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Abstract. The three infrared atmospheric sounding interfer-
ometers (IASIs), launched in 2006, 2012, and 2018, are key
instruments to weather forecasting, and most meteorologi-
cal centres assimilate IASI nadir radiance data into atmo-
spheric models to feed their forecasts. The European Organi-
sation for the Exploitation of Meteorological Satellites (EU-
METSAT) recently released a reprocessed homogeneous ra-
diance record for the whole IASI observation period, from
which 13 years (2008–2020) of temperature profiles can be
obtained. In this work, atmospheric temperatures at differ-
ent altitudes are retrieved from IASI radiances measured in
the carbon dioxide absorption bands (654–800 and 2250–
2400 cm−1) by selecting the channels that are the most sen-
sitive to the temperature at different altitudes. We rely on an
artificial neural network (ANN) to retrieve atmospheric tem-
peratures from a selected set of IASI radiances. We trained
the ANN with IASI radiances as input and the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) reanal-
ysis version 5 (ERA5) as output. The retrieved temperatures
were validated with ERA5, with in situ radiosonde temper-
atures from the Analysed RadioSoundings Archive (ARSA)
network and with EUMETSAT temperatures retrieved from
IASI radiances using a different method. Between 750 and
7 hPa, where IASI is most sensitive to temperature, a good
agreement is observed between the three datasets: the dif-

ferences between IASI on one hand and ERA5, ARSA, or
EUMETSAT on the other hand are usually less than 0.5 K
at these altitudes. At 2 hPa, as the IASI sensitivity decreases,
we found differences up to 2 K between IASI and the three
validation datasets. We then computed atmospheric temper-
ature linear trends from atmospheric temperatures between
750 and 2 hPa. We found that in the past 13 years, there is a
general warming trend of the troposphere that is more impor-
tant at the poles and at mid-latitudes (0.5 K/decade at mid-
latitudes, 1 K/decade at the North Pole). The stratosphere
is globally cooling on average, except at the South Pole as
a result of the ozone layer recovery and a sudden strato-
spheric warming in 2019. The cooling is most pronounced in
the equatorial upper stratosphere (−1 K/decade). This work
shows that ANN can be a powerful and simple tool to retrieve
IASI temperatures at different altitudes in the upper tropo-
sphere and in the stratosphere, allowing us to construct a ho-
mogeneous and consistent temperature data record adapted
to trend analysis.
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1 Introduction

Atmospheric temperatures are a key component of Earth’s
climate. In the past few decades, a warming of the tropo-
sphere due to the increase in greenhouse gas concentrations
(Tett et al., 2002; Santer et al., 2017; Susskind et al., 2019;
Masson-Delmotte et al., 2022) and a cooling of the strato-
sphere have been observed (Randel et al., 2016; Maycock et
al., 2018). Stratospheric temperatures are impacted by both
anthropogenic forcing (e.g. greenhouse gas emissions, ozone
depletion) and natural forcing (e.g. volcanic eruptions, solar
cycle) (Aquila et al., 2016). The study of stratospheric tem-
peratures and their long-term evolution is therefore critical to
understand the roles of these different forcings on the evolu-
tion of climate in the stratosphere, but also in the troposphere.

Long-term atmospheric temperature records can be ob-
tained from in situ measurements (lidars and radio sound-
ings). These observations are generally of excellent quality;
however, they are sparse and unevenly distributed around the
globe. More recently, satellite-derived temperatures have be-
come a key component for climate change monitoring (Li
et al., 2011; Yang et al., 2013). Satellite observations have a
better spatial coverage, but the construction of a long temper-
ature record from these observations usually requires merg-
ing several different instruments, and corrections and adjust-
ments between the observations are needed to obtain a ho-
mogeneous dataset (Zou et al., 2014; Seidel et al., 2009).

In 2006, the first infrared atmospheric sounding interfer-
ometer (IASI) was launched on the Metop satellite. IASI
measures radiance spectra from which surface and atmo-
spheric temperatures (Hilton et al., 2012; Safieddine et al.,
2020a) and trace gas concentrations can be retrieved (Cler-
baux et al., 2009; Clarisse et al., 2011). A second instrument
and then a third were launched in 2012 and 2018, and the
comparison between the three instruments has shown excel-
lent agreement (Boynard et al., 2018; EUMETSAT, 2013a).
Since IASI is planned to fly for at least 18 years, with the
three instruments built at the same time and flying in constel-
lation, continuity and stability are ensured, and the construc-
tion of a long-term climate data record at a range of altitudes
is becoming possible.

IASI radiance spectra and derived atmospheric tempera-
ture profiles are routinely processed by the European Or-
ganisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT). Over the past 13 years, EUMET-
SAT has performed several updates on the real-time pro-
cessing of both radiances and temperatures, making the
time series non-homogeneous. The impacts of these up-
dates have been evidenced in several studies (George et
al., 2015; Van Damme et al., 2017; Parracho et al., 2021)
and quantified in Bouillon et al. (2020). For tempera-
tures, the “jumps” in the time series due to these updates
make them unfit for the computation of trends. In 2018,
EUMETSAT reprocessed the Metop-A radiance dataset
(https://doi.org/10.15770/EUM_SEC_CLM_0014; EUMET-

SAT, 2018), providing a new radiance dataset over time. Af-
ter 2018, the radiances are stable and consistent with those
reprocessed (Bouillon et al., 2020).

In this work, we present a new atmospheric tempera-
ture product derived from the homogeneous IASI radiance
dataset, using an artificial neural network (ANN) technique,
to derive a homogeneous temperature data record. In Sect. 2,
we present the data used in this study, and in Sect. 3, we ex-
plain the method used to compute the temperatures, which
consists of selecting the appropriate IASI channels and train-
ing the ANN. In Sect. 4, we compare the outputs of the neu-
ral network with both the latest ECMWF reanalysis (ERA5)
and Analysed RadioSoundings Archive (ARSA) radiosonde
temperatures to validate the new data. In Sect. 5 we compute
atmospheric temperature trends for the past 13 years. Con-
clusions are listed in Sect. 6.

2 Data

2.1 IASI radiances

Each of the three IASI instruments are mounted on board
the Metop platform flying in a polar orbit at an altitude of
817 km. The IASI swath contains 30 fields of view with 4
pixels in each field of view. This observation mode allows
each IASI instrument to observe the entire Earth twice a
day, between 09:15 and 09:45 as well as between 21:15 and
21:45 local time. IASI measures the radiation of the Earth–
atmosphere system in the thermal infrared in 8461 chan-
nels between 645 and 2760 cm−1 (resolution of 0.25 cm−1,
0.5 cm−1 apodized; Clerbaux et al., 2009).

2.2 ERA5 reanalysis

The European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis (ERA5; Hersbach et al., 2018; Coper-
nicus Climate Change Services, 2019) is a 4D-Var data as-
similation product. It is part of the Integrated Forecast Sys-
tem (IFS) that provides variables relevant to the atmosphere,
land, and ocean (ECMWF, 2016). The ERA5 atmospheric
temperature product used in this work is hourly and is avail-
able on 37 pressure levels (from the surface up to 0.01 hPa).
ERA5 actually assimilates IASI radiances from Metop-A and
Metop-B as well as high-spectral-resolution radiances from
other instruments such as the Atmospheric InfraRed Sounder
(AIRS) on Aqua and the cross-track infrared sensor from the
Suomi National Polar-orbiting Partnership and the National
Oceanic and Atmospheric Administration. Note that IASI is
the largest contributor to error reduction for global numeri-
cal weather prediction in the thermal infrared spectral band
(Borman et al., 2016).
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2.3 Analysed RadioSoundings Archive

The Analysed RadioSoundings Archive (ARSA) is a 41-
year (1979–2019) database of radiosonde temperature pro-
file measurements from different stations around the globe
(Scott et al., 2015). ARSA provides 43 pressure level pro-
files (from the surface to 0.0026 hPa) of temperature, wa-
ter vapour and ozone, and surface temperature. The raw ra-
diosonde observations go through severe multistep quality
controls to eliminate gross errors. If the selected radiosonde
measurement is unable to provide forward radiative trans-
fer modellers with the required information (above 30 hPa
for temperature), ARSA combines existing radiosonde mea-
surements with other reliable data sources to complete the
description of the atmospheric state as high as 0.0026 hPa.
Temperature profiles are thus extrapolated with ERA-Interim
(Dee et al., 2011) outputs between 30 and 0.1 hPa for tem-
perature. Above 0.1 hPa, the profiles are extrapolated up to
0.0026 hPa using a climatology of Atmospheric Chemistry
Experiment – Fourier Transform Spectrometer (ACE-FTS)
Level 2 from SCISAT. ARSA was validated against IASI ob-
servations by simulating spectra from the Automatized At-
mospheric Absorption Atlas (4A/OP) forward model (Scott
and Chédin, 1981) with ARSA profiles as inputs and com-
paring them with space-time-collocated IASI observations.
The pertinence of the requested modifications after this vali-
dation has also been assessed against the TIROS Operational
Vertical Sounder (TOVS), the Advanced TIROS Operational
Vertical Sounder (ATOVS; Reale et al., 2008), AIRS (Lam-
brigtsen et al., 2004), the High resolution Infrared Radiation
Sounder (HIRS/4; EUMETSAT, 2013b), and the Microwave
Humidity Sounder (MHS; Hans et al., 2020). Based on these
validations, incorrect or unreliable data inherent to the qual-
ity of the radiosondes were completed using measurement
data of other relevant auxiliary datasets (in particular Level 2
results of ACE-FTS temperature profiles above 10 hPa). It
is useful to recall that ARSA is being reprocessed to re-
place ERA-Interim with ERA5. This will allow, among other
things, the period to be extended beyond summer 2019, when
the production of ERA-Interim stopped.

2.4 EUMETSAT CDR of all-sky temperature profiles

In 2020, EUMETSAT released a climate data
record (CDR) of all-sky IASI temperature
(https://doi.org/10.15770/EUM_SEC_CLM_0027), so
the temperature is homogeneous over the whole IASI time
series (EUMETSAT, 2020). The reprocessed temperatures
were computed with a piecewise linear regression cube
(PWLR3) algorithm, using all IASI observations in input
(clear and cloudy scenes) and observations from two other
microwave instruments flying on board the Metop-A and
Metop-B satellites: the Microwave Humidity Sounding
(MHS) and the Advanced Microwave Sounding Unit
(AMSU-A).

The basic principle of this algorithm is a linear regression
between IASI radiance observations and real atmospheric
temperatures. To take into account the non-linearity between
the observations and the temperatures, the training dataset is
divided into several sub-datasets, resulting from a k-means
clustering. This ensures that, in each sub-dataset, a linear re-
lationship is a good approximation between the observations
and the temperature, and different linear regression coeffi-
cients are computed for each sub-dataset.

3 Methods

3.1 The IASI instrument channel selection

Using the 8461 channels of IASI raises practical issues for
storage and computation power as retrieval and assimilation
algorithms can hardly handle such a large amount of infor-
mation. A channel selection is usually needed when deal-
ing with IASI (Rabier et al., 2002; Collard, 2007; Pellet and
Aires, 2018). To retrieve atmospheric temperatures, we se-
lect IASI channels that are most sensitive to the tempera-
ture profile. Most of the channels selected are located in the
carbon dioxide (CO2) absorption band because the radiances
observed in these channels are more sensitive to atmospheric
temperature than CO2 concentrations (Chédin et al., 2003;
Collard, 2007). The selection is obtained using the entropy
reduction (ER) method (Rodgers, 2000). The entropy de-
scribes the probabilities of all the possible states, and it is
maximal when all the states have an equal probability. Se-
lecting the channels that reduce the most the entropy means
selecting the channels that bring the most information about
the state. ER is computed using

ER=
1
2

log2

(
BA−1

)
, (1)

where B is the a priori covariance matrix, and A is the re-
trieval covariance matrix, described in Eq. (2):

A=
(

B−1
+HTR−1H

)−1
, (2)

where H is the matrix of the temperature-weighting functions
(the sensitivity of the IASI brightness temperature to the tem-
perature), and R is the instrumental noise plus the radiative
transfer error.

With A, it is possible to compute the entropy reduction in
each channel as follows:

δER=
1
2

log2

(
1+h′

TAi−1h
′

)
, (3)

with h′ being the Jacobian of the considered channel normal-
ized by the noise (H′=R−1/2H). For the selection of the first
channel, we set A0=B. With this, we selected the channel
with the largest entropy reduction, and the theoretical covari-
ance matrix is updated as follows:

Ai = Ai−1−

(
Ai−1h

′
)(

Ai−1h
′
)T

1
+
(
Ai−1h

′
)T

h′. (4)
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We then repeat this process until the chosen number of chan-
nels has been selected or until the entropy has been reduced
enough. This method has been used to retrieve land surface
temperature from IASI (Safieddine et al., 2020a), and we ap-
ply it here for atmospheric temperature profiles.

To take into account the effect of the different parameters
affecting the selection, two experiments were conducted: in
the first, we considered 200 channels. The channels were se-
lected while taking into account the perturbation of the radi-
ances due to water vapour (H2O) and ozone (O3) variations
because some channels are sensitive to temperature, H2O,
and O3 (Pellet and Aires, 2018). The uncertainty in the state
of unretrieved species (i.e H2O and O3) impacts the potential
retrieval of the temperature using these channels. This per-
turbation is then computed with Hx×Bx×HT

x (with x being
the variable considered: H2O or O3) and is added to the in-
strumental noise and radiative transfer error, so A becomes

A=
{

B−1
temp+HT

temp

(
R+HH2OBH2OHT

H2O

+HO3BO3HT
O3

)−1
Htemp

}−1

. (5)

The second experiment consists of 100 channels. Before the
ER method is applied to all the channels, the channels for
which the variability in atmospheric gases (H2O, O3, CO and
CH4) and emissivity has an impact higher than 30 % of the
instrumental noise are removed.

In the first selection, the weighting functions were com-
puted with the Optimal Spectral Sampling (OSS) radiative
transfer model (Moncet et al., 2015). In the second selection,
the model used was Radiative Transfer for TOVS (RTTOV;
Saunders et al., 2018).

For each of the two selection methods, the number of chan-
nels selected is increased until adding more new channels
does not significantly improve the results.

The goal of using these two sets of experiments is to
choose from these two the best and most sensitive channels to
different atmospheric temperatures while taking into account
the different atmospheric perturbations and errors that might
affect the selection. On its own, each experiment was tested
(not shown here), and the best result was achieved when com-
bining them both.

For the computation of temperatures, we used a mix of
the two experiments, consisting of 231 channels (with 69
channels in common between the two). Figure 1 shows the
selected channels on a typical IASI spectrum. Most of the
channels are in the carbon dioxide (CO2) absorption band
between 645 and 800 cm−1, while a few (14 channels) are at
2200 cm−1 in the N2O absorption band. The full list of the
channels is provided in the Supplement (Table S1).

3.2 Artificial neural network

We trained a two-layer artificial neural network (ANN) to
estimate atmospheric temperature profiles. This method has
been used for instance in Aires et al. (2002), using IASI-
simulated radiances before its launch.

A total of 450 000 IASI observations are used to train the
ANN. These observations (3000 scenes per month) were se-
lected randomly around the globe between January 2008 and
December 2020. This training dataset is composed of day and
night and clear- and cloudy-sky observations mixed together.
The input data consist of the pseudo-normalized radiances
(multiplied by 104 so that their order of magnitude is not too
small compared to temperatures) in the selected channels as
well as the scan angle of the observation. A monthly value for
global CO2 concentration was also added to take into account
the CO2 variations that affect the radiance values measured
in the selected channels. The CO2 monthly values come from
the NOAA Earth System Research Laboratories global moni-
toring dataset (https://gml.noaa.gov/ccgg/trends/, last access:
15 December 2021; Dlugokencky and Tans, 2021). As the
expected output of the training of the ANN, we use the ERA5
temperatures interpolated to the latitudes, longitudes, and
time of the IASI observations. These temperatures are given
on a static pressure level grid. We chose ERA5 because it
is the most complete homogeneous dataset of temperatures
available, allowing us to select observations in any year and
any type of sky. A set of 50 000 different observations (se-
lected the same way as the 450 000) is used to assess the
quality of the ANN at the end of the training.

The temperatures are computed at 11 fixed pressure lev-
els: 2, 7, 10, 20, 30, 70, 100, 200, 400, 550, and 750 hPa.
These were chosen based on the weighting functions of the
231 selected channels, shown in Fig. 2. The weighting func-
tions show the sensitivity of IASI channels to the temperature
profile in K K−1. The weighting functions do not change sig-
nificantly under day or night conditions, and this does not
have an impact on the retrieval. We see in Fig. 2 that the
weighting functions peak at different altitudes, in particular
for pressures larger than 10 hPa, suggesting that IASI has a
good information content at these altitudes. The pressure lev-
els were chosen based on a tradeoff between having equally
distributed levels along the vertical while matching the max-
ima of the weighting functions of the selected channels. The
pressure levels are shown by dashed horizontal lines in Fig. 2.
At the selected pressure levels, the vertical resolution goes
from 5 to 12 km from the lower to the upper troposphere. In
the stratosphere, the resolution goes from 12 km in the lower
stratosphere to 25 km above 7 hPa. We tried different config-
urations for the ANN, changing the number of epochs for the
training and the number of neurons in the two hidden layers.
The configuration giving the best results is 5000 epochs and
150 neurons in the two hidden layers. As a result, we have
an ANN with 233 neurons in the input layer (231 radiance
values, 1 scan angle, and 1 CO2 value), 150 neurons in each
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Figure 1. IASI clear-sky spectrum in brightness temperature in kelvin (blue), with the selected channels in orange.

Figure 2. Weighting functions for the 231 selected IASI chan-
nels. Dashed horizontal lines represent the 11 pressure levels for
which the temperatures are computed. The colours of the weight-
ing functions represent the wavenumbers of the selected channels
(blue for the channels around 700 cm−1, red for the channels around
2200 cm−1).

of the two hidden layers, and 11 neurons in the output layer
(the 11 pressure levels shown by horizontal lines in Fig. 2).

We used the trained ANN to retrieve temperatures from
all IASI observations between 2008 and 2020. After the tem-
perature profiles are computed, we use a static filter based
on ERA5 mean surface pressure between 2008 and 2020 to
account for orography (as some high-altitude regions do not
have temperature at 750 hPa for instance).

4 Results

Atmospheric temperatures between 2008 and 2020 were
computed at the 11 pressure levels. We use Metop-A ob-
servations until 2017 and Metop-B observations for 2018
onwards. The Metop-A satellite was exploited in a drifting
orbit from June 2017 in order to extend its lifetime to the
end of 2021 (EUMETSAT, 2017). We compare the whole

IASI time series with the temperatures from ERA5 reanaly-
sis, from ARSA, and from the EUMETSAT CDR.

4.1 Comparison with ERA5

Although the neural network was trained with ERA5, it does
not reproduce the same temperatures. The output of the re-
trieval is mainly governed by the variations in observed radi-
ances, and ERA5 can be used for validation.

ERA5 temperatures are given on a 0.25◦×0.25◦ latitude–
longitude grid. For the comparison with the IASI-ANN out-
put, ERA5 temperatures were interpolated to the time, lat-
itudes, and longitudes of IASI observations. We then com-
puted the daily zonal mean of the IASI-based ANN temper-
atures and ERA5 and looked at the differences between the
two datasets. Figure 3 illustrates the zonal mean differences
between the ANN retrievals and ERA5 from 2008 to 2020
for the 11 pressure levels considered in this study and the
time-averaged differences.

Between 200 and 750 hPa, the differences are less than
0.5 K at all latitudes. We see slight seasonal variations in the
differences at 200, 400, and 550 hPa. At 750 hPa, the sea-
sonal variations are more pronounced and more often nega-
tive than at the other pressure levels. Note that due to orog-
raphy at this pressure level, there are no data over the South
Pole, Greenland, and in the major mountain ranges.

Between 7 and 100 hPa, the differences between the two
datasets are less than 0.5 K at mid-latitudes and at the poles.
Around the Equator (30◦ S to 30◦ N), the differences are
slightly larger (1 K). Figure 4 shows the monthly mean
of the differences between 10◦ S and 10◦ N from 100 to
7 hPa as well as the monthly zonal wind from ERA5 in the
same latitude range. Positive differences (ANN temperatures
larger than ERA5) are correlated to negative zonal wind, and
negative differences are correlated to positive zonal wind.
This suggests that the neural network overestimates temper-
atures during the easterly phase of the quasi-biennial oscilla-
tion (QBO).

At 2 hPa, the differences range from −2 to 2 K globally.
This is because the IASI channel selection is less sensitive
to temperature changes at these pressure levels. In Fig. 2, we

https://doi.org/10.5194/amt-15-1779-2022 Atmos. Meas. Tech., 15, 1779–1793, 2022
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Figure 3. Daily zonal mean differences between IASI and ERA5 zonal mean temperature for the 11 pressure levels of the ANN, with the
time-averaged differences on the right of each subplot.

see that the channels peaking at this pressure level have high
sensitivity, but there are fewer of them compared to other
pressure levels.

When taking day and night observations separately (not
shown), there is no significant change in the differences.

Since averaging the differences over longitudes makes
them smaller, we looked at the daily spatial differences. We
gridded the ANN retrievals and ERA5 (interpolated to IASI
coordinates) on a 1◦× 1◦ latitude–longitude grid and com-
puted the root mean square (rms) of the daily differences in
each of the 1◦×1◦ bins of the grid and at each pressure level.
Figure 5 shows the rms of the daily differences for the 2008–
2020 period.

At 750 hPa, rms values are about 0.5 K at the Equator and
larger at higher latitudes (between 1 and 2 K), especially
around mountain ranges, where they reach 3 K and can be
due to gravity wave activity. Between 550 and 200 hPa, the
rms values are of 0.5 K almost everywhere. There are regions
(in particular the Antarctica, Greenland, and the Himalaya
at 550 hPa) where the rms can reach 2 K. Between 100 and

7 hPa, the rms values are small at high latitude (0.5 K) and
large at the Equator (between 1.5 and 2 K). At 7 and 10 hPa,
the band at the Equator with larger rms reaches higher lati-
tudes (about 50◦ N and S). The large rms values correspond
to the high differences seen at the Equator in Fig. 3. At 2 hPa,
the rms values are between 2 and 3 K everywhere, which is
consistent with Fig. 3.

4.2 Comparison with ARSA

For the comparison with our IASI retrievals, we interpolated
ARSA temperature profiles to the 11 pressure levels of the
ANN, and we only kept the stations for which there were
at least 300 observations per year between 2008 and 2018.
Figure 6 shows the positions of these stations.

We then added the 14 stations present in Antarctica and
the 6 stations in Greenland to have observations at high lat-
itudes, although these stations have fewer than 300 observa-
tions per year. The stations in Greenland have between 150
and 300 observations per year on average, so the time cover-

Atmos. Meas. Tech., 15, 1779–1793, 2022 https://doi.org/10.5194/amt-15-1779-2022
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Figure 4. Monthly mean of the temperature differences between IASI-ANN and ERA5 (a) and monthly zonal wind from ERA5 (b) between
10◦ S and 10◦ N.

Figure 5. Root mean square of the daily differences between IASI retrievals and ERA5 on a 1◦× 1◦ latitude–longitude grid over the period
2008–2020.

age is still satisfactory. However, in Antarctica, the stations
have between 10 and 150 observations per year, and only two
stations have more than 100 observations per year.

We divided the stations into eight distinct regions, and we
computed the daily mean temperature of all the observations

of each region. We interpolated IASI temperatures to the lat-
itude, longitude, and time of each considered station, and we
computed the daily mean IASI temperature in each region.
We then computed the differences between the two datasets.

https://doi.org/10.5194/amt-15-1779-2022 Atmos. Meas. Tech., 15, 1779–1793, 2022
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Figure 6. Locations of the ARSA stations with at least 300 observations per year (crosses) and the stations in two other regions (Greenland
and Antarctica) that do not satisfy this condition are marked with triangles. The rectangles of colour correspond to the regions in which we
compared IASI temperatures to ARSA.

Figure 7 shows the daily differences between IASI re-
trievals and ARSA mean regional temperature in the eight se-
lected regions between 2008 and 2018 and the time-averaged
difference profiles. We only show differences between 750
and 30 hPa as ARSA data above 30 hPa do not always come
from radiosounding measurement but from the extrapolation
datasets. Between 7 and 100 hPa, the differences are small
and mostly negative (about 0.5 K). At 200 hPa and below, the
differences remain small and negative in the Pacific, Oceania,
and East Asia. In Greenland, North America, and Europe,
the differences at these pressure levels are slightly larger and
more often positive (about 0.5 K, up to 1 K in North America
and Europe) than in the other regions.

In Antarctica and, to a lesser extent, the Arabian Peninsula,
there are more daily variations in positive and negative differ-
ences, and they are a little larger (about 0.7 K in the Arabian
Peninsula and 1 K in Antarctica) than in the other regions.
This can be because of the low space (few stations) and time
coverage (only for Antarctica) in these regions. However, we
see the same pattern as in the other regions: large differences
at 2 hPa; small differences at 7 hPa; and lower, more positive
differences in the troposphere.

In all the regions, the time-averaged differences range
from −0.6 to 0.6 K except in the Arabian Peninsula at
750 hPa, where they reach 0.9 K.

Figure S1 shows the differences between ERA5 and
ARSA over the same period and in the same regions, with
ERA5 interpolated to the latitudes, longitudes, and time of
the ARSA observations. The differences between ERA5 and
ARSA are very similar to those between IASI retrievals and
ARSA, but slightly smaller (less than 0.3 K between 750 and
7 hPa). Figure S2 shows the differences between IASI and
ERA5 temperatures interpolated to the time and locations of

ARSA observations. In most regions, the differences are less
than 0.5 K. In Antarctica, in Europe (troposphere only), and
in the Arabian Peninsula and Oceania (stratosphere only), the
differences can reach 1 K.

Figure 8 shows the standard deviation of the daily differ-
ences between IASI-ANN and ARSA temperatures and the
correlation between the two datasets in the eight regions. In
most regions, the standard deviation ranges from 0.5 to 1 K,
except in the Arabian Peninsula and East Asia, where they
reach 1.3 K at 750 hPa, and in Antarctica and Europe, where
they range from 1 to 2 K. The correlations between IASI-
ANN and ARSA temperatures show that there is no signifi-
cant bias between the two datasets.

Figures 3, 5, 7, and 8 show that between 7 and 750 hPa,
the IASI-ANN product can be considered to be good-quality
temperatures, very consistent with the temperatures of the
ERA5 and ARSA datasets (differences smaller than 1 K at
most latitudes, 2 K at the Equator). At 2 hPa, the quality of
the ANN product decreases as it was reflected in the lower
count of weighting functions of IASI (Fig. 2). This means
that at 2 hPa, the temperatures are not accurate enough to
follow the long-term evolution of atmospheric temperatures.
However, they can still be used to study large variations in
temperature (during extreme events for example).

4.3 Comparison with the EUMETSAT reprocessed
temperature record

We compared the ANN retrievals with this reprocessed EU-
METSAT CDR. Since the two methods use the same IASI
observation input, there is no need for an interpolation over
the coordinates of the observations. However, EUMETSAT
temperature profiles are retrieved on 138 levels, reflecting the
137 hybrid levels from the ERA-5 L137 grid plus the sur-
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Figure 7. Daily differences between IASI-ANN and ARSA temperatures between 2008 and 2018 in North America, Europe, the Arabian
Peninsula, East Asia, Oceania, the Pacific, Greenland, and Antarctica, with the time average difference profiles on the right of each subplot.

Figure 8. Standard deviation profiles of the differences between
IASI-ANN and ARSA temperatures (left of each subplot) and cor-
relation between the two datasets (right of each subplot).

face level, so we interpolated EUMETSAT temperatures to
the fixed pressure levels of the ANN. Figure 9 shows the dif-
ferences between the zonal mean temperatures of the ANN
output and EUMETSAT.

The differences are small at all pressure levels (less than
0.5 K), except at 2 hPa, where they can reach 1 K, and we
see seasonal variations in the differences that are more pro-
nounced in the troposphere (750, 550, and 400 hPa). At 7,
10, and 70 hPa, the differences are positive and larger at the
Equator, and they decrease over time. This bias can also be
seen at higher latitudes and other pressure levels, although it
is less obvious. This bias might be due to the fact that EU-
METSAT’s algorithm does not use CO2 in input, and the re-
trieval is impacted by the variations in the CO2 over time,
which we account for.

Note that although the ANN and EUMETSAT retrievals
are both based on IASI radiances, the two temperature
records are not redundant. The two datasets use different ob-
servations (IASI radiances and CO2 concentrations for the
ANN and IASI, AMSU, and MHS radiances for EUMET-
SAT) and different methods of retrieval (ANN and PWLR3).
When needed, our dataset can constantly be enhanced and
rapidly reprocessed for the entire time series. EUMETSAT
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Figure 9. Daily zonal mean differences between IASI-ANN output and IASI EUMETSAT zonal mean temperature for the 11 pressure levels
of the ANN. The red stripes seen in some panels are artefacts from the analysis, and they do not reflect a physical phenomenon.

Figure 10. Zonal temperature trends for the period 2008–2020 com-
puted with the outputs of the ANN. Grey areas correspond to trends
that are not statistically significant. The dotted rectangles represent
the regions for which the time series are shown in Fig. 11.

CDR can be produced for every major change in the opera-
tional real-time all-sky temperature processor.

5 Applications

We used the ANN temperatures to compute trends over the
past 13 years. One of IASI’s main assets is its high radiomet-
ric stability over the years, and it is used as a reference for
the inter-calibration of infrared sensors by the Global Space-
based Inter-Calibration System (Golberg et al., 2011), so
temperatures derived from IASI radiances are a good product
to study atmospheric trends.

We use IASI daily zonal mean temperature (latitude bands
of 1◦), and we compute the Theil–Sen estimator for each lat-
itude and each pressure level. The Theil–Sen estimator is a
robust method for computing linear trends, where the trend is
determined by the median of all the possible slopes between
pairs of points (Theil, 1950; Sen, 1968). We also computed
the associated p values, with a 0.05 threshold for significance
being considered. Before the Theil–Sen estimator was ap-
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Figure 11. Time series of temperatures in the four rectangles of Fig. 10 (blue) and time series without ENSO and QBO contributions (orange).
The exact locations of the four regions are 45–60◦ S and 100–70 hPa for southern-stratosphere mid-latitudes, 80–90◦ S and 10–7 hPa for the
Antarctic stratosphere, 20◦ S–20◦ N and 550–200 hPa for the tropical troposphere, and 75–90◦ N and 750–550 hPa for the Arctic troposphere.

plied, we removed the contributions of El Niño–Southern Os-
cillation (ENSO) and the QBO to temperatures. Their contri-
bution was computed using a multiple linear regression based
on the multivariate ENSO index (MEI; https://psl.noaa.gov/
enso/mei/, last access: 10 January 2022; NOAA, 2022a) and
the QBO30 and QBO50 indices (equatorial zonal winds at
30 and 50 hPa; https://www.cpc.ncep.noaa.gov/data/indices/,
last access: 10 January 2022; NOAA, 2022b). Figure 10
shows the significant temperature trends for the 2008–2020
period. Non-significant trends are shown in grey in Fig. 10.

We clearly see a warming in the troposphere. In the trop-
ics, we see a warming of 0.2–0.3 K/decade. At mid-latitudes,
the warming is stronger (0.5–0.6 K/decade). As highlighted
by previous studies (Masson-Delmotte et al., 2022), the poles
are where tropospheric temperatures are warming the quick-
est, especially the Arctic, where temperatures increase by
1 K/decade (Arctic amplification). The values of the trends
we found between 45◦ S and 45◦ N are similar to those found
by Shangguan et al. (2019).

In the stratosphere, we observe a cooling at all latitudes
north of 40◦ S. The cooling is strongest at the Equator, above
20 hPa (−1 K/decade). In the Arctic, there is no significant
trend. This cooling of the stratosphere has also been ob-
served by Maycock et al. (2018) and Randel et al. (2016),
although their values are smaller than those found here (but
their time period is also different). In the Southern Hemi-
sphere, we see two areas of warming: a strong one at 50◦ S

and 100 hPa (1 K/decade) and another located at 80◦ S and
10 hPa (0.4 K/decade). Part of this warming is due to a sud-
den stratospheric warming (SSW) that happened in Septem-
ber 2019 (Safieddine et al., 2020b). The temperature in-
creased by more than 30 K in a few days. Such a warming
toward the end of our study period has a strong impact on
trends. However, the computation of trends over the period
2008–2018 still shows warming in these two regions, and it
cannot all be attributed to the SSW. The warming is weaker at
50◦ S, 100 hPa (0.6 K/decade) and stronger at 80◦ S, 10 hPa
(0.8 K/decade). Due to the Montreal Protocol in 1987, the
ozone hole has been recovering since the 1990s (WMO,
2018; Weber et al., 2018; Strahan et al., 2019), and warm-
ing in the stratospheric South Pole can partly be attributed to
this recovery.

Figure 11 shows the temperature time series in the regions
delimited by dashed rectangles in Fig. 10. The time series
are shown with and without the contributions of ENSO and
QBO. In the equatorial troposphere, we see that tempera-
tures are increasing. However, removing the contribution of
ENSO significantly reduces the warming trend as most of it
was driven by the strong El Niño event of 2015–2016. In the
Arctic troposphere, there are no significant differences in the
time series with and without the contribution of ENSO and
QBO, suggesting that these phenomena do not have a large
impact on Arctic temperature, and the warming observed in
this region is due to the increase in greenhouse gases and
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Arctic amplification. In the southern stratosphere, the trend in
both warming regions seems to be driven by the 2019 SSW.
However, we see a continuous increase in temperatures be-
fore 2019 (with and without ENSO and QBO contribution)
that cannot be attributed to the SSW and is most likely due
to ozone hole recovery.

We also computed trends with ERA5 and ARSA (Figs. S3
and S4 in the Supplement). ERA5 trends are very similar to
those of IASI retrievals, except for a strong warming over
the Arctic between 2 and 7 hPa (1 K/decade). With ARSA,
we see a warming between 0.5 and 1 K/decade in Antarc-
tica at all altitudes except 2 hPa. In Greenland, we also see
a warming at almost all altitudes, but weaker (between 0
and 0.5 K/decade). In all the other regions, we see a warm-
ing between 750 and 200 or 100 hPa and a cooling above
100 hPa. The tropospheric warming and stratospheric cool-
ing are more important in the Pacific than in the other re-
gions. In the Arabian Peninsula, we see a smaller warming
below 200 hPa than in the other regions. These results are
consistent with the trends computed with IASI and ERA5.

6 Conclusions

We use an artificial neural network to construct a homo-
geneous temperature record from IASI radiances. Valida-
tion of the IASI-ANN product with ERA5-, ARSA-, and
EUMETSAT-reprocessed temperatures shows a good agree-
ment between the four datasets, especially between 7 and
750 hPa. The differences between IASI-ANN temperatures
and ERA5 are less than 0.5 K at most latitudes and most pres-
sure levels, and the differences between IASI and ARSA are
similar, demonstrating that our IASI product can be used to
assess local variation in temperature and to compute trends.

We used these temperatures to compute trends over
the 2008–2020 period. We found a warming trend
in tropospheric temperatures, stronger at mid-latitudes
(0.5 K/decade) and at the poles (1 K/decade due to Arctic
amplification). In the stratosphere, we found a strong cooling
trend in the tropics between 30◦ S and 30◦ N, while poleward
of 40◦ S there are two regions with important warming due to
the ozone hole recovery and a SSW that happened in 2019.

This work shows that artificial neural networks are effi-
cient to retrieve atmospheric temperatures from huge datasets
of radiance. With this method, temperature profiles from all
10 billion observations from Metop-A and Metop-B can be
computed in 2 d. With the short computation time and with
IASI radiances being available a few hours after the observa-
tions, we can obtain temperature profiles in near real time.

We now have a homogeneous product to study seasonal
and climatological variations in temperatures. It can also be
used to study extreme events such as El Niño–Southern Os-
cillation, volcanic eruptions, heatwaves, and sudden strato-
spheric warmings as well as their link with climate change.

Although the trends computed with the ANN retrievals are
coherent with other studies, a 13-year period is slightly too
short for them to be fully reliable, and they can be impacted
by short-term variation in temperatures (El Niño–Southern
Oscillation for example). Chédin et al. (2018) showed that
the number of years required to meet the probability-assigned
criterion with the Theil–Sen estimator is 14–15 years. How-
ever, these results are promising: since IASI is planned to fly
for at least another few years, the trends will become more
and more reliable as the record gets longer. From 2024 on-
wards the IASI-NG missions on board Metop-SG (Crevoisier
et al., 2014) will continue the IASI record, allowing the
derivation of trends on longer timescales.
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