Rock mechanics and DFN models in the Swedish Nuclear Waste Disposal Program
Résumé
Discrete Fracture Network (DFN) is a modeling framework for fractured rocks. The core element is the description of geological medium as a network of discrete fractures that can be either generated from statistical distributions or imported as deterministic surfaces. It is an alternative to continuum methods with both advantages of easily integrating the statistical properties of fracture networks, and of not assuming any homogenization scale. DFN has been extensively used to describe fracture network flow properties supported by the fact that connectivity, which is a constitutive element of the network organization, is a key element of fluid percolation. Application of the DFN modeling framework to geomechanics is also promising and, conversely, DFN models will benefit from rock mechanics integration.Integration between DFN and rock mechanics modeling is in expansion in many fields and broad contexts. This includes prediction of mechanical effective properties, increased understanding of the fracture scales and indicators that control these properties, distribution of block sizes and shapes for block fall risk analysis, potential wave attenuation effect and fracture shear displacements caused by and within the fracture network induced by an earthquake, or hydromechanical effects for flow and transport predictions.These applications are relevant only if DFN models involve the right complexity and provide a reliable description of the fracture networks. DFN models also benefit from rock mechanics concepts to improve their realism as it is done with genetic models that mimic the growth and arrest of fractures according to stress conditions prevailing at the time of their formation.
Fichier principal
Ivars_2021_IOP_Conf._Ser. _Earth_Environ._Sci._861_042124.pdf (1.82 Mo)
Télécharger le fichier
Origine | Publication financée par une institution |
---|