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Seismic source dynamics,
heterogeneity and friction

Raiil Madariaga and Alain Cochard
Département de Sismologie, U.RA. au C.N.R.S. 195,
Institut de Physique du Globe de Paris et Université Paris 7, France

Abstract

It has recently been proposed by several authors that stress distribution around active faults may become criti-
cal spontaneously. Other authors believe that heterogeneity is a permanent feature of fault planes. We test
these ideas on a simple but realistic fault model in the presence of non-linear rate-dependent friction. We find

that if friction increases with decreasing slip rate, slip becomes unstable at low slip rates generating supersonic
healing phases that lock slip prematurely. Locking of slip in turn produces stress heterogeneity. For a fault
model containing a single localized asperity, Das and Okubo found that rupture starts at the asperity and prop-
agates until it either encounters a strong barrier or the stress intensity reduces below a minimum level. Rupture
in these models is completely controlled by the physics of the rupture front. Rate dependent friction changes
the behavior of the fault in a fundamental way: friction can lock the fault prematurely generating supersonic
healing phases. Unlike stopping phases produced by barriers, a healing phase is not a wave phenomenon; it is
a direct consequence of the non-linearity of friction. In this case rise time for slip on the fault is no longer con-
trolled by the overall size of the fault as in conventional constant-friction crack models. We find that in our as-

perity models it is rise time — or the healing mechanism

— that controls the final size of the fault. Studying

models involving several isolated asperities we find that stress heterogeneity is preserved provided that friction

is strongly rate dependent. Depending on the details of th
can be quite complex. This behavior is not universal, i

tion.

Key words earthquake — fault dynamics — seismic
complexity

1. Introduction

A model for the accumulation of stress in
the lithosphere and its sudden release by earth-
quakes was formulated at the beginning of this
century by Reid (1910). It took almost 50 years
to develop a correct elastodynamic formulation
of the problem proposed in the early sixties by
Haskell (1964), Maruyama (1963) and Bur-
ridge and Knopoff (1964) who laid the basis
for a kinematic model of earthquakes. In this
model an earthquake is described as a disloca-
tion of the fault, although the most appropriate

€ rupture process, the final state of stress on the fault
t depends on the degree of rate-dependence of fric-

term would be a displacement discontinuity or
slip across the walls of the fault. Kinematic
models were used to calculate the elastic
waves generated by slip on the fault and are,
still today, at the heart of the techniques de-
vised to invert fault slips from seismic wave-
forms in the near and far-field, and from
geodetic data.

Keilis-Borok (1959) studied a static model
of faulting that was the first to attempt to relate
the traction change across the fault, or stress
drop, to slip. He established the well-known
formula that relates a constant stress drop on a
circular fault to the average slip on the fault.
Between 1964 and 1975, Kostrov (1964, 1966,
1975) laid the foundations of the mathematical
methods to study dynamic crack models, i.e. to
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study the growth of rupture on a fault due to
the loss of traction across an active fault.
Kostrov posed the problem in the same way as
Reid: earthquakes are due to slow accumula-
tion of stress around a preexisting fault; and
they are produced by the sudden triggering of a
slip instability across the walls of the fault. In-
side the fault, stress drops from the initial pre-
stress to a lower value determined by the kine-
matic friction between the walls of the fault.
Kostrov assumed that after the passage of the
rupture front the traction across the fault sud-
denly relaxed inside the crack to a known value
of the traction that was constant and indepen-
dent of slip, slip velocity or thermodynamic
state of the fault. Actually, in all these models
the final traction was assumed to be zero as in
mode I fractures where the final traction is ex-
actly zero. Kostrov’s models were extremely
successful in providing a proper conceptual ba-
sis for the study of earthquake source dynam-
ics but they were concerned with the continu-
ous unilateral or bilateral growth of a rupture
front in a uniformly loaded medium. A major
defect of these models was that once started,
rupture would never stop. The reason is that in
a uniformly pre-stressed medium the stress
concentration that appears near the rupture
front increases indefinitely with the size of the
fault. If rupture resistance is also uniform noth-
ing can prevent the fault from running away.

Kostrov et al. (1969) studied the details of
the energetics of faulting and showed that in
order for the rupture to grow at subsonic veloc-
ities, stress drop cannot occur abruptly at the
rupture front. A certain slip weakening zone
has to exist where stress changes continuously
as a function of slip. This model had already
been proposed by Barenblatt (1964) in his study
of hydraulic fractures, and by several other au-
thors in fracture mechanics. Ida and Aki (1972)
studied the consequences of simple slip weaken-
ing models for the growth of rupture.

Brune (1970) proposed a simple circular
crack model in order to model the general
properties of the radiation spectrum of far-field
seismic waves proposed by Aki (1967) on
more empirical grounds. Improving Brune’s
model, a numerical calculation of a circular
fault with uniform stress drop was obtained by

Madariaga (1976) who assumed a simple cir-
cular rupture front running at constant velocity
until it stops abruptly at a certain radius a. The
problem of rupture arrest was not considered in
this model and it was simply assumed that rup-
ture stopped abruptly at some unbreakable bar-
rier. An important result of these simulations
was that slip continued uninterrupted until the
arrival of stopping phases from the edge of the
circular crack. Thus the duration of slip at any
point on the fault was controlled by stopping
phases, not by friction or other local properties
of the fault. Although the geometry of this
model is admittedly simple, it has been useful
as a guide for the understanding of seismic ra-
diation from earthquakes.

Soon after that, Das and Aki (1977a,b) in-
troduced a model of rupture containing barri-
ers, i.e. patches of higher rupture resistance on
the fault that may slow down rupture or com-
pletely stop it. These barriers were supposed to
model the intrinsic heterogeneity and disconti-
nuity of faults as observed in the field and in
the seismic waves radiated by earthquakes. An
alternative model of source heterogeneity was
proposed almost simultaneously by Kanamori
and his colleagues (Kanamori and Stewart,
1978) who proposed that observed heterogene-
ity was due to asperities, patches on the fault
that have not ruptured in previous seismic
events and have therefore accumulated large
stress compared to other places on the fault.
Madariaga (1979, 1983) studied the radiation
from barriers and asperities and concluded that
it was not possible to distinguish between these
two types of heterogeneities from the observa-
tion of seismic waves alone. In fact as has been
found by numerous authors, asperities and bar-
riers are complementary concepts that express
the fact that faults evolve in a complex way,
seismic ruptures propagate along faults that
have already experienced previous earth-
quakes, encounter barriers, slow down, and
continue rupturing, etc. Thus we have to con-
sider the complete process of loading, fractur-
ing, and fault interaction in order to understand
earthquake complexity. This is a very difficult
problem because of some intrinsic problems
with modeling seismic ruptures and because a
proper understanding of rupture requires study-
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ing faulting at several length and time scales:
at the shortest scale a proper understanding of
the physics of rupture fronts is still lacking be-
cause laboratory data like that reported by Di-
eterich (1972, 1978) were obtained at very
slow values of slip rate. At the next scale of
complexity a good understanding of the geom-
etry and scale of stress heterogeneity on the
fault is needed in order to model observed seis-
mic radiation. Some attempts at solving these
more complex problems were made by Day
(1982), Mikumo and Miyatake (1983), Das and
Kostrov (1988) and many others. Their models
are however intrinsically limited by the fact
that most numerical methods cannot simultane-
ously resolve the small scale processes near the
rupture front, and the large scale hetero-
geneities of faulting.

Because of these difficulties, rupture growth
has usually been simulated assuming a numeri-
cal rupture criterion based on the maximum
numerical stress ahead of the rupture front.
Virieux and Madariaga (1982) and Koller ef al.
(1992) have illustrated the difficulties of this
approach.

A new interest in properly modeling seismic
rupture has been triggered by some results ob-
tained by Carlson and Langer (1989) using the
block and spring model proposed by Burridge
and Knopoff (1967). Using a very simple rate-
dependent friction model they found that a
very complex state of stress develops in their
model starting from slightly perturbed homo-
geneous conditions. In this model stress hetero-
geneity and a wide distribution of magnitudes
is obtained in a simple homogeneous fault
model by the effect of dynamics. These results
have been criticized by Rice (1993), who very.
appropriately remarked that the Burridge-
Knopoff model belongs to a category of intrin-
sically discrete models that lacks a continuum
limit. Unfortunately doing a proper analysis of
a complex fault in a continuum requires much
more accurate numerical methods than those
developed in the literature. The first inroads in
this direction were made by Andrews (1985)
who modeled the propagation of a plane fault
under the control of a slip weakening model of
friction. Okubo (1989) used this numerical
model to study the propagation of a fault with
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rate and state dependent friction of the kind
proposed by Dieterich (1972). Inspired by this
work, we have developed improved Boundary
Integral Equation (BIE) methods that would al-
low us to gain sufficient control of the stress
and slip velocity field on the fault in order to
study slip and rate dependent friction models.
As we will show in this paper, the question is
still open whether a properly modeled fault can
sustain the kind of heterogeneity observed by
Carlson and Langer and evolve towards a
regime of self-organized criticality as proposed
by Bak and Tang (1989) or Sornette and Sor-
nette (1989).

2. Models of source heterogeneity

In a recent paper Carlson and Langer (1989)
reconsidered the block-and-spring model of
Burridge and Knopoff (1967) (B-K in the fol-
lowing). In most previous studies of the B-K
model — with a few exceptions like Cao and
Aki (1986) — an extremely simple frictional
law was used. In this law, sometimes called
Coulomb friction, it was assumed that friction
is linearly proportional to the normal pressure
across the fault, but independent of slip or slip
velocity on the fault. Instead of this simple
friction model, Carlson and Langer (1989)
used a rate-dependent friction in their simula-
tions. Starting from a very small initial hetero-
geneity of stress they observed that hetero-
geneity developed in a natural way until it
reached a self-similar distribution. Slip events
(earthquakes) of all sizes were observed on the
same stretch of the fault and they found that
these events obeyed a Gutenberg-Richter law.

In the Burridge and Knopoff (1967) model
each block obeys well posed mechanical equa-
tions and reproduces, at least locally, the fric-
tional instability that causes earthquakes. Un-
fortunately, this model has two severe limita-
tions: it does not radiate seismic waves and it
does not include long range elastic forces. Rice
(1993) has raised an even stronger objection,
namely, that this model may be intrinsically
discrete so that the observed heterogeneity may
be due to inadequate sampling of the friction
law on the fault.
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In order to test the applicability of Carlson
and Langer’s (1989) results to earthquakes it is
clearly necessary to study more realistic earth-
quake models, based on the elastodynamics of
rupture propagation. As a first step in that di-
rection, we present here a study of an antiplane
fracture model using a general rate-dependent
model for friction. To our knowledge, the only
previous work on the dynamics of faulting
with rate-dependent friction is that of Okubo
(1989) who used the friction law proposed by
Dieterich (1972). Okubo’s simulations did not
show any evidence of heterogeneity of the fi-
nal stress on the fault. Our results — Cochard
and Madariaga (1994) — are different: using
Carlson and Langer’s rate dependent friction
we found that the final stress on the fault be-
comes heterogeneous at least for certain values
of the rate-dependence.

A related, and very important, aspect of rup-
ture heterogeneity is the study of possible
mechanisms for the generation of short dura-
tion pulses observed by Heaton (1990) and
confirmed by recent work on the Lander’s
earthquake by Wald and Heaton (1994), Cohee
and Beroza (1994) and Cotton and Campillo
(1994). With the help of a very simple model
that we can solve exactly under certain circum-
stances we will show that these short pulses

A

Auy
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may arise due to the interplay of rate-depen-
dent friction and the presence of asperities on
the fault.

3. Mathematical statement of the dynamic
faulting problem

We consider a homogeneous elastic body V
with a single flat fault that lies along the
x-axis. The elastic body is infinite or at least its
boundaries are considered to have no influence
on slip on the fault. The displacement field
u (x, t) in the elastic medium satisfies the elas-
todynamic wave equation

2
pa_”=;N2u+(/’L+/,L)VV- u

32 3.D

without body forces and with zero initial con-
ditions. p is mass density, A and u are the elas-
tic constants. We also assume that radiation
conditions are satisfied at infinity. The only
source of dynamic motion in this medium is due
to slip across the fault, so that we need to exam-
ine carefully the boundary conditions on the
fault. For this purpose we define a positive and
a negative side of the fault surface (see fig. 1).

—<

4 D, =

©

7 wE

Friction

Fig. 1. Antiplane fault model studied in this paper. Slip is measured as the displacement discontinuity be-
tween the positive and negative sides of the fault. Friction is assumed to be a function of slip .velocity in the

fault.
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The traction on the positive side of the fault is
T = - 0,, where o is the stress tensor. The minus
sign appears here because of the conventional
definition of stress.

We assume that before the earthquake starts
the fault is subject to a certain pre-stress field
0o (x,z) due to the superposition of loading
due to plate motion and of stresses due either
to slow internal deformation of the lithosphere,
or produced by previous events on the fault or
on neighboring faults. Contrary to the assump-
tions implicit in many fault models, we assume
that pre-stress is very heterogeneous due to the
previous seismic history of the fault. The initial
traction across the fault is thus 7, (x) = — 00, yz-
This pre-stress field is variable in space be-
cause the fault has already suffered previous
carthquakes, patches where 7; is large are
called asperities by most seismologists. At time
t = 0 rupture starts and a certain zone of the
x-axis slips as a consequence of the loss of
traction across the fault. Let I"(¢) designate the
areas of the fault that are slipping at a given
time. We call Au =u"—u" the slip or displace-
ment discontinuity across I"(#). On the slipping
areas of the fault we assume that traction drops
to

T, )=Ty (x) +AT (x, t) for xe I'()
3.2)

where AT (x, 1) is the traction change on the
fault. Traction on the fault decreases during
slip so that seismologists call AT the stress
drop. In most previous work on dynamic fault-
ing AT has been assumed to be known. This
will not be the case here because we are inter-
ested in modeling the effect of non-linear rate
and slip dependent friction. Thus for points
x e I, we assume that traction T is a function

of both slip Au and slip rate Au. A discussion

of possible friction laws and how to solve the
boundary value problem will be presented later
in this paper.

On other points on the fault x¢ I, the
boundary condition is

Au(x,)=0 for x¢ I'(P. (3.3)
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The solution of the elastodynamic eq. (3.1)
subject to these boundary conditions is a mixed
boundary value problem whose solution is very
difficult because the rupture zone I'(¢) has to
be calculated as part of the solution. Except for
some simple problems with known slip area
I’ () as a function of time, the only way to ob-
tain solutions to this problem is to use numeri-
cal methods. Finite difference, finite elements
and Boundary Integral Equations (BIE) have
been used in the past. From our previous expe-
rience with finite differences (Virieux and
Madariaga, 1982) we are convinced that BIE
methods are the most accurate method for
solving dynamic faulting problems.

4. Integral equations for an antiplane
fault model

We look for solutions to the problem (3.1),
(3.2) and (3.3) by the Boundary Integral Equa-
tion (BIE) method. This is relatively easy for
the problem at hand because we know
the Green function G(x, z, 1) = Qru)™!
=B H@-r/B) in closed form
(see, e.g., Aki and Richards, 1980). Here r =

Vx2+ 22 is the distance to the source point, and
B is the shear wave velocity. We start from the
classical Betti representation theorem. Dis-
placement inside the elastic body is given by

w7, ) = L jot Au(E D, 2, & 1— 1) drdE
@1

where £ = 1 dG/dz is the yz element of the
stress tensor associated with the 2-D Green
function G. When z — 0, this equation reduces
to an identity, so that this version of the repre-
sentation theorem does not lead to a useful
BIE.

In order to get a well-posed integral equa-
tion we calculate first the stress change o, due
to slip Au in the slipping parts of the fault, and
then we let z — 0. In this limit 6,, — — AT, the
traction across the fault plane. Calculating
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AT = — 11 0u/dz at z = 0 from (4.1) we get the
following integral equation:

AT (x, t) = —

__u Au(é, 1) g
2nf3? Ho [(t—1*—(x- &2 1B b

where 7,, = max (0, t — || x — || /B). This looks
as a very simple integral equation, unfortu-
nately, it can not be used as it is because it is
hyper-singular near the source point, when
> xand 7>t

We eliminate these very strong singularities
by the method proposed by Koller et al.
(1992). Assuming that Au and its derivative
with respect to x (the dislocation density) are
continuous, Cochard and Madariaga (1994)
transformed (4.1) into the following regular-
ized integral equation (i.e., an integral equation
with an integrable kernel):

AT (x, z):-ziﬁmi(x, £)—

Vi-tP--8PB 5 .,
L ey g
4.2)

where, Au is the slip velocity. The domain of
integration of eq. (4.2) is shown in fig. 2.
The two terms in (4.2) have a very simple
physical interpretation. The first one represents
an instantaneous traction change produced by a
corresponding change in slip velocity. If slip
velocity Au (x, t) is independent of position x
the second term cancels out and traction is
directly proportional to slip velocity. The ratio
W1/2f3 is the radiation impedance of the fault.
The second term contains all the elastody-
namic interactions between different points on
the fault. This term contains both long range
elastic interactions — inversely proportional to
x—& — and the local wave field of the wave-
front singularities that propagate with the shear
wave speed (f8) along the fault. It is interesting
to note that just as in the static problems (Aki
and Richards, 1980) traction change is related
to the gradient of slip not to slip itself. In the
theory of dislocations b = d, Au is usually

“

backward
characteristics

FAULT

Fig. 2. Domain of integration for the solution to the Boundary Integral Equation (BIE) for the antiplane crack

(4.2).
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called Burger’s vector density. In integral eq.
(4.2) the elastodynamic interactions are propor-
tional to the rate of Burger’s vector rather than
Burger’s vector. This is understandable since
elastic waves are emitted only by temporal
changes in the dislocation distribution. Integral
eq. (4.2) is regular everywhere except near
& — x where it has to be interpreted in the
usual sense of a Cauchy integral. This Cauchy-
like singularity is associated with the static
stress field of a dislocation as can be shown
letting Au(x, 1) — Au(x) H (¢) in (4.2).

Let us remark that boundary integral equa-
tions of the type (4.2) were introduced in the
study of faulting by Burridge (1969) who did
not use the form (4.2), but a numerical approx-
imation derived from the more common dis-
placement formulation of the boundary integral
equations. The displacement formulation was
developed independently by Hamano in an un-
published work, and was extensively studied
by Das and Aki (1977a), Andrews (1985) and
Kostrov and Das (1989). In the displacement
formulation eq. (4.2) is inversed, so that Au is
given as an integral function of the change in
traction across the fault:

Aulr, f)= ——1

2mu
N —

0 N@-1)2 = (x— E2IB?

AT (&, DdrdE.

(4.3)

In this formulation the unknowns appear both
on the left hand side of the equation (Ax) and
under the integral, because AT is not known
outside the fault. To solve this equation Das
and Aki (1977a) used (4.3) as an integral equa-
tion in order to compute AT outside the fault;
and then used this value of AT to compute Au
inside the fault. Although both formulations
are equivalent, we consider that the BIE “4.2)
is preferable for the study of non-linear stress-
slip rate friction laws, because it does not re-
quire computing stress outside the slipping
patches I of the fault.

We can now pose the boundary value prob-
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lem for the points x € I'(#) (inside the crack).
Since the integral in (4.2) extends over points
inside the crack, the second boundary condi-
tion (3.3) is automatically satisfied by our inte-
gral equation. The stress boundary condition
(3.2) can be easily written using (4.2), so that
for points x € I we get

T(x, =T, (x)—

—%Au(x, t)—-z%-tK(x, ) * %Au(x, )
(4.4)

where K (x,1) = \i’— r*/B*/ (xt) designates
the kernel of eq. (4.2), the star = indicates time
and space convolution, and Ty(x) is the stress
field before rupture starts. Although it is not
essential for the solution to the boundary value
problem, we can compute the stress field in the
locked areas of the fault, x ¢ I'(f), as the sum
of the preexisting stress level T, and the addi-
tional stress due to slip on the portion of the
fault that is already sliding:

T(x, ) =T, (x)— E‘L%K(x, 1) * %Au(x, )

4.5)

that is we remove the instantaneous response.
Since the current point x is not included in the
convolution, the last term is regular and easy to
compute numerically. Given the traction T,
(4.4) and (4.5) provide a complete set of equa-
tions for the computation of stress and slip on
the fault plane. Unfortunately, as we discuss in
the next section, the solution to the problem
may be very difficult if the friction law that re-
lates T to slip and slip-rate is non-trivial.

5. Friction models

As remarked in the introduction almost all
the numerical models used to study dynamic
faulting in a continuum used an extremely sim-
ple model of friction that assumed that slip de-
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velops on the fault plane once the traction be-
comes larger than a certain threshold 7,, usu-
ally called static friction. Once this threshold is
overcome, traction decreases instantaneously to
a constant kinematic friction that is indepen-
dent of slip or slip rate. Inside the fault then
the integral eq. (4.4) reduces to a much simpler
one because T (x,?) is constant equal to the
kinematic friction T}. The solution of eq. (4.4)
is still quite difficult because of the nature of
mixed boundary value problems, but it is nev-
ertheless a linear integral equation relating
stress drop and to slip gradient.

This simple friction law contains a number
of physical inconsistencies that have been dis-
cussed by numerous authors in the literature,
see e.g. Burridge (1973). The most important
problem is that if friction drops instantaneously
to the kinematic friction once slip starts, then
there is no energy dissipation at the rupture
front, and as a consequence the rupture front
either does not grow at all, or it moves at the
terminal velocity — shear wave velocity for an-
tiplane cracks. For all other values of the rup-
ture velocity, stress near the rupture front be-
comes singular violating the assumption that
stress can not be larger than the threshold 7,.
This of course is not what is observed in real
earthquakes: careful studies of rupture velocity
from broad band data indicate that average
rupture velocities are about 70-75% of the
shear wave velocity for most earthquakes
which show clear evidence of directivity (see
e.g. Campos et al., 1994).

The solution to this paradox is well known:
a finite slip weakening zone must exist near
the rupture front where a finite amount of en-
ergy is dissipated in order to make the fault
grow. The energy released at the rupture front
is sometimes considered to be an intrinsic ma-
terial property although this has never been
proven for cracks or faults. Some authors — fol-
lowing Aki (1987) — propose that the size of
the process zone is of the order of a few hun-
dred meters or less and it is responsible for
Smax> the high frequency cut-off observed in
near field acceleration spectra. Other authors
propose that the weakening zone is smaller and
that fi,..x is due to attenuation. In either case the
slip weakening zone is so small that its effects

on seismic radiation are very difficult to ob-
serve.

One may think that since slip weakening is
such a localized phenomenon it could be ne-
glected in a first approximation. This is what is
usually done in fracture dynamics. For the pur-
pose of modeling large scale fracture phenom-
ena, the rupture front reduces to a point and the
maximum stress criterion 7, is replaced by an
energy release rupture criterion. In numerical
modeling of faulting, however, it is not possi-
ble to resolve the stress field near the rupture
front. For this reason, Das and Aki (1977a,b)
proposed a simpler numerical criterion that
they called the Irwin rupture criterion. In this
model the crack grows if the numerically com-
puted stress immediately ahead of the rupture
front is larger than a certain number. As we
showed by careful numerical experiments in
Virieux and Madariaga (1982) and Koller et al.
(1992), the Irwin criterion is grid size depen-
dent. The reason is simple: any reasonable
model of the rupture front has to include a
length-scale, that measures the size of the slip-
weakening zone. This length-scale, indepen-
dent of the overall size of the fault, appears ex-
plicitly in the energy release rate rupture crite-
ria, or in the more detailed models of the slip
weakening zone discussed by Ida and Aki
(1972). In numerical computations the length
scale is by default the grid size.

Thus the peak numerical stress criterion be-
longs to the class of intrinsically discrete mod-
els justly criticized by Rice (1993). More accu-
rate models of the slip-weakening zone ahead
of the rupture front were modeled by Andrews
(1985) who showed that the size of the slip
weakening zone reduces in size as the rupture
front accelerates. This effect makes the correct
modeling of the rupture front dynamics even
more difficult.

More realistic friction laws were proposed
by Dieterich (1972), Rice and Ruina (1983)
based on experimental studies of friction of
rocks under low slip rates. They proposed that
friction is a non-linear function of slip velocity
and a number of hidden thermodynamic vari-
ables that describe the state of the fault at the
time of the earthquake. To our knowledge the
only numerical model where a rate and state
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dependent friction law of the Dieterich type
has been used is that of Okubo (1989) who
studied several rupture problems. Okubo ap-
plied Dieterich’s friction model only to low
slip velocities; for high slip velocities he as-
sumed a constant friction level as in all previ-
ous work on dynamic faulting. Implementation
of Dieterich-Ruina models is not easy because
of the numerical difficulties for properly mod-
eling processes at widely different time scales.
The Dieterich-Ruina friction is important dur-
ing slip initiation at very low slip rates. Actu-
ally, Okubo (1989) found that at high rupture
speeds, the Dieterich-Ruina dynamic friction
behaves like the more common slip weakening
models. If this were to be confirmed by further
numerical modeling it would mean that most
of the phenomenology of friction with slip
weakening carries over to the case of Di-
eterich-Ruina law.

In the previous models of friction the em-

Traction

phasis was put on the initial loss of traction of
rock surfaces for very low values of slip veloc-
ity. In fact, frictional behavior at low speeds
has a fundamental role in controlling the initia-
tion of slip and the propagation of a rupture
front. But this is not the only aspect of friction
that is important for the study of dynamic
faulting: the behavior of friction for large val-
ues of slip rate is equally important and more
determinant of the large scale features of fault-
ing as we will show in the rest of this paper.

5.1. Rate-dependent friction and slip
instability

In their study of the B-K model, Carlson
and Langer (1989) used a slip velocity depen-
dent friction law that was initially proposed by
Burridge and Knopoff (1967). This friction
model, shown in fig. 3, contains no internal

Slip Velocity

Fig. 3. Rate-dependent friction law used by Carlson and Langer (1989) and the trajectory of a point of the
fault in the stress-slip velocity plane. The dynamic unloading lines labeled by S have a slope — u/(23). When
S = S, slip becomes unstable and healing occurs instantaneously.
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state variable nor scale length:

Vo

TAw=T, —————
V0+AL{

(5.1)

where T is the absolute traction, Au is the slip
velocity, V; is a reference slip rate that deter-
mines the rate of slip velocity weakening in the
model and 7, is the traction threshold or static
friction.

Friction law (5.1) was originally proposed
by Burridge and Knopoff (1967) to simulate
friction at high slip rates. As shown by
Cochard and Madariaga (1994) for a numerical
model, (5.1) is very unstable at low values of
slip rate, both during the passage of the rupture
front and during slip arrest. In order to under-
stand the nature of the instability of (5.1), let
us rewrite our BIE (4.4) in the form

T[Ad(x, 1)] = —%Au'(x, N+SC 1 (52)
where we introduce
S =Ty 0)— L K i)+ 9 Aux, 1)
21 ox

a term that contains the effect of pre-stress and
the elastodynamic interactions of the current
stress field with past values of slip velocity.
For slipping points, eq. (5.2) is an explicit
non-linear algebraic equation for the slip ve-
locity Au of that point. This equation may
have one, none or several solutions and re-
quires careful analysis. The solution of (5.2) at
different instants of the slip cycle may better

be discussed by referring to the graphical solu-

tion shown in fig. 3. We notice first that the
right hand side of eq. (5.2) represents a family
of straight lines of slope — /2 parameterized
by S. The left hand side, on the other hand, is
simply the friction law (5.1). From a geometri-
cal point of view, the solution of the integral
eq. (5.2) consists in determining the intersec-
tion of the straight lines parameterized by S
with the friction law.

Let us follow the trajectory of a point of the
fault on the stress-slip velocity plane. When
the rupture front approaches this point, the sum
of interactions S increases rapidly so that the
total stress T computed from (4.5) approaches
the threshold. Slip starts when T reaches the
friction threshold 7,. At that point Au = 0. This
is indicated by the diamond in fig. 3 and corre-
sponds to S = 7,. At that instant of time, the
fault is in unstable equilibrium and traction
drops instantaneously to a value determined by
the intersection of the line S = T, with the fric-
tion law. This is indicated by the black dot in
the same figure. There is no energy dissipation
in this process and as a consequence rupture
propagates at the shear wave velocity. If rup-
ture velocity were lower than f, a stress con-
centration would appear immediately ahead of
the rupture front, violating the maximum stress
condition T < T,. As already discussed above
the solution to this problem, already identified
by Rice (1993), is to introduce the small char-
acteristic length of the region where stress
drops continuously from its peak value T, to
the kinetic friction at high slip rate. We are
aware that the friction model (5.1) is incorrect
but as will be shown in the next section using
exact solutions, we do not believe that this de-
ficiency of the friction law (5.1) affects our
main results qualitatively.

For later times, the fault element under con-
sideration receives information from the other
places of the fault so that S changes resulting
in a translation of the straight line parallel to it-
self and consequently to a variation of Au
along the friction curve (e.g. the circle in
fig. 3). There are actually two intersections be-
tween the straight line and the friction curve
but the only relevant one is that with lower
stress.

5.2. Slip arrest

As slip velocity decreases, S will eventually
reach a critical value when the straight line la-
beled S.;; becomes tangent to the friction law.
At this time, this point becomes unstable be-
cause for § < S, there are no real solutions
of eq. (5.2). Au drops instantaneously to O
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Traction

Fig. 4. Modified rate de
law in fig. 3.

and the fault heals instantaneously. At the
same time, the absolute traction 7 increases to
Seie @s is indicated by the rectangle in fig. 3.

Thus there are two instabilities in this prob-
lem, the first produces a sudden stress drop af-
ter rupture initiation, the second during slip
healing due to the inability of the fault to con-
tinue slipping when friction is increasing with
reduced slip-velocity. The latter mechanism
was discussed by Heaton (1990). In order to
avoid the numerical problems due to the heal-
ing instability in fig. 3, we have modified the
friction law (5.1) in order to reduce the numer-
ical effects of the instability. We take as shown
in fig. 4

X

v,
TA=5 g s

X

for Au >0 (5.3)

where V. is chosen so that the derivative
dT/dAu at the origin is greater than the critical
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Slip Velocity

pendent friction law used in order to avoid the low slip rate instability of the friction

slope —2u/B. The advantage of this friction
model is that it avoids the instability of healing
without changing the qualitative properties of
the solution. With this modification, in particu-
lar, we avoid the annoying numerical noise
produced by the sudden jump of stress at the
moment of healing. The noise appears because
in the numerical computations the healing of
different elements of the fault occurs at dis-
crete instants of time so that two neighboring
fault elements that heal at two different time
intervals end up having a different state of
stress. With the law (5.3), stress increases con-
tinuously as slip rate decreases to zero.

6. The origin of short slip events
(Heaton pulses)

In the previous discussion we tried to em-
phasize that faults under rate-dependent fric-
tion are unstable: traction on the fault jumps
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abruptly at the beginning of slip. For large slip
rates friction reaches a finite limit and the fault
slips at almost constant stress. As slip velocity
decreases slip becomes unstable again because
stress tends to increase with reduced slip rate.
A major effect of this stress increase during
slip deceleration is that it can produce prema-
ture healing of the fault. Recently Heaton
(1990) observed that the source time history of
several earthquakes, determined from the in-
version of near field accelerograms, was very
short. He proposed- that rate-dependent friction
was the cause of this short rise time. In the fol-
lowing we will demonstrate that this is indeed
the case but that rate-dependent friction by it-
self is not enough: narrow pulses develop only
if the stress field itself is heterogeneous, in par-
ticular if it contains localized asperities before
the earthquake starts.

We will demonstrate this using a simple
but exact solution. Solving crack problems exact-
ly is very difficult but thanks to earlier
work by Kostrov (1966) and Burridge (1969),

T

Uu

Madariaga (1983) found an exact solution to
the near field of some antiplane fault models
under general time-independent stress drop.

6.1. Faulting of an asperity under
constant friction

We consider in a first step faulting under
constant rate-independent friction. In order to
obtain the exact solution we assume that a fi-
nite crack appears suddenly at time ¢ = 0 along
a stretch of length ¢ of the fault. After the fault
is nucleated we let it grow at constant pre-
scribed rupture speed. Traction inside the rup-
ture zone drops instantaneously to a constant
kinematic friction level T;. Although it is pos-
sible to solve the problem of an arbitrary rup-
ture velocity we prefer to use a prescribed rup-
ture velocity in order to obtain very simple ex-
act solutions. Let us assume, as shown in fig. 5
that the fault is loaded by an initial stress field
such that traction is exactly at the friction

stress

stress
drop T

Fig. 5. Model of a simple fault with a localized pre-stress concentration or asperity of width 2a. Rupture
starts abruptly from an initial instantaneous rupture of width 2¢ and then grows at constant rupture velocity v.

In the applications, the kinematic friction was T, = 0.
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threshold 7, inside an asperity of width 2a near
the center of the fault. Outside the asperity the
initial stress T, < T,. This simple model which
is a slight modification of another one studied
by Okubo (1989) represents a crude model of
an asperity: a region on the fault where the
stress is higher than its surroundings where it
has been reduced by previous earthquakes.

For simplicity’s sake we assume also that
the initial rupture is centered inside the asper-
ity. As shown in fig. 5, at time # = 0 we then
let rupture start abruptly running at constant
rupture velocity v. As rupture grows bilaterally
it breaks through the asperity and keeps grow-
ing into the area of lower pre-stress. If the pre-
stress T, outside the asperity is only slightly
larger than the final kinematic friction T, it is
well known that the fault will propagate along
the fault plane forever and that points near the
center of the fault will keep slipping also for-
ever. Unless, of course, the rupture front hits
an unbreakable barrier.

We can solve for the stress and velocity
fields for this fault as long as the waves emit-
ted by one tip do not reach the other one. For
longer times waves diffracted by the rupture
front must be taken into account. The computa-
tion that we will describe is exact until the ar-
rival of these diffractions, for later times our
solution is still a reasonable approximation be-
cause diffracted waves are quite small at high
rupture velocities. If one wants to make an ex-
act computation, it would be better to resort to
numerical solutions.

Stress drop inside the asperity is simply
AT, = T,—T, and outside the asperity it is
ATy = Ty — Ty The final traction everywhere on
the rupture zone is T;.

Assuming that the rupture front moves at
constant rupture velocity v, the exact velocity
field inside the fault is given by

AT, B

. 2
Au; (x, 1) =

Vi (x—e, 1, v) +

24T,v

+ Vo x=€ t, V)=V, (x =€, 1, v,a—0) +
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Vo (—€—x, 1, V)= Vy(~C—x, 1, v, C—a)+

D2 Ly e, 04 Ve x . 0)]
6.1)
where
Vi=l for —¢+Br<x<e¢—pr
and
Vi=Vi(x=€, t,v)=V;(—€—x, ¢, v) otherwise
with
Vit ,v)=1 for x< —p
2[1 —sin‘l((x+ﬁt)+(x_w)):l
(L+vIB) Bt
for —fr<x<wt
(6.2)

and Vi (x,2,v) = 0 for x > vz. We defined the
functions

1

%:\/
(1 +vIB) Vv —x +p

Vo (x, t,v) =
for —fr<x<vt
with Vy (x, v, £) = 0 outside this range; and
1 VT
Vilx, t, v, a)=%_\}-\/(x—a)+/3’(t—a/v)
‘ (1 +v/ﬂ)\/vt—x B

for a(l+vip)-Pt<x<wt

with V, (x, ¢, v, a) = 0 outside this range. Let us
remark that V, is the radiation from the edge of
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the loaded zone located at x = a. The expres-
sions for V; and V, are the same except for the
factor \v/ B that reduces the radiation from the
border of the jump in stress drop. This factor
appears whenever there is a jump in stress drop
on the fault.

Similarly we can compute the stress field
outside the crack

2T,
T(x, f) = —2[Ty(x—€, 1, )~ Ty(x—€ 1, v, a—€) +
T

+Ty(=C—x, t, V) -Ty(-€—-x,t,v, L —a)] +

2AT,
+— [Td(x_e’ ta v, 0)+ Td(_e_xa t, v, 0)]
b1
(6.3)
where
To(x, t,v) = gt_—v}; —tan™! g t__v);

for vt<x< ft

and Ty (x, t, v) = 0 for x > f, is the stress con-
centration ahead of the rupture front produced
by the initial instantaneous rupture at time
t = 0. The other function

T,(x, t, v, a) = \j%\fﬁ(t—a/w—(x—a) B

xX—vt

—tan‘l\/z\/ﬁ(f—a/v)" (x—a)
B X—vi

forvi=x< Bt+a(l-viB). T;(x, t,v,a)=0
for x > Bt + a(1 — v/B), represents the radiation
from the stress drop jump at x = a. We observe
as shown by Madariaga (1983) that ruptures
radiate only when there are changes in rupture
velocity (the term 7;) or when there are abrupt
changes in stress drop (the term 7).

6.2. Exact solution for a fault with uniform
load and constant friction

In order to compare exact solutions to slip
velocity on a fault with asperities to the well-
known crack models, we compute first the slip
velocity field on a fault loaded by a uniform
pre-stress field. In order to use the analytical
solutions of the previous section we assume
that rupture starts from a finite patch of size
2¢ = 2a that fails instantaneously at time ¢ = 0,
and then grows at constant rupture velocity v.
The only difference between this model and
the usual self-similar crack model of Kostrov
(1964) is that here rupture starts from a finite
patch instead of a point. Since initial stress and
friction are uniform, referring to fig. 5 we
choose T, = T, = 1, T, = 0. Rupture velocity is
taken as 0.7583, and the results are normalized
by =1, f =1 and the size of the initial rup-
ture a = € = 1.

As shown in fig. 6, for a uniformly loaded
fault, slip velocity is strongly concentrated near
the rupture front and remains very large at all
times. Slip velocity is infinite at the rupture
front, in order to represent it in fig. 6 we
smoothed the singularity near the rupture
front. This is just a local correction that does
not affect results. Once the fault has grown
large enough, slip velocity near the center of
the crack has lost the memory of the finite ini-
tial rupture and looks almost like that of
Kostrov’s self-similar crack. In this model slip
velocity near the crack center is of the order of
2 BAT,/u = 2 which is the slip velocity for an
instantaneous rupture of the fault over the en-
tire x-axis. Slip in this model never locks and
the rupture extends indefinitely along the fault
plane. This is the well known defect of classi-
cal fracture models: once a crack starts in a
uniformly loaded medium, nothing can stop it
except for an unbreakable barrier.

6.3. Exact solution for an isolated asperity
with constant friction

We consider now a simple model of a local-
ized asperity. We model the asperity as shown
in fig. 5. A highly stressed region or asperity
of length 2¢ = 2a = 4 is ready to break at time
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city
3 45 6

slip velo
2

Fig. 6. Slip velocity as a function of position and time for a uniformly loaded fault. Rupture occurs instanta-

neously on a central patch and then grows at constant rupture velocity v =
kinematic friction is independent of slip rate. In order to prepare this

gularity near the rupture front.

t = 0. Stress on the asperity is taken as T,=1.
The asperity is surrounded by a region where
pre-stress T = .27, and without loss of gener-
ality we assume that 7, = 0, so that AT, =T,
and ATy = 0.27,. Rupture velocities are nor-
malized by =1 and stresses by 7,/u = 1. Slip
velocities are scaled by T,/uf = 1.

Figure 7 represents the evolution of slip ve-
locity for the single asperity model when fric-
tion is not rate-dependent. As in the previous
figure slip velocity has been locally smoothed
near the rupture front in order to reduce the
singularity. Rupture of the asperity occurs in-
stantaneously. After the initial rupture of the
asperity, we assume that rupture propagates at
a constant velocity v = 0.758. As observed in
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0.75B. Pre-stress is uniform and
figure we smoothed the slip velocity sin-

fig. 7 at the beginning slip velocity in the as-
perity is high and uniform. Once the rupture
extends beyond the asperity, slip velocity near
the center of the fault decreases continuously.
For later times, two slip velocity events propa-
gate trailing the rupture fronts and velocity
near the center of the fault decreases steadily
towards a minimum slip velocity of the order
of 2BATy/p, i.e. the slip velocity for an instan-
taneous rupture of a fault initially loaded with
a pre-stress field of intensity AT,. As long as
ATy is significantly less than AT, slip velocity
near the center of the fault decreases faster
than near the borders. The slip velocity field in
fig. 7 is completely different from that of fig. 6;
for the asperity model slip velocity consists
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Fig. 7. Slip velocity as a function of position and time for a fault model containing a single pre-loaded asper-
ity. Pre-stress in the asperity equals 7,, the peak frictional stress. Outside the asperity T, = .207,. Rupture oc-
curs instantaneously on a central patch and then grows at constant rupture velocity v = 0.758. Kinematic fric-
tion was assumed to be independent of slip rate. In order to prepare this figure we smoothed the slip velocity
singularity near the rupture front.

Fig. 8. Stress as a function of position and time for a fault model containing a single pre-loaded asperity. Pre-
stress in the asperity equals T,, outside the asperity T, = .207,. Rupture occurs instantaneously on a central
patch and then grows at constant rupture velocity v = 0.75f. Kinematic friction was assumed to be independent
of slip rate. Stress was smoothed in the vicinity of the rupture front in order to avoid singularities in the
figure.
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in two propagating velocity pulses of width
comparable to the size of the initial asperity
(2a). The amplitude of these rupture pulses de-
creases very quickly after rupturing through
the asperity, but at longer distances their am-
plitude increases slowly. These velocity pulses
are still rather large because the friction law
used here was the classical rate-independent
friction model.

In fig. 8 we present the stress field for the
asperity model. As shown in this figure, inside
the asperity stress drops instantaneously from
T,=1to T, = 0 and remains constant forever
because of the constant kinematic friction as-
sumed in this model. Outside the asperity
stress drop is lower, changing from an initial
value T, = 0.20 down to zero after the passage
of the rupture front. Since we assumed a con-
stant subsonic rupture velocity we observe a
stress  concentration ahead of the rupture
front.

6.4. Exact solution for rate-dependent [riction

We will compare the solution of the previ-
ous section for constant kinematic friction 7, =
0 with solutions for a particular rate dependent
friction. Ideally we would like to solve for
Carlson and Langer’s friction (5.1). But we
cannot solve these non-linear problems exactly.
For this reason we adopt a much simpler fric-
tion law, in which friction is constant for all
slip velocities higher than a threshold Vo.
When the slip velocities Az decrease below Vo
slip on the fault suddenly locks or heals. Thus
we write the non-linear friction law

T=T, for Auz=V, 6.4)
where T is a constant kinematic friction for
slip rates larger than V,. When slip rates are
lower than V), the fault is assumed to heal in-
stantaneously. This sudden healing simulates
the healing instability produced by the friction
law (5.1) when slip velocity is close to the crit-
ical value shown by the diamond in fig. 3. As
discussed previously, because of the first term
in (4.2), when the fault heals stress increases
instantaneously by the amount AT = u/(2B)V,.
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Although this friction law is non-linear, it is
possible to obtain an exact solution because we
can find the instant of time when slip locks for
simple fault models. In particular we can ob-
tain an exact solution for the simple asperity
model discussed in the previous section. As
shown in fig. 7 for constant kinematic friction,
slip velocity decreases rapidly behind the rup-
ture pulse. Slip velocity first reaches the criti-
cal slip rate V,, at the center of the fault. The Vo
slip velocity isoline then spreads from the cen-
ter of the fault at a supersonic apparent veloc-
ity. It is this property that allows us to solve
for the slip velocity for the friction law (6.4):
because healing propagates supersonically dif-
ferent points on the fault do not interact, i.e.
waves from the initial healing point arrive at
other fault points after they have locked in
turn. This shows that slip arrest is strictly a lo-
cal phenomenon due to the nonlinear rate de-
pendence of the friction. In fig. 9 we show the
effect of rate-dependent friction (6.4) on the
slip velocity field for the single asperity model.
This figure can be compared to fig. 6 where
friction was considered to be constant for all
values of slip rate. The main difference be-
tween these two figures is that slip velocity has
locked prematurely due to the healing mecha-
nism included in (6.4). The slip velocity field
consists now in two narrow slip velocity pulses
propagating bilaterally, and leaving behind a
central region that has slipped and healed in a
relatively short time controlled by the limiting
slip rate V. The corresponding stress field is
presented in fig. 10. Stress is computed exactly
outside the fault and is frozen at a constant
value inside the fault after healing. Unfortu-
nately stress inside the fault cannot be com-
puted exactly after healing.

The most striking result of fig. 9 is the nar-
row rupture event running behind the rupture
front. This narrow pulse is similar to those ob-
served by Heaton (1990) in the modeling of
several recent Californian earthquakes. Be-
cause the healing event is supersonic, the slip
pulses which propagate at the subsonic rupture
velocity become increasingly narrower with
time. Eventually the healing pulse catches up
with the rupture front producing the complete
arrest of rupture without intervention of any
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Fig. 9. Exact solution for slip velocity as a function of position and time for a fault model containing a single
asperity under rate-dependent friction. Pre-stress in the asperity is equal to 7, the peak frictional stress. Out-
side the asperity T; = .207,. Rupture occurs instantaneously on a central patch and then grows at constant rup-
ture velocity v = 0.758. Slip velocity was smoothed in the vicinity of the rupture front in order to avoid singu-

larities in the figure.
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Fig. 10. Exact solution for stress as a function of position and time for a fault model containing a single as-
perity under rate-dependent friction. Pre-stress in the asperity equals T, outside the asperity T, = .20T,. Rup-
ture occurs instantaneously on a central patch and then grows at constant rupture velocity v = 0.758. Stress
was smoothed in the vicinity of the rupture front in order to avoid singularities in the figure.
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unbreakable barrier. Thus we have found a
mechanism for stopping seismic ruptures that
does not depend on the presence of barriers on
the fault. Although law (6.4) is a particular
case of slip-rate weakening friction, the results
we have obtained apply to most slip-rate weak-
ening friction laws as will be shown in next
section using numerical models. Our results are
exact, therefore they do not suffer from the
limitations of other computations done with so-
called intrinsically discrete models. The rup-
ture front in our example has the correct in-
verse-square root singularity of all crack mod-
els of faulting. Ideally one would like to model
a slip-weakening or slip-rate and state depen-
dent rupture front but there is no way at pre-
sent to obtain exact solutions to such a prob-
lem. In reality, of course, the rupture front will
not run at constant speed, but since rupture will
be subsonic anyway, the healing phase will al-
ways catch up with the rupture front, produc-
ing a narrow Heaton pulse and eventually stop-
ping the rupture front.

7. Numerical solution to the BIE
on the fault

In order to discretize the integral equation
(4.2) we proceed as in Cochard and Madariaga
(1994). First, we introduce the following dis-
cretization of the slip velocity field:

A6 )=V, d(x, 1; x5, 1,)
J.m

where d (x, t; X, t,,) is the simple box-car func-
tion:

dix, t; x;, t,) = 1 if x; <x <Xy
and 1, <1< t,,,

dx, t; x;, t,) =0 otherwise.

We obtain a matrix equation by collocation of
the integral equation at a series of knots lo-

cated inside each boundary element. These col-
location points are defined by the coordinates

X;+ 1/2Ax and times t, + €eAr with 0 < £ < 1. In
most applications we use € = 0.999 < 1. Writ-
ing T; , = T(x; + 1/2Ax, t,+ €Af), we get the
following discrete boundary integral equation:

T (Vi) ==Ltv,,+5,, 7.1
Vi) == 25Vt (7.1)

where we have written

n—1
Si,n = T()i_ % 2 Z‘/j,mKi—j,n—m .
(7.2)

m=0 j

Since Ty, is the initial traction of element i, the
term S; , contains the pre-stress and the elasto-
dynamic interactions of the current stress field
with past values of slip velocity.

In(7.1) T; ,, (V; ,) is the friction law that re-
lates the total stress at the collocation point i to
the slip rate V of the element. In order to solve
the integral equation, we distinguish as in eqgs.
(4.4) and (4.5) between boundary elements that
are in the process of slipping, from boundary
elements that are locked, for which either the
rupture front has not yet arrived or that have
already slipped and healed. For non-slipping
elements we set V; , = 0 in eq. (7.1), and we
use it to compute stress in the element.

8. Numerical results

In order to verify that the numerical results
for other friction laws are qualitatively the
same as those obtained with the exact solution
for the peculiar friction law (6.4), we will first
show a numerical solution for the rupture of a
single isolated asperity. In Cochard and
Madariaga (1994) we already presented numer-
ical solutions for this problem using the fric-
tion law (5.1). Unfortunately, those simulations
presented some numerical noise produced by
the healing instability already discussed with
reference to fig. 3. In order to avoid numerical
noise due to healing, we use the modified fric-
tion law (5.3) in which we choose the low slip
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Prestress Single Asperity Model
At rupture threshold
0
X
[ I
Prestress Fault plane
At rupture threshold At rupture threshold — €
0

Twin Asperity Model

Fig. 11. Two models of pre-stress on an antiplane fault containing a single or a twin pre-loaded asperity. The

rest of the fault is supposed to be free from pre-stress.

rate behavior so as to avoid the healing insta-
bility. In the first numerical model we study
the rupture of the single isolated asperity
shown in fig. 11.

8.1. Single asperity model

For the simulation we used a single asperity
containing 100 elements. For clarity, the slip
velocity history presented in fig. 12 shows only
one line every ten grid elements. In all the
computations, the non-dimensional threshold
T,/u was fixed at 5.0. We used the friction law
defined in (5.3) with S,/(u) = 1.1 and V, =
0.75pS,/ 1. In the numerical results slip veloc-
ity was normalized by BT,/u, stress by u and
lengths are given in units of grid size.

As shown in the slip velocity plot of fig. 12,
healing starts spontaneously from the center of
the fault, just as in the exact calculations of
fig. 9 using the rate limited friction law (6.4).
Contrary to the exact solution, however, slip
velocity in the numerical simulation decreases
continuously to zero, eliminating the jump in
slip rate across the healing phase. Healing
spreads supersonically from the center of the
fault until it catches up with the rupture front.
Once the healing phase reaches the rupture
front, rupture stops spontaneously. No barrier
or local variation in stress field is needed, rup-
ture stops simply as a consequence of the en-
ergy dissipation produced by local rate-depen-
dent healing. The overall result is qualitatively
the same as for the exact solutions. This con-
firms the existence of the self-healing pulses
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Fig. 12. Numerical solution for the slip velocity as a function of position and time produced during the rup-
ture of a fault containing a single localized asperity under rate dependent friction (5.3).
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Fig. 13. Numerical solution for the stress as a function of position and time produced during the rupture of a
fault containing a single localized asperity under rate dependent friction (5.3)

1369




Rail Madariaga and Alain Cochard

proposed by Heaton (1990), at least for the
particular case of faults loaded by isolated as-
perities and for rate-dependent friction.

The stress field inside fault shown in fig. 13
is somewhat different from that obtained in the
exact solution of fig. 10. Inside the fault stress
changes continuously, increasing as slip rate
decreases. This smooth variation continues af-
ter the slip arrest. The net effect is an apparent
supersonic healing phase which is identified in
fig. 13 by a change in slope of the time varia-
tion of the stress field. As expected the stress
field is quite smooth after healing, although
some low amplitude oscillations are still appar-
ent. The oscillations appear because healing
jumps from cell to cell in the numerical simu-
lations producing small but perceptible differ-
ences in the final stress field. This numerical
noise is much weaker than in our previous sim-
ulations using unstable friction (5.1) (Cochard
and Madariaga, 1994). When the healing phase
approaches the rupture front, stress after heal-
ing becomes noisy because of the interference
of numerical noise in the slip velocity field
near the rupture front with the healing phase.
Qualitatively, however, the exact results and
the numerical ones confirm the generation of
short duration pulses by rate dependent friction
in faults containing localized stress hetero-
geneities.

8.2. Twin-asperity model

A much more interesting model is a finite
fault pre-loaded by two asperities as shown at
the bottom of fig. 11. The first asperity is as-
sumed to be at the rupture threshold 7,,, and the
second one is almost at the rupture threshold
so that it is ready to break when the rupture ar-
rives. These asperities are 100 and 50 elements
large, respectively, and are separated by a low
pre-stress segment containing 100 elements.
Since in this model there is no way to stop rup-
ture, we have assumed that two unbreakable
barriers are located at the two ends of the fault
at a distance of 250 grid elements from the
center. The non-dimensional threshold T,/u
was fixed at 5.0 and, in the first simulation, we
assumed constant kinematic friction T}, = 0.

Stress outside the asperities was exactly 0. Slip
velocity normalized by f is shown in fig. 14
and the corresponding stress field normalized
by uin fig. 15. As seen from these two figures
the main effect of rupture of the two asperities
is to transfer the pre-stress accumulated in the
asperities towards the borders of the fault. The
stress concentrations in fig. 15 are due to this
stress transfer. The stress transfer from the as-
perities to the stress concentration around the
borders of the fault is amplified by stress over-
shoot near the center of the asperities. This
overshoot is clearly seen in fig. 15 in the form
of two narrow V-shaped «channels» in stress
field. Overall duration of slip near the center of
the fault is clearly controlled by the stopping
phases that are clearly seen crossing the fault
after rupture has stopped at the ends of the
fault.

An interesting observation is that the rup-
ture of the second asperity produces a slip
pulse that crosses the entire fault and re-trig-
gers slip near the abscissa x = —200. Thus
even for simple friction pre-stress heterogene-
ity produces new phenomena that were not in-
cluded in classical crack models.

In the following simulation we studied
again the twin asperity model, but this time we
used the friction law defined in (5.3) with Sep/
u =18 and V, = 1.5B6S,,/u. Slip velocity is
normalized by BT,/u, stress by . T,/u =5 in
these simulations. The evolution of slip veloc-
ity and traction in the presence of rate-depen-
dent friction are shown in figs. 16 and 17, re-
spectively.

The most important differences between this
simulation and the previous one with constant
friction is that the global arrest of movement is
spontaneous and due only to the friction law.
Rupture is completely contained inside the
boundaries of the fault. The healing phases ap-
parent in fig. 16 catch up with the rupture front
and stop the rupture before it reaches the
boundaries of the fault at x = +250. Another
important difference with fig. 14 is that slip
duration is no longer controlled by the overall
size of the fault but by the friction law itself.
This can occur in a very complex way, as seen
in fig. 16 rupture of the second asperity pro-
duces a new rupture event that propagates for a
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Fig. 14. Numerical solution for the sli

p velocity as a function of position and time produced during the rup-
ture of a fault containing two localize

d asperities under constant rate-independent kinematic friction.
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Fig. 15. Numerical solution for the stress as a fu
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while into the already broken parts of the fault,
regenerating slip. In fig. 14 this event crosses
the whole fault, here it is arrested by friction
before it has the time to reach the center of the
fault.

Due to the interference between the slip his-
tories of two asperities, the final stress field at
the end of rupture presents a very strong het-
erogeneity. The initial stress localized in the
asperities has been transferred to several places
along the fault. In fact the stress field inside
the fault has decreased much less than in the
case of constant kinematic friction. Two strong
stress concentrations now appear near x = 50
and x = — 100, both are due to the arrest of slip
events emanating from each of the asperities.
The stress field is weaker in the direction to-
wards the second asperity. It looks as if the re-
sult of rupture was to transfer stress into the
less loaded areas of the fault. The details of
this stress transfer are strongly friction-law de-
pendent. They demonstrate, however, that de-
pending on the details of pre-stress distribution
and the friction law, the final state of stress
may be very complex. This is the main point
we wanted to stress in this work.

9. Discussion and conclusion

From exact and numerical solution of a
model of faulting with a single initial stress as-
perity, we conclude that faulting under rate-de-
pendent friction presents a number of funda-
mental differences with respect to the well
known models of propagation of a fault under
constant friction. The main new result is that
rate-dependent friction makes fault healing un-
stable, so that slip velocity drops abruptly to
zero on the arrival of any stopping phase is-
sued from a barrier or the edges of the fault.
Fault healing spreads from the center of the
fault forming a healing phase, the hyperbolic
curve where the slip velocity jumps to zero in
fig. 9. This phase propagates bilaterally at su-
personic speed and finally catches up with the
rupture front. Thus the whole rupture process
may stop spontaneously before the rupture has
had the time to reach the edges of the fault.
These results were first obtained by Cochard
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and Madariaga (1994) using the very unstable
friction model (5.1). We have found that the
supersonic healing phases appear also for other
friction laws and we showed this exactly for
the friction model (6.4).

Similar results were found numerically for
the friction model (5.3), a variation of (5.1)
that has the advantage that slip velocity and
traction vary continuously at healing. The un-
wanted numerical oscillations observed by
Cochard and Madariaga (1994) have practi-
cally disappeared. The only unsatisfactory ele-
ment that remains is the lack of length scale of
the friction criterion. The main effect of this
deficiency is that rupture velocity depends on
the grid size. Although we are convinced that a
proper treatment of the rupture front would not
qualitatively change the results presented in
this paper, an improved friction law will be in-
troduced in future work.

From the solution of the slightly more com-
plex case of two interacting stress asperities,
we find that stress heterogeneity may be spon-
taneously maintained on the fault plane. This is
due to the instability of healing already men-
tioned above. This result is different from that
of Okubo (1989) who found in his simulations
that, for a single asperity, the state of stress in-
side the fault at the end of rupture was very
smooth. This result is probably due to the use
of a constant friction beyond a limiting slip ve-
locity. It is not clear from his paper what fric-
tion law was used during the healing process.
This point should also be the object of future
work.

We must emphasize that our fault model
contains no material heterogeneities at all. The
rupture threshold is homogeneous along the
fault axis (except at the ends of the fault which
in fact do not play any part in the rupture his-
tory when the friction is rate-dependent) and so
are the characteristics of the friction law. What
we call an asperity is not a fault patch with a
higher rupture threshold as is sometimes as-
sumed, it is just an area where the initial stress
is high compared with the surroundings. Pre-
sumably, this stress heterogeneity has been left
from a previous.rupture event. It is clear that,
had we included heterogeneities of the rupture
threshold, we could have also observed short
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rise times and heterogeneous distributions of
traction after the rupture as Das and Kostrov
(1988) did.

We cannot quantitatively compare our two-
dimensional results with real data. However,
our numerical simulations are in qualitative
agreement with Heaton’s (1990) observation of
short slip velocity pulses. He attributed this to
the non-linear rate-dependence of friction, just
as in our examples. The rate dependence of
friction is not sufficient to produce short slip
pulses, an additional mechanism is needed in
order to reduce slip velocity fast enough. No
level of rate dependence will produce short
pulses in the homogeneous stress model pre-
sented in fig. 6. In our models, slip velocity de-
creases because of the localized loading of the
fault at the asperities. Indeed, in the single as-
perity model of figs. 7 and 9, slip velocity nat-
urally decreases even with constant friction.
The decrease in slip rate depends on the value
of the pre-stress outside the asperity: the lower
the pre-stress outside the asperities, the more
rapidly slip velocity decreases. Thus, rise time
depends not only on the amount of rate-depen-
dence of friction, but also on the difference be-
tween the pre-stress inside and outside the as-
perities. Ideally one would like to quantify this,
but friction being non linear, there is no simple
way to relate the pulse width to asperity size
and rate-dependence of friction. For example,
one can have a relatively high rate-dependence
in the friction law, and yet not be able induce
the early arrest of slip if the pre-stress outside
the asperity is not too low.

Results for the twin asperity model show
that the final state of stress after rupture is not
simply related to the initial stress as is usually
assumed. Clear dynamic effects are observed
in figs. 16 and 17. The final state of stress
after an event plus the loading due to plate
motion should serve as the initial state of the
following event on the fault. Will the stress
distribution become spontaneously heteroge-
neous as in the box spring models of Carlson
and Langer? Preliminary results show that this
is actually the case if friction is highly rate-de-
pendent. This will also be the subject of further
work.
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