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Highlights

A particle-tracking formulation of advective-diffusive heat transport in deformable fracture networks

Silvia De Simone, Benoı̂t Pinier, Olivier Bour, Philippe Davy

• We solve heat transport with thermo-mechanical (TM) de-
formation in fractured systems

• Particle tracking is combined with semi-analytical solu-
tions

• Fluid/rock thermal diffusion is modeled through a memory
diffusive heat exchange

• TM rock deformation and fracture aperture variation are
analytically estimated

• The consequent variation of flow velocity significantly im-
pacts the heat transfer
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Abstract

Modeling heat transfer in complex heterogeneous fractured system is key for geothermal energy applications. Discrete fracture
network (DFN) modeling is the classical framework to reproduce the advective part of the transport, which is determined by the
fracture connectivity and heterogeneity. This approach in general sacrifices the representation of the rock matrix, disregarding both
its diffusive heat exchange with the fractures and the effects of its thermo-mechanical deformation on the fracture aperture. Here
we propose a new semi-analytic formulation that can be implemented in a DFN simulator with particle tracking approach. The
contribution of the rock matrix in terms of diffusive heat exchange and thermal contraction/expansion is analytically evaluated,
which respectively impact the advective heat transfer and the fracture aperture variation. The method is proved to be accurate and
robust. Results from simulations of cold fluid injection show that rock contraction affects the transmissivity, which accelerates the
advective transport resulting in a faster recovery of cold fluid at the outlet. The methodology enables investigating the reservoir
behavior and optimizing the geothermal performance while keeping the computational effort within reasonable values. This allows
exploring the uncertainty in cases when the in-situ characterization is poor, which is the spirit of the DFN modeling.

Keywords: heat transport, particle tracking, discrete fracture network, geothermal systems, thermo-hydro-mechanical coupling

1. Introduction

Deep geothermal energy represents a powerful and clean en-
ergy prospect, with the potential to generate huge and virtually
unlimited energy (Giardini, 2009; Tester et al., 2007). Geother-
mal plants generally involve the circulation of fluids into hot
reservoirs located in the crystalline basement, characterized by
a very low permeability of the rock mass and a complex system
of preexisting natural fractures (Jung, 2013). Enhancement of
fracture transmissivity is often performed by means of massive
fluid injection during the preliminary stimulation stage, leading
to the development of the so-called Enhanced Geothermal Sys-
tems (EGS). Both before and after the stimulation operations,
a full characterization of the rock and fracture properties is dif-
ficult, which increases the uncertainty on the heat extraction
performance. In this context, numerical modeling is a key in-
strument to forecast the potential heat production of geothermal
reservoirs under a number of scenarios (Baria et al., 1999).

Heat transfer in fractured reservoirs is driven by fluid advec-
tion through the fracture network and diffusion in the host rock.
The first process defines the spatial extension of the affected
domain, while the second one controls the fluid-solid heat
exchange and, therefore, the geothermal performance (Bruel,
2002). The behavior may be complex because the two pro-
cesses are coupled and because of the heterogeneity of the flow
velocity and fracture aperture fields in the network (Becker and
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Shapiro, 2003). The complexity is further increased when ther-
mal deformations are taken into account. Long-term fluid cir-
culation leads to the cooling and consequent contraction of the
host rock which tends to increase the fracture aperture (Koh
et al., 2011). The variation of the fracture aperture has two ef-
fects. On the one hand, it affects the fluid-filled fracture volume
that exchanges heat with the rock through the fracture surface,
and therefore the exchanged heat. On the other hand, it may
imply a variation of the flow velocity which in turn affects the
heat advective transport, slowing down or speeding up the heat
production. A potential consequence is the opening of new fast
flow paths that may short-circuit the connection between the
paired injection and extraction wells, with negative impacts on
the geothermal production (McDermott et al., 2006). Quantify-
ing these processes is crucial for the design and optimization of
heat extraction. However, modeling these processes in hetero-
geneous fractured systems poses a number of numerical chal-
lenges, because they occur on very different length and time
scales, and because of the large variability of fracture size and
transmissivity (Bonnet et al., 2001; Bour and Davy, 1997, 1999;
de Dreuzy et al., 2001; Davy et al., 2010).

Continuum-based approaches accurately reproduce the fully
coupled thermo-hydro-mechanical (THM) process, but they are
not able to reproduce the intricate structure of fractured reser-
voir, unless the fracture system is dense enough to be repre-
sented as an equivalent porous medium. Discrete fracture net-
work (DFN) modeling is the most appropriate framework to re-
produce the advective part of the problem, which is determined
by the fracture connectivity and heterogeneity. However, the
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representation of the diffusive heat exchange with the rock ma-
trix and of the thermo-mechanical (TM) coupling suffers from
some limitations (Jing, 2003). A number of DFN-based ap-
proaches focuses on the advective transport in the network of
connected fractures, disregarding the effects of the rock ma-
trix (e.g., Frampton and Cvetkovic, 2011; Hyman et al., 2019).
However, the diffusive exchange between fracture and rock is
recognized as playing a key role in all transport problems (Car-
rera et al., 1998), and in particular in the case of heat transfer.
Moreover, the mechanical response of fractures to heat is due to
the rock thermal expansion or contraction. Thus, it depends on
the portion of the rock matrix affected by thermal diffusion and
on the rock properties. Discrete fracture-matrix (DFM) models
reproduce the behavior of fractures embedded in a rock matrix
through explicit representation of rock blocks (e.g., Hu et al.,
2017; Odsæter et al., 2019; Flemisch et al., 2018). Although
this approach is accurate, and it may be combined with the nu-
merical simulation of the thermal deformations, it incurs high
computational cost which limits the number of fractures that
may be explicitly represented or the number of scenarios that
may be analyzed (see Lei et al., 2017, for a comprehensive re-
view).

To represent the exchange with the rock, the assumption of a
diffusive heat flux perpendicular to the fracture plane is widely
adopted, which can be solved analytically. The adoption of an-
alytic solutions greatly reduces the computational effort, which
allows for stochastic modeling of large three-dimensional reser-
voirs with thousands of fractures. Several authors have com-
bined Lagrangian particle-tracking solvers and analytic solu-
tions of the diffusion process to reproduce transport of solute
mass of chemical species (Dagan et al., 1992; Cvetkovic et al.,
1999; Painter and Cvetkovic, 2005). The framework has been
recently applied to heat transport by Gisladottir et al. (2016). In
many cases the approach is limited by some underlying assump-
tions. The first is the one of infinite matrix, which is reasonable
only for short time or large fracture spacing. The second is that
the trajectories are stationary in time and independent on each
other. In addition, the TM coupling is rarely contemplated in
this context.

In this paper, we present a new simplified methodology to
simulate heat transfer in fractured media taking into account
the diffusive exchange with the rock matrix and the consequent
thermo-mechanical fracture aperture variation due to rock de-
formation. The methodology is based on a particle tracking
approach and it is similar to the method of the characteris-
tics (Konikow and Bredehoeft, 1978). The contribution of the
rock matrix in terms of diffusive heat exchange and thermal
contraction/expansion is analytically evaluated, which respec-
tively impact the heat transfer and the fracture aperture varia-
tion. This latter in turns affects the heat transfer and the veloc-
ity field, which is updated in time assuming quasi-steady state
conditions. We disregard the effects of the pore-pressure varia-
tions on the fracture aperture and in the rock (hydro-mechanical
(HM) coupling). However, we do take into account the im-
pact of the flow velocity on the heat transfer, as well as the
effects of the temperature on the fracture aperture, and the im-
pact of the aperture variation on the flow velocity. We therefore

describe this approach as a model for simulating T(H)M cou-
pling. Given its semi-analytic nature, this formulation allows
reproducing heat transport in temperature-dependent complex
fracture networks while keeping the computational time within
reasonable values.

In the following, we first introduce the conceptual model and
summarize the governing equations. Then, we show the classi-
cal analytic solution for a single trajectory with constant in time
fracture aperture and velocity. Afterwards, we present the de-
tail of the proposed semi-analytic method for single trajectory
with temperature-dependent fracture aperture and velocity. We
show that extending the second approach to the case of multi-
ple trajectories allows us to deal with non-stationary trajectories
in a changing environment. After presenting the details of the
method, its implementation and validation, we compare the be-
havior for constant and non-constant fracture aperture and ve-
locity, for the case of a single trajectory, and we discuss the
numerical issues and the implications. Finally, we show results
for a DFN and we discuss the effects of non-stationary trajecto-
ries on the observed temperatures.

2. Governing equations and assumptions

Let a heterogeneous fracture network be composed by con-
nected fractures embedded in a rock matrix. We assume that
each fracture is planar and perfectly symmetric with respect to
its central axis and thus we refer to the semi-volume (Fig. 1).
The fracture half-aperture b(x, t) is variable in time and space,
where x represents the coordinate vector in the fracture plane
and t is time. The variability in space is smooth such that we can
keep the assumption of planar fracture as valid. No distinction
is made between hydraulic aperture and mechanical aperture,
and fracture roughness is disregarded. We focus on the thermo-
mechanic processes occurring for long-term non-isothermal in-
jection and we do not consider the fracture aperture variations
due to pressure increase, which mostly occur during the stim-
ulation phase or at the beginning of injection operations (Baria
et al., 1999). Fracture failure with either opening (mode I) or
shearing (mode II) mechanism is not contemplated here, and
linear elastic behavior is assumed. Creation of new fractures or
propagation of the pre-existing ones are also neglected.

This conceptual model is used in the following to illustrate
the governing equations for flow, heat transport and mechanical
deformation with respect to a single fracture, and it is succes-
sively extended to the case of a streamline through a fracture
network.

2.1. Fluid flow
We consider that fractures are fluid saturated, and that fluid

flow occurs exclusively in the fracture network, while the rock
matrix is impermeable. Conservation of fluid mass for unit vol-
ume of fracture gives the flow equation for the fracture

∂b(x, t)
∂t

+ ∇ [b(x, t)v(x, t)] + W = 0 , (1)

where we have assumed homogeneous fluid density and incom-
pressible fluid. The term W represents a sink/source, while
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Figure 1: Conceptual model for heat transport and thermo-mechanical response
in one fracture embedded in a rock matrix, subject to injection of a cold fluid.
The opposite behavior is observed in the case of injection of a hot fluid, i.e.,
the rock matrix expands, and the fracture aperture reduces. Note that the rock
matrix is assumed as impervious, so flow and advective transport only occurs in
the fracture, while the fluid in the fracture exchanges heat with the rock matrix
by thermal diffusion. Figure not to scale.

v(x, t) is the fluid flow velocity vector that is proportional to
the pressure gradient ∇p. Assuming the validity of the cubic
law, with the fracture hydraulic aperture coinciding with the
mechanical aperture and equal to 2b, it reads

v(x, t) = −
4b(x, t)2

12µ
∇p(x, t) , (2)

where µ is the fluid viscosity. The boundary conditions (BCs)
at the inlet can be either of imposed pressure or flow rate. In the
following we assume that the fracture aperture variation is slow,
which allows for considering quasi-steady state conditions for
flow, i.e., the velocity field does not change over a certain time.
Under this condition, the first term of eq. (1) vanishes.

2.2. Heat transport

We consider that heat transfer occurs by fluid advection
within the fracture system and by thermal diffusion within the
rock matrix, mostly in the direction orthogonal to the fracture.
Lateral diffusion is disregarded both in the fracture and in the
matrix, but we will partly introduce this effect in the following.
We also assume infinite diffusive matrix and flat temperature
profile within the fracture thickness. According to this setting,
the heat transport within the fracture is described by the energy
balance for an arbitrary semi-volume of fracture (Carrera et al.,
1998)

b(x, t) C
∂T (x, t)
∂t

+ b(x, t) C v(x, t) ∇T (x, t) = −J(x, t) (3)

where C is the fluid heat capacity, assumed as constant and
T (x, t) represents the fluid temperature in the fracture. J(x, t)
is the diffusive heat flux that the fluid exchanges with the rock
matrix per unit surface, which is defined as

J(x, t) = − κ
∂Tm(x, z, t)

∂z

∣∣∣∣∣
z=b

, (4)

where κ is the rock thermal conductivity, assumed as constant,
and z is the coordinate in the direction normal to the fracture,

with origin at the fracture center. The temperature in the matrix
Tm(x, z, t) is given by the energy balance

Cm
∂Tm(x, z, t)

∂t
= κ

∂2Tm(x, z, t)
∂z2 , (5)

for b ≤ z < +∞. Cm represents the rock heat capacity, assumed
as constant.

Equations (3) and (5) are coupled by means of eq. (4) and
they have to be solved together. Another coupling condition
is provided by the temperature continuity at the fracture wall,
i.e., the fluid temperature in the fracture is equal to the rock
temperature at the fracture edge, which defines a BC for eq.
(5),

Tm(x, b, t) = T (x, t), ∀(x, t) . (6)

The other BC for eq. (5) is given by the hypothesis of in-
finite matrix. Without any loss of generality, we assume that
the initial temperature is uniform in the system and equal to 0,
both in the fractures and in the rock. Different initial conditions
are easily reproduced by considering the temperature values as
temperature variations. We want to solve the problem of contin-
uous imposed fluid temperature at one extreme of the fracture,
x = x0, which is also considered as infinite in the longitudinal
direction. Therefore, the initial and boundary conditions for the
matrix and the fracture are the following

Tm(x, z, 0) = 0 , T (x, 0) = 0
Tm(x, b, t) = T (x, t) , T (x0, t) = T0(t)

Tm(x,∞, t) = 0 , T (∞, t) = 0 .
(7)

2.3. Mechanical deformation
The rock matrix behaves as a linear elastic material, which

under non-isothermal conditions is governed by the constitutive
law (Timoshenko and Goodier, 1951)

σ = 2G ε + λ εvol I − (2G + 3λ) αT Tm I (8)

where σ is the stress tensor, G and λ are the shear and Lamé
moduli, respectively, αT is the linear thermal expansion coeffi-
cient, I is the identity matrix, ε = 1/2

[
∇u + (∇u)T

]
is the strain

tensor and εvol = ∇ · u is the volumetric strain, which corre-
sponds to εx + εy + εz = ∂ux/∂x + ∂uy/∂y + ∂uz/∂z, where u
is the displacement vector. Stresses, strains and displacements
evolve in time in response to changes in temperature. The stress
tensor refers to stress variation if an initial stress , 0 is as-
sumed. We assume the sign convention such that tensile stress
and extensional strain are positive. The x and y axes are taken as
respectively parallel and transverse to the flow direction in the
fracture plane, while the z axis is perpendicular to the fracture
wall.

The mechanical equilibrium, in absence of body and surface
forces, is therefore expressed by

G ∇2u + (G + λ) ∇ (∇ · u) = (2G + 3λ) αT ∇ (Tm) , (9)

where we observe that the deformation is driven by the tempera-
ture gradient. Note that the effects of the pore pressure variation
is neglected as the rock matrix is assumed as impermeable.
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Considering a uniform temperature profile (zero gradient) in
the fracture in-plane transverse direction, we can assume plane
strain conditions in the y-direction, i.e., εy = 0. The defor-
mations in the direction longitudinal to the fracture are disre-
garded because they are small given the temperature distribu-
tion. We also assume free thermal deformation in the direction
transverse to the fracture into the matrix, which implies that the
corresponding compressive stress is zero, i.e., σz = 0. Further-
more, we disregard the shear stress τxz based on the assumption
that the temperature gradient is smooth in the longitudinal di-
rection. We test and discuss these assumptions in Section 5.3.
Under these hypothesis, the problem is greatly simplified into
the one-dimensional equilibrium equation along the direction z,
for each location x, such as eq. (9) translates into

∂2uz(x, z, t)
∂z2 =

1 + ν

1 − ν
αT

∂Tm(x, z, t)
∂z

, b ≤ z < +∞ (10)

where ν is the Poisson ratio and the following relation holds,
(1 + ν)/(1 − ν) = (2G + 3λ)/(2G + λ). The displacement uz is
found by solving eq. (10) under the boundary conditions of free
displacement (i.e., zero stress) at z = b and infinite rock matrix,
i.e., zero displacement at z = ∞.

At each fracture location and time, the variation of the
semi-aperture with respect to the initial conditions, ∆b(x, t) =

b(x, t) − b(x, 0), is equal to the displacement undergone by
the fracture wall in the direction perpendicular to the fracture,
uz(x, b, t), such as

∆b(x, t) = uz(x, b, t) = −

∫ ∞

b

1 + ν

1 − ν
αT Tm(x, z, t)dz. (11)

Note that the expression corresponds to the integral over
space of the rock matrix thermal deformation εz = ∂uz/∂z, be-
cause we assume that the displacement is 0 at z = ∞, where the
temperature variation is zero.

3. Solutions for a single flow path

3.1. Single flow path with constant fracture aperture and flow
velocity

Assume a single flow path with longitudinal coordinate ` par-
allel to the flow direction and constant in time fracture aperture,
such as b = b(`). In this framework, the fluid flow is steady
state and the velocity is constant and equal to v(`). The energy
balance of eq. (3) is therefore simplified into

∂T (`, t)
∂t

+ v(`)
∂T (`, t)
∂`

= −
J(`, t)
Cb(`)

. (12)

This problem can be solved analytically, as proposed by sev-
eral authors (e.g., Liu et al., 2007) and as we summarize in Ap-
pendix Appendix A. The temperature evolution in the fluid
and in the rock matrix in the case of constant temperature BC
at ` = `0 are therefore expressed, respectively, as

T (`, t)
T0

= erfc
 θ
√

DB
2
√

(t − τ)

 , t > τ; T (`, t) = 0, t < τ (13)

Tm(`, z, t)
T0

= erfc
[
θDB + (z − b)
2
√

D(t − τ)

]
, t > τ; Tm(`, t) = 0, t < τ

(14)
where D = κ/Cm is the rock thermal diffusion, θ is the ratio
of rock to fluid heat capacity, i.e., θ = Cm/C, while τ and B
represent the fluid advective travel time and the flow wetted
surface (Moreno and Neretnieks, 1993), respectively,

τ =

∫ `

`0

d`′

v(`′)
; B =

∫ `

`0

d`′

v(`′)b(`′)
. (15)

Note that for t >> τ, the response of eq. (13) is controlled by
the relationship between t and the characteristic time θ2DB2/4.
Solution of eq. (13) corresponds to the convolution over time
of the response to an instantaneous pulse injection (Cvetkovic
et al. (1999), Painter and Cvetkovic (2005)). In fact, given the
linearity of the process, the superposition principle can be ap-
plied. In the case of uniform velocity and fracture aperture, eq.
(13) coincides with the solution for a single fracture proposed
by Tang et al. (1981).

3.2. Single flow path with temperature-dependent fracture
aperture and flow velocity

We assume the same setting as in the previous section, con-
sisting in a single trajectory defined by the longitudinal coor-
dinate `, but with temperature-dependent fracture aperture and
flow velocity, b(`, t) and v(`, t). The non-linearity of the prob-
lem hinders the derivation of a closed analytic solution. Consid-
ering a Lagrangian approach, we transform the Eulerian vari-
ables defined at (`, t) into the Lagrangian variables defined at
[τ(`); `0, t0], where t0 = t − τ and τ is the travel time to reach
the position `, for a moving front originated at coordinate `0 at
time t0, and displacing along the trajectory by advection, such
as

τ =

∫ `

`0

d`′

v [τ(`); `0, t0]
. (16)

All Lagrangian quantities are locally equal to their respective
Eulerian quantities, such as

Υ [τ(`); `0, t0] = Υ(`, t0 + τ) . (17)

For simplicity we adopt the same nomenclature for the Eule-
rian and Lagrangian quantities, but we use a different notation
to distinguish them, where the presence of the semicolon indi-
cates the Lagrangian quantities. According to this framework,
the energy balance in the fracture can be expressed as the vari-
ation of temperature of a moving front (Cvetkovic et al., 1999)

∂T [τ(`); `0, t0]
∂t

+
∂T [τ(`); `0, t0]

∂τ
= −

J(`, τ + t0)
C b(`, τ + t0)

, (18)

where we keep the terms in the right-hand side of the equation
in terms of Eulerian quantities, ackwowleging the identity of
eq. (17). The left-hand side of the equation can be rewritten in
terms of total derivative d • /dτ = ∂ • /∂t + ∂ • /∂τ, such as

d
dτ

T [τ(`); `0, t0] = −
J(`, τ + t0)

C b(`, τ + t0)
. (19)
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Note that both the front temperature and velocity are not only
a function of the position, and therefore of the travel time τ, but
they are also a function of the kick off time, t0, and therefore
of the global elapsed time t = t0 + τ. The initial value of the
front temperature, T [0; `0, t0], constitutes a boundary condition
of the problem. The temperature T decays during the travel be-
cause of the diffusive heat exchange with the rock, J. This latter
is defined in the Eulerian field and it is a function of the matrix
temperature gradient at the fracture/matrix interface (eq. (4)).
The temperature in the matrix, Tm(`, z, t), is the result of the
diffusion problem (recall Eq. (5)), whose linearity still holds.
Solution of this latter for a variable BC allows us to obtain an
expression for J as the integral of the pulse heat transfer flux
over the time (Appendix Appendix B)

J(`, t) = − κ

∫ t

0

Tm(`, b, t′)

2
√
πD(t − t′)3/2

×

exp
(
−

(z − b)2

4D(t − t′)

) (
1 −

(z − b)2

2D(t − t′)

)
dt′

∣∣∣∣∣∣
z=b

.

(20)

The temperature at the fracture/rock interface, Tm(`, b, t), is
also defined in the Eulerian field and it is determined through
continuity by the temperature of the front that is at that position
at that specific time, such as

Tm(`, b, t) = T (`, t) = T [τ(`); `0, t0 = t − τ] . (21)

The formulation detailed so far acknowledges the variable-
in-time nature of the fracture aperture, which changes in re-
sponse to the thermal deformation of the rock matrix. For ex-
ample, the rock shrinks when it is cooled down, which causes an
increase of the fracture aperture, while the rock expands when it
is warmed up, which causes a decrease of the fracture aperture.
Within the rock matrix, both the heat diffusion and the elastic
deformation are linear problems, so superposition in time and
space applies. Replacing Tm(`, z, t) in eq. (11) by its expression
in eq. (B.1) and solving the integral in z we get

∆b(`, t) = −
1 + ν

1 − ν
αT

√
D
π

∫ t

0

Tm(`, b, t′)
√

t − t′
dt′ , (22)

where we highlight that a negative temperature variation causes
an increase in fracture aperture.

In the following we extend this approach to the case of multi-
ple trajectories and we solve eqs. (19)-(22) by adopting a semi-
analytic scheme with time and space discretization.

4. Formulation for multiple flow paths in heterogeneous de-
formable fractured systems

4.1. Lagrangian fluid volume particles
We now consider a three-dimensional heterogeneous frac-

tured system. To solve the problem detailed in Section 2, we
start by discretizing the duration of the injection in time steps t0
with interval ∆t0.

We assume that the fracture aperture variation is slow, so
as we consider the flow as quasi-steady state, i.e., steady state

conditions applies during each time step with constant fracture
aperture and velocity field. Under this assumption, we consider
that the fluid flow is solved numerically by finite difference or
finite element methods over a mesh grid. At each time step,
the fracture aperture variation, and the consequent new fracture
aperture, 2b(x, t0), and velocity, v(x, t0), fields, are estimated.
Once the velocity field in the fracture network is determined,
it is possible to define multiple flow paths following the maxi-
mum pressure gradients and to simulate the advective transport
by means of a Lagrangian particle tracking approach (Dagan
and Bresler, 1979).

The condition of imposing a fixed temperature T0 at the in-
let corresponds to imposing the heat energy E0 = CV0T0 over
a fluid volume V0 entering the system for the duration of each
time step, i.e., V0 = Q0∆t0, where Q0 is the injected flow rate.
We represent this energy as an ensemble of N particles, which
are released at each t0 at locations x0 on the boundary. Particles
are considered as fluid cells with equal volumes, whose sum
equates the hot/cold volume introduced in the domain, V0. The
particle volumes do not undergo any change during the travel,
i.e., any deformation keeps the volume unchanged (see top pic-
ture of Fig. 2). Although the conceptualization of particles
as volume cells is useful for the purpose of this approach, the
magnitude of the particle volume is irrelevant, as shown in the
next section. Particles hold an energy e and the total energy
is given by the sum of the individual particle energy. There-
fore, all particle volumes are initially charged with the energy
e0 = E0/N, and with the temperature equal to the injection tem-
perature, T (0; x0q , t0) = T0,∀q. Note that we retain the same
notation adopted in Section 3.2 to define particle quantities as a
function of their residence time, injection position and injection
time, e.g., Υ [τ(x); x0, t0]. Fluid particles change their energy
because of their diffusive heat exchange with the rock matrix.
Since we assume that both particle volume and heat capacity
are constant, particle energy and particle temperature are re-
lated by a constant proportion. Therefore, we can arbitrarily
adopt one or the other as the working variable. The adoption of
the temperature will prove convenient to our purpose.

Particles move into the fracture system by advection along
different trajectories that may change from a time step to an-
other, due to the temporal variation of the velocity in the sys-
tem. Each particle changes its position x, such as

dx(τ; x0, t0)
dτ

= v(τ; x0, t0) , x(0; x0, t0) = x0 . (23)

The particle Lagrangian velocity is equal to the local Eule-
rian velocity, e.g., v [τ(x); x0, t0] = v(x, t0), where we use the
same notation for Lagrangian and Eulerian quantities as in the
previous section, and where we apply eq. (17) highlighting that
the velocity field is only updated at each time step. Similarly to
Section 3.2, τ(x; x0, t0) is the time that the particle, released at
position x0 and time t0, has spent to travel from x0 to the posi-
tion x. It can also be expressed as a function of the trajectory
length, `(x), and the particle velocity component in the direc-
tion parallel to the trajectory, v` [`(x); x0, t0] = |v [τ(x); x0, t0] |,
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such as

τ(x; x0, t0) =

∫ τ

0
dτ′ =

∫ `(x)

0

d`′

v` [`′(x); x0, t0]
. (24)

Thus, the particle arrival time at x is t(x) = t0 + τ(x; x0, t0).
Note that, in the case of constant in time fracture aperture, both
the travel time and the velocity are not a function of t0. Since
space is discretized into a mesh grid, the particle travel time is
calculated as the sum of the times to jump over the crossed mesh
elements, where each jump is defined by the two successive
intersections of the particle trajectory with the element edges.

In order acknowledge the variation of the velocity field, par-
ticles only move for the duration of the time interval ∆t0. If they
have not reached the outlet during the time step in which they
are injected, they resume their travel in the following time it-
eration along newly defined trajectories originating at their last
position. This operation may imply that a large number of frac-
tures are circulating within the network during each time step,
which increases the computing memory demand. The adoption
of a time interval larger than the advective time to reach the out-
let prevent the simultaneous presence of multiple particle sets
in the system, as we will further discuss in Section 8.

Particle injection in the network satisfies a flux-weighted in-
jection mode and particle behavior at fracture intersections fol-
lows a complete mixing rule, i.e., particles are distributed pro-
portional to the outgoing fluxes. This condition, together with
the assumptions detailed above, implies the following relation-
ship between the number of particles n, fluid volume Ve and
flow rate Qe entering a generic mesh element, and the number
of particles N, fluid volume V0 and flow rate Q0 introduced in
the system, for each time step

n
N

=
Ve

V0
=

Qe

Q0
. (25)

4.2. Particle temperature variation due to fluid-rock diffusion

Particles change their temperature during the travel because
of the thermal diffusion between the fluid and the rock ma-
trix. The estimation of the particle temperature variation is
performed by extending the semi-analytic method for a single
trajectory detailed in Section 3.2 to the case of multiple trajec-
tories. At each t0 we release N particles with assigned temper-
ature at the inlet and we consider continuous injection during
the time step. We differentiate the temperature at the fracture-
rock interface, Tm(x, b, t), defined in the Eulerian field, from
the particle temperature, T (τ; x0, t0), defined in the Lagrangian
field (Fig. 2). This dichotomy allows for defining the variation
of T (τ; x0, t0) as a function of the diffusive heat flux (eq. (19)),
which is estimated for each particle and it based on the local Eu-
lerian temperature history, Tm(x, b, t) (eq. (20)). This latter is
in turn determined by the temperature of the crossing particles,
because of the equilibrium between fluid and rock temperatures
at the interface (recall eq. (21)).

For a generic particle crossing the location x at time t0 + τ,
Tm(x, b, t) is equal to the temperature of the particle itself for the
duration of the time interval, while for times smaller than t0 +

𝑇𝑚 𝐱, 𝑏, 𝑡 =
1

𝑛
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𝑇(𝜏(ℓ); x0, 𝑡0)

ℓ

𝑧
𝑦

𝐽

𝑇𝑚 𝐗, 𝑏, ҧ𝑡𝑗 =
1

𝑛


𝑞=1

𝑛

𝑇 𝜏(𝛏); x0𝑞 , 𝑡0
𝑗

𝑥1

𝑥2

1
𝑛

ℓ𝑦

𝑁𝛀

Current time step

Previous time steps

2
…
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Figure 2: Schematic description of the particle-tracking approach for advec-
tive heat transport with fluid-rock diffusion and temperature-dependent fracture
aperture and velocity. The top picture represents a single trajectory, the bottom
picture shows the conceptual scheme for multiple trajectories.

τ, it is equal to the temperature at the fracture/matrix interface
collected at the grid mesh elements Tb(X, t), as expressed by

Tm(x, b, t) =


T [τ(x); x0, t0] , t0 + τ < t < t0 + τ + ∆t0

Tb(X, t), t < t0 + τ

,

(26)
where X represents the coordinate identifying the generic mesh
element Ω(X) containing x. This definition builds on the as-
sumption that fluid particle volumes released at the same time
do not directly exchange heat, because the differences in arrival
times are small compared to the diffusive time to cross the dis-
tance between different trajectories. Although particle trajecto-
ries do not directly interact during their travel, particles have in-
direct effects on future particles. In fact, we consider that a time
larger than the time interval is sufficient for a complete homog-
enization of each volume temperature to occur over the mesh
element thanks to lateral diffusion processes. According with
this assumption, the temperature at the mesh element, Tb(X, t),
coincides with the temperature of the crossing fluid volume. Let
n(X, t0) ≤ N be the number of particles released at the same t0
that cross the mesh element Ω(X) at different times t0 + τ(ξ),
where ξ is a generic position that falls within the mesh element
Ω(X). It is worth reminding at this point that we assume contin-
uous heat injection during the time step, which means that each
temperature persists at each location for the duration of the time
interval ∆t0. The total volume crossing Ω(X) in the time inter-
val is V and its temperature in time is determined by the sum of
the energy of the particle volumes crossing the mesh element at
that time, such that Tb(X, t) is

Tb(X, t) =
1

CV(X, t)

n(X,t0)∑
q=1

e
[
τ(ξ); x0q , t − τ(ξ)

]
=

1
n(X, t0)

n(X,t0)∑
q=1

T
[
τ(ξ); x0q , t − τ(ξ)

]
, ∀ξ ∈ Ω(X).

(27)

The second equivalence is derived acknowledging that the
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energy of the generic particle q is eq = CVqTq and that the total
crossing volume V is equal to the sum of the n particle fluid
volumes crossing the element, which is V = nVq because all
the particles have equal and invariable volumes. By using the
second equivalence, the estimation of Tb(X, t) does not depend
on the magnitude of the particle volumes.

After substitution of eqs. (26) and (27) into eq. (20), and
after integration by time intervals (see also Appendix Appendix
B), the expression of the heat exchanged by a particle p released
at ti

0, corresponding to the i-th time step, is

Ji
p(x) =

√
κCm

π

T i
p(x)

∆t0
− Ji

Ωp
(X), (28)

where we make use of the generic short notation Υi
p(x) =

Υ
[
τ(x); x0p , t

i
0

]
. The second term in the right hand side rep-

resents the memory diffusive heat exchange, which is defined
on the mesh element such as

Ji
Ωp

(X) =

√
κCm

π

i−1∑
j=1

 1
n j(X)

n j(X)∑
q=1

T j
q(ξ) F

[
ti
p(x), t j

q(ξ)
] ,

∀ξ ∈ Ω(X)

(29)

where ti
p(x) = τi

p(x) + ti
0 = τ(x; x0p , t

i
0) + ti

0, and where f is
defined as

F(tA, tB) =
1

√
tA − tB

−
1

√
tA − tB + ∆t0

. (30)

Expression (28) reflects the convolution over time of differ-
ent temperature values, each one considered as constant over
the time step. The first term represents the current temperature
at the location x, i.e., the temperature of the particle p itself,
while the second term represents the memory of all the past
temperatures recorded at x over the time. The contributions of
the different temperatures at the fracture/rock interface are su-
perposed acknowledging the linearity of the diffusion process
in the rock. Note that the denominators of eq. (30) are always
real numbers as the terms in the square root are always positive.
This is ensured by the fact that particles are stopped at the end
of the time step, so the travel time to reach a given position is
never larger than ∆t0.

It is worth reminding that the mutual effects between flow
paths released in the same time step is disregarded, based on the
assumption that differences in arrival time are small compared
with the diffusive time. Acknowledging this effect would re-
quire sorting the particles by passage time order at each crossed
element, which dramatically increases the computational cost.
Despite that, the operation defined by eq. (29) still requires
dealing with a large amount of data, which leads us to the sim-
plification described in the next section.

4.3. A meta-particle concept to reduce stored data
At each time step and mesh element, the passage time and

temperature of each particle have to be stored, which translates
into huge sets of data considering that the particle number is
also large. In order to reduce the amount of stored data, we

build on the observation that the trajectories crossing a mesh
element have similar temperatures and passage times. There-
fore, at each time step we keep track of the effects of the par-
ticle passage time and temperature by assigning to each mesh
element the values of a meta-particle, whose passage time and
temperature is equal to the average passage times and temper-
atures of the n particles released at that time step and crossing
the element, such as

Tb
j
(X) =

1
n j(X)

n j(X)∑
q=1

T j
q(ξ), ∀ξ ∈ Ω(X), (31)

t j(X) = t j
0 +

1
n j(X)

n j(X)∑
q=1

τ
j
q(ξ), ∀ξ ∈ Ω(X), (32)

where the meta-particle variables are expressed using again the
short notation, e.g., Υ

j
(X) = Υ

[
τ(X); x0, t

j
0

]
. Note that, since

the discretization for ξ corresponds to the mesh edges, i.e., the
intersections between the particle trajectories and the mesh el-
ements, we estimate Tb

j
(X) and t j(X) as the average between

the values at the two adjacent edges of Ω(X).
These average times and temperatures substitute Tb in eq.

(26), such as Tb(X, t(X)) = Tb(X). Under this framework, the
heat flux that a particle p released at time t0 exchanges at the
position x is still expressed by eq. (28), but the memory diffu-
sive heat exchange is evaluated according with the meta-particle
temperatures and passage times recorded at the position over
the time steps, such as Ji

Ωp
(X) is substituted by JΩp

i
(X)

JΩp

i
(X) =

√
κCm

π

i−1∑
j=1

Tb
j
(X) F

[
ti
p(x), t j(X)

]
. (33)

The adoption of this meta-particle concept sensibly reduces
the amount of stored data, with respect to evaluating the diffu-
sive flux considering the individual contribution of all the cross-
ing particles released in the previous time steps, as described in
the previous section. At the end of each time step, the recorded
particle passage times and temperatures of each location are
translated into one value of temperature and associated time for
each fracture mesh element. The consequent loss of accuracy is
minimal, as we discuss in Section 5.4.

Thus, the particle temperature variation during the advective
displacement across the element Ω(Xk) is evaluated by solving
eq. (19), which is discretized according to a Crank-Nicolson
scheme into

T i
p(xk+ ) − T i

p(xk− )

τi
p(xk+ ) − τi

p(xk− )
= −

Ji
p(xk+ ) − Ji

p(xk− ) + 2JΩp

i
(Xk)

2 C b(Xk, ti
0)

(34)

where the subscripts k+ and k− identify the trajectory entrance
and exit points in the grid element Ω(Xk). Note that the fracture
half-aperture value refers to the injection time. In fact, the frac-
ture aperture and velocity fields are updated at each time step
and they are considered constant for the duration of the time
step. The fracture half-aperture variation is estimated at each
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mesh element according to the meta-particle average values of
temperature and time, such that eq. (22) translates into

∆bi(X) = 2
1 + ν

1 − ν
αT

√
D
π

i∑
j=1

Tb
j
(X) G

[
ti(X), t j(X)

]
, (35)

where
G(tA, tB) =

√
tA − tB −

√
tA − tB + ∆t0 . (36)

Finally, the fracture semi-aperture field is updated at each
time step according to the more recently recorded values of ∆b
at each X, such as

bi+1(X) = b0(X) + ∆bi(X) . (37)

Note that this formulation disregards the effects of lateral
mechanical continuity because the thermal displacement is as-
sumed as exclusively dependent on the temperature variation in
the direction perpendicular to the fracture, while in practice me-
chanical deformation is instantaneously transferred far from the
thermal perturbation through the solid matrix. In other words,
the fracture opening should propagate laterally both in the frac-
ture longitudinal, ` and on-plane transverse, y, directions. How-
ever, the lack of this effect is partly compensated by the smooth
nature of the heat propagation in the fracture, both in the lon-
gitudinal direction, as a consequence of the diffusive exchange
with the matrix, and in the on-plane transverse direction, be-
cause of the similar velocities of adjacent streamlines over the
same fracture. We test the validity of this assumption in Section
5.3.

4.4. Implementation in a DFN simulator

The formulation has been implemented in the DFN.lab soft-
ware platform, which provides a set of tools for the genera-
tion of stochastic and deterministic heterogeneous fracture net-
works, and for the modeling of flow in the connected network
through mixed hybrid finite element scheme (Le Goc et al.,
2019; Pinier et al., 2021). This scheme ensures fluid mass con-
servation, including for unstructured meshes with a high vari-
ability in element quality. The particle tracking module, already
implemented in the software, constitutes the basis for the ad-
vective part of this formulation. The algorithm is designed to
develop accurate particle tracing on unstructured meshes (Ma-
tringe et al., 2006).

Particle trajectories are defined on the grid mesh accord-
ing with the velocity field, which is approximated as constant
within each element. At each element crossed, the particle mo-
tion occurs on a straight line. The velocity vector determines
the exit point, i.e., the position where the trajectory crosses the
element edge, while the velocity norm determines the time for
the particle to jump across the element. Since particle motion
occurs for the duration of the time interval (Section 4.1), it may
occur that some particles have not reached the outlet during the
time interval. In this case, particles are stopped and their travel
resume when a new time-step is initiated. To do so, the particle
position at the stop time is evaluated by means of a linear inter-
polation on the trajectory line crossing the last visited element.

5. Validation of the proposed approach

5.1. Validation and convergence analysis in the case of con-
stant fracture aperture and velocity

In the case of a single trajectory with constant in time frac-
ture aperture and velocity, the semi-analytic solution described
in Sections 3.2 and 4 should provide the same estimates of tem-
perature than the analytic solution of Section 3.1. We make
use of this equivalence to analyze the convergence performance
of the semi-analytic solution under different conditions of time
discretization. We consider a fracture of 10 m length with con-
stant in time fracture aperture and steady state flow velocity.
This corresponds to either constant flow or constant pressure
boundary conditions at the fracture inlet x=0, where we also
impose a constant temperature condition. The rock matrix ther-
mal diffusivity is D=1×10−6 m2/s and the parameter θ is 1, i.e.,
Cm = C.

We test the performance of the semi-analytic formulation for
two cases, one with uniform velocity and regular spatial grid,
the other with more general conditions of non-uniform veloc-
ity and irregular spatial grid. For both cases the semi-aperture
is uniform and equal to b=1×10−4 m. For the first case, we
consider flow velocity v=2.5×10−2 m/s. We adopt a space dis-
cretization such that ∆x=1 m, while for the time discretization
we consider different time intervals ∆t0. To keep generality, the
analysis is performed in terms of dimensionless values making
use of the characteristic time tc = θ2D∆τ2/(πb2), which repre-
sents the ratio of the square of the advective characteristic time
for the single jump, ∆τ = ∆x/u, to the diffusive characteristic
time, πb2/(θ2D). The value of the characteristic time is approx-
imately 0.5 days for this specific example. The adoption of tc
will prove convenient, as shown in the following.

Figure 3 shows the comparison between the two solutions
under values of time intervals from 0.1tc to 10tc, which corre-
spond to values from 102∆τ to 104∆τ. In the left panel, the
temperature variation in time is represented for three different
control planes, at x = 1.5∆x, x = 3.5∆x and x = 9.5∆x, respec-
tively. Since values are stored on the grid element, we take the
middle point of the element as x. At the first control plane, the
temperature starts to change for time larger than 0.2tc, which is
expected as in eq. (13) the temperature is larger than zero for
arguments of the complementary error function smaller than 2,
i.e., when t > tc/5 if t >> τ. In the right panel, we show the
result vs space at t = 30tc. The semi-analytic solution shows a
good agreement with the classical solution and it is most accu-
rate for smaller values of ∆t0/tc. The error increases for increas-
ing values of the time interval and it incurs an overestimation of
the temperature, especially for small times. In fact, if eq. (28)
is replaced into eq. (34), one obtains that the temperature varia-
tion of the front depends on the ratio θ

√
D∆τ/

√
π∆t0/b, which

coincides with
√

tc/∆t0. Overall, we observe that the adoption
of the Crank-Nicolson scheme ensures stability, while preserv-
ing accuracy.

We also perform a convergence analysis for the case of non-
uniform velocity and non-uniform space discretization (Fig. 4).
The fracture semi-aperture is assumed as uniform and equal to
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Figure 3: Temporal (left) and spatial (right) evolution of temperature in the fracture in response to non-isothermal continuous injection for the case of constant in
time and uniform fracture aperture and velocity. Comparison of the results calculated by means of the proposed semi-analytic approach (markers), as described in
Sections 3.2 and 4, and by the classical solution, as in eq.(13) (solid lines). The different colors in the left panel correspond to different control planes along the
fracture trajectory, which is discretized with space interval ∆x=1m. The different markers refer to different values of time intervals for the semi-analytic solution.
Time is normalized with respect to the characteristic time tc = θ2D∆τ2/π/b2, where ∆τ is the advective time for the single jump ∆τ = ∆x/u. Right panel shows
results for t = 30tc. Plot-frequency is adjusted to improve visualization.

b=1×10−4 m, which means that the variation of velocity corre-
sponds to an equivalent variation of fluid flow. With this exam-
ple, we mimic the general case of a trajectory crossing several
fractures and intersections, like in a complex fracture network.
Although we keep the fracture aperture as uniform, the vari-
ability of the advective time for each jump is such that the char-
acteristic time tc, evaluated for each space grid element, spans
over several orders of magnitude and it is distributed as shown
in the inset of Fig. 4. We test the convergence assuming val-
ues of time interval proportional to the average characteristic
time tc. The results confirm the accuracy of the solution under
a strong heterogeneity, although some oscillations are observed
at short times for the case of small time interval.

Although results are sufficiently accurate for all the time in-
tervals, a small time interval may incur large computational
time, while if the time interval is very large, temperatures are
not calculated for short time, i.e., time smaller than the time
interval. Considering the large variability of the characteristic
time in a heterogeneous medium, the evaluation of a minimum
and maximum time interval at the beginning of the simulation
may be useful to prevent from this inconvenient.

5.2. Convergence analysis in the case of variable fracture aper-
ture and velocity

Here we analyze the consequences of the thermo-mechanical
coupling for a single fracture. We compare the heat transfer for
the case of constant fracture aperture and velocity with the case
when the fracture aperture and the flow velocity change because
of the temperature-dependent deformation.

We consider the same setting and parameter values as for
the first case of Section 5.1, with initial uniform semi-aperture
b0 equal to 1 × 10−4 m and uniform space discretization ∆x=1
m. However, to evaluate the velocity field variation consequent
to the fracture aperture variation, we distinguish two different
cases of boundary conditions (BCs) at the inlet. In one case we
consider constant inflow, in the other we assume constant pres-
sure. In both cases, the outlet at x = L is subject to a constant
zero pressure BC and the initial velocity is v0=2.5×10−2 m/s.
Since we consider the case of a single fracture with no intersec-
tions, the condition of steady state flow at each time step implies
that the flow is uniform along the trajectory. Although we show
the results by means of dimensionless parameters, the aperture
variation depends on the injected temperature, which we fix as
T0 = −10◦C. For the mechanical parameters, the linear thermal
expansion αT is 1×10−5(◦C)−1 while the Poisson ratio ν is 0.3.
We consider three different time interval values, from 0.1t0

c to
10t0

c in order to show the convergence performance under the
circumstance of changing aperture. The characteristic time t0

c
refers to the initial values of semi-aperture, b0, and velocity,
v0. Therefore, it has the same value as in the Section 5.1, i.e.,
t0
c ≈ 0.5 days.

Figure 5 shows the temporal variation of temperature and
fracture semi-aperture, observed at one control plane placed
at x=3.5 m from the inlet, for the case with constant aperture
and variable aperture under the two different BCs. In the case
analyzed here, the cooling of the rock causes an increase in
fracture aperture. This implies the variation of both the flow
velocity and the fluid volume exchanging heat with the rock.
This latter becomes larger, which leads to smaller temperature
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Figure 4: Temporal (left) and spatial (right) evolution of temperature in the fracture in response to non-isothermal continuous injection for the case of constant in
time but not uniform velocity, and with non-uniform spatial discretization. The variability of the characteristic time, evaluated for each mesh element, is shown in
the inset plot of the left panel. Comparison of the results calculated by means of the proposed semi-analytic approach (markers), as described in Sections 3.2 and 4,
and by the classical solution, as in eq. (13) (solid lines). The different colors in the left panel correspond to different control planes along the fracture. The different
markers refer to different values of time interval for the semi-analytic solution. Time is normalized with respect to the average characteristic time, represented in the
inset plot by the black dashed line, and by the average advective time. Right panel shows results for t = 30tc. Plot-frequency is adjusted to improve visualization.

variations for unitary advective displacement. Note that in the
case of constant aperture, the velocity is invariant regardless of
the BC. When the aperture is temperature-dependent, on the
contrary, the BC has a great impact on the velocity, which is
also shown in Fig. 6, where results are presented as a func-
tion of the longitudinal direction, for the sole case with time
interval equal to t0

c . If the inflow is kept constant at the inlet,
flow velocity changes proportionally to the inverse of the local
fracture half-aperture, i.e., v(x, t) ∝ b(x, t)−1. This implies that
the advective time increases proportionally to the increase of b,
which counterbalances the increase of fluid volume in contact
with the rock. Therefore, the characteristic time remains equal
to the initial conditions, and to the constant aperture case. This
has two consequences. The first is that the convergence is not
affected. Second, the temperature response remains the same
as in the constant case. This equivalence of results is specific
of considering a single trajectory in a one-dimensional domain.
With two-dimensional fractures in a three-dimensional domain,
the variation in velocity promotes the migration of the trajec-
tory towards faster preferential zones, as we will see in Section
7.

The behavior is different when a constant pressure is im-
posed at the inlet. In this case, flow velocity is proportional to
[b(x, t)I(t)]−1, where I(t) =

∫ L
0 b(x, t)−3dx, according with the

assumption that the cubic law applies locally (see Section 2.1).
The characteristic time is therefore proportional to the square
of I(t) for any x. This non-locality affects both the observed
response and the convergence conditions. At short times, the
increase in fracture aperture only occurs over a small portion of

the domain (observe Fig. 6). The velocity is reduced for short x
and slightly increased for large x. The value of the characteristic
time is similar to the initial one, which makes the temperature
responses for constant and variable aperture comparable. Later
on, the aperture variation propagates to the rest of the domain,
which gives a major importance to the integral I, compared to
b. The consequent acceleration of the temperature front in turn
increases the propagation of the aperture variation, which dra-
matically speeds up the heat transfer, giving the abrupt evolu-
tion of temperature observed in Fig. 5.

As said, when a constant pressure BC is imposed, the charac-
teristic time of the problem changes according to the square of
the space integral I, which has direct consequences on the accu-
racy of the calculation. If the aperture increases, corresponding
to a cooling of the rock, the characteristic time decreases, which
means that the relationship ∆t0/tc increases. This may generate
less accurate results and lack of information (Fig. 5). On the
contrary, if the rock is heated up, the consequent reduction of b
ensures that the relationship ∆t0/tc decreases, and therefore that
the accuracy is preserved, as shown in Supplementary Informa-
tion.

5.3. Validation of the thermo-mechanical response
The accuracy of the analytic evaluation of the TM fracture

aperture (eqs. (22) and (35)) is tested against results from a
fully coupled THM numerical simulation performed with the
Finite Element Method simulator CodeBright (Olivella et al.,
1996). We consider a single fracture embedded in a rock ma-
trix. Both the fracture and the rock are represented as porous
media in the finite element simulator. Therefore, we build the
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Figure 5: Temporal evolution of fluid temperature (top) and semi-aperture (bot-
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constant fracture aperture and velocity (green) is compared with the case of
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characteristic time t0c , as defined in the text. Fluid temperature is normalized
with respect to the temperature injected at the inlet, semi-aperture is normal-
ized with respect to its initial value, while time is normalized with respect to t0c .
Marker plot-frequency is adjusted to improve visualization.

model in order to have it consistent with our assumptions. We
set the longitudinal thermal conductivity in the fracture as very
low, in order to the heat transport in the fracture be governed by
advection, according with the assumptions here. A low intrin-
sic permeability is assigned to the rock matrix in order to make
it consistent with our assumption that the rock is impermeable
and that the heat transport in the rock is exclusively driven by
thermal diffusion. We impose a small pressure gradient with
a highly conductive fracture, to reduce the hydro-mechanical
deformations and only observe the thermo-mechanical defor-
mations. The viscosity is set as insensitive to the temperature
variations. We assume constant velocity, i.e., the fracture aper-
ture variation does not affect the velocity field or the transport
behavior. Thus, we only evaluate the aperture variation in re-
sponse to the temperature field generated by a continuous injec-
tion for a certain time. The fracture is 100m long with a steady
state flow rate of 5×10−5 m2/s. The rock thermal diffusivity D
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Figure 6: From top to bottom: variation of fluid temperature T , fracture semi-
aperture b, flow velocity v, and pressure p as a function of the distance from
the injection section for a fracture subject to cold fluid injection. Results refer
to two different observation times at dimensionless time equal to 3 (blue lines)
and 10 (orange lines) with respect to the initial characteristic time t0c . The case
with constant fracture aperture and velocity (solid lines) is compared with the
case of temperature-dependent fracture aperture and velocity, under the case of
constant pressure BC (dashed lines) or constant inflow BC (dotted lines) at the
inlet. T is normalized with respect to the temperature injected at the inlet, b and
v are normalized with respect to their initial values, p with respect to the initial
pressure at the inlet, while time is normalized with respect to t0c . Estimations
are performed by adopting ∆t0 = tc.

is equal to 1.6×10−6 m2/s and the parameter θ is approximately
0.9. We simulate 20 days of continuous injection of the tem-
perature T0 at the x=0. Nevertheless, we show the results in
terms of dimensionless time, which allows for extending them
to other sets of parameters. To this end, the characteristic time
tc = θ2Dτ2/π/b2 is adopted, as described in the previous sec-
tion, where the characteristic length for ∆τ is set as equal to 1
m. For the mechanical parameters, the linear thermal expansion
αT is 1×10−5(◦C)−1 while the Poisson ratio ν is 0.3. We set the
domain size such that the mechanical boundary conditions do
not affect the behavior.

Figure 7 shows that the analytic estimation of both the tem-
perature and the semi-aperture variation is very accurate, which
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confirms the validity of the assumptions described in Section
2.3. We observe that considering the mechanical problem as
one-dimensional in z does not incur large errors, because the lat-
eral mechanical propagation of the displacement is reproduced
by the smooth heat propagation. Small discrepancies are ob-
served when the fluid temperature profile is sharp (observe the
blue and orange lines), a condition that is slightly smoothed
out by the fully coupled numerical simulator. This impacts
the rock temperature profiles, and consequently the strains, for
short times.

5.4. Accuracy of the meta-particle assumption
As described in Section 4.3, the memory diffusive heat ex-

change is calculated by making use of a meta-particle concept,
i.e., at each time step we operate an averaging of the arrival time
and temperature over the particles crossing each grid mesh el-
ement. Here we test the effects of this averaging by comparing
the particle-rock heat exchange flux and the particle temper-
atures after the diffusive exchange, evaluated considering the
meta-particle (eq. (33)) or the individual particle temperatures
(eq. (29)).

To perform this analysis, we consider observing one location
at which 10 particles arrive with a certain distribution of pas-
sage time and temperature. We evaluate the fluid-rock heat ex-
change for each particle, Jp, and the consequent outgoing parti-
cle temperature after having exchanged Jp for a ∆τ=1 s. This is
performed for several observation times, corresponding to the
passage of particle sets released at different t0. The parameters
b, θ and D are set as in Section 5.1. The characteristic time for
the unitary ∆τ is therefore equal to 50 s. Without loss of gen-
erality, we consider stationary trajectories, i.e., the particle sets
released at different t0 cross the control location with constant-
in-time values of passage time τ. Their probability density
function (pdf) follows an upper truncated power law distribu-
tion with exponent γ, such as pdf(τ) = γ τ−γ−1/(τ−γm − τ

−γ
M ). The

minimum and maximum cutoff values, τm and τM , are set as 10s
and 1010s, respectively. We explore two scenarios with values
of γ equal to 0.5 and 2.5. For the time interval of particle re-
lease ∆t0, we consider different values corresponding to ratios
of (τM − τm) to ∆t0 ranging between 0.1 and 1. Each particle
crosses the control location with a temperature correlated with
its passage time and with the observation time by means of the
relation T ∝ erfc(τ/

√
t), according with eq. (13), where we

assume that the imposed initial temperature is T0=50◦C. This
assumption reflects the condition in which the particles have
traveled through independent trajectories before converging to
the control location. Therefore particle temperature increases
with increasing observation time and with decreasing passage
time, i.e., fast particles have higher temperature than slow ones.
Moreover, the variability is large for short observation time, and
it reduces as the observation time increases. For each scenario,
we perform 100 realizations and we evaluate the average of the
maximum differences in particle exit temperature.

Figure 8a and b show results at different observation times for
one realization of the case with γ = 0.5 and ∆t0 = τM − τm. To
improve visualization, results are plotted with a frequency time
smaller than ∆t0. Panel a shows the diffusive heat exchanged

by each particle, Jp, at the observed location and at different
times when the contribution of all particles (blue markers) or
the meta-particle contribution (orange markers) is considered.
At each observation time, the particles cross the location with
temperature proportional with their passage time. The heat that
a particle exchanges depends on its temperature and on the local
rock temperature. Therefore, Jp is larger for the first arrival par-
ticles, which have a higher temperature (observe the inset plot).
Hottest particles undergo a positive heat exchange (they give
heat), while coldest particles undergo a negative heat exchange
(they receive heat). In both cases, the absolute values of Jp first
increase with time and eventually decrease as larger rock vol-
umes are heated up. This time of trend inversion depends on the
particle passage times and temperatures. For the example ana-
lyzed here, the inversion time is larger than the simulated time
for the slowest particles, so we do not observe any reduction
of Jp for those particles. Note also the sign variation of Jp for
particles with intermediate velocity, which indicates that they
receive heat at the beginning, while they give heat later. Results
show that considering all the values of particle temperature and
passage time or the meta-particle average values gives similar
results (compare the blue and orange markers).

After having exchanged Jp, the particles exit the location
with a new temperature. Figure 8b shows the relative difference
between the outgoing temperatures evaluated with the meta-
particle values and considering the particle contributions with
their respective τ and T . Values are normalized with respect to
the latter. After the first observation time, when the two meth-
ods give the same outgoing temperatures, they diverge. In par-
ticular, the error is positive, but small, when the meta-particle
method is adopted, and it reduces with time.

The trend is similar when other scenarios are analyzed, for
which the maximum positive and negative errors, averaged over
the 100 realizations, are shown in Fig. 8c. Results are shown
for the two scenarios of γ, with each line of the plot correspond-
ing to a different value of the time interval ∆t0 and columns
representing different observation times. The error associated
with the meta-particle averaging operation is always positive
(the maximum negative colorplot exhibits zero values). The
accuracy of the averaging operation is sensitive to the ratio of
(τM − τm) to ∆t0, which we explore by varying ∆t0. The error
increases when the ratio increases, reflecting that the averaging
process incurs overestimation of the particle temperature if the
time interval is similar to the maximum difference in particle
arrival time. This occurs under all the assumed scenarios, but
it is particularly evident for smaller γ, i.e., when the number of
particles with large arrival time is larger. Moreover, the error is
larger for short times and decreases as the time increases, which
is a consequence of the reduction of the variability in particle
arrival temperature with time. In general, large variability in-
creases the error, yet the maximum error is overall smaller than
5%, which confirms the accuracy of the meta-particle method.

Although we have performed the analysis assuming the case
of a hot fluid injection, the same normalized results would be
found in the case of cold injection.
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x=1 m. Results are normalized with respect to the injected temperature T0. Flow velocity is assumed as constant, disregarding the effect of the aperture variation.
Further details of the simulated example are given in the text.

6. Comparison with classical solution for multiple station-
ary and independent trajectories

If thermal deformations are neglected, the fracture aperture
and the velocity fields are constant in time. This implies that
the trajectories are stationary for the duration of the heat injec-
tion. Under this circumstance it seems natural to extend the so-
lution of Section 3.1 to the case of multiple trajectories, which
is easily carried out by evaluating eq. (13) on each trajectory
for a given time. This approach has been proposed by sev-
eral authors for the case of pulse or continuous injection of so-
lute tracer (e.g., Yamashita and Kimura, 1990; Cvetkovic et al.,
1999; Tsang and Tsang, 2001; Liu et al., 2007) and recently
applied to the case of heat injection (Gisladottir et al., 2016).

The adoption of this methodology implicitly entails neglect-
ing the mutual effects between neighboring trajectories for all
the duration of the injection. Thus, each trajectory is indepen-
dent from the others and the fluid-rock heat exchange on one
trajectory depends exclusively on the temperature evolution in
time on the same trajectory. This is equivalent to consider that

the heat exchanged by the generic particle p at the time interval
i is

Ji
p(x) =

√
κCm

π

T i
p(x)
√

∆t0
−

i−1∑
j=1

T j
p(x) f (ti

0, t
j
0)

 . (38)

Neglecting the effects of the lateral diffusion between neigh-
boring trajectories is reasonable in the case of a pulse injec-
tion, because the time is too short for the heat to diffuse in the
rock over the distance between the trajectories. The question is
whether this assumption is valid for the case of a long continu-
ous injection, which we analyze and discuss in this section.

To illustrate the effects of the assumption of independent tra-
jectories when several particles crosses close locations, we per-
form the same analysis of Section 5.4, in which we have con-
sidered that the trajectories and the velocity field are station-
ary. We compare the results obtained with our approach with
the ones obtained from the approach of Section 3.1 extended to
multiple flow paths. The difference between the two methods is
analyzed using the results evaluated with the contribution of all
particles taken individually as the reference, in order to avoid
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Figure 8: a) Diffusive fluid/rock heat flux, Jp, undergone by each particle at different times, evaluated considering the contribution of all particles taken individually
(eq. (29), blue squares), and the contribution of all particles considering their average values of passage times and temperatures through a meta-particle concept
(eq. (33), orange dots). Each marker corresponds to one particle. The same set of 10 particles arrive at the control location at each t0 with stationary passage times
τ following a power law pdf distribution and temperatures proportional to erfc(τ/

√
t). b) Relative error in the estimation of the particle temperature after having

exchanged Jp with the rock for a ∆τ=1 s when the meta-particle concept is used. c) Maximum values (averaged over 100 realizations) of positive and negative
relative errors in the outgoing temperature when the meta-particle concept is used. Columns represent different observation times, rows represent different scenarios
of values for the exponent of the passage time power law pdf distribution, γ, and for the time interval ∆t0. The results shown in the top panels correspond to one of
the realizations of the case with γ=0.5 and ∆t0 = τM − τm, represented in the last row of the colorplots. Time is normalized with respect to the characteristic time
for the unitary ∆τ. For all plots, the writing frequency has been adjusted in order to show results at the same time for all cases. More details in Section 5.4.

interference with the error associated with the meta-particle as-
sumption.

Figure 9a shows that the assumption of independent flow
paths leads to overestimate or underestimate Jp (observe the
green markers), because it is assumed to be exclusively a func-
tion of the temperature evolution on the particle trajectory.
Therefore, Jp is underestimated for the hottest particles and
overestimated for the coldest ones. Observe that, when trajec-
tories are not independent (blue markers), Jp is negative for the
slowest (and coldest) particles, because the rock matrix has in-
creased its temperature so the diffusive heat flux is reverted (the
cold particle can receive the heat released by the hot ones). This
effect is not captured under the assumption of independent flow
paths.

As a consequence of the large differences in Jp, the estima-
tion of the exit temperature under the assumption of indepen-
dent flow paths incurs substantial differences, which however
decrease in time (Fig. 9b). The error is positive for most parti-
cles, but the negative error is larger that the positive, reflecting
that the temperature is significantly underestimated for a few
particles. This is a consequence of the assumed distribution of
arrival time and temperature, with more particles with hot tem-
perature than with low temperature. The heating of the rock
matrix due to the hot particle contributions is not captured in
the case of independent trajectories. As expected, the negative
error is larger for the late arriving particles which are the coldest
ones. Since the particle entrance temperature is proportional to
the erfc(1/

√
t), the error decreases with time, as all the particles
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Figure 9: a) Diffusive fluid/rock heat flux, Jp, undergone by each particle at different times, evaluated considering the contribution of all particles taken individually
(eqs. (28) and (29), blue squares), and the contribution of the single particle under the assumption of independent flow paths (eq. (38), green crosses). Each
marker corresponds to one particle. The same set of 10 particles arrive at the control location at each t0 with stationary passage times τ following a power law pdf
distribution and temperatures proportional to erfc(τ/

√
t). b) Relative error in the estimation of the particle temperature after having exchanged Jp with the rock for

a ∆τ=1 s when the assumption of independent flow paths is considered. c) Maximum values (averaged over 100 realizations) of positive and negative relative errors
in the outgoing temperature when the assumption of independent flow paths is considered. Columns represent different observation times, rows represent different
scenarios of values for the exponent of the passage time power law pdf distribution, γ, and for the time interval ∆t0. The results shown in the top panels correspond
to one of the realizations of the case with γ=0.5 and ∆t0 = τM −τm, represented in the last row of the colorplots. Time is normalized with respect to the characteristic
time for the unitary ∆τ. For all plots, the writing frequency has been adjusted in order to show results at the same time for all cases. More details in Section 6.

tend to similar temperatures.
Results shown in Fig. 9a and b refer to the case with expo-

nent of the passage times pdf distribution γ equal to 0.5, which
corresponds to a case with high probability of having particles
with large arrival time and low temperature. When many of
such extremely slow particles exist, the classical method fails
in estimating their temperatures and large relative errors are ob-
served, with negative values up to 100% and positive values
below 8%. The behavior is however highly sensitive to the
probability distribution exponent (Fig. 9c). In fact, the exis-
tence of a large number of particles with very different arrival
times and temperatures constitutes a situation far from the inde-
pendent trajectories assumption, while if many particles exhibit

similar temperature and arrival time, the system approaches the
behavior of a single trajectory. For this reason, the negative
relative error is smaller than 30% when γ = 2.5, indicating
the two methods give similar results. Notice also that the dif-
ference between the two methods is almost insensitive to the
time interval value. A slight increase of the error is observed
for decreasing time interval, because for short time interval the
particle temperatures are more often adjusted when based on
the previous particle transition, while the time interval does not
impact the results in the case of independent trajectories. As
also commented in Section 5.4, the error decreases with time,
coinciding with a reduction of the variability of particle arrival
temperature.
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Despite the large difference observed for a few particle tem-
peratures, the average temperature estimated over the ensemble
of particles gives similar values with the two methods, because
most particles have similar arrival times. This means that if
the average temperature results are observed at a control point
coinciding with the observation location here, we observe sim-
ilar temperature whether we adopt the classical method or the
new one. However, results evaluated at a downstream control
section with one method or the other may differ if particles di-
verge as they bring a different temperature. It is clear that under
certain conditions, the mutual effect between converging flow
paths may affect the behavior and it should therefore be consid-
ered.

The analysis performed here and in Section 5.4 is intended
to represent some of the most critical cases. In fact, trajec-
tories with such heterogeneous characteristics converging into
the same location reflects an extreme case that is hardly encoun-
tered in fracture networks, where adjacent trajectories typically
exhibit similar arrival times. We further analyze and discuss the
difference between the two methods by observing the result on
a DFN in the next Section.

7. Heat transport in a DFN

To analyze the effects of the thermo-mechanical rock defor-
mation on the heat transport in a fracture network, we compare
the results from simulations with temperature-dependent frac-
ture aperture and with constant fracture aperture. We also show
the results evaluated with the classical approach of independent
stationary trajectories (recall Section 6).

We consider a simple DFN composed by 10 fractures with
equal fracture semi-aperture b = 10−4 m, corresponding to a
transmissivity approximately equal to 7 × 10−6 m2/s. The do-
main has a cubic volume of 100 m side. A temperature colder
than the resident fluid by 50◦C is injected from one section of
the domain, on which we consider two scenarios of boundary
conditions - one with constant inflow, the other with constant
pressure - while constant pressure equal to zero is imposed at
the opposite section. The constant inflow is set as equal to
3×10−3 m3/s, while the constant pressure is 5 MPa – the two
scenarios generating similar velocity fields. To perform the
simulation, 500 particles are introduced in the system from the
inlet at each time step. The resulting pdf distribution of particle
travel times from inlet to outlet follows a power law with ex-
ponent slightly larger than 2, and the maximum value is 2×104

s (Fig. 10, left panel). The characteristic time for the single
jumps spans over 10 orders of magnitude ranging from 10−1 s
to 109 s, with an average value of 3×106 s and a pdf distribution
as shown in Fig. 10, right panel. According with these values,
the time interval ∆t0 is set as equal to 1×106 s, approximately
11 days. Different values of particle number and time interval
have been also considered to ensure that results are independent
on these factors (see Supplementary Information).

For illustrative purposes, we first consider injecting only four
particles at each time step for the scenario with fixed inflow
boundary condition at the inlet. Figure 11 shows the velocity
field and trajectories of the four particles at the initial time and

at time equal to 2×107 s, for the case of temperature-dependent
fracture aperture. As the velocity field evolve in time, parti-
cle trajectories migrate towards faster flow paths. These corre-
spond to zones where the fracture aperture, and transmissivity,
has increased as a consequence of the rock cooling and contrac-
tion (observe panel c). It is worth noting that, given the fixed
inflow BC, flow velocity decreases everywhere in the network,
but it is larger where the fracture aperture increases, which is
different from what observed for the one-dimensional domain
in Section 5.2. This different behavior is related to the increased
complexity of the flow field.

The example above illustrates that the injection of a cold
fluid, and the consequent rock contraction and fracture aper-
ture increase, may cause the progressive concentration of the
heat transport along preferential fast flow paths. To analyze the
consequence of this behavior on the heat transport, we analyze
the results of the simulation with the full set of 500 particles.

Figure 12 shows the temporal evolution of the temperature at
the outlet, evaluated as the average temperature over the cross
section. The comparison of the results for the two cases of con-
stant and variable fracture aperture shows that heat transport is
significantly accelerated when fracture aperture is temperature-
dependent. This behavior is observed for both scenarios of
boundary conditions, but the temperature profile is sharper
when constant pressure is imposed at the inlet. This is not only
a consequence of the non-locality of the velocity field under
this boundary condition, as observed in Section 5.2, but it also
depends on the particle injection mode. Since particles at the
inlet are distributed proportionally to the flow velocity, at each
time step more particles are injected in places with increased
flow velocity. This mechanisms means that velocity will signif-
icantly increase on initially high-velocity paths, enlarging the
difference between slow and fast paths.

When the imposed boundary condition is of constant inflow,
particles are uniformly distributed over the inlet section. How-
ever, as observed in Fig. 11, particles tend to migrate towards
faster regions, which promotes the advective transport result-
ing in a faster temperature response than in the case with con-
stant aperture, where the trajectories are stationary. This mi-
gration explains the difference from what was observed for the
one-dimensional domain, where the fracture with temperature-
dependent aperture exhibits the same behavior than the fracture
with constant aperture (compare Fig. 12 with Fig. 5).

In general, the dramatic acceleration of the advective trans-
port is the primary reason for the faster heat transfer. There are
however additional mechanisms involved. The passage through
fractures with larger aperture implies a smaller diffusive tem-
perature variation, because the fluid volume in contact with the
rock surface is larger, or equivalently, the surface of diffusive
exchange per fluid volume is smaller (recall eq. (3)). Moreover,
the heat moves through rocks already affected by significant
temperature variations, which reduces the temperature gradient
at the fracture/rock interface, and therefore the heat exchange
flux.

In the specific example here, all trajectories converge to the
same fracture at the outlet (Fig. 11). It is therefore interest-
ing to compare the results of the case with constant fracture
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Figure 11: Velocity field at the initial time (a), velocity (b) and transmissivity (c) fields at time equal to 2×107 s in the example DFN with temperature-dependent
fracture aperture under the continuous injection of 4 particles in the system. Black and white lines represent the trajectories of the particles injected until the
represented time, where the color is solely chosen for visualization purposes. The arrows in (a) indicate the fluid inlet and outlet sections.
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Figure 12: Temporal evolution of the average temperature at the outlet section
of the example DFN for the two scenarios of constant inflow (orange) and con-
stant pressure (blue) boundary conditions, and under the two cases of constant
(empty square markers) and temperature-dependent (full dot markers) fracture
aperture. Results evaluated with the assumption of independent trajectories are
represented by the solid lines. Temperature is normalized with respect to the
one imposed at the boundary. Plot-frequency is adjusted to improve visualiza-
tion.

aperture against the results estimated by means of the classical
method of independent trajectories. Figure 12 shows that the
two methods give similar values of average temperature at the
outlet. However, the individual particle temperature evolution
(Fig. 13) shows that the assumption of independent trajecto-
ries implies a small overestimation and a large underestimation
of the particle temperature, which is similar to what observed
in Section 6. This occurs for a small number of particles, and
therefore the temperature estimated as the average over all the
particle temperatures is similar. Nevertheless, the error may
propagate if particles diverge down-stream, which will be the
focus of future investigations.

8. Discussion

The formulation presented above is ideally conceived to
modeling heat transport with thermo-mechanical effects due
to continuous non-isothermal injection into a complex fracture
system, such as in the case of geothermal technologies.

Eulerian numerical models, such as finite element or finite
difference methods, typically suffer from numerical instability
in solving transport problems, especially when the advective
front is sharp. Lagrangian methods overcome this problem, but
in general they do not allow taking into account variability in
time of the parameters. The hybrid approach proposed in this
paper provides a stable algorithm for the transport advective-
diffusive problem while keeping the variable-in-time nature of
the parameters. The adoption of a grid-defined memory dif-
fusive heat exchange allows us to deal with trajectories that
change in time because of the thermal deformation of the host
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Figure 13: Temporal evolution of the particle temperature in the example DFN,
evaluated by means of the formulation presented here under the condition of
constant fracture aperture (red lines) and by means of the classical approach
with independent trajectories (blue lines). For aesthetic reasons, we only show
the evolution for 200 of the 500 injected particles, but the behavior of the full
set of particles is not dissimilar. Temperature is normalized with respect to the
one imposed at the boundary.

rock. The analytic solution of both the diffusive and the me-
chanical part of the problem sensibly reduces the computational
cost. These remarkable advantages imply the cost of sacrificing
some of the complexities of the problem.

Injection of cold fluids in fractured media causes an increase
in pore pressure and a decrease in temperature, both processes
leading to an increase in the fracture aperture (Koh et al., 2011;
Ghassemi and Tao, 2016). The two processes act on very dif-
ferent time scales, with heat transfer occurring at very large
time-scale compared to the pressure diffusion (De Simone et al.,
2017). Building on this concept, we disregard the HM fracture
aperture variation, and we concentrate on the solely TM elastic
deformations. This conceptually corresponds to analyzing the
long-term effects, after the early-time pressure-driven deforma-
tions have occurred. At the same time, we disregard some com-
plexity intrinsic to the coupled THM process, like the transient
undrained increase in pore pressure consequent to the thermal
deformation of low transmissivity saturated rocks. Since we
assume impermeable rock mass, fluid pressure leak-off and the
associated hydro-mechanical rock deformation are also disre-
garded. These effects may be significant in certain situations,
whose modeling requires the use of fully coupled THM sim-
ulations (Rutqvist et al., 2002). Variation of fluid density and
viscosity due to temperature variations has not been considered,
but it can be easily incorporated as a feature of the velocity field
update.

We also make the assumption that the matrix is infinite in
the direction perpendicular to the fracture walls. This is of
course an over-simplification, whose effect is twofold. On the
one hand, diffusion through the matrix may lead to tempera-
ture variations in fractures not directly involved by advective
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processes, or to faster temperature variations in fractures where
the advective transport is slow. Thus, neglecting the finite size
of the rock may lead to overestimations of the transfer times
(Roubinet et al., 2010). On the other hand, the infinite matrix
assumption does not consider that the deformation of the rock
matrix may affect the aperture of other fractures. Both effects
take place for time larger than the diffusive time over the dis-
tance between two fractures d, tD = d2/D, which is approx-
imately 11 days if d=1m, and 3 years if d=10m. This time
constitutes a threshold for the validity of our formulation and
relaxing this limitation will be object of future work.

With respect to the heat transport within the fractures, we
assume the parallel plate model with transverse diffusion into
the matrix. However, field experiments have shown that rough
fractures often exhibit flow concentration into channels, which
have diffusive interfaces more similar to tubes than to planes
(Klepikova et al., 2016; de La Bernardie et al., 2018). This
leads to a faster heat transfer and a different scaling in time
with respect to the parallel plate model. The incorporation of
these features is beyond the scope of this paper, but it will be
the object of future developments.

Although no explicit term relative to lateral diffusion is in-
cluded in our formulation (Section 2.2), its effects are some-
how modeled by means of the memory diffusive heat exchange,
whose values are updated at each time step as the result of a
temperature homogenization over each mesh element (recall
Section 4). This operation may appear mesh size-dependent.
However, a necessary condition to get representative results in
any particle-tracking simulation is considering a large number
of particles. When a sufficient large number of particles is intro-
duced in the system, neighboring mesh elements undergo sim-
ilar temperature variations, thus the mesh size does not have
great impacts on the resulting temperature field. For the same
reason, we do not explicitly introduce any lateral diffusion be-
tween mesh elements.

The operation of rock temperature homogenization over the
mesh grid marks the difference with respect to the classical
method, where trajectories are assumed as independent and the
fracture-rock heat exchange is independently evaluated on each
trajectory. The assumption of independent trajectories may be
limiting in cases where different trajectories cross neighboring
locations at different times, because previous variations of the
rock temperature due to the contribution of other particles are
disregarded. This may lead to an overestimation or underesti-
mation of J, which is significant if the particles converge to the
same mesh element with very different travel times, a condition
that is scarcely encountered in most DFN (Section 6).

Similar to any other numerical method based on time incre-
ments, the accuracy and efficiency of the here proposed method
is affected by the adopted time interval. As discussed in Sec-
tion 4, the adoption of a time interval larger than the advective
time for traveling from the inlet to the outlet is convenient to
prevent the simultaneous presence of multiple particle sets in
the system, and the associated memory demand. Time intervals
larger than the advective travel time variance are convenient to
prevent large errors associated with the meta-particle assump-
tion (Section 5.4). Finally, a large time interval helps in speed-

ing up the simulation time. On the other hand, we have shown
that time intervals much larger than the problem characteristic
time may give less accurate results (see Section 5.1). It is clear
that an evaluation of the optimal time interval is required previ-
ous to performing the simulation, in order to find a value large
enough to ensure efficiency while preserving accuracy. Defin-
ing a time interval that meet the above discussed requirements
is, however, not difficult provided the range of values that de-
fine the problem. For the sake of simplicity, consider the time
for a particle to travel a distance L as equal to the number of
jumps over the mesh elements, m, multiplied by the average
time for the jump, ∆τ. We seek for a ∆t0 larger than the total
travel time but smaller than the characteristic time for the jump,
i.e., ∆t0 > m∆τ and ∆t0 < D∆τ

2
/π/b2, where D is approxi-

mately 10−6 m2/s for rocks and b typically ranges between 10−6

and 10−2 m2. For example, if the average value of b is 10−4 m2,
the average velocity is 10−3 m/s, L=100 and the average mesh
size equal to 1 m, then m= 100, ∆τ=103 s and the optimum ∆t0
is between 105 s and 107 s. Nevertheless, the variability of the
characteristic time for the single jump may be large (Fig. 10),
as it is defined by the spatial variability of fracture aperture,
flow velocity and jump length. The latter is related with the
mesh size, which can be highly variable in networks with many
intersections and large variability of the fracture size. The jump
length is very small when the trajectory crosses small mesh el-
ements or mesh element corners, which requires reducing the
time interval. The consequent increase of computational time
may be significant, especially in the case of complex networks
with large number of fractures and particles. Improving this as-
pect is crucial to reduce the computational time, and it will be
the topic of future work.

9. Conclusions

We have proposed and validated a new formulation to simu-
late advective-diffusive heat transport in heterogeneous three-
dimensional fracture networks with thermo-mechanical frac-
ture aperture and flow velocity variation.

The method is conceived to be implemented into a particle-
tracking approach where each particle holds a temperature that
changes because of the diffusive exchange with the rock matrix.
The diffusive flux and the associate thermo-mechanical rock de-
formation are estimated adopting a semi-analytic scheme with
time discretization. This allows to consider trajectory variations
due to thermo-mechanical deformations. To our best knowl-
edge, the current study represents the first attempt to incorpo-
rate the thermo-mechanical behavior of the rock matrix into a
particle-tracking method. Further work will entail overcoming
the limiting assumption of infinite rock matrix and perfectly
planar fractures, as well as improving the time interval control
to ensure accuracy.

Although subject to several simplifications, the methodol-
ogy enables investigating the reservoir long-term TM behavior
while keeping the computational effort within reasonable val-
ues. The computation time is in fact of the order of minutes-
hours compared with the hours-days required by fully coupled
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methods. Our formulation is therefore ideal for stochastic mod-
eling, which allows exploring the uncertainty in cases when the
site characterization is poor. For this reason, this method repre-
sents a useful tool for the identification of potential bottlenecks,
the design of optimal strategies for heat recovery and the man-
agement of geothermal system exploitation.

10. Acknowledgments

The authors acknowledge financial support from the SAD-
GEOTHERM project (SAD18007) funded by the Brittany Re-
gion under the SAD2018 framework (France) and from the
ANR-17-LCV2-0012 eLabo project funded by the Agence
Nationale de la Recherche ANR (France). All materials,
including scripts, input and output files, are available at
the repository http://doi.org/10.5281/zenodo.5139985. The
DFN.lab web page is https://fractorylab.org/. Details on
the use and availability of the software are available at
https://gitlab.com/fractorylab/dfnlab.

Appendix A. Solution to constant temperature boundary
condition in single flow path with constant
fracture aperture and flow velocity

Laplace inversion of eq. (5), with zero temperature initial
conditions, gives

sT̂m = D
d2T̂m

dz2 , (A.1)

where the hat denotes the functions in Laplace space, s is the
Laplace variable and D = κ/Cm is the matrix thermal diffusion.
Solution of this equation in the Laplace domain is

T̂m(`, z, s) = A1 exp
[
−

√
(s/D)(z − b)

]
+A2 exp

[ √
(s/D)(z − b)

]
.

(A.2)
Constant A2 must be 0 to ensure the BC at z = ∞, whereas

A1 is equal to T̂ (`, s) to ensure the BC at the matrix/fracture
interface (recall eqs. (7)). By substituting eq. (A.2) into eq. (4)
, we obtain an expression for the diffusive flux in the Laplace
domain

Ĵ(`, t) =
√
κCms T̂ . (A.3)

This latter can be substituted into the Laplace transform of
eq. (12), with zero temperature initial conditions, which gives

bsT̂ +
dbvT̂ f

d`
= −θ

√
DsT̂ , (A.4)

where θ is the ratio of matrix to fracture heat capacity, i.e., θ =

Cm/C. By assuming

dB =
d`

b(`)v(`)
, (A.5)

we can rearrange eq. (A.4) into

dT̂
T̂

= −(bs + θ
√

Ds)dB, (A.6)

which solution is

T̂ (`, s) = A3 exp
[
−

∫ B

0

(
bs + θ

√
Ds

)
dB′

]
. (A.7)

The constant A3 is found by imposing the boundary condition
for T at ` = 0,which for continuous injection and in the Laplace
domain is T̂ (0, s) = T0/s.

The solution in the Laplace domain is therefore

T̂ (`, s) =
T0

s
exp

[
−s

∫ `

0

d`′

v
− θ
√

Ds
∫ `

0

d`′

bv

]
(A.8)

where we have made use of eq. (A.5) and we have assumed
uniform D for simplicity.

Inversion of this equation gives the solution for the tempera-
ture in the fracture in the time domain (eq. (13)). Substitution
of eq. (A.8) into eq. (A.2) yields

T̂m(`, z, s) =
T0

s
exp

[
−s

∫ `

0

d`′

v
− θ
√

Ds
(∫ `

0

d`′

bv
+

z − b
θD

)]
(A.9)

whose expression in the time domain is given in eq. (14).

Appendix B. General expression for rock matrix tempera-
ture Tm and diffusive heat flux J

Diffusion in the matrix is solved in the Laplace space as in
Appendix Appendix A. Inversion of the Laplace solution (eq.
(A.2)) returns that the temperature in the matrix is the convolu-
tion integral of the temperature at the fracture/matrix interface
and the diffusive one-dimensional response to the pulse injec-
tion, ψ(z, t)

Tm(`, z, t) =
[
Tm(`, b, t) ∗ ψ(z, t)

]
(t)

=

∫ t

0
Tm(`, b, t′) ψ(z, t − t′) dt′

(B.1)

where

ψ(z, t) =
z − b

2
√
πD t3/2

exp
(
−

(z − b)2

4Dt

)
. (B.2)

Substitution of eq. (B.1) into eq. (4) and differentiation under
the integral sign returns

J(`, t) = −κ

∫ t

0
Tm(`, b, t′)

∂ψ(z, t − t′)
∂z

dt′
∣∣∣∣∣∣
z=b

(B.3)

which after differentiation reads

J(`, t) = −κ

∫ t

0

Tm(`, b, t′)

2
√
πD(t − t′)3/2

×

exp
(
−

(z − b)2

4D(t − t′)

) (
1 −

(z − b)2

2D(t − t′)

)
dt′

∣∣∣∣∣∣
z=b

.

(B.4)

Note that if Tm(`, b, t′) is constant for an interval of time be-
tween t1 and t2, then the heat flux corresponding to the interval
is

J(`, t)[t1,t2] = −

√
κCm

π
Tm(`, b)[t1,t2]

(
1

√
t − t2

−
1

√
t − t1

)
,

(B.5)
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whereas if the interval goes from t2 to t, it is

J(`, t)[t2,t] =

√
κCm

π

Tm(`, b)[t1,t2]
√

t − t2
. (B.6)

The same results can be obtained if the differentiation is not
performed under the integral sign, as well as directly from the
Laplace inversion of eq. (A.3), although the inversion of

√
s

requires invoking numerical inversion or the pseudo-transform
concept (Abate and Valkó, 2004).
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