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Although high-order moments are widely used in the study of fully developed turbulence, their statistical
properties remain poorly known. It is well known that beyond a given order, moment estimates based on finite
samples cannot be trusted. We provide an empirical criterion for determining that order and illustrate it using
a long record of boundary layer turbulence. The results show that even with modest levels of intermittency,
structure functions in the inertial range of turbulence cannot be meaningfully assessed for orders as low as
5 or 6.

DOI: 10.1103/PhysRevE.70.055302 PACS number(s): 47.27.2i, 05.40.2a

For several decades, the modeling and the experimental
measurement of moments have been a key problem in turbu-
lence research[1,2]. The attention has progressively shifted
to high-order moments, as these can help discriminate con-
current models of turbulent cascades. Yet, these develop-
ments are often pursued without substantiating evidence that
such moments can actually be measured experimentally.

More than three decades ago, Tennekes and Wyngaard[3]
warned against the danger of inferring high-order moments
from experimental data. Although many pitfalls can, nowa-
days, be overcome by adequate experimental set up and suit-
able data processing, two basic problems remain: the lack of
ergodicity and the finite sample size. Both have been over-
looked, if not neglected, in the literature.

The validation of moment estimates is indeed a difficult
task; analytical results only exist for distributions that are
close to Gaussian[4]. Tennekes and Lumley[5] introduced a
method for determining the uncertainty of aqth order mo-
ment by using knowledge of the 2qth order moment and the
integral time scale. Their approach, however, requires good
estimates of the low-order moments. Qualitative insight can
be gained by investigating the probability density of the data
[3,6], an approach that has been used by several others[7–9].
Other approaches involve the central limit theorem[10], as-
sume an algebraic decay of the distribution[11], or consider
the problem from a dynamical system point of view[12]. We
shall focus here on finite sample size effects and derive an
empirical criterion for evaluating their impact.

To illustrate our approach, we consider velocity measure-
ments made by hot wire anemometry in a turbulent boundary
layer. This data set has already been analyzed in Refs.
[12–14]. The air velocity is recorded at a constant rate of
37.5 kHz, giving a stringhvij of data. Of particular interest
for turbulence studies are the wave-field velocity increments
ui = uvi+t−viu, so we shall concentrate on the statistical prop-
erties of the string of incrementshuiji=1

N . Let us consider a
time lagt of 12 sampling periods to start with, as this value
falls right within the inertial range; the length of the string of
increments is thenN=442 349. In what follows, all velocity

increments are normalized versus their standard deviation
(before taking the absolute value), so thatu is dimensionless.

Theqth order moment of the velocity increments is better
known as the structure function, whose formal definition and
empirical estimate are, respectively,

Sq =E
0

`

psuduq du, s1d

Ŝq =
1

N
o
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N

ui
q. s2d

Here, psud is the probability density ofu. In Fig. 1, the
estimated probability density is compared to a Gaussian dis-
tribution with the same mean and same variance. A weak
departure from Gaussianity is apparent, which may be an
indication for short-scale intermittency.

Tennekes and Wyngaard[3] suggested validating the mo-
ment estimates by plotting the integrandpsuduq for various
ordersq. The surface spanned by this integrand equals the
value of the corresponding structure function. This is illus-
trated in Fig. 1[discrete functions are plotted, since histo-
grams were used to estimatepsud].

For low orderssqø4d, the surface spanned by each inte-
grand is regular and well bounded. As the order increases,
however, so does the contribution of rare events until the
boundary becomes too ragged for the surface to be well de-
fined.

Among the reasons for this degradation are the large un-
certainty associated with rare events and the unavoidable
truncation of the integral in Eq.(1). We conclude from Fig. 1
that the highest accessible order should be aroundq=6, a
value that is quite small as compared to what one would
expect from such a long time series. Our objective is to es-
timate this quantity more objectively.

First, let us reorder the array of velocity increments and
rank them in decreasing order:u1ùu2ù ¯ ùuN. The em-
pirical structure function of orderq is still given by Eq.(2)
but with reordered indices, notedk. As before, the area
spanned by the serieshuk

qjk=1
N converges for largeN toward

the value of theqth order structure function. This area is*Electronic address: ddwit@cnrs-orleans.fr
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displayed in Fig. 2. It can be divided into two parts: a long
linear tail that is dominated by velocity increments belonging
to the bulk of the distribution, and for smallk a sharp peak
that is made of rare events. The accuracy of our structure
function estimate largely depends on our ability to properly
capture the surface of that peak.

It turns out that the peak in Fig. 2 is remarkably well
described by a power law,

uk = aS k

N
D−g

, s3d

as evidenced by a representation with logarithmic axes. Such
a scaling invariance woulda priori be expected only from
distributions that exhibit algebraic asymptotic decay, such as
Lévy-type distributions. What we observe recalls the empiri-
cal Zipf law [15,16], which appears with astonishing ubiq-
uity in rank-ordered statistics[17–20]. The origin of the scal-
ing invariance we observe, however, is essentially rooted in
the statistical properties of the extremes in a ranked distribu-
tion [21], and so does not necessarily reflect some property
of the underlying physics. Indeed, this scaling holds almost
regardless of the true probability density of the record.
Among the physically meaningful distributions, only those

which are strictly Gaussian were found to exhibit a clear
departure from this scaling. Such distributions, however, are
of marginal interest here. We compared a variety of data sets
obtained from experimental and simulated neutral fluid and
plasma turbulence, using various lagst ; all of them con-
firmed the robustness of this power-law scaling. We shall
therefore take the existence of this scaling as our main work-
ing hypothesis.

Let us then assume that the ranked velocity increments
obey a power-law scaling for theM ,N first elements. The
exact value ofM is not essential for what follows; we merely
introduce it to separate the velocity increments into two
classes. The empirical structure function can be rewritten as

s4d

s5d

Rare events contribute toŜq
s1d, and the bulk of the

distribution to Ŝq
s2d. One can readily show that the second

term in Eq. (4) does not significantly depend onN, as uk
<s1−k/Nd /psu=0d. The first term can be rewritten as

Ŝq
s1d = aqNqg−1o

k=1

M

k−qg. s6d

For 0øqg,2, this is well approximated by[22]

FIG. 1. The integrand of Eq.(1) for various ordersq as mea-
sured(dots) and as calculated from a Gaussian distribution(line)
whose mean and variance equals that of the measurements. The top
panel shows the probability density(vertical axis is logarithmic). In
the next panels, the value of the empirical structure function equals
the area spanned by the dots. The probability density was estimated
using a histogram with 100 equispaced bins; the time lag ist=12
sampling periods. Here, and in all following plots, velocities are in
dimensionless units.

FIG. 2. From top to bottom: the string of velocity increments
huij vs their indexi, the string of ranked velocity incrementshukj
with linear and logarithmic axes. A least-squares fit over the range
10økø1000 gives the scaling exponentg=0.128±0.004(slope
shown by thin line).
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Ŝq
s1d = aqNqg−1S 7

12
−

1

1 − qg
f1 − srNd1−qggD , s7d

where we introducedr =M /N,1. This estimate, to be con-
sistent, should converge toward its expectation asN in-
creases. The parametersa, r, andg only weakly depend on
N. A simple consistency criterion thus consists of determin-

ing whether Ŝq
s1d converges or diverges for increasingN.

Equation(7) shows that divergence occurs forqg.1, with a
limiting case forqg=1. We conclude that the maximum or-
der of the structure function estimate is essentially a function
of the scaling indexg of the ranked distribution.

In practice,q must be an integer, so the maximum order
for which a structure function can be meaningfully estimated
from a finite data set should be

qmax= b1
g

c − 1, s8d

whereb c denotes the integer part.
Applying this criterion to our boundary layer data gives a

maximum order ofq=6, in full agreement with the previous
qualitative analysis. Its application to a variety of data sets
always gave an excellent agreement with the qualitative
analysis, even when the power scaling could be applied to a
small fraction only(typically a few tens of samples) of the
data set.

The main asset of this criterion is its self-consistency, in
the sense that no assumptions need to be made either on the
validity of the central limit theorem, or on the functional
dependence of the tails of the distribution. The main hypoth-
esis is the power-law scaling of the ranked incrementshukj
for small k.

Clearly, the more significant the tails of the probability
density are, the smaller the threshold orderqmax will be. Be-
cause of that, the maximum order will depend on the time
lag t, usually increasing with it until the distribution of the
velocity increments becomes Gaussian(see Fig. 3). As a con-
sequence, high-order moments are easier to estimate at large
lags, when the distribution is close to Gaussian. The non-
monotonic increase we observe in Fig. 3 is not generic and is
most likely due to the lack of exact self-similarity in the
inertial range.

These results can be extended to the case of signed veloc-
ity increments, the only difference being that both wings of
the probability distribution must be treated separately, possi-
bly giving rise to different values ofqmax.

Finally, let us investigate how the maximum order de-
pends on the sample sizeN. To do so, we estimateqmax from
nonoverlapping subsets of various lengths, taken from the
same record, for a given lagt=12. Figure 4 shows the aver-
age value ofqmax and its standard deviation versus the length
N of the subsets. The increase ofqmax with N is rather slow
and we conclude that in the inertial range of this particular
data set, moments with orders larger than 10 are practically
beyond reach.

To summarize, we found a simple and empirical criterion
for determining the maximum order for which one can rea-
sonably estimate moments of a given data set. It is based on
the observational evidence that the ranked distribution of
rare events tends to follow a power law. Even for weakly
turbulent fields and long records, the lack of sound statistics
on rare events shows that the inference of moments as low as
5 or 6 can be a meaningless task.

Note added in proof. A nonparametric estimator of heavy-
tailed distributions, based on wavelet transforms, has re-
cently been proposed by Gonçalves and Riedli[23].

I gratefully acknowledge Fabien Anselmet(IRPHE,
Marseille) for providing the data and the dynamical systems
team(CPT, Marseille) for many stimulating discussions.
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