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Identifying nonlinear wave interactions in plasmas using 
two-point measurements: A case study of Short Large 
Amplitude Magnetic Structures (SLAMS) 

T. Dudok de Wit, • V. V. Krasnosel'skikh, 2 M. Dunlop, 3 and H. Ltihr 4 

Abstract. Two fundamental quantities for characterizing nonlinear wave phenomena in 
plasmas are the spectral energy transfer associated with the energy redistribution between 
Fourier modes, and the linear growth rate. It is shown how these quantities can be esti- 
mated simultaneously from dual-spacecraft data using Volterra series models. We consider 
magnetic field data gathered upstream the Earth's quasiparallel bow shock, in which Short 
Large Amplitude Magnetic Structures (SLAMS) supposedly play a leading role. The anal- 
ysis attests the dynamic evolution of the SLAMS and reveals an energy cascade toward 
high-frequency waves. These results put constraints on possible mechanisms for the shock 
front formation. 

1. Introduction 

In this paper, a Volterra series representation is used to de- 
scribe the nonlinear evolution in time and in space of a fluctu- 
ating wave field. The basis for this approach is that plasmas 
can often be viewed as a causal nonlinear system (a "black 
box") that reacts to a given excitation by giving a response. 
By modeling the nonlinear transfer function associated with 
this system, deeper insight can be gained into the underlying 
physics. 

The analysis of the nonlinear transfer function is detailed 
here for the particular case where two-point measurements 
are available. First, we show how to model the dynami- 
cal response. Then, the physical interpretation of the model 
coefficients is given. Particular attention is paid to the lin- 
ear growth rate, which expresses the linear instability of the 
wave field, and to the spectral energy transfer, which de- 
scribes how the instabilities saturate through nonlinear wave 
interactions. 

We apply this method to magnetic field data gathered 
by the dual AMPTE satellites near the Earth's quasiparal- 
lel bow shock. This data set corresponds to a regime of 
quasi-stationary turbulence in a collisionless plasma; it has 
received much interest in relation with the existence of Short 
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Large Amplitude Magnetic Structures (SLAMS) [Schwartz 
et al., 1992]. It is shown how a transfer function analysis re- 
veals the role played by these nonlinear structures. 

This paper is divided in three parts. The experimental con- 
text is described in section 2. Sections 3 to 7 are devoted 

to data analysis aspects with a description of the model, the 
choice of its parameters, and its validation. Finally, in sec- 
tions 8 and 9, experimental data are analyzed and interpreted. 

2. The Experimental Context 

The magnetic field data of interest were gathered by the 
dual Active Magnetospheric Particle Tracer Explorers space- 
craft (United Kingdom Satellite (AMPTE-UKS) and Ion Re- 
lease Module (AMPTE-IRM)) on day 304 of 1984 just up- 
stream the Earth's quasi-parallel bow shock. Several studies 
have already been devoted to this particular event [Schwartz 
and Burgess, 1991, Schwartz et al., 1992; Mann et al., 1994; 
Dudok de Wit and Krasnosel •kikh, 1995; Dudok de Wit et 
al., 1995], which provides a paradigm for nonlinear effects in 
turbulence. The spacecraft were closely following each other 
on the same outbound orbit (with a separation of •x --144 
kin), depicted in Figure 1. 

A distinctive feature of the studied region is the occur- 
rence of SLAMS, which supposedly play a leading role in 
the shock front formation [Schwartz et al., 1992]. The shock 
wave is caused by the sudden deceleration of the supersonic 
solar wind at the encounter of the Earth's magnetosphere. 
The SLAMS grow out of low-frequency waves that propa- 
gate away from the shock front but are convected back to- 
ward the Earth by the solar wind [Thomsen etal., 1990]. This 
steepening process is likely to result from an interaction with 
ion beams coming from the shock front [Scholer, 1993]. 

There are several open questions regarding the role played 
by SLAMS. Quasi-parallel shocks are currently viewed ei- 
ther as an entity [Winske et al., 1990] or as a patchy tran- 
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Figure 1. Configuration of the Earth's bow shock showing 
the magnetic field lines, the orientation of the solar wind, and 
the orbit of the spacecraft for the event considered in this pa- 
per. 

sition zone made by a merging of SLAMS [Schwartz and 
Burgess, 1991 ]. The relationship between the SLAMS and 
the whistler wave packets that frequently occur at their lead- 
ing edge is not well understood either, although there is nu- 
merical [Omidi and Winske, 1990] and experimental [Dudok 
de Wit and Krasnosel'skikh, 1995] evidence for a causal link 
between the two. 

An excerpt of the magnetometer data is shown in Figure 2. 
The trajectory of the spacecraft, the prevailing magnetic field 
and the average solar wind velocity (Vsw - 370 km/s) are all 
parallel within a few degrees. This is an important point since 
it means that both spacecraft see the same structures, sepa- 
rated by a time interval of about 1 s. A comparative analysis 
should therefore reveal how the wave field, and in particu- 
lar the SLAMS, evolve as they move from one spacecraft to 
the other. We do this by building a Volterra model that tries 
to predict the wave field of AMPTE-IRM using the data of 
AMPTE-UKS as input. 

Each spacecraft provides a data set which consists of the 
three components of the magnetic field, measured immedi- 
ately upstream the shock front. For each component the num- 
ber of samples is 4521; the data were sampled at a constant 

rate of 8 Hz after being low-pass filtered at 4 Hz. We have 
chosen to consider the three components as different ensem- 
bles, thereby artificially increasing the sample size by a fac- 
tor of 3. The anisotropy of the wave field a priori does not 
justify such an approximation, but no significant differences 
were found between the model coefficients as estimated sep- 
arately from each component. An obvious future extension 
would be to have a model that takes into account the vectorial 

nature of the wave field. 

The power spectral density of the wave field is illustrated 
in Figure 3a and can be qualified as being continuous and 
essentially featureless. Notice that all frequencies are ex- 
pressed in the spacecraft reference frame, in which they are 
Doppler-shifted by the strong solar wind. The spectral den- 
sities are almost the same for the two spacecraft. Figure 3b 
shows the wave field probability distribution, which has non- 
Gaussian tails. The departure from Gaussianity should be un- 
derlined, since it is a necessary condition for having nonlin- 
ear wave-wave interactions [Kim and Powers, 1979]. 

3. Modeling the Nonlinear Transfer Function 

Much work has been done on the theory of nonlinear trans- 
fer functions in turbulence [e.g., Monin and Yaglom, 1975; 
Krommes, 1997] but relatively little is known about their in- 
ference from experimental data, which can be an unwieldy 
task. Early results were obtained in the context of neutral 
fluid turbulence [ Uberoi, 1963; Van Atta and Chen, 1969; Lii 
et al., 1982; Ritz et al., 1988a] and later in plasmas [Ritz and 
Powers, 1986; Ritz, et al., 1988b; Ritz et al., 1989; Kim et 
al., 1996]. Powers, Ritz and their coworkers contributed to 
the development of a computational framework for two-point 
measurements [Ritz, and Powers, 1986; Ritz et al., 1989], 
thereby rendering the technique easily accessible to a large 
class of experiments. Their results, however, have remained 
overlooked, presumably because of the apparent computa- 
tional investment and the difficulty in validating estimates 
that are prone to errors. In this paper we show how to in- 
crease the robustness of the estimates by using continuous 
wavelet transforms instead of the usual Fourier transform. 
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Figure 2. Excerpt of the time evolution of the magnetic field amplitude, as measured by the two spacecraft. 
A typical SLAMS appears at t =71 s. The precursor whistler wave appears at its trailing edge because the 
wave field is convected backward by the strong solar wind. 
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Figure 3. (a) Power spectral density and (b) probability dis- 
tribution of the magnetic field of AMPTE-UKS projected 
along the direction of maximum variance. The solid line cor- 
responds to a Gaussian distribution with the same variance; 
all amplitudes are normalized to have unit variance. 

3.1. Volterra Series 

Consider a stationary wave field which is measured in time 
and in space, and let y(x, t) denote fluctuations around a 
fixed value. We are interested in describing the dynamics of 
this wave field with the following general model: 

: F(y(x,t)), (1) 

where F (y) is a continuous, nonlinear and time-invariant op- 
erator. Wiener [ 1958] showed that for a large class of causal 
systems F(y) can be expanded as a Volterra (or Volterra- 
Frdchet-Wiener) series [Schetzen, 1980], which we write 
here after taking the Fourier transform of the time variable 

Oy(x,w) 
033 = (2) 

The kernels [' are directly related to the higher-order spec- 
tra of the process and have a physical meaning: ['(w), 

['(wi, w•,), and ['(w•, w2, w3) are respectively called the lin- 
ear, quadratic, and cubic interaction terms. The generic sit- 
uation corresponds to a leading linear term, which describes 
the linear dynamics of the system, such as the linear growth 
rate and the dispersion. The quadratic term expresses three- 
wave processes in which interactions occur within triads of 
waves that satisfy the resonance condition 

w - w• + w2 ß (3) 

The cubic term similarly describes four-wave processes 
whose frequencies satisfy the selection rules 

The main motivation for using a Volterra series expansion 
stems from its ability to describe various weakly nonlin- 
ear processes in plasmas [Kadomtsev, 1982], ranging from 
generic drift wave turbulence [Balk et al., 1990; Horton and 
Hasegawa, 1994] to Langmuir turbulence as described by 
the Zakharov equations [Musher et al., 1995]. Particular at- 
tention has been given to Hamiltonian systems [Zakharov et 
al., 1985] in which the kernels can be calculated explicitly. 
The resonant interactions defined by (3) and (4) are further 
known to be the building elements of turbulence as observed 
in collisionless plasmas: the decay and modulational insta- 
bilities, for example, are adequately described in terms of 
three-wave and four-wave interactions [Krasnosel'skikh and 
Lefeuvre, 1993]. 

Theoretical and experimental considerations show that for 
weak turbulence the low-order Volterra kernels are the pre- 
dominant ones. Indeed, the characteristic timescale associ- 
ated with the action of a qth-order kernel increases with q, 
making low-order kernels much more likely to rule the dy- 
namics [Zakharov et al., 1985]. In practice, (2) may thus 
safely be truncated after the cubic term and quite often even 
a quadratically nonlinear model suffices. 

3.2. Strong Versus Weak Turbulence 

The nonlinear model of (2) formally applies to weak tur- 
bulence only, in which the dispersion and the characteristic 
growth rates of the Fourier modes are small. Solar wind tur- 
bulence, on the other hand, is often considered as being of 
the strong turbulence type. The region we study is actually 
a mixture between the two since the dynamical properties of 
the wave field are dominated by a small population of ener- 
getic ions interacting with a plasma of the weak turbulence 
type. The weakness of the dispersion [Dudok de Wit et al.,, 
1995] and the relatively small value of the linear growth rate 
(see Section 8) support the validity of the weak turbulence 
approximation here. 

The extension from weak to strong turbulence as a first ap- 
proximation implies a loosening of the resonance conditions 
(equations (3)-(5)) to account for the finite bandwidth of the 
wave packets [Horton and Hasegawa, 1994]. We shall take 
this spectral broadening implicitly into account by project- 
ing the wave field on wavelets instead of Fourier modes (see 
Section 5). 
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3.3. Spatial Versus Temporal Description 

Equation (2) is actually a particular case of a class of mod- 
els that describe both the spatial and the temporal structure of 
the wave field. In a more general setting, both wavenumbers 
and frequencies must satisfy resonance conditions. Energy 
and momentum conservation force three-wave interactions 

to occur along the resonant manifold 

w(k• + k2) - o:• (k•) + w2(k2) , (5) 

where k denotes the wave-number vector. 

The wavenumber dependence of the interaction is often 
omitted by lack of spatially resolved experiments. It raises 
an important point, which is the separation between spatial 
and temporal scales, and the distinction between stationarity 
and homogeneity. In our experiment, the wave field is con- 
vected past the satellites by the solar wind and so the angular 
frequency Wsat we observe in the spacecraft frame is in fact 
Doppler-shifted, giving, Wsat - Wpl q- k. Vsw. However, be- 
cause the wavenumber k and the solar wind velocity Vsw are 
almost parallel, and because of the fast solar wind, we may 
approximate Wsat • Wpl q- k Vsw • k Vsw. This expression 
suggests that the spatial structure of the wave field, projected 
on the solar wind velocity vector, can be probed simply by 
measuring the time evolution and viceversa. This approxi- 
mation is known as the Taylor hypothesis and allows us to 
exchange temporal dynamics and spatial structure 

Oy 
< >Vsw-- (6) 

Ot Oz ' 

There now remains to convert the Eulerian representation 
of the experiment into a Lagrangian one, in which the mag- 
netic structures are followed from one spacecraft to the other. 
A space-time representation of the spacecraft (see Figure 4) 
indeed reveals that by taking the difference of the spacecraft 
signals, we mix the wave field time derivative and the spa- 
tial gradient. A Galilean transformation is needed y(x, t) -• 
y(x, t': t - Z/Vsw), which we do by shifting the AMPTE- 
IRM time series by v = -(SX/Vsw = -0.39 s. An additional 
correction of-0.28 s is needed to compensate for differences 
in timing conventions [see Schwartz et al., 1992]. 

Figure 4. Representation of the spacecraft in space-time, 
showing the correspondence between spatial separation (5• 
and time delay r. The actual position oflRM must be moved 
to IRM* to compensate for the effect of the solar wind. 

3.4. Inferring the Model Coefficients 

Physical insight into our model can be gained by intro- 
ducing the real-valued density of waves E (w, •), by analogy 
to the number of quasi particles in condensed matter theory. 
For a large ensemble of waves with different frequencies, the 
random-phase approximation holds, giving 

(y(w•, x)y* (w2, x)) : E(w•, x)rS(w• - w2) . (7) 

Angle brackets denote ensemble-averaging, which is often 
replaced by time averaging, assuming ergodicity. From 
equations (2) and (7) we obtain the kinetic equation 

.): *) (8) 0t ' 

which models the nonlinear evolution taking place between 
the two spacecraft. Notice that we used the Taylor hypothe- 
sis (equation (6)) to interchange spatial and temporal deriva- 
tives. The quantities of interest are the average line• growth 
rate in time 

(9) 

and the average quadratic energy transfer rate 

[ 
y* + 

The latter attests the existence of nonlocal interactions which 

are a hallmark of nonlinearity. Equation (8) shows that the 
energy flux in Fourier space OE/Ot results from a balance 
between energy dissipation (or gain) at a given frequency w 
and spectral energy transfers between w and other frequen- 
cies. 

Nonlinear transfer functions have the advantage of reveal- 
ing both the magnitude and the orientation of spectral energy 
fluxes: positive values of T(w•,w2) cogespond to three- 
wave interactions in which spectral components with angular 
frequencies w• > 0 and w• > 0 transfer energy to the com- 
ponent w: w• + w2. We shall write this as w• + w2 • w. 
Conversely, negative values correspond to decay processes 
w•w• 

There is a close resemblance between the definition of the 

energy transfbr function (equation (10)) and that of the auto 
bispectrum [Mendel, 1991 ], 

which has been widely used for quantifying quMratic wave 
interactions in plasmas [Kim and Powers, 1979; Lagoutte et 
al., 1989; LaBelle and Lun& 1992; Pgcseli et al., 1993; Du- 
dok de Wit and Krasnosel'skikh, 1995; Bale et al., 1996]. 
Transfer functions, however, are more informative since they 
detect the presence of nonlinear interactions between the ob- 
servation points irrespective of what happened f•ther up- 
stream. Consider for example a wave field that underwent 
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nonlinear interactions during its early history but is now 
fully static. This wave field will have a nonzero cross- 
bispectrum even though nonlinear interactions aren't actu- 
ally taking place. A nonzero bispectrum thus does not nec- 
essarily attest the existence of wave-wave interactions at the 
observation point. Such a caveat was put forward in an an- 
alytic example by Pdcseli and Trulsen [1993]. The energy 
transfer function on the contrary detects whether energy is 
being exchanged between spectral modes, causing the am- 
plitudes and the phases to vary locally in time and in space. 
This new information can be accessed only by comparing the 
wave field as it goes from one observation point to the other. 
Finally, we note that the existence of energy transfers presup- 
poses a weak nonstationarity or inhomogeneity of the wave 
field. 

3.5;. Symmetries 

The real-valued nature of the data and the definition of the 

transfer function automatically give rise to a number of sym- 
metry relations, which shrink the principal domain in fre- 
quency space, significantly reducing the number of model 
coefficients to be computed [see Nam and Powers, 1994].. 
The principal domain of the energy transfer function is even 
smaller, since for •a• 4- w2 - w we have 

4. Estimating the Nonlinear Transfer Function 

Our principal problem is the robust estimation of Volterra 
kernels from finite and noise-corrupted data. This problem 
]nay be alleviated by assuming a Gaussian probability distri- 
bution of the wave field, since the different regressors can 
then be identified separately. This assumption, however, 
rarely holds in practice. Incidentally, it is precisely the non- 
linearity that causes the distribution to depart from Gaussian- 
ity. We theretore follow a more general procedure along the 
line developed by Ritz and Powers [ 1986] and later improved 
by Kim and Powers, [ 1988]. 

For discrete values of the frequency and with two-point 
measurements, (2) becomes 

: ['• y•,(x) (13) 
1 

+ 
Wl ,w 2 

w--co I nt-w2 

where !/=. (,c) is the discrete Fourier transform of y(x, t) and 
{w}: {col, w2,..., •1% } are regularly spaced frequencies. 
Without loss of generality we assume that the ensemble av- 
erage vanishes (!/(a •', t)): 0. It is convenient to express the 
complex wave field yo• (x) as 

(.c)- (14) 

From (13) and (14) and in the limit where 8x -+ 0, we obtain 
a new system [Ritz and Powers, 1986] 

Wl ,w2 

W:Wl d-w 2 

with 

Odl •(x•2 •(x; 2 - 

5! = 5;•/Vsw 

(16) 

From this system, the physical quantities ['•, and A •' o• ,o•2 can 
be computed directly, as shown by Ritz. et al. [1989]. 

Equation (15) formally represents a nonlinear transfer 
function that links an output • (the waveform of AMPTE- 
IRM) to an input (,•. (the waveform of AMPTE-UKS). 
The estimation of the linear part of such a transfer func- 
tion is a central problem in system identification, for which 
well-established techniques exist [Ljung, 1987; Priestley, 
1981]. Comparatively few experimental efforts, however, 
have been directed toward the robust estimation of quadratic 
and higher-order transfer functions [Tick, 1961; Brillinger, 
1970; Billings, 1980; Bendat, 1990]. For the sake of sim- 
plicity, we shall henceforth restrict ourselves to quadratically 
nonlinear models. 

The simplest solution consists in selecting the model 
whose coefficients minimize the squared residual errors •o• 
between the measured wave field and the predicted one ?}, 

The proble•n then reduces to a multiple linear regression with 
a unique solution. For each angular frequency 0.; we solve for 
H•,2, 

U o., H,.,.,-Y•, (18) 

with 

(1) (1) 
(2) (2) 

U•2 (Wens) Uo• -•.,2 (Wens) 

(19) 
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Numbers refer to different ensembles collected under identi- 

cal conditions, T denotes transposition and the number of un- 
known coefficients is Nc. The conceptual simplicity of this 
approach and its straightforward generalization to cubic and 
higher-order interactions are clear advantages. 

The nonlinear transfer function can be obtained by solv- 
ing the overdetermined set of equations (equation (18)) using 
conventional least squares techniques but deeper insight can 
be gained by multiplying these equations on the left by U•, 
giving 

Compared to windowed Fourier transforms, the wavelet 
transtbrms yield statistically better behaved estimates of the 
spectral properties [van Milligert et al., 1995; Dudok de Wit 
and Krasnosel'skikh, 1995]. Our motivation, however, is not 
just computational but also stems from the ability of wavelets 
to resolve transient and soliton-like features [Farge et al., 
1996]. Indeed, the strongly turbulent magnetic field shows 
transient structures that are more akin to wavelets than to co- 
herent waves with an infinite extension. 

H=,- <U•*,, U•*_•,, Y•> (20) 
ß 

The leading matrix (also called higher-order autocovariance 
matrix) can be divided into four blocks, one with a second 
order moment (the power spectral density), two with third- 
order moments (the bispectra) and one with fourth-order mo- 
ments. The fact that moments of various orders are needed 

to properly estimate the linear properties of the wave field 
recalls the well-known closure problem which is ubiquitous 
in the spectral modelling of turbulence. Equation (20) also 
shows how the non-Gaussian nature of the wave field en- 

ters the results. If the wave field were Gaussian, then the 
off-diagonal blocks of the higher-order autocovariance ma- 
trix would vanish and a separate estimation of the different 
Volterra kernels would be possible. 

5. Wavelet Versus Fourier Transform 

For the solution of (20) to be numerically stable and phys- 
ically relevant, it is essential to have Nens >> Nc (Nc is 
the number of unknown coefficients) and Uo,, nonsingular. A 
compromise is thus needed between Nens and the number 
of different Fourier modes N•, hereafter referred to as the 

mesh resolution. Usually, time series are divided into (possi- 
bly overlapping) sequences, each of which is Fourier trans- 
formed. A better compromise can be achieved with wavelets, 
which offer additional resolution in time at the expense of a 
lower frequency resolution. The continuous wavelet trans- 
form of y(t) is defined as 

where h(t) is the analyzing wavelet and a its scale. The 
optimum tradeoff between time and frequency resolution is 
achieved with Gaussian or Morlet wavelets 

1 2•rjt -t2/2o 2 e e (22) h(t) - •r•/4 •/• , 
for which each scale is related to an instantaneous angular 
frequency w = 27r/a. The frequency resolution, defined in 
terms of the cutoff frequency at 3 dB is Aw/w = 1/4o- and 
the usual Fourier transform is recovered for 0- --• co. 

The main drawback of this approach is its greater compu- 
tational burden, since the number of ensembles Nens now 
almost equals the number of samples. Furthermore, we are 
left with a fi'ee parameter, the wavelet width 0-. Since a fixed 
mesh resolution is wanted, with no spectral overlap between 
adjacent components 51•, and •,+•, we adapt the wavelet 
width to the frequency in order to have 0- _> w/4&•. An ad- 
ditional condition 0- _> 1 is imposed to prevent the analyzing 
wavelet from being too much distorted. 

6. Validation Criteria for the Transfer 

Function Model 

Validation is a key issue in Volterra model identification. 
There exists no single satisfactory criterion for performing 
such a validation, but to a large extent we can rely on well- 
established techniques that have been developed for linear 
systems [Ljung, 1987]. 

Since our problem involves the solution of a linear system 
of equations, a good starting point is an inspection of the de- 
gree of independence between the columns of the matrix Uo: 
(equation (19)) and the output Y•. The correlation function 
between Y• and the first column of U• 

'7• (w) - (23) 

indicates how well the linear transfer function succeeds in 

predicting the output. This is the coherence function, which 
is bounded between 0 and 1. Likewise, the correlation func- 
tion between the output and other columns of the matrix 

ß 

g•ves 

This is the cross-bicoherence, i.e., the cross-bispectrum nor- 
malized to the power spectral density. Its value is bounded 
between zero for uncorrelated waves and unity for triads 
of waves whose phases are totally correlated. For a cubic 
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model, one similarly defines the cross-tricoherence, which 
quantifies the strength of four-wave interactions 

Note that there exist variants of these definitions [e.g. 
Kravtchenko-Berejnoi et al., 1995]. 

Higher-order coherence functions reveal which spectral 
components are likely to be involved in nonlinear interac- 
tions. They do not, however, tells us whether the model is ac- 
tually good in predicting the wave field. A high bicoherence, 
for example, does not yet justify the choice of a quadratically 
nonlinear model. A more global figure of merit is obtained 
by comparing the measured output signal •'•. to the model 
prediction }"•, 

1 I• ----' nonlinear model I 
• -- linear model 

..... 

0 

0 0.5 1 1.5 2 

frequency [Hz] 

Figure 5. Cross-coherence between the measured and the 
simulated output, for a linear and a nonlinear model. Values 
close to or below the bias level are not considered to be sig- 
nificant [Bendat and Piersol, 1986]. 

'-' I(L' }12 (26) 

In practice, one half of the data is used to estimate the trans- 
fer function while the other half is kept for cross-validation. 
These simple prescription tools can be complemented by' 
tests on the residuals, etc. 

7. Choosing the Right Model 

The choice of the model parameters involves three main 
issues. More specific aspects are deferred to the appendix. 

7.1. Choice of the Model Order 

The basic question of the model order should ideally be 
answered by computing Volterra kernels for various orders 
and truncating the series as soon as they become negligible. 
The finite size of the data does not allow this, so the question 
should rather be: How faithfully does a truncated low-order 
model reproduce the observed dynamics ? 

As mentioned before, there are several reasons to believe 
that a low-order model should capture most of the dynam- 
ics, especially in weak turbulence. This can be verified in 
different ways. Ritz. and Powers [1986] considered nonlin- 
ear correlations between linear and nonlinear terms. We fo- 

cus instead on the predictive capacity of the models, using 
the cross-validation defined in (26). We built first-, second-, 
and third-order models, all of which were tested against the 
data (the third order model could could not have as much fre- 
quency resolution because of its large number of degrees of 
freedom). 

Figure 5 shows the result of the cross-validation applied to 
a linear and to a quadratically nonlinear model. Both models 
succeed relatively well in predicting the low frequency part 
of the AMPTE-IRM waveform. The performance drop with 
increasing frequency is a well-known effect, which cannot 
be compensated simply by increasing the model complexity. 
Possible causes are the decreasing signal-to-noise ratio, the 
finite lifetime and the dispersion of the wave packets, fluctu- 
ations in the solar wind velocity, and the 1-D approximation 
of our model. 

The central result here is the close performance of the 
linear and the quadratic models, which attests the predomi- 
nantly linear behavior of the wave field and a priori supports 
the choice of a low-order model. A notable exception occurs 
around f = w/2rr • 0.5 Hz, where a quadratic model brings 
some improvement. This shall see later that nonlinear effects 
are indeed important in that frequency band. 

7.2. Choice of the Frequency Range 

There is a strong impetus for reducing as much as possible 
the number of degrees of fi'eedom of our model. One way of 
doing this is by reducing the frequency range. As shown in 
Figure 5, fluctuations with frequencies beyond 0.8 Hz can- 
not be satisfactorily modeled and so one may safely truncate 
the frequency range at 1 Hz, above which the power spectral 
content becomes negligible anyway. We checked that higher- 
order coherence functions vanish as well above 1 Hz. 

A further reduction in the number of degrees of freedom 
can in principle be achieved by discarding in the linear sys- 
tem (equation (18)) those columns of the matrix which are 
not significantly correlated with the output Y•.. Such a re- 
duction is permitted when the nonlinear interactions are very 
localized in frequency space. 

7.3. Choice of the Mesh Resolution 

The frequency spacing O~w (which is proportional to 1/N•) 
must be small enough to distinguish important features such 
as spectral lines and yet as large as possible to prevent 
the model from being overdetermined. Since we deal with 
broadband turbulence, a relatively coarse mesh should a pri- 
ori suffice. Nonlinear parametric models [Billings, 1980] 
may be more appropriate when closely spaced lines must be 
resolved. 

The impact of the mesh resolution is best revealed by the 
condition number [Golub and Van Loan, 1993] of the ma- 
trix U=,, which gives a figure of merit for the ill-posedness of 
(18). The condition number is at best 1 and typically should 
not exceed a few hundreds; its value is displayed in Fig- 
ure 6 for different mesh resolutions. The condition degrades 
for increasing •¾•, because more coefficients have to be esti- 
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Figure 6. Condition number of the matrix U=, versus (a) fre- 
quency with a fixed mesh resolution N•=20, and (b) versus 
N=, for a fixed tYequency f m 0.5 Hz. 

mated from the same sample; another reason is the increasing 
collinearity between columns of U=,. These problems may be 
alleviated by projecting U=, on an orthogonal basis [see hn et 
al., 1996]. 

From these considerations, we choose a quadratically non- 
linear model with 3,•, = 40 and a frequency range from 0 to 
1 Hz. 

8. Linear Properties of the Wave Field 

We now focus on the interpretation of the model and start 
with the leading term, which is the linear one. The linear ker- 
nel I'•, can conveniently be split into a real and an imaginary 
part 

- + ½?) 

The imaginary part 

(28) 

expresses the average phase-shift undergone by the wave- 
packets as they move from one spacecraft to the other. It 
is therefore related to the wavenumber k, averaged over the 
power spectral density, by k - 0/Vsw. 

The average dispersion relation k(w) is shown in Figure 7. 
Given our timing convention, we are in the plasma rest frame 
and positive wavenumbers correspond to a sunward motion. 
Error bars correspond to one standard deviation as calculated 
t¾om the least-squares fit of the model. 

Figure 7 shows that the wave field is essentially disper- 
sionless up to about 0.5 Hz. Above this frequency, the dis- 
persion becomes positive, and high-frequency waves move 

ahead of 1ow-fi'equency ones. We refer to previous work 
[Dudok de Wit et al., 1995] for a discussion on this, but just 
note that the modeling fails above 0.6 Hz, presumably be- 
cause of the low power spectral density. 

The real part of the Volterra kernel 

1 (l(U - 1) (29) 
gives the linear growth averaged as before over k. The re- 
sults are shown in Figure 7. The negative value of 7(w) at- 
tests a damping of the waves, so we conclude that the wave 
field is on average linearly stable. An exception occurs be- 
low 0.2 Hz, where the wave field grows as it goes from one 
spacecraft to the other. Although this growth rate is subject 
to a rather large uncertainty, its positive sign is statistically 
significant. Interestingly, this unstable frequency band coin- 
cides with that of the SLAMS and therefore lends strong sup- 
port to the instability of these structures. The unstable nature 
of the SLAMS has already been conjectured [Schwartz. and 
Burgess, 1991 ], but we now have the first direct evidence for 
a dynamic evolution. 

From the linear growth rate, one can estimate the charac- 
teristic time needed for the SLAMS to grow, assuming that 
there is no nonlinear mechanism to saturate such a growth. 
We find r: 1/• m 10 s, a value that should be compared to 
the characteristic lifetime of these structures 

0 _ Ira(r) 
7- 5 Fe(r,) (30) 

This ratio is sufficiently small to justify a linearization of the 
growth process (and the weak turbulence approximation)and 

x 10 -s 
1 I I I I 

nonlinear model (a) 
linear model 

I I I I 

I I I I 

0 0.2 0.4 0.6 0.8 1 

frequency [Hz] 

Figure 7. (a) Imaginary and (b) real parts of the linear trans- 
fer function, as calculated using a linear and a nonlinear 
model. Error bars correspond to + one standard deviation. 
The results are inaccurate above 0.6 Hz because the model 
fails to reproduce small-amplitude fluctuations correctly. 
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yet large enough to make the instability of the SLAMS easily 
detectable. 

It is instructive to check here the assumption of nonlinear- 
ity by comparing these results to what we would obtain by 
fitting a linear model. The two growth rates are compared in 
Figure 7 and a discrepancy appears. We attribute this to the 
energy redistribution process between Fourier modes, which 
is neglected in the linear model and correctly taken into ac- 
count in the nonlinear one. As we shall see later, the linear 
model tries to compensate the energy redistribution around 
0.5 Hz by artificially lowering the damping rate. The use of a 
nonlinear model for assessing linear properties should there- 
tore not be underestimated. 

9. Nonlinear Properties of the Wave Field 

We now consider the properties of the second-order 
Volten'a kernel. As mentioned before, this is the only nonlin- 
ear term we can reliably estimate given the available amount 
of data. 

9.1. Phase Couplings 

The second-order Volterra kernel ['(w•,w.2) being of lit- 
tle interest, we locus on the the cross-bicoherence (equation 
(24)), which is indicative of the strength of the quadratic 
interactions. In the same way, we compute the cross- 
tricoherence (equation (25)) to study cubic interactions, even 
though the third-order kernel itself cannot be reliably esti- 
mated. 

The cross-bicoherence and cross-tricoherence are dis- 

played in Figures 8 and 9 respectively. In both Figures 8 
and 9 the support is restricted to the nonredundant and pos- 
itive frequency domain. The most conspicuous result is the 
presence of local maxima that attest the existence of phase 
couplings between specific spectral modes. We conclude 
from the cross-bicoherence that a significant phase coupling 
occurs between wave packets whose frequencies satisfy the 
summation rule 0.1 + 0.45 = 0.55 Hz. The cross-tricoherence 

reveals a significant coupling for 0.1 + .ft + f,, = 0.55 Hz, 
with 0.1 _< .h _< f,, _< 0.55 Hz. Both couplings relate wave 
packets whose fi'equencies are about 0.1 Hz and 0.55 Hz, 
with possibly some intermediate frequencies to enable the 
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Figure 8. The cross-bicoherence, displayed in the principal 
domain, for frequency-adding interactions only (f•, f2 >_ 0). 
Its value is bounded between 0 and 1. 

phase coupling. As shown in previous work [Dudok de Wit 
and Krasnosel'skikh, 1995], these characteristic frequencies 
respectively correspond to the SLAMS and to the discrete 
whistler wave packets that frequently occur at the leading 
edge of SLAMS. The nonzero cross-bicoherence and cross- 
tricoherence thus reveal the existence of a causal relationship 
between the SLAMS and the whistlers. 

9.2. Energy Transfers 

The last step now consists in determining whether the 
SLAMS and the whistlers are exchanging energy or if they 
are just remnants of a process that took place farther up- 
stream. To do so, we compute the quadratic energy transfer 
function, shown in Figure 10. A significant energy flux ap- 
pears at 0.1 +0.45 --+ 0.55 Hz, which corresponds to an energy 
transfer going from the SLAMS to the whistlers. This is the 
central result of our paper, from which we conclude that the 
whistlers are much more likely to be a decay product of the 
SLAMS than some instability triggered by them. Such a con- 
clusion was partly anticipated, but only the energy transfer 
function can give unambiguous evidence for it. 

Some of the other patterns in Figure 10 also have an inter- 
pretation. The 0.1 +0.1 -+ 0.2 Hz transfer, for example, cot- 
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Figure 10. Spectral energy transfer rate (in arbitrary units) 
using the same representation as for the cross-bicoherence. 
The confidence interval is about equal to the spacing between 
two contour levels. 

responds a first harmonic generation caused by the nonlinear 
ß steepening of the SLAMS. 

9.3. Power Balance 

Further insight into the dynamics of the wave field can be 
gained by studying the power balance. Consider the trun- 
cated second-order wave kinetic equation (equation (8)) 

Ot = 2•,E•,+2. • To.,,,•,•. (3•) 
Wl ,w 2 

Cd • • 1 • • 2 

Stationarity (OE,,/Or=0) is approximately reached when the 
two terms on the ri•ht-hand side cancel' these two terms are 
plotted in Figure 11. 

At low frequencies (f • 0.2 Hz) the •rowth rate and the 
energy transfer indeed approximately cancel each other and 
so the wave field amplitude should not vary much in space- 
time. We conclude that the decay of the SLAMS is approxi- 
mately compensated by their linear instability. At hi•her fre- 
quencies the power balance becomes increasingly negative, 
sug•estin• that the waves are on average damped. A plau- 
sible dampin• mechanism would be resonant particle damp- 

I I i 

.quad. contribution 
linear contribution 

I I I I 

0.2 0.4 0.6 0.8 

frequency [Hz] 

Figure 11. Relative change of spectral power showing the 
contributions of the linear growth term (2•,,), and of the 
three-wave interactions (2 •-}•T•,,1,•,,•E•,, ). The results are 
unreliable above 0.6 Hz. 

ing, but the various approximations made in our model may 
actually cause the damping to be overestimated at high fre- 
quencies (see the appendix). 

9.4. Interpretation 

A coherent scenario now emerges, which is schematized 
in Figure 12. The SLAMS appear as dynamically evolv- 
ing structures that progressively grow out of the wave field 
by drawing energy fi-om energetic ions. As they grow, non- 
linear effects enter into play. The transfer function analysis 
shows that the dominant process is a nonlinear wave inter- 
action that compensates the growth by an energy transfer to- 
ward high-frequency whistler waves (some energy may also 
go into low-frequency waves). The whistler waves in turn 
move ahead of the SLAMS because of the positive disper- 
sion and are eventually damped by dissipation. 

The emergence of such right-handed circularly polarized 
waves out of the left-handed linearly polarized SLAMS 
shows some striking similarities with the expected behavior 
of solitary waves [Hada et al., 1989] and also recalls the be- 
havior of shock fronts in weakly dispersive media [Karpman, 
1975]. All these phenomena have in common a competition 
between dispersion and nonlinearity, whose distinctive man- 
ifestation is the resilience of the shape of the SLAMS. 

To finish, let us visualize how the nonlinear interactions 

show up in the time domain. Figure 13 represents a particular 
SLAMS with the measured and the predicted wave field. We 
decomposed the latter into its linear and quadratic contribu- 
tions. As expected, the linear contribution captures most of 
the dynamics but does not correctly reproduce the fast oscil- 
lations at the leading edge of the SLAMS and which corre- 
spond to a distorted whistler wave packet. A quadratic con- 
tribution is definitely needed here to fit the observations. 

10. Conclusions 

This study reveals how Volterra models can be used to in- 
fer nonlinear properties from a turbulent wave field using 
two-point measurements. Provided the model is carefully 
validated, it can give direct access to the wa•e field growth 
rate and to the energy transfer function. 

We used the Volterra approach to analyze plasma turbu- 
lence as observed just upstream the Earth's quasi-parallel 

energy 

Pff) ]::: !l"_'.-.//'.•/•/'-'x dissipation 
1 

O. 1 1 f [Hz] 

Figure 12. Schematic representation of the power spectral 
density of the magnetic field, showing where the energy en- 
ters the wave field and where it is transferred before being 
dissipated. The SLAMS are located in the hatched zone. 
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Figure 13. Excerpt of Figure 2, showing one component 

cause an overestimation of the damping rate and an underes- 
timation of the energy transfer. 

A.2. Anisotropy 

Our scalar model can in principle be generalized to vecto- 
rial quantities with the interesting perspective of addressing 
anisotropy effects. The price to pay for this is a larger number 
of degrees of freedom. Neglecting the vectorial nature of the 
variables may actually alter the power balance because of the 
omission of the wave field rotation. Although the rotation we 
measure is quite small, we believe this effect to be sufficient 
to accentuate the globally negative trend observed in Figure 
11. 

A.3. Taylor Hypothesis 

Another problem comes from the connection between fre- 
quency and wavenumber space, for which the Taylor hypoth- 
esis was invoked at the beginning. The dispersionless ap- 
proximation remains valid up to about 0.5 Hz. Above this 
limit, the dispersion becomes positive and hence the reso- 
nance conditions (equations (3)-(5)) are altered. The finite 
frequency resolution of the wavelets can easily accommodate 

of the magnetic field with a typical SLAMS at t -70-76 s' such small detunings in the resonance conditions. 
and its whistler precursor at t =76-82 s. (a) The wave field 
measured by AMPTE-IRM is compared with the model pre- 
diction. (b) The model prediction is split into its linear and 
quadratic constituents. 

bow shock by the AMPTE spacecraft. An important fea- 
ture of the wave field is the occurrence of nonlinear magnetic 
structures termed SLAMS. Our analysis attests the coexis- 
tence of two competing mechanisms: the SLAMS progres- 
sively grow by drawing energy from hot ions but before over- 
turning they saturate and release the excess of energy into 

A.4. Validity of the Model 

The weakest point of our approach is the difficulty in jus- 
tifying the validity of a low-order model in a definite way. 
A quadratically nonlinear model suffices for describing the 
main features of the wave field (section 7), but Figure 9 re- 
minds us that cubic interactions cannot be neglected. Al- 
though we are confident in the conclusions drawn from our 
second-order model, one should keep in mind that the re- 
sults remain approximate as long as cubic and possibly even 
higher-order effects are not taken into account. 

high frequency whistler waves that move ahead of them due A.5. Calibration of the Probes 
to dispersion. The dynamical evolution of the SLAMS and 
their differential velocity [Schwartz et al., 1992] support the 
conjecture in which they supposedly merge into an extended 
fi'ont that constitutes the bow shock. 

The method we advocate here is applicable to other types 
of events provided they are recorded by multiple-spacecraft 
whose configuration satisfies some constraints (see the ap- 
pendix). A number of improvements can be made, such 
as the generalization to vector fields, which would allow 
anisotropy effects to be included. In some cases the addi- 
tion of a source term that enforces the stationarity of the wave 

, 

field may be desirable. 

Appendix: Limitations of the Technique 

The nonlinear transfer function cannot be meaningfully as- 
sessed without keeping in mind several limitations and po- 
tential pitfalls. The most important ones are listed here. 

A.1. One-Dimensional Approach 

Restricting the analysis to two probes means that we can 
only study structures propagating parallel to the spacecraft 
separation vector. Structures propagating obliquely to it will 

It is essential that the two probes (the magnetometers here) 
be properly calibrated and have the same instrumental trans- 
fer function for our analysis to be meaningful. Although this 
is not a problem for the frequency range we are considering, 
it may exclude diagnostics that have either an unreliable cal- 
ibration or a nonlinear response. 
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