram images are available publically online1 in GIF format (Graphic 

Interchange Format). The magnetogram images record the line-of-sight components of the 

magnetic fields on the solar disk [15] as shown in Figure 1. These images are used in this work 

because they show the strength and location of the magnetic fields on the Sun, which makes 

them well suited for magnetic complexity calculation method. There are around 15 SOHO/MDI 

magnetogram images available per day. Every two images are separated by approximately a 90 

minute gap. This is beneficial for the use of the proposed models in terms of tracking the changes 

in the magnetic complexity values of the active regions in relation to flare occurrence. MDI 

magnetogram images are in grayscale, where pixel intensities range from 0-255. The minimum 

pixel intensity value represents black, while the maximum pixel intensity value represents white. 

Each colour represents the magnetic polarity distribution on the solar disk. The gray areas 

indicate regions with minimum magnetic energies, while the black and white regions indicate 

strong magnetic fields. The black regions indicate “south” magnetic polarity (pointing towards 

the Sun), while white regions indicate “north” magnetic polarity (pointing outwards) [16].   

2.2. NGDC Flare Catalogues 

Solar flare catalogues obtained from the National Geophysical Data Center (NGDC) have also 

been used in this work. These catalogues are available for public access online2. NGDC holds 

one of the most comprehensive public databases for solar features and activities records from 

                                                 
1 http://soi.stanford.edu/production/mag_gifs.html 
2 ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA  
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several observatories around the world. The NGDC flare events catalogues include full details 

about flares, such as flare’s date, time, location, classification, intensity and NOAA number. 

Flares are classified according to their X-ray brightness as follows: A, B, C, M, or X. A and B 

flares are the weakest, while M and X flares are the strongest. C flares are weak in comparison to 

M and X flares and they could have few noticeable impacts on space weather. M and X flares are 

more related to major impacts on space weather, especially X flares. The NOAA number is a 

unique number, for each active region, given by the National Oceanic and Atmospheric 

Administration (NOAA). Using the NOAA number, flares can be assigned to the active regions 

that they have originated from. However, not all of the recorded flares are assigned to a NOAA 

number. This could be related to the difficulty of assigning a flare to the right active region, 

especially during solar maximum when in some scenarios active regions could be attached to or 

in a group of complex active regions, or the recorded flare might have occurred on the far side of 

the Sun. 

3. The Magnetic Complexity Model  

The idea of the magnetic complexity calculation model is based on the relationship between the 

energy stored in the magnetic fields of active regions and flares erupting from these regions. The 

magnetic complexity calculation model is derived from the Ising model. The Ising model is used 

for the analysis of magnetic interactions and structures of ferromagnetic substances [12]. This 

model allows for the simplification of complex interactions, since it has been successfully 

employed in several areas of science. The Ising model has been applied to many physical 

systems such as: magnetism, binary alloys, and the liquid-gas transition [17]. The model was 

also used in biology to model neural networks, flocking birds and beating heart cells [18] [19] 

[20]. Between 1969 and 1997, more than 12,000 papers were published using this model in 

different applications, which shows the importance and potential of this model [21]. For the first 

time, the Ising model has been modified and then applied to model the properties of magnetic 

fields formation in active regions and calculate the magnetic complexity of active regions. More 

details about the original Ising model and the first attempts of the modified model can be 

obtained in our previous publications [13] [14]. However, further modifications have been 

applied to the model since the first attempts in modifying the Ising model. To avoid confusion, it 
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is worth mentioning that the “magnetic complexity” have also been declared as the “energy” in 

our previous publications. However, the new model imitates the magnetic configurations in 

active regions, which are the key factor in flare occurrence, to provide more accurate results. The 

calculated values should provide a new way to indicate the flaring and non-flaring active regions, 

or even flare classifications. Also, the magnetic complexity calculation model has been applied 

to calculate the overall magnetic complexity on the solar disk. This will provide a measure of the 

overall magnetic activities on the front-side of the Sun, and therefore can be an important 

indicator for flare occurrences in general.  

SOHO/MDI magnetogram images are used in this work. The magnetogram images are processed 

and represented in a 2D grid, according to pixel intensities. Each pixel value in the magnetogram 

image is represented in the grid as follows: 

• Pixel intensity values between 0 and 30 represent the black areas in the image. These areas 

indicate a south magnetic polarity and are represented as -1 in the grid. 

• Pixel intensity values between 230 and 255 represent the white areas in the image. These 

areas indicate a north magnetic polarity and are represented as +1 in the grid. 

• Pixel intensity values between 31 and 229 represent the gray areas in the image. These areas 

indicate minimum magnetic energies and are represented as 0 in the grid. 

The magnetic complexity is calculated using Equation 1, which only takes the following values 

as an input: +1 and -1. In the equation, Si represents the north polarity areas only (+1), and Sj 

represents the south polarity areas only (-1). The magnetic fields in active regions loop from the 

positive magnetic fields to the negative magnetic fields. This property has been applied to the 

calculation method. The multiplication goes only from the values representing the positive 

magnetic fields (Si =+1) to the negative magnetic fields (Sj =-1), ignoring the weak polarity 

areas (0) as shown in Figure 2, taking into consideration the distance (d) between the interacting 

spins. N is the number of the total spins (the size of the 2-D grid). E is the total energy or the 

magnetic complexity, and it is unit-less. 

   (1) 
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3.1. Calculating the Magnetic Complexity in Active Regions 

A number of image processing techniques are applied to the MDI magnetogram images, prior to 

calculating the magnetic complexity in active regions. These procedures are summarized as 

follows: 

• MDI magnetograms record the line-of-sight component of the magnetic fields on the solar 

disk. In this work it is important to have the magnetic fields of the MDI magnetogram 

images represented accurately. Due to the projection effect, it was noticed that active regions 

located near the solar limb were distorted and it was difficult to observe and record the line-

of-sight component of the magnetic fields in these regions. Data far from the solar disk is 

less reliable because of the observing angle correction factor [22]. This leads to inaccurate 

representations of the active regions located near the solar limb. In order to resolve this 

problem, the MDI magnetogram image has been re-mapped using the method conducted in 

[23]. The magnetogram image is re-mapped from Heliocentric Cartesian coordinates to 

Carrington Heliographic coordinates. Then, the solar disk is shifted so the investigated 

active region located in the center of the image. This is done by selecting the solar disk 

image which has the active region under investigation located on around zero longitude, in 

order to use the active region time and location information as a reference point in the 

shifting process. Finally, the solar disk is re-mapped again to Heliocentric Cartesian 

coordinates. The resulting image shows the solar disk is shifted and the active region under 

investigation is located in the center of the image, as shown in Figure 3.   

• Despite the remapping process, it was noticed that several active regions located near the 

solar limb were still distorted. Therefore, active regions located above 45° from the center of 

the solar disk were discarded. 

• Most of the MDI magnetogram images used in this work included a random noise. Hence, it 

was necessary to apply an image filtering method to reduce the noise in these images. A (3 × 

3) Median filter was applied for this purpose. This filter is quite popular due to the excellent 

noise reduction capability it can provide for certain types of random noise [24]. An example 

of an active region image before and after applying the median filter is shown in Figure 4. 

This means that the new algorithm is more likely to achieve reliable results because better 

quality images are used.  
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• The active region under investigation is detected and cropped from the magnetogram image 

in order to calculate the magnetic complexity using Equation 1, as explained previously. 

A number of active regions candidates selected from different period of times, during solar 

minimum and solar maximum, were experimented with. The NOAA number and date of these 

active regions are: (10308 08/03/2003-18/03/2003), (10314 13/03/2003-18/03/2003), (10365 

20/05/2003-01/06/2003), (10482 17/10/2003-27/10/2003), (10484 17/10/2003-30/10/2003), 

(10486 25/10/2003-03/11/2003), (10488 25/10/2003-03/11/2003), (10507 19/11/2003-

30/11/2003), (9393 24/03/2001-02/04/2001), (10956 17/05/2007-21/05/2007). The calculated 

magnetic complexity values for each of the investigated active regions were compared to the 

flares that erupted from the same region, and they are both plotted against time. As a conclusion, 

these active regions have been classified according to their magnetic complexity values as 

follows: 

1. Non-Flaring Active Regions, Magnetic Complexity < 500. These active regions were 

holding very low energy and occasionally were accompanied with few B flares. This can be 

seen in region 482 as shown in Figure 5. 

2. Steady Increase Regions, 500 < Magnetic Complexity < 10,000. Active regions within this 

range usually had a gradual increase in their energy. Flares of type C, M and X erupted as 

the energy increased. Also, it has been noticed that flares occurred as groups separated by 

approximately 10 hours. This can be seen in region 365, shown in Figure 6. 

3. Highly Energetic Regions, Magnetic Complexity > 10,000. These active regions were 

holding very high energy, accompanied by high number of flares of type C, M and X. Also, 

it has been noticed that erupted flares were separated by short time intervals. This can be 

seen in region 9393, shown in Figure 7. 

Also, it was noticed that the number of flares increases as the energy (magnetic complexity) 

increases. As a conclusion, these outcomes show a good indication of the state of active regions 

in relation to flare occurrences. 

3.2. Calculating the Magnetic Complexity in the Solar Disk 

On many occasions, especially during the solar maximum when the number of sunspots and 

active regions is high, it is difficult to assign some of the erupted flares to the active regions that 

they originated from. This is because either there are groups of complex active regions adjacent 
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to one other, or the flare might have occurred on the backside of the Sun. Therefore it is 

important to have an indicator to reflect the overall status of the solar disk. Based on this, we are 

introducing a new technique to calculate the solar disk magnetic complexity. The ideology of 

this method is comparable to the solar cycle and it can be used to determining the overall solar 

activities on the Sun, which could be useful for flare prediction. A summary of the method’s 

processes is described below: 

• The MDI magnetogram image is filtered using the Median filter. This is similar to the 

approach explained in section 3.1.  

• The solar disk is detected in order to exclude the black areas around the disk. 

• The magnetic complexity of the solar disk is calculated using Equation 1, as explained 

previously. 

This method has been experimented using MDI magnetogram images over a number of months; 

April 2001, June 2003, March 2001, March 2003, May 2003, May 2005, May 2007, November 

2003, October 2003 and October 2004. The calculated values have been plotted against flares 

that occurred during the same period. A clear relationship can be noticed between both curves in 

the plots. As a conclusion, it was noticed that the number of flare events increases with the 

increase of the solar disk magnetic complexity (energy), and vice versa. Some of the results are 

shown in Figure 8, Figure 9, and Figure 10.  

4. 3D Visualisation of the Magnetic Complexities on the Solar 

Disk 

A new tool has been developed using OpenGL (Open Graphics Library) program to visualise the 

solar disk, active regions, and the calculated magnetic complexity in terms of 3D colour maps. 

The 3D colour maps offer a new approach to visualise active regions across the solar disk 

according to their polarities or to their magnetic complexities. This is very useful in terms of 

identifying the potentially eruptive areas on the solar disk. Viewing the Sun in 3D is very 

advantageous in comparison with the regular 2D images, as it offers different viewing experience 

i.e. zooming in/out and navigating through the Sun and solar activities. Also it offers a better 

viewing of solar activities located near the solar limb. This tool is very constructive, it offers a 
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new approach in visualising and investigating solar activities, and it can be used effectively in 

the field of space weather research. 

The OpenGL based tool reads a text file as an input, which includes the properties of the 

extracted features from the magnetogram image under investigation. The steps that have been 

undertaken to extract the required features are explained below: 

• The SOHO/MDI magnetogram image is converted to the Carrington Heliographic 

coordinates. Using the method employed in [23]. 

• Active regions are detected from the Heliographic coordinate image, using intensity 

filtering. The intensity filtering threshold value Tf for each image is found automatically 

using Equation 2, where, µ is the mean, σ represents the standard deviation, and α is a 

constant that is determined empirically based on the type of the features to be detected and 

the images. 

fT  = ( )µ σ α± ×  (1) 

The value of the first threshold is determined using Equation (2) with the plus (+) sign and α 

equal to 2. All pixels that have intensity values larger than this threshold are marked as 

active regions with north polarity. In the same manner, the second threshold is determined 

using Equation (2) with the minus (-) sign and α equals to 2. Any pixel with intensity value 

less than this threshold is marked as active regions with south polarity. 

• After detecting the pixels that represent active regions, the magnetic complexity values are 

calculated using Equation 1 and represented as colours ranging from red to green. Where red 

represents the highest complexity and green represents the lowest complexity. 

• Then using Equation (3), 3D Cartesian coordinates of each pixel is calculated. In this 

equation, B is equal to latitude, L is equal to longitude of the detected solar pixel and r is 

equal to the radius of the solar disk that the new data is mapped to. 

 

      (3) 
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• All the calculated 3D coordinates of the pixels are recorded to text files along with their 

colour values and visualised using the OpenGL based 3D tool.  

This tool has been tested on the same active regions that had their magnetic complexities values 

investigated previously in section 3.1. The results of this model are shown in Figure 11 in three 

groups: (A), (B), and (C), and they can be compared to the previous results, which discussed in 

section 3.1 and presented in Figure 5, 6, 7 respectively. Each group in Figure 11 consists of four 

images. The first is a magnetogram image. The second image is a 3D colour map of the solar 

disk which shows the active regions as white/gray areas, where white represents the north 

polarity regions, and gray represents the south polarity regions. The third image is a 3D colour 

map of the solar disk which shows the high magnetic complexity areas represented as red colour 

and the low magnetic complexity areas represented as green colour. The red coloured areas 

indicate a potential flare eruption location, while the green coloured areas indicate quite 

locations. The forth image is a 3D wired view of the solar disk, which shows another view of the 

third image. 

5. Conclusion and Future Work 

Two new models have been presented in this paper. The first calculates the magnetic complexity 

in active regions and the solar disk. This model is based on the famous physical Ising model, 

which has been modified to suit the properties of this application. The second is to visualise the 

solar disk, active regions, and the calculated magnetic complexity in 3D colour maps. 

SOHO/MDI magnetogram images are used for this research. Both models have been developed 

with C++ programming language and OpenGL software for 3D applications. Also they have 

been tested on different groups of samples selected randomly from different time periods. The 

obtained results reveal a relationship between the calculated magnetic complexities in active 

regions and the solar disk with flares. Also, the calculated magnetic complexity values have been 

represented in a 3D model in order to visualise the flaring regions on the solar disk. These 

models demonstrate very significant findings and can be useful tools for solar imaging, space 

weather and applied imaging in general. 

The aim of our research is to develop an automatic, real-time, and web-based system for solar 

flare forecasting. Currently, the models presented here can perform in real time. However, 
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further work will be carried out on large amount of data in order to establish the exact correlation 

between the calculated magnetic complexities and flares in order to evaluate the capability of the 

model to accurately predict flare classes. This will be investigated using statistical or machine 

learning methods. Also, the magnetic complexity model will be integrated with ASAP 

(Automated Solar Activity Prediction). ASAP is an automated solar forecasting system which 

predict flares based on the sunspot’s McIntosh classification and area [25] [26], available online3. 

This step will enable us to determine number of solar activities parameters which are related to 

flare events, such as: sunspot’s McIntosh classifications, sunspots’ area, active region’s 

magnetic complexity, and solar disk magnetic complexity, which can provide better flare 

prediction. Finally, the 3D visualisation model will be updated so it can be used to reconstruct 

and represent other solar images i.e. SOHO/MDI Continuum images, EIT images, etc., and 

represent the solar features that are presented in these images. 
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Figure 4. An active region before (Left) and after (Right) applying the 3 × 3 Median filter. 

 

Figure 3. The three images above shows the re-mapping stages and how it affects an 

investigated region. Image date: 2003.05.22 06:24. Region NOAA number: 365. (A) The 

original magnetogram image in Heliocentric Cartesian coordinates. (B) The solar disk 

represented in Carrington Heliographic coordinates. (C) The solar disk re-mapped and 

represented in Heliocentric Cartesian coordinates, showing the active regions under 

investigation near the centre. 

 

Figure 1. A sample of an active region showing the interaction between opposite 

polarity areas according to the magnetic complexity model. Each spin within the 

white area (+) will be multiplied by all the spins in the black area (-). 

 

Figure 1. SOHO/MDI Magnetogram Image. 
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Figure7. The curve represents the energy (Magnetic Complexity) of active region 9393. The 

energy is very high, accompanied by a high number of flares with short time intervals. 

 

Figure 6. The curve represents the energy (Magnetic Complexity) of active region 365. A 

gradual build up in energy with flares occurred as groups separated by a period of time. 

 

Figure 5. The curve represents the energy (Magnetic Complexity) of active region 482.Very 

low energy and no flares were recorded within the region. 
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Figure 10. This plot shows the solar disk energy (Magnetic Complexity) and flares which 

ocured in May 2007. 

 

Figure 9. This plot shows the solar disk energy (Magnetic Complexity) and flares which 

ocured in October 2004. 

 

Figure 8. This plot shows the solar disk energy (Magnetic Complexity) and flares which 

ocured in Octber 2003.  
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Figure 11. For each group, the 1st image is a magnetogram image, with the active regions 

under investigation surrounded by a yellow square, as a reference point, so it can be 

compared with the related images in the group. The 2nd image present active regions in 3D 

colour map. The 3rd image presents magnetic complexity regions. The 4th image shows the 

solar disk in the 3rd image in wired view. 
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