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Abstract 

We present a study on the Dongguashan quartz diorite stock which is the largest Early 

Cretaceous intrusion associated with skarn-porphyry polymetallic ore deposit in the Tongling 

Ore Cluster, Middle-Lower Yangtze Metallogenic Belt in East China. The Dongguashan 

quartz diorite show massive texture without obvious foliation, and intrusive contact was 

locally observed inside of the stock. The anisotropy of magnetic susceptibility (AMS) results 

of the stock show two distinct groups. The Group I (G-I) is dominated by NE-SW-striking 

magnetic foliation with variably oriented magnetic lineation. The Group II (G-II) that intruded 

into G-I is characterized by steep NW-SE-striking magnetic foliation and lineation, which are 

parallel to the vein-like orebody developed in the stock. The 3D geometrical modelling of the 

stock displays a triangular shape in plan-view with an eastward bulge and irregular stock 

boundary in the eastern side and the contact surface is steeper in the west than that in the east, 

denoting that the stock was constructed with an eastward magma accretion trend. Furthermore, 

the Dongguashan quartz diorite has a wide range of composition and geochronological data, 

suggesting a multiple magma pulses emplacement model. Accordingly, we propose that the 

Dongguashan stock was constructed by at least two stages magma pulses. The earlier stage 

magma pulses intruded along the NE-SW-striking pre-emplacement structures in the country 

rock and partly intruded into the lithological and mechanical discontinuous interfaces which 

yielded the stratabound skarn orebody. The eastward magma accretion produced a highly 

deformed and longer heated country rock on the eastern side of the stock, favoring the 

orebody development along the eastern stock-country rock contact interface. The late-stage 

magma pulse and the parallelism among the trend of magnetic foliation of G-II, extensional 



structure and vein-like orebody suggest that the vein-type orebodies may controlled by both 

magma emplacement and regional tectonics. 
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1. Introduction 1 

Study of orebody localization is a key topic for the comprehensive 2 

understanding of epithermal metallogenic systems and is indispensable for more 3 

efficient exploration of hidden deposits. Nevertheless, orebody localization is a 4 

complex geological process that has been contested for decades due to the non-linear 5 

relationship among ore-controlling factors and the development of orebodies 6 

(Reynolds, 1958; Candela, 1992; Heinrich et al., 1996; Zhao et al., 2010; Liu et al., 7 

2011; Sun and Liu, 2014). Previous geochemical and geochronological studies have 8 

revealed that magma intrusions, which determine the type and period of ore-forming 9 

process, were the essential ore-controlling factor (e.g., Eugster, 1985; Candela, 1992; 10 

Hedenquist and Lowenstern, 1994; Thompson et al., 1999; Hua et al., 2005; Mao et 11 

al., 2008, 2011; Sillitoe, 2010; Chen et al., 2012). However, the orebody localization 12 

is strongly controlled by the physical and geological conditions of the magma 13 

emplacement process, for example, magma ascent rate, emplacement depth, accretion 14 

pattern, temperature-pressure and strain field around the intrusion (e.g., Chesley et al., 15 

1993; Duuring and Hagemann, 2001; Candela et al., 2005; Vigneresse, 2006, 2007; 16 

Eldursi et al., 2009; Holwell et al., 2014; Chen and Nabelek, 2017; Schöpa et al., 17 

2017). Moreover, the geometries of pluton and pluton-country rock contact were also 18 

considered as important ore-controlling factors (Romeo et al., 2008; Liu et al., 2011, 19 

2014; Chicharro et al., 2015; Cao et al., 2020). Hence, the reconstruction of the 20 

magma emplacement process and 3D geometry of plutons is crucial for understanding 21 

the mechanism of orebody localization. 22 



Anisotropy of magnetic susceptibility (AMS) is a successful method to reveal 23 

the magma emplacement process, as the pattern of magnetic fabric can reflect the 24 

magma flow direction, magma accretion and regional tectonic setting (e.g., Hrouda, 25 

1982; Ernst and Baragar, 1992; Rochette et al., 1992; Bouchez, 1997). In addition, 26 

with the development of computational modelling methods, the pluton geometry can 27 

be well defined by geophysical and borehole data (e.g., Améglio et al., 1997; Romeo 28 

et al., 2008; Liu et al., 2012; Lü et al., 2013; Sun and Liu, 2014; Wei et al., 2014). 29 

However, the application of AMS is usually impeded by limited surface exposures of 30 

the pluton, and the pluton geometry remains unclear due to the multi-use 31 

interpretation of geophysical data.  32 

The Shizishan orefield is a representative skarn-porphyry ore deposit that is 33 

related to the Late Mesozoic intrusion and located at the center of the Tongling Ore 34 

Cluster, Middle-Lower Yangtze Metallogenic Belt, East China (rectangle inset in Figs. 35 

1 and 2). In this study, we chose the Dongguashan quartz diorite stock as our research 36 

target (Fig. 3) as it is the largest ore-forming intrusion in the Shizishan orefield. 37 

Furthermore, the Dongguashan quartz diorite stock has been previously well studied 38 

in geochemistry, geochronology and geophysics (Xu et al., 2005, 2008, 2010; Deng et 39 

al., 2006; Xie et al., 2012; Guo et al., 2013; Wang et al., 2015; Cao et al., 2016; Liu et 40 

al., 2018). However, the localization mechanism of these randomly developed 41 

skarn-porphyry orebodies around the stock is still ambiguous. The Dongguashan 42 

quartz diorite stock has been highly explored, and mining shafts and platforms have 43 

been constructed from the surface to -850 m in the depth, so that the AMS sampling 44 



can cover the deep part of the Dongguashan quartz diorite stock. Moreover, with help 45 

of the intensive drilling projects in this area, the geometry of the stock and its related 46 

orebodies can be also reliably constructed. Therefore, through the field observation, 47 

AMS measurement, 3D geometry modeling and geochemical analysis of the stock, we 48 

acquired the distribution of magnetic fabric inside the stock, 3D geometry of the stock, 49 

as well as the variation of geochemical composition. Accordingly, we deciphered the 50 

development of the Dongguashan quartz diorite stock and the constraints on 51 

associated orebodies. Our study can help to guide the deep prospecting in the 52 

Middle-Lower Yangtze Metallogenic Belt and has implications that bear on other 53 

large-scaled intrusions. 54 

2. Geological background  55 

2.1. Regional geological setting  56 

The Middle-Lower Yangtze Metallogenic Belt (Fig. 1a and b) is one of the most 57 

important Cu-Au-polymetallic belts in China, and in the world as well. It is a typical 58 

skarn-porphyry deposit belt related to Late Mesozoic intrusions developed in an 59 

intracontinental setting (Chang et al., 1991; Pan and Dong, 1999; Mao et al., 2011; 60 

Zhou et al., 2015). Hundreds of studies on these intrusions and their influences on the 61 

related skarn ore deposit had been done in the Middle-Lower Yangtze Metallogenic 62 

Belt, for examples, the geochronological, geochemical and petrological characteristics 63 

of the intrusions (e.g., Wang et al., 2004; Xie et al., 2009, 2017; Zhang et al., 2010; 64 

Yang et al., 2011; Yang and Lee, 2011; Wu et al., 2013), the origin of the 65 

hydrothermal fluid (e.g., Zhou et al., 2000, 2007; Lai et al., 2007; Gu et al., 2011; Cao 66 



et al., 2012; Li et al., 2019; Liu et al., 2019), and the geodynamic setting and related 67 

implications for metallogeny (e.g., Deng et al., 2011; Mao et al., 2011; Shi et al., 2013; 68 

Lü et al., 2015). 69 

The Tongling Ore Cluster (TOC; rectangle inset in Figs. 1b and 2) is located in 70 

the center of the Middle-Lower Yangtze Metallogenic Belt, where Early Cretaceous 71 

dioritic intrusions are widely developed and often associated with skarn-porphyry 72 

Cu-Au ore deposits (Fig. 1b). The TOC consists of the Tongguanshan, Shizishan, 73 

Xinqiao, Fenghuangshan and Shatanjiao orefields (Xie et al., 2017; Fig. 2). The 74 

stratigraphy of the TOC includes Lower Silurian to Upper Devonian siltstone, 75 

quartz-sandstone and silty shale, Middle Carboniferous to Early Triassic limestone, 76 

siliceous shale, calcareous shale and dolomite, and Late Mesozoic to Tertiary 77 

dolomitic limestone, clay shale, volcanic rocks, and continental clastic rocks (Zhai et 78 

al., 1992; Xu and Zhou, 2001). Structurally, the TOC is characterized by 79 

NE-SW-striking upright folds and high-angle NW- or SE- directed thrusts, and 80 

subordinate NNE-, NNW- and NW-striking brittle faults (Fig. 2; Chang et al., 1991; 81 

Tang et al., 1998). This structural pattern is considered to be an inherited structure that 82 

represents repeated NW-SE directed compressional regional tectonic setting. In 83 

particular, this includes the Middle Triassic intracontinental subduction of South 84 

China Block under the North China Craton (Lin et al., 1985; Zhao and Coe, 1987; 85 

Mao et al., 2011), and the southwestward subduction of the Izanagi plate under the 86 

east Eurasian plate since the Late Jurassic (Sun et al., 2007; Li et al., 2011). Moreover, 87 

the NE-SW-striking Early Cretaceous Luzong and Ningwu volcanic basins and 88 



widespread Early Cretaceous intrusions and volcanism in the TOC suggest a 89 

predominantly extensional regional tectonic setting in the Early Cretaceous period 90 

(Deng et al., 2011).  91 

2.2. The Dongguashan stock  92 

Several Early Cretaceous intrusions are exposed in the Shizishan orefield (Fig. 93 

3), including the Dongguashan quartz diorite (138.4 ± 1.7 Ma; Wu et al., 2013), the 94 

Baimangshan pyroxene monzodiorite (139.9 ± 1.9 Ma; Guo et al., 2013), the 95 

Jiguanshi pyroxene-quartz monzodiorite (139.8 ± 0.8 Ma; Wu et al., 2008), and the 96 

Hucun granodiorite (140 ± 2.6 Ma; Xu et al., 2008). The Dongguashan quartz diorite 97 

belongs to metaluminous and high-K, calc-alkaline-series granite (delineated by white 98 

dash line in Fig. 3; Wu et al., 2010; Liu et al., 2018). Previous geobarometric studies 99 

on the contemporary Cretaceous intrusions in this area and geophysical investigations 100 

indicate that the Dongguashan quartz diorite stock was emplaced at the brittle crust 101 

depth (ca. 4-6 km; Du et al., 2004). The Dongguashan quartz diorite stock intruded in 102 

the hinge and eastern limb of the NE-trending Qingshanjiao anticline, which is 103 

considered as the major ore-controlling structure in the Shizishan orefield (Lu et al., 104 

2003; Xu et al., 2005; Lü et al., 2013; Liu et al., 2014). Country rocks exposed on the 105 

surface are Middle to Lower Triassic limestone, argillaceous limestone and argillite, 106 

which were folded by the Middle to Late Triassic intracontinental orogenic event (Liu 107 

et al., 2014).  108 

2.3. Ore deposit 109 

With at least 10 exploited ore deposits and copper and gold reserves of more 110 



than 1.5 Mt and 20 t, respectively (Xu et al., 2014), the Shizishan orefield is 111 

economically the most important Cu-Au district in the TOC. Especially the proven 112 

copper and gold reserves of the Dongguashan ore deposit are 0.98 Mt at 1.01% and 29 113 

t at 0.26 g/t, respectively (Liu et al., 2014, 2018). According to previous studies, there 114 

are three major ore localization zones around the Dongguashan stock, i.e. the 115 

Dongguashan, Datuanshan and Huashupo ores. 116 

3. Field observation and sampling 117 

The Dongguashan quartz diorite stock is not well exposed on the surface (Fig. 118 

3), and fresh quartz diorite outcrops were revealed only by the ore exploration. The 119 

Dongguashan stock mainly consists of medium to fine grained quartz diorite (Fig. 4a 120 

and b) and porphyritic quartz diorite occurs locally along the stock-country rock 121 

contact (Fig. 4c). The Dongguashan quartz diorite usually displays a massive texture 122 

without macroscopic foliation, but oriented hornblende grains with sub-horizontal and 123 

outward dipping plunge are locally observed in the contact zone (Fig. 4b). 124 

Metamorphosed country rock xenoliths are observed in the stock margin (Fig. 4d and 125 

e), which resemble the “exploding xenoliths” texture observed in the shallow level 126 

intrusions (Clark et al., 1998; de Saint-Blanquat et al., 2001). Moreover, the 127 

disharmonic folding of limestone strata (Fig. 4f) can be observed, suggesting the 128 

existence of decollement sliding in the country rocks.  129 

The orebody developed around the Dongguashan quartz diorite stock is 130 

characterized by stratiform (Fig. 5a), massive (Fig. 5b), veinlet and vein-like textures 131 

(Fig. 5c and d). The major sulfides are chalcopyrite, pyrite, magnetite, pyrrhotite, and 132 



the major gangue minerals are calcite and dolomite. Furthermore, our field 133 

investigation found widely developed extension related structures. For example, (1) 134 

the large-scale fracture zone developed in the stock with occurrence of 120°/66°SW 135 

(Fig. 5b), (2) the conjugated vein-type chalcopyrite ore dipping to SW and NE (ca. 0.5 136 

to 2 cm in width; Fig. 5c and e), and (3) widely developed southwest dipping calcite 137 

veins in the stock and its country rocks (Fig. 5d and f). 138 

According to the architecture and layout of the mine shaft and platforms in the 139 

study area, we have chosen seven mine platforms for AMS sampling, i.e. -390 m, 140 

-460 m, -580 m, -670 m, -730 m, -790 m and -850 m. A total of 41 AMS sampling 141 

sites have been collected at different depths from -390m to -850m, which are evenly 142 

distributed along the accessible mining channels with an interval of ca. 100 m. Due to 143 

the limited resolution of the GPS signal in the mining channels and short distances 144 

between different sites, the locations of AMS sampling are presented on the plan-view 145 

of the stock. The AMS samples were collected with a portable gasoline drill and 146 

oriented using a magnetic compass. The collected core samples were cut into standard 147 

cylindrical specimens, i.e. 2.2 cm in height and 2.5 cm in diameter, for AMS 148 

measurements. Detailed sampling information is listed in Table 1. 149 

Concurrently, representative massive fresh quartz diorite samples were collected 150 

from the -670 m platform, which is the largest section of the Dongguashan stock 151 

revealed by current miming projects, for geochemical analysis in order to investigate 152 

the horizontal variation of composition inside the stock. The locations of these 153 

samples are the same as the AMS sample at this platform.  154 



4. Analytical methods 155 

4.1. Anisotropy of Magnetic Susceptibility (AMS)  156 

The magnetic susceptibility (K) is defined as the ratio of the induced 157 

magnetization (M) to the applied field (H), while the intensity of magnetization is 158 

usually nonuniform due to the preferred orientation of minerals in the rock (Hrouda, 159 

1982; Tarling and Hrouda, 1993), which is named as the Anisotropy of the Magnetic 160 

Susceptibility (AMS). The AMS is a second-order tensor of the magnetic 161 

susceptibility in a preferred direction, and it can be expressed by a magnetic 162 

susceptibility ellipsoid with three mutually perpendicular susceptibility axes, i.e. 163 

K1≥K2≥K3 (Tarling and Hrouda, 1993; Borradaile and Jackson, 2004). K1 and K3 164 

represent the magnetic lineation and pole to the magnetic foliation, respectively. 165 

Moreover, several parameters were calculated with the measured values of K1, K2 and 166 

K3 by the program Anisoft (version 4.2, AGICO), for example, the mean bulk 167 

magnetic susceptibility (Km=1/3(K1+K2+K3), the corrected degree of anisotropy 168 

(PJ=exp√{2[(η1-η)2+(η2-η)2+(η3-η)2]} and the shape parameter 169 

(T=(2η2-η1-η3)/( η1-η3)), where ηn=lnKn and η = (η1+η2+η3)/3. Km indicates the mean 170 

bulk magnetic susceptibility of different magnetic carriers, including the 171 

ferromagnetic, paramagnetic and diamagnetic minerals, and the PJ and T values 172 

represent the eccentricity and shape of the magnetic ellipsoid, respectively (Jelínek, 173 

1978, 1981; Hrouda, 1982).  174 

The mineralogical investigations, including thermomagnetic measurement, 175 

Isothermal Remanence Magnetization (IRM) and hysteresis properties, were 176 



conducted on representative samples to reveal the contribution of different magnetic 177 

carriers to the bulk magnetic susceptibility. The thermomagnetic measurements were 178 

performed at the Paleomagnetism Laboratory of Nanjing University with the CS3 179 

furnace coupled with a KLY-3S Kappabridge, and protective argon gas was used. The 180 

samples were heated from 50° to 700° with constant heating and cooling rate of 181 

9°/min. The hysteresis loops and IRM measurement were carried out at the Key 182 

Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Natural 183 

Resources (Beijing). Magnetic hysteresis loops and FORCs can reveal both the grain 184 

size and domain state of magentic minerals and were obtained using a Lakeshore 185 

8600 Vibrating Sample Magnetometer (VSM). For the magnetic hysteresis loop 186 

experiments, the powdered samples were subjected to a cycled field of ± 600 mT. A 187 

slope correction was applied to remove the impact of paramagnetic contributions.  188 

4.2. Whole-rock major and trace element analyses  189 

Whole-rock major and trace element analyses were conducted at the ALS 190 

Chemex Co., Ltd (Guangzhou, China). The major element concentration was 191 

determined by an X-ray fluorescence (XRF) spectrometer with an analytical precision 192 

better than ± 0.01%. Trace elements were measured using PerkinElmer ICP-MS with 193 

an analytical precision better than ± 5% for most elements. Detailed analytical 194 

methods and procedures can be found in Liang et al. (2000).  195 

4.3 3D geometry modelling 196 

The 3D geometry of the Dongguashan quartz diorite stock and its related ore 197 

deposit was mainly defined by the borehole data from the Tongling Nonferrous 198 



Metals Group Holdings Company. All these data were integrated in the Micromine 199 

and GOCAD platforms, and the boundary of the geological body at shallow levels 200 

(<-850 m) without borehole data was mainly deduced by using the Micromine 201 

platform with Kriging interpolation and smoothed at the COCAD platform. Detailed 202 

approaching process is reference to Liu et al. (2012). 203 

5. Results 204 

5.1. Petrographic texture investigation 205 

A total of twenty-four core specimens were selected from forty-one AMS 206 

sampling sites to prepare the oriented thin sections for petrographic texture 207 

investigation (Fig. 6a). The Dongguashan quartz diorite mainly consists of plagioclase, 208 

K-feldspar, quartz, biotite, hornblende, and is associated with sphene, magnetite, 209 

pyrite, apatite and zircon (Fig. 6b-6e). Some of the Dongguashan quartz diorites 210 

display a porphyritic texture, characterized by relatively larger feldspar crystals (Fig. 211 

6b-6e). The minerals show a euhedral to sub-euhedral habitus, and no textures related 212 

to sub-solidus high temperature deformation have been observed. Sericitization is 213 

usually developed along the cleavage of the minerals (Fig. 6b). Magnetite and pyrite 214 

are widely distributed in all the samples and are present in interstitial clots and aligned 215 

parallel to the long axis of the minerals (Fig. 6f) or in interstitial crystals (Fig. 6g).  216 

5.2. AMS of the Dongguashan stock  217 

5.2.1 Rock magnetic minerals 218 

Six representative thermomagnetic measurements were performed. The heating 219 

curves show a gradual decreasing trend indicating the existence of paramagnetic 220 



minerals (Fig. 7a-7f). A moderate to slight drop at 325 ℃ for the samples collected 221 

from the depths shallower than -670 m suggests the presence of pyrrhotite (Fig. 222 

7a-7d), and a rapid drop at 580 ℃ for all the samples is most likely due to the 223 

existence of magnetite (Fig. 7a-7f). An obvious increase of magnetic susceptibility 224 

during cooling implies that mineralogical phase transformation occurred during the 225 

thermal experiment, for instance, pyrrhotite and pyrite transformed into magnetite at ~ 226 

500 ℃ (Dunlop and Özdemir, 1997). The shapes of the hysteresis loops of these 227 

samples are similar to that of ferromagnetic minerals (Fig. 7h-7j) with low values of 228 

magnetic coercivity (Fig. 7k-7m). Moreover, the isothermal remanence measurements 229 

show similar rapid increasing and saturation trend at ca. 300 mT (Fig. 7k-7m). 230 

Accordingly, the magnetic minerals in the Dongguashan quartz diorite are composed 231 

of paramagnetic minerals, e.g., biotite and feldspar, and low-coercivity ferromagnetic 232 

minerals, e.g., magnetite and pyrrhotite. The thin section observations show a 233 

relatively high volume-ratio of magnetite (Fig. 6e-6f), suggesting that the magnetite 234 

may be the major magnetic susceptibility carriers in the Dongguashan quartz diorite. 235 

5.2.2. Magnetic parameter data 236 

The magnetic parameters of quartz diorite in the Dongguashan stock, for 237 

instance, Km, PJ and T, are provided in Table 1, and Km vs. PJ and T vs. PJ diagrams 238 

are presented in figure 8. More than 90% sites show high bulk magnetic susceptibility, 239 

i.e. Km >10-3 SI (Fig. 8a), confirming that these samples are dominated by the 240 

ferromagnetic minerals. Moreover, no linear correlation has been observed between 241 

the bulk magnetic susceptibility and corrected degree of anisotropy, denoting that the 242 



magnetic fabric is mainly defined by the rock composition (Borradaile, 1988). Over 243 

seventy percent of sites have corrected degree of anisotropy values lower than 1.15 244 

(Table 1 and Fig. 8a), indicating that the magnetic fabric is mainly primary (Hrouda, 245 

1982; Rochette et al., 1992). The sites with high PJ value are close to the stock 246 

boundary, which may be due to the intense interaction of the magma intrusion with 247 

the country rocks (Table 1 and Fig. 8). The majority of shape parameter values are 248 

positive (Table 1 and Fig. 8b), suggesting the prevalence of oblate ellipsoids, except 249 

for samples collected from the south part of the stock, which are dominated by 250 

negative values (Table 1 and Fig. 9), and thus, prolate magnetic ellipsoids are 251 

suggested.  252 

5.2.3 Magnetic fabrics 253 

Detailed site-mean magnetic fabrics and their positions with respect to the 254 

restored stock boundary at depth are presented in Fig. 9. Most of these sites show well 255 

developed magnetic foliations with inclinations from highly inclined dipping (40°) to 256 

vertical (89°), except for sites DTS14, HSP25 and DGS34 with gentle inclinations of 257 

ca. 20° (Table 1 and Fig. 9). According to the strike of magnetic foliation, the majority 258 

of sampling sites are characterized by NE-SW-striking and SE dipping magnetic 259 

foliation, which are labeled as Group I (G-I; white stereographs in Fig. 9). Eleven 260 

sites located in the central-southern part of the stock with depths greater than -670 m, 261 

i.e. HSP16, HSP17, DTS18, DTS19, DGS20, HSP24, HSP25, DTS26, DTS27, 262 

HSP32 and HSP37 are classified in Group II (G-II; grey stereographs in Fig. 9). The 263 

sites in G-II display relatively consistent NW-SE-striking magnetic foliations and 264 



steeper dipping angle than those in G-I (inserted stereographs in Fig. 10a and b). The 265 

magnetic lineations of G-I are characterized by highly variable plunges with 266 

directions sub-parallel or cross with the stock boundary (inserted stereograms in Fig. 267 

10b). Especially, the sites of G-I lower than -670m show gentle to sub-horizontal 268 

plunges of lineation (Fig. 10b). Nevertheless, the directions of magnetic lineation of 269 

G-II show a consistent NW-SE trending and variable plunges (Fig. 10c and d).  270 

5.3. Whole-rock major and trace elements geochemistry 271 

Six fresh and representative samples for geochemical analysis were collected at 272 

the -670m platform and sampling locations are the same as the AMS sampling (Fig. 273 

11a). The acquired geochemical data and previous geochemical analysis are presented 274 

in Table S1. Previous geochemical results of the Dongguashan stock are also included 275 

in Table S1 for a comprehensive and comparative analysis (Wang et al., 2003, 2015, 276 

Huang et al., 2004; Guo et al., 2013; Liu et al., 2018).  277 

According to the SiO2 content, the analyzed Dongguashan quartz diorites and 278 

previous geochemical analysis present a wide range of SiO2 (56.5% to 65.32 wt.%) 279 

and the relatively low SiO2 content Group II (G-II: 56.48 – 60 wt.%; Table S1 and Fig. 280 

11). Moreover, G-I has a wider range of SiO2 content than that of G-II (Fig. 11b-h). 281 

The TiO2, Al2O3, CaO, MgO, Na2O and P2O5 display steadily decrease or constant 282 

trend with increasing SiO2, suggesting that the minor compatible behavior (Fig. 283 

11b-11g). K2O shows constant or slightly increase in G-I with increasing SiO2 (Fig. 284 

11h), which may be due to the hydrothermal alteration during the subsequent 285 

mineralization process.  286 



5.4. The 3D geometry of the stock and its related orebody 287 

The horizontal drilling sections and 3D geometry model of the Dongguashan 288 

quartz diorite stock and related orebodies (Fig. 12) highlight several major features of 289 

the Dongguashan quartz diorite stock. The stock has a complicated shape with a 290 

principal NE-SW extending long axis. Many apophyses are formed within the strata 291 

bedding (Fig. 12b, c and d) and the skarn orebodies are mainly developed in the 292 

northern hinge and eastern limb of the Qingshanjiao anticline. The largest ore, i.e. the 293 

Dongguashan ore, was yield between the Middle to Upper Carboniferous carbonates 294 

and Upper Devonian sandstone with depth ranging from ca. -650 m to -850m (Fig. 295 

12a), and the other two ore deposits, i.e. the Huashupo and Datuanshan ore deposits, 296 

are localized along the contact zones of the Dongguashan stock (Fig. 12). 297 

6. Discussion 298 

6.1. Significance of the petrofabric investigation 299 

The nature of the fabrics, i.e. whether primary or not, is pivotal for the 300 

interpretation. Our microscopic petrographic investigations on the Dongguashan 301 

quartz diorite and its country rocks show that the quartz diorite samples exhibit a 302 

typical magmatic texture, and intrusion-related ductile deformation was absent in the 303 

contact zone (Fig. 6). The dominantly low PJ values of the quartz diorite samples also 304 

suggest that the stock has not been significantly affected by a subsequent regional 305 

tectonic event (Hrouda and Lanza, 1989; Rochette et al., 1992). The ductile 306 

deformation of the country rock of the Dongguashan quartz diorite stock is apparent 307 

in folding and thrusting (Fig. 4f) that are considered to be inherited structures 308 



resulting from the Triassic intracontinental event instead of resulted from magma 309 

emplacement (Deng et al., 2011; Mao et al., 2011; Wang et al., 2011).  310 

Moreover, our magnetic mineralogical analyses suggest that major magnetic 311 

carriers of the Dongguashan quartz diorite are ferromagnetic and paramagnetic 312 

minerals. According to the microscopic observations, the arrangement of the 313 

magnetite and pyrrhotite is usually parallel to the long axis of the plagioclase and/or 314 

biotite (Fig. 6e and 6f), indicating that the magnetic fabric ellipsoid is parallel to the 315 

principal finite strain axes inferred from the petrographic fabric. Namely, the K1 and 316 

K3 magnetic axes correspond to the mineral lineation and the foliation pole, 317 

respectively. Consequently, we argue that the magnetic fabrics of the Dongguashan 318 

quartz diorite revealed by our AMS investigation were primary fabric, which can be 319 

used to reveal the magma emplacement process. 320 

6.2. Interpretation of AMS results of the Dongguashan stock 321 

As mentioned above, the most remarkable feature of the AMS results of the 322 

Dongguashan quartz diorite is the coexistence of two nearly orthogonal magnetic 323 

fabric groups, i.e. G-I and G-II. Thus understanding of the magnetic fabric of the 324 

Dongguashan quartz diorite stock is essential for the re-construction of the magma 325 

emplacement process. The 3D geometry modelling of the Dongguashan quartz diorite 326 

stock (Fig. 12) and a previous geobarometric study indicate that the stock has a small 327 

volume and shallow emplacement depth (ca. 4-6 km; Du et al., 2004). Therefore, we 328 

consider that the Dongguashan stock should be a rapidly emplaced and cooled stock, 329 

in terms of previous studies on the duration of pluton construction (Matzel et al., 2006; 330 



de Saint Blanquat et al., 2011). Consequently, this distinct magnetic fabric pattern 331 

cannot be produced by magma convection in the magma chamber at emplacement 332 

crust level, and detailed discussion of the AMS result is described below. 333 

6.2.1. AMS results for Group I 334 

Seventy-eight percent of the magnetic foliation of G-I is characterized by a 335 

NE-SW strike with steep or high-angle southeastward dip (Fig. 10 and Table 1). This 336 

pattern of relatively consistent strike and dip of the magnetic foliation in the 337 

Dongguashan quartz diorite stock is different from previous AMS studies on other 338 

stocks around the world, which usually present a circular array of inward dipping 339 

magnetic foliations with strike parallel to the stock boundary (Cogné and Perroud, 340 

1988; Hrouda and Lanza, 1989; Romeo et al., 2008; He et al., 2009; Piña et al., 2010). 341 

Whereas the trend and plunge of magnetic lineation of these sites are highly variable 342 

(Fig. 10c and 10d), which is a typical feature for the fabric developed in a stock 343 

(Cogné and Perroud, 1988; Hrouda and Lanza, 1989; de Saint-Blanquat, et al., 2001). 344 

This specific magnetic fabric pattern might be produced by the NW-SE directed 345 

regional shortening setting or be affected by the pre-emplacement NE-SW-striking 346 

structures in the country rocks. Nevertheless, previous studies suggest that the 347 

Tongling Ore Cluster is mainly under extensional regime during the magma 348 

emplacement epoch (e.g., Mao et al., 2003; Li et al., 2014). The petrographic 349 

investigations on the stock and its country rocks also suggest that the Dongguashan 350 

stock was not significantly influenced by any syn-magmatism and post-solidus 351 

regional tectonics. Hence, these evidence seem to be inconsistent with the first 352 



possibility. Alternatively, considering the parallelism between the pre-emplacement 353 

fold and fault system developed in the country rocks and the NE-SW-striking 354 

magnetic foliation, we propose that these pre-emplacement structures may serve as 355 

magma ascent paths to form the NE-SW trending steep magnetic foliations, thus the 356 

magma ascent was principally driven by its buoyancy (Marsh, 1982; Clark et al., 1998; 357 

Paterson and Jr, 1993).  358 

In particular, there are seven sites located at depths of -730m, -790m, and -850m 359 

of G-I show the strike of magnetic foliation crosscutting the stock boundary with 360 

mainly sub-vertical to northward dip (Fig. 10a). The magnetic lineation is mainly 361 

trending NE-SW or E-W with sub-horizontal plunges. This phenomenon may be due 362 

to the boundary effect, complex magma flow or magma outflow (e.g., Ferré et al., 363 

2002; Kratinová et al., 2006). The borehole data also confirms that the Dongguashan 364 

quartz diorite intrusion was intruded into the stratigraphic interface at these depths 365 

(Fig. 12; Liu et al., 2014).  366 

6.2.2. AMS results for Group II 367 

The magnetic fabric of G-II is characterized by consistent NW-SE-striking 368 

magnetic foliation and lineation, and this preferred orientation is roughly 369 

perpendicular to those of G-I and the NE-SW-striking regional structures. In addition, 370 

we have observed pervasively developed NW-SE striking fractures, calcite veins and 371 

vein-type orebodies in the Dongguashan stock and its country rocks (Fig. 5), which 372 

are parallel to the strike of the magnetic fabric of G-II. The NW-SE oriented magnetic 373 

fabrics, fractures and veins may be produced either by regional shortening in NW-SE 374 



direction, or the magma was intruded into the NW-SE striking brittle structures, which 375 

produced by the overall extension of the upper crust in the Early Cretaceous epoch. 376 

However, contemporaneous Early Cretaceous magmatism is widely developed in the 377 

TOC, which is usually display a high-k and calc-alkaline affinity and considered to be 378 

a consequence of the regional extension (Wang et al., 2003; Wu et al., 2010; Guo et al., 379 

2013; Zhou et al., 2015). Therefore, the hypothesis of the regional shortening is not 380 

preferred, we thus propose that the G-II magma emplacement was affected by overall 381 

extension of the upper crust. 382 

6.3. Overview of research and tentative magma emplacement model proposal 383 

Apart from the difference in the AMS results, a sharp intrusive contact was 384 

observed at -670 m platform (Fig. 13), suggesting that the Dongguashan was 385 

constructed by multiple magma pulses. In addition, this and previous geochemical 386 

studies on the Dongguashan quartz diorite stock show that the major elements have a 387 

wide composition range (Fig. 11 and Table S1), which may result from fractional 388 

crystallization or multiple magma pulses emplacement model. Although the major 389 

elements seem to be distributed along a regression line, whereas the higher SiO2 390 

content samples were collected from the outer and deeper parts of the stock compared 391 

with the less silica-rich samples (Fig. 11). This distribution opposes the normal 392 

fractional crystallization trend in a gradual cooling magma chamber (Tindle and 393 

Pearce, 1981; McNulty et al., 2000; Coleman et al., 2004). Gradual petrological 394 

change or composition zoning related to fractional crystallization is also absent in the 395 

stock. Therefore, the fractional crystallization process seems not suitable to explain 396 



the composition variation of the Dongguashan stock. Furthermore, previous 397 

geochronological studies in the Shizishan orefield also present a wide age spectrum, 398 

indicating a relatively long time magma emplacement process (Wu et al., 2010; Yang 399 

and Lee, 2011; Guo et al., 2013; Wang et al., 2015; Liu et al., 2018). In summary, all 400 

these evidence suggest that the Dongguashan quartz diorite stock was constructed by 401 

multiple magma pulses, and a two-stage magma emplacement model is proposed for 402 

the Dongguashan quartz diorite stock as described below.  403 

On account of the samples of G-I are located in the outer part of the stock from 404 

-850m to -390m, and the samples of G-II are collected in the inner part of the stock 405 

with depths lower than -650 m. Moreover, the strike of magnetic foliation of G-I is cut 406 

by the G-II (Fig. 10). Therefore, we suggest that G-I and G-II belongs to the earlier 407 

and late magma pulses emplacement stages, respectively. 408 

First, the initial magma emplacement occurred when the internal buoyancy 409 

force of the deeply seated magma chamber exceeded the lithostatic pressure of the 410 

country rocks (Fig. 14a; van der Molen and Paterson, 1979; Bachmann and Bergantz, 411 

2004; Vigneresse, 2007). Previous studies suggest the existence of NE-SW-striking 412 

basement faults in the crust, and the upper crust was deformed by Triassic 413 

pre-emplacement regional tectonics (Deng et al., 2006), which yielded paths or 414 

channels for the magma ascent (Fig. 14a). The decollement of country rocks produced 415 

part of the space for magma emplacement (Fig. 4f). Moreover, the abundance of 416 

xenoliths observed in the stock boundary suggests that the space for magma 417 

emplacement was partly created by magma stoping (Marsh, 1982; Clark et al., 1998). 418 



The relatively more regular stock boundary in the western side of the stock than in the 419 

eastern one suggests an eastward magma accretion trend. The dilation (possibly 420 

controlled by hydrothermal fluids), inflation and uplifting of the brittle country rocks 421 

accommodated the gradual emplacement of magma (Fig. 14b).  422 

Second, the consistent NW-SE-striking magnetic foliation of Group II samples 423 

and its parallelism with the NW-SE-striking fractures developed in the stock and 424 

country rocks, which produced by the regional extension, suggest that the 425 

emplacement of the late magma pulse was strongly controlled by these fractures (Fig. 426 

14c).  427 

6.4. Implications for the associated orebody localization  428 

Our study reveals that the Dongguashan stock was constructed by at least two 429 

magma pulses. Discontinuous magma emplacement changes the temperature field, 430 

fluid composition, oxygen fugacity and elements partition coefficients, and therefore 431 

is an important mechanism for the formation of huge intrusion related ore deposits 432 

(e.g., Holzheid and Lodders, 2001; Vigneresse, 2007; Huber et al., 2012; 433 

Chelle-Michou et al., 2015).  434 

According to the restored 3D stock and orebody geometry model, the largest ore 435 

reserves are located at the Devonian-Carboniferous (D-C) stratigraphic interface with 436 

depth between ca. -650 and -950 m (Fig. 12). The occurrence of these stratiform 437 

orebodies is consistent with the flanks of the Qingshanjiao anticline, denoting that the 438 

hydrothermal fluid was intruded along the strata interface (Tang et al., 1998). The 439 

AMS results of the sites close to the stock boundary at depths of -670 to -850 m 440 



suggest that magma outflow occurred within these strata, which is also supported by 441 

tiny and rootless granitic body revealed by borehole data (Fig. 12). Previous 442 

geochemical studies also suggest that the magma is the dominant source of 443 

ore-forming fluid. Thus, the stratiform skarn orebodies were mainly yielded by the 444 

early emplaced magma pulse, which was emplaced along pre-emplacement structures 445 

or discontinuous mechanical interfaces in the country rocks.  446 

The second orebody localization zone concerns the contact zone between the 447 

stock and country rock. This includes the Huashupo and Datuanshan skarn-type 448 

orebodies, which are developed at the eastern side of the stock at depths of -300 to 449 

-600 m, and thus are related to the earlier emplaced magma pulse (Fig. 12). According 450 

to our study, the Dongguashan stock was constructed by successive magma pulses 451 

with an eastward accretion trend and forceful-like emplacement behavior. Thus, the 452 

country rock in the eastern side of the stock has a higher degree of deformation, 453 

intense fracturing and higher permeability and temperature, which were produced by 454 

the repeated magma intrusion. In addition, the restored 3D geometrical model shows 455 

that the occurrence of the orebody in the eastern side of the stock is roughly parallel to 456 

the stock-country rock contact surface, which dips gently outward in contrast to a 457 

sub-vertical contact in the western side (Fig. 12). Consequently, we propose that 458 

different interaction between the magma and country rock may affect the localization 459 

of the orebodies.  460 

The third type of orebody, i.e. the vein-like and veinlet-disseminated orebodies, 461 

is widely developed inside the Dongguashan stock and partly developed in the 462 



NW-SE-striking fractures (Fig. 5c and 5d). The parallelism among the ore veins, the 463 

strike of magnetic foliation of G-II and the fractures (Figs. 5 and 12) suggests that the 464 

space for the vein-like orebody was controlled by the later magma pulse.  465 

7. Conclusions 466 

According to our macro- and microscopic observations, geochemical and AMS 467 

analyses and 3D geometrical modelling of the Dongguashan stock, we concluded that:  468 

1) The Dongguashan stock was constructed by at least two stages magma 469 

emplacement. The AMS results of these two magma stages can also be divided into 470 

two groups, i.e. G-I and G-II, corresponding to earlier and later magma pulses, 471 

respectively. G-I is dominated by a NE-SW striking magnetic foliation, which is 472 

parallel to the trend of the pre-empalcement folds and faults, suggesting that the 473 

magma emplacement was probably affected by the pre-emplacement structure. G-II is 474 

characterized by a NW-SE-striking magnetic foliation, which is parallel to the 475 

regional extensional structures, suggesting the control of regional extension on 476 

magma emplacement.  477 

2) The 3D geometrical modelling of the stock presents a triangular shape with 478 

irregular and bulged boundary in the eastern side of the stock, denoting that the stock 479 

was constructed by an eastward magma accretion.  480 

3) The AMS results suggest that the magma was intruded into the strata 481 

interface at depths between -670 to -850 m, which is the essential factor for the 482 

formation of the stratiform ore deposit in the Dongguashan area. Moreover, the 483 

eastward magma accretion resulting in highly fractured and more permeable country 484 



rocks in the eastern stock contact zone that can explain why the skarn orebodies are 485 

localized in the eastern stock contact zone. The NW-SE-striking ore veins were likely 486 

controlled by the emplacement of the late magma pulse under an extensional regional 487 

tectonic setting. 488 
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Figure and Table captions 876 

Fig. 1 (a) Tectonic sketch map of mainland China; (b) Distribution of the major 877 

Cretaceous igneous rocks and related mineral deposits in the Middle-Lower 878 

Yangtze Metallogenic Belt (modified from Pan and Dong, 1999; Mao et al., 879 

2011).  880 



Fig. 2 Simplified magmatism-structural map of the Tongling district, Anhui province, 881 

China (The map is modified from the 1:50, 000 geological maps made by the 321 882 

geological team in Anhui province, 1989).  883 

Fig. 3 Geological map of the Shizishan Orefield. The Dongguashan stock is delimited 884 

by the dashed line. The age data presented in the map are collected from Wu et al., 885 

2008; Xie et al., 2009; Xu et al., 2008; Guo et al., 2013; Liu et al., 2018.  886 

Fig. 4 (a), (b) and (c) Field observations of the Dongguashan quartz diorite stock; (d) 887 

and (e) Irregular intrusive contact and country rock xenoliths developed in the 888 

Dongguashan stock; (f), (g) and (h) Highly deformed country rocks and its 889 

deformation characters. 890 

Fig. 5 (a) Restored 3D geometry of the Dongguashan stock with locations of major 891 

orebodies. (b) Stratiform orebody developed in the contact. (c) Massive 892 

chalcopyrite orebody in the stock boundary. (d) vein-type orebody inside the 893 

Dongguashan stock. (e) Southwest dipping syn-tectonic calcite vein in the 894 

country rocks. (f) and (g) show the lower hemisphere projection 895 

(Schmidt-Lambert projection) of conjugated ore veins and extensional fractures, 896 

respectively. 897 

Fig. 6 (a) Cross profiles of cylinder core specimens prepared for oriented thin section. 898 

(b) to (g) Photomicrographs of thin sections of the representative quartz diorite in 899 

the Dongguashan stock. Abbreviations: Bt-Biotite, Hbl: Hornblende, Kfs: 900 

Potassium feldspar; Mt: Magnetite; Pl-Plagioclase, Qtz: Quartz; Ser: Sericite; Sph: 901 

Sphene.  902 



Fig. 7 Harker diagrams for variation of SiO2 with other major elements from this and 903 

previous studies (solid grey symbols). Samples with high and low content of SiO2 904 

are classified into Group I and Group II, respectively. Detailed data are listed in 905 

supplementary Table S1.  906 

Fig. 8 Results of magnetic mineralogy analysis of representative quartz diorite 907 

samples from the Dongguashan stock. (a-f) thermal magnetic curves; (h-i) 908 

hysteresis loops, corrected for the paramagnetic linear trend; (k-m) isothermal 909 

remnant magnetization acquisition curves and backfield applications.  910 

Fig. 9 Correlation of the magnetic parameters. a) Km vs. PJ and b) T vs. PJ. 911 

Fig. 10 Detailed AMS results of the Dongguashan quartz diorite. The white and grey 912 

stereograms are for Group I and Group II, respectively.  913 

Fig. 11 (a) Magnetic foliation of the Dongguashan stock and stereogram of foliation 914 

poles, (b) Stereograms of poles of magnetic foliation for samples in Group I and 915 

Group II, respectively. (c) Magnetic lineation of the Dongguashan stock with 916 

inserted stereogram. (d) Stereograms of magnetic lineation for samples in Group I 917 

and Group II. All the projections are equal area and lower-hemisphere.  918 

Fig. 12 (a) 3D geometric model of the Dongguashan quartz diorite stock and its 919 

related ore deposits, (b), (c) and (d) Representative drilling profiles of the 920 

Dongguashan, Datuanshan and Huashupo ore, respectively. 921 

Fig. 13 (a) Photograph and (b) sketch of intrusive contact in the Dongguashan stock. 922 

Fig. 14 Cartoon of the magma emplacement mechanism of the Dongguashan stock.  923 

 924 



Table 1 Sampling information and site-mean values of AMS results of the 925 

Dongguashan quartz-diorite stock. 926 

 927 

 928 

Highlights 929 

 The Dongguashan quartz-diorite stock was built by multiple magma pulses  930 

 Early magma pulse was guided by inherited NE-SW-trending structure in country 931 

rock 932 

 Late magma pulse emplacement was assisted by regional extensional regime   933 

 Eastward magma emplace might control location of skarnization in stock eastern 934 

side  935 

 936 

 937 

Table 1. Sampling information and site-mean AMS results of the Dongguashan stock. 

Site Litho. 
Depth 

(m) 
n Km(10-6SI) PJ T 

Site mean AMS results 

K1 α95(max/min) K3 α95(max/min) 

Dec (°)/Inc(°)  (°) Dec (°)/Inc(°) (°) 

HSP01 Qtz-diorite -390 7 5010 1.14 0.04 250.2/70.4 15.4/4.9 109.7/15.4 16.1/7.8 

HSP02 Qtz-diorite -390 5 17700 1.20 -0.08 111/46.3 16.5/13.2 299.7/43.4 15.1/12.3 

HSP03 Qtz-diorite -390 5 6080 1.24 0.66 189.4/16.9 22.1/5.1 293/37.6 15.7/4.6 

DTS04 Qtz-diorite -390 5 5400 1.18 0.08 141.4/82.7 17.1/10.4 272.9/4.9 15.3/5 

DTS05 Qtz-diorite -390 5 662 1.02 0.03 222/56.1 22.8/11.6 106/16.4 29.6/14.2 

HSP06 Qtz-diorite -460 6 1430 1.10 0.50 209.1/60.7 25/20.2 29.9/29.3 25.4/11.4 

DTS07 Qtz-diorite -460 5 6380 1.10 -0.31 107.7/46.4 7.8/5.3 338.4/31.1 10.6/4.3 

DTS08 Qtz-diorite -460 7 17800 1.13 0.63 267.9/36.3 19.2/6.2 1.6/5 8/3.3 

DTS09 Qtz-diorite -460 7 11000 1.14 -0.44 186.8/81.1 16.7/8.2 326.1/6.7 21.9/9.3 

DTS10 Qtz-diorite -460 6 977 1.03 0.02 48.5/12.4 5.4/3.9 310.0/34.2 12.4/1.7 

HSP11 Qtz-diorite -580 5 2510 1.24 0.20 169.5/33.2 21.5/11.9 275.6/23 14.5/13.2 

HSP12 Qtz-diorite -580 5 16200 1.06 0.39 227.9/23.4 11.3/7 333.2/31.2 74.5/8.7 

DTS13 Qtz-diorite -580 5 5090 1.13 -0.07 132.4/68.4 18.2/16.9 341.2/19.1 34.8/5.2 

DTS14 Qtz-diorite -580 5 1860 1.07 -0.14 67.9/2.1 9.6/4 332.7/68 15.3/3.5 

DTS15 Qtz-diorite -580 5 2050 1.12 0.22 201.1/62.1 11.5/5.1 332.3/19.2 17/4.2 



HSP16 Qtz-diorite -670 5 8240 1.12 0.53 152.1/51.8 35.5/12.8 47.4/11.3 23.1/9.5 

HSP17 Qtz-diorite -670 5 12900 1.09 0.24 317.1/63.5 18.9/11.0 193.9/15.3 17.7/10.2 

DTS18 Qtz-diorite -670 6 4780 1.25 -0.46 137.7/72 8.1/4.1 43.3/1.4 13.7/4.9 

DTS19 Qtz-diorite -670 6 4120 1.18 0.59 135.8/17.5 51.7/13.2 44.1/5.3 26.7/17.2 

DGS20 Qtz-diorite -670 7 30200 1.08 -0.25 122.6/40.1 25.8/8.5 17/17.7 12.5/9.9 

DGS21 Qtz-diorite -670 6 9520 1.05 0.26 236.9/3.8 36/15.8 330.9/46.4 21.1/8.6 

DGS22 Qtz-diorite -670 5 859 1.10 0.30 260.7/37.9 38.3/13.6 149.3/25.2 29.2/4.5 

DGS23 Qtz-diorite -670 5 13900 1.10 0.08 280.5/74.3 44.6/5.1 152.8/9.8 14/5.9 

HSP24 Qtz-diorite -730 6 14100 1.18 -0.38 120.8/37 5.1/0.8 258.8/44.6 18/4.4 

HSP25 Qtz-diorite -730 5 25000 1.05 0.29 163.8/8.3 32.7/8.3 259.4/62.1 14.6/12.6 

DTS26 Qtz-diorite -730 6 16000 1.12 -0.32 319.5/19.5 7.2/3.6 59.2/25.4 7/2.9 

DTS27 Qtz-diorite -730 6 3380 1.12 -0.20 168.9/8.6 13.8/5.7 76.6/14.3 10.1/8.1 

DGS28 Qtz-diorite -730 6 52400 1.06 -0.02 216.4/15.3 21.7/4.1 324.1/48.2 10.8/2.5 

DGS29 Qtz-diorite -730 5 6000 1.15 0.40 263.5/27.2 63.5/5.9 3.3/18.3 11.2/2.8 

DGS30 Qtz-diorite -730 6 19900 1.06 0.11 236.1/35.8 15.3/10.7 332.7/9 11.5/6.1 

DGS31 Qtz-diorite -730 5 4670 1.06 0.04 300.2/10.8 5.4/4.2 205.7/22.1 17.1/3.7 

HSP32 Qtz-diorite -790 7 3650 1.22 0.21 152.6/38.2 21.3/6.4 262.9/23.8 17.2/7.6 

DGS33 Qtz-diorite -790 5 12100 1.10 0.14 224.6/65 7.8/4.5 132.5/1 14/4.5 

DGS34 Qtz-diorite -790 5 2380 1.05 -0.11 90.1/1.1 9.8/2.7 183.4/71.1 11.9/5.4 

DGS35 Qtz-diorite -790 5 39000 1.12 0.24 131/6.9 26.5/10 221.3/1.9 17.3/10.4 

DGS36 Qtz-diorite -790 7 164 1.03 0.12 275.3/2.5 15.4/5.3 184.1/24.5 16/3.6 

HSP37 Qtz-diorite -850 6 14400 1.19 0.14 144.9/74.1 12.1/8.9 46.5/2.4 16/5.2 

DGS38 Qtz-diorite -850 5 19900 1.10 -0.04 262.8/37.6 23.5/6.0 160.9/15.1 16.0/5.8 

DGS39 Qtz-diorite -850 5 41300 1.21 0.52 49.1/49.3 23.6/5.2 302.0/14.1 15.4/5.0 

DGS40 Qtz-diorite -850 5 171000 1.25 0.36 184.0/45.9 47.8/12.5 74.0/18.3 13.1/4.2 

DGS41 Qtz-diorite -850 5 33400 1.14 0.09 140.2/73.3 14.9/10.9 331.8/16.3 21.1/10.8 

Note:  938 

(1) Site: sampling site, n: number of specimen at sampling site; Km: bulk magnetic 939 

susceptibility, PJ: degree of susceptibility anisotropy, T: shape parameter of the AMS ellipsoid, 940 

K1: Magnetic lineation, K3: The pole of the magnetic foliation, Inc.: Inclination, Dec.: 941 

Declination, α95 (max/min): the long and short axes of the confidence ellipsoid at 95% level.  942 

(2) The unfilled and light grey filled lines represent the data of the Group-I and Group-II sites, 943 

respectively. 944 
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