
HAL Id: insu-03454768
https://insu.hal.science/insu-03454768

Submitted on 25 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seismoelectric Signals Produced by Mesoscopic
Heterogeneities: Spectroscopic Analysis of Fractured

Media
Marina Rosas-Carbajal, Damien Jougnot, J Germán Rubino, Leonardo

Monachesi, Niklas Linde, Klaus Holliger

To cite this version:
Marina Rosas-Carbajal, Damien Jougnot, J Germán Rubino, Leonardo Monachesi, Niklas Linde,
et al.. Seismoelectric Signals Produced by Mesoscopic Heterogeneities: Spectroscopic Analysis of
Fractured Media. Seismoelectric Exploration: Theory, Experiments, and Applications, 1, Wiley, 2020,
Geophysical Monograph Series, 9781119127376. �10.1002/9781119127383.ch19�. �insu-03454768�

https://insu.hal.science/insu-03454768
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

Seismoelectric signals produced by mesoscopic heterogeneities:
spectroscopic analysis of fractured media

M. Rosas-Carbajal 1, D. Jougnot 2, J. G. Rubino 3, L. Monachesi 4, N. Linde 5, K. Holliger 5

1Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 
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Abstract14

In fluid-saturated porous rocks, the presence of mesoscopic heterogeneities such as, for15

example, fractures, can produce measurable seismoelectric signals. The conversion of mechan-16

ical energy into electromagnetic energy is related to wave-induced fluid flow (WIFF) between17

the heterogeneities and the embedding background. This physical mechanism is a well-known18

cause of seismic attenuation, which exhibits a strong frequency dependence related to rock phys-19

ical and structural properties. Consequently, seismoelectric signals arising from WIFF are also20

expected to depend on various material properties, such as the background permeability and21

fracture characteristics. We present analytical and numerical approaches to study the effects22

of mesoscopic heterogeneities on seismoelectric signals. We develop an energy-based approach23

to quantify the total energy converted to seismoelectric signals at the sample scale. In partic-24

ular, we apply our theoretical framework to synthetic models of fractured rock samples and25

study the spectral signature of the resulting seismoelectric signals. This study highlights the26

influence of the mechanical and hydraulic properties, as well as the geometrical characteris-27

tics, such as degree of fracture connectivity, of the probed medium on the resulting seismo-28

electric signal.29

1 Introduction30

One common assumption in seismoelectric studies is that the involved media are homo-31

geneous at the sub-wavelength scale. However, most geological environments typically con-32

tain mesoscopic heterogeneities, that is, heterogeneities larger than the pore size but smaller33

than the dominant seismic wavelength. In presence of contrasts in elastic compliance, the stress34

field associated with a propagating seismic wave produces a pore fluid pressure gradient and,35

consequently, wave-induced fluid flow (WIFF), which results in energy dissipation due to vis-36

cous friction. Indeed, WIFF is currently considered to be one of the major causes of seismic37

wave attenuation in the upper part of the Earth’s crust [e.g. Müller et al., 2010]. For this rea-38

son, efforts directed towards a better understanding of WIFF involving theoretical analyses [e.g.,39

Müller and Gurevich, 2005], laboratory measurements [e.g., Batzle et al., 2006; Tisato and Madonna,40

2012; Subramaniyan et al., 2014], and numerical simulations [e.g., Masson and Pride, 2007;41

Rubino et al., 2009; Solazzi et al., 2016] have been increasing during the last decades. WIFF42

is a frequency-dependent physical process that is mainly controlled by the permeability, the43

compressibility contrasts between the heterogeneities and the embedding background, and the44

geometrical characteristics of the heterogeneities. These properties are of significant relevance45

for flow and transport modeling, especially in fractured media [e.g. Berkowitz, 2002] and hence46

the analysis of the impact of WIFF on seismoelectric signals is of broad interest.47

Despite its potential importance, only few studies have focused on the understanding of48

seismoelectric signals due to mesoscopic heterogeneities. In their pioneering numerical work,49

Haartsen and Pride [1997] mention a significant signal enhancement when considering a thin50

bed between two half-spaces, but no results or corresponding detailed physical explanations51

are presented. Similarly, Haines and Pride [2006] showed that layers that are up to 20 times52

thinner than the seismic wavelength could be detected by the seismoelectric method. More re-53

cently, Grobbe and Slob [2016] used numerical simulations to explore the enhancement of the54

interface response in the contact of two half-spaces when thin beds are located in between these55

half-spaces (Cite Grobbe and Slob in this book). Although they study constructive and destruc-56

tive interference resulting from different separations and thicknesses of thin beds, they do not57

focus on the physical phenomena taking place in the thin bed itself.58

A likely explanation why mesoscopic effects on the seismoelectric signal have so far been59

largely ignored in the scientific literature is high computational cost of corresponding numer-60

ical simulations. This cost is due to the fact that the dominant scales at which WIFF takes place,61

as characterized by the corresponding diffusion lengths, are much smaller than the prevailing62

seismic wavelengths. Recently, Jougnot et al. [2013] presented a new approach for studying63

the seismoelectric response of mesoscopic heterogeneities that circumvents this limitation. In-64
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stead of performing numerical simulations of wave propagation, they simulated the seismo-
electric response of oscillatory compressibility tests on synthetic samples at different frequen-
cies. Since the size of the probed sample can be much smaller than the seismic wavelengths, 
this approach avoids the inherent problems related to the large contrasts in spatial scale be-
tween seismic wavelengths and diffusion lengths. The work by Jougnot et al. [2013] thus opens 
an avenue for detailed analyses of seismoelectric responses to mesoscopic heterogeneities. Here, 
we extend and complement this study. We first describe the underlying theoretical framework 
used to compute the seismoelectric response of an heterogeneous sample subjected to an os-
cillatory compressibility test. Next, we present an energy-based approach to characterize the 
seismoelectric response at the sample scale, as a substitute to relying on a certain experimen-
tal setup, such as, for example, a particular electrode configuration. In order to gain insights 
into the physical processes that contribute to the seismoelectric response in the presence of 
mesoscopic heterogeneities, we proceed to explore an analytical solution for a rock sample con-
taining a horizontal layer centered in an otherwise homogeneous rock in an initial case and 
containing a fracture in a second analysis. We then perform a numerical sensitivity analysis
of the seismoelectric signals generated in 2D fractured media. For different fracture proper-
ties, we present the dependence on frequency and space of the electrical potential amplitude, 
as well as the frequency-dependent total energy converted to seismoelectric signal in an os-
cillation cycle.

2 Theory

To explore the seismoelectric signals produced by mesoscopic heterogeneities, we em-
ploy the methodology proposed by Jougnot et al. [2013]. We consider a 2D, fluid-saturated, 
heterogeneous porous rock sample and study its seismoelectric response to an oscillatory com-
pression (Fig. 1). The mechanical response of the probed sample is obtained by solving Biot’s 
(1941) quasi-static equations in the space-frequency domain with adequate boundary condi-
tions. The resulting fluid velocity field is  then used to  calculate the se ismoelectric response
of the sample. That is, we decouple the seismic and electrical problems [e.g., Haines and Pride, 
2006; Jardani et al., 2010; Zyserman et al., 2010]. In the following, we present the details of 
the proposed methodology. It is important to mention here that the extension of this approach 
to 3D is conceptually straightforward, but computationally cumbersome.94

2.1 Mechanical response95

Let Ω = (0, Lx) × (0, Ly) be a domain that represents the probed 2D sample and Γ96

its boundary given by97

Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , (1)98

where the subscripts L,R,B, and T stand for left, right, bottom, and top boundary, respec-99

tively,100

ΓL = {(x, y) ∈ Ω : x = 0}, (2)101

ΓR = {(x, y) ∈ Ω : x = Lx}, (3)102

ΓB = {(x, y) ∈ Ω : y = 0}, (4)103

ΓT = {(x, y) ∈ Ω : y = Ly}. (5)104

We apply a time-harmonic normal compression at the top boundary of the sample. The105

solid is neither allowed to move on the bottom boundary nor to have horizontal displacements106

on the lateral boundaries. No tangential forces are applied on the lateral boundaries, and the107

pore fluid is not allowed to flow into or out of the sample. Thus, the following boundary con-108
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ditions are imposed109

τ · ν = (0,−∆P ) , (x, y) ∈ ΓT , (6)110

u = 0, (x, y) ∈ ΓB , (7)111

(τ · ν) · χ = 0, (x, y) ∈ ΓL ∪ ΓR, (8)112

u · ν = 0, (x, y) ∈ ΓL ∪ ΓR, (9)113

w · ν = 0, (x, y) ∈ Γ, (10)114

where ν denotes the unit outer normal on Γ and χ is a unit tangent so that {ν,χ} is an or-115

thonormal system on Γ. In addition, τ is the total stress tensor, u is the average displacement116

of the solid phase, and w is the relative fluid-solid displacement.117

As we are interested in quantifying WIFF effects on the seismoelectric signal, the re-118

sponse of the sample subjected to the oscillatory compressibility test is obtained by solving119

Biot’s (1941) quasi-static equations. This approach is valid because the physical process is con-120

trolled by fluid-pressure diffusion and, thus, inertial effects can be neglected. In the space-frequency121

domain, these equations can be written as122

∇ · τ = 0, (11)123

124

iω
η

k
w = −∇pf , (12)125

where i =
√
−1 is the imaginary number, ω the angular frequency, pf the fluid pressure, k126

the permeability, and η the fluid viscosity. Equation (11) represents the stress equilibrium within127

the sample, while Eq. (12) is Darcy’s law. These two equations are coupled through the stress-128

strain relations129

τ = (λu∇ · u+ αBM∇ ·w) I + 2Gfrε, (13)130

131

pf = −αBM∇ · u−M∇ ·w. (14)132

In these equations, the involved coefficients are given by133

M =

[
αB − φ
Ks

+
φ

Kf

]−1
, (15)134

135

αB = 1− Kfr

Ks
, (16)136

137

λu = Kfr +Mα2
B −

2

3
Gfr, (17)138

where Kfr, Ks, and Kf are the bulk moduli of the solid matrix, the solid grains, and the fluid139

phase, respectively, λu is the undrained Lamé constant, ε is the strain tensor, φ is the poros-140

ity, and Gfr is the shear modulus of the bulk material, which is equal to that of the dry ma-141

trix.142

The mechanical response of the sample subjected to the oscillatory compression is ob-143

tained by solving Eqs. (11) to (14) with the boundary conditions described by Eqs. (6) to (10).144

Since the methodology is based on Biot’s (1941) quasi-static equations, it is limited to frequen-145

cies for which the resulting fluid flow is laminar. That is, the frequencies considered in the146

simulations should be smaller than Biot’s (1962) critical frequency ωc147

ωc = 2πfc =
φη

kρf
, (18)148

where ρf the density of the pore fluid.149

In order to determine the spatial scales involved in the WIFF process in response to the150

applied oscillatory test, we consider a locally homogeneous medium. Without loss of gener-151

ality, we explore the one-dimensional case for which the solid and relative fluid displacements,152
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uy and wy , occur in the vertical direction. Combining Eqs. (11) and (13) as well as Eqs. (12)153

and (14) leads to154

∇2uy = −αBM
Hu

∇2wy, (19)155

and156

iω
η

k
wy = αBM∇2uy +M∇2wy, (20)157

respectively. Next, substituting Eq. (19) into Eq. (20) results in158

iωwy = D∇2wy. (21)159

Equation (21) is a diffusion equation with the diffusivity D given by160

D =
kN

η
, (22)161

where N = M − α2
BM

2/Hu, with Hu being the undrained plane-wave modulus. The spa-162

tial scale at which WIFF is significant is determined by the diffusion length163

Ld ≡
√
D/ω. (23)164

2.2 Electrical response165

The relative displacement between the pore fluid and the solid frame in response to the166

applied oscillatory compression results in a drag on the electrical excess charges of the elec-167

trical double layer (EDL). This, in turn, generates a source or streaming current density Ji,e.168

Since the distributions of both the excess charge and the microscopic relative velocity of the169

pore fluid are highly dependent on their distance to the mineral grains, not all the excess charge170

is dragged at the same velocity. Correspondingly, a moveable charge density Q̂
0

V
smaller than171

the total charge density Q̄
V

has to be considered [e.g., Jougnot et al., 2012; Revil and Mahardika,172

2013; Revil et al., 2015; Jougnot et al., 2015]. Note that, in the literature, the moveable charge173

density may also be referred to as effective excess charge and denoted by Q̄effv [e.g. Joug-174

not et al., 2012, 2015; Guarracino and Jougnot]. In the considered case, the source current den-175

sity takes the form [e.g., Jardani et al., 2010; Jougnot et al., 2013]176

Ji,e = Q̂
0

V
iωw, (24)177

where iωw is the relative fluid velocity. The moveable charge density formulation, which al-178

lows us to explicitly express the role played by the relative fluid velocity in the source cur-179

rent density generation, provides, for the same assumptions, equivalent results to the electroki-180

netic coupling coefficient formulation commonly used in the seismoelectric literature [e.g., Pride,181

1994; Jouniaux and Zyserman, 2016]. The relationship between the moveable charge density182

and the electrokinetic coupling coefficient can be found in many works [e.g. Revil and Leroy,183

2004; Jougnot et al., 2012, 2015; Revil and Mahardika, 2013]. In the absence of an external184

current density, the electrical potential ϕ in response to a given source current density satis-185

fies [Sill, 1983]186

∇ · (σe∇ϕ) = ∇ · Ji,e, (25)187

where σe denotes the electrical conductivity, which strongly depends on the saturating pore188

fluid as well as on textural properties of the medium, such as the porosity and the tortuosity189

[e.g. Archie, 1942; Clennell, 1997; Revil and Linde, 2006]. As we only consider low frequen-190

cies, that is, lower than Biot’s critical frequency, we assume that displacement currents can191

be neglected.192

In conclusion, we obtain the relative fluid-solid displacement field by solving Eqs. (11)193

to (14) under the boundary conditions corresponding to the applied test (Eqs. 6 to 10). Next,194

this field is employed to determine the source current density field through Eq. (24). Finally,195

the electrical potential is obtained by solving Eq. (25) under pertinent boundary conditions.196
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2.3 Energy-based approach

The sensitivity of seismoelectric signals to parameters of interest, such as the background 
permeability or fracture properties, can be studied in different ways. Analytical expressions 
are helpful to build conceptual understanding based on idealized situations, while for more com-
plex and realistic scenarios it is necessary to resort to numerical simulations. Typically, a par-
ticular experimental configuration i s considered and differences in amplitude and spatial vari-
ations are studied [e.g., Revil and Jardani, 2009; Jougnot et al., 2013; Grobbe and Slob, 2016]. 
From a theoretical point of view, it is interesting to consider an energy-based approach and 
study the total energy converted into seismoelectric signals. Although it would be impossible 
to quantify this parameter experimentally, it constitutes an attractive theoretical approach to 
obtain a global estimate of the sensitivity of the method that is independent of the specific ex-
perimental configuration.

The energy density of an electric field E(t) i s given, in the space-time domain, by [e.g. 
Feynman et al., 1965]210

e(t) =
1

2
ε|E(t)|2, (26)211

where ε is the electric permittivity of the medium. Since displacement currents are negligi-212

ble, the electric field at any time can be calculated as213

E(t) = <
(
∇(ϕ0e

iωt)
)
, (27)214

where ϕ0 is the complex amplitude of the electrical potential derived for each frequency as215

explained in the previous section. The corresponding real part is taken because we solve the216

equations in the space-frequency domain.217

Using average properties of time-harmonic complex-valued variables [Rubino et al., 2006],218

it is straightforward to show that219

< <
(
∇(ϕ0e

iωt)
)Tp · <

(
∇(ϕ0e

iωt)
)
>=

1

2
<
(
∇ϕTp

0 ∇ϕ∗0
)
, (28)220

where the operator < · > denotes the average value over one oscillation cycle. Using Eqs.221

(27) and (28), we obtain222

< |E(t)|2 >=
1

2
|∇ϕ0|2. (29)223

Using the expression for the energy density (Eq. (26)), we finally get224

<
1

2
ε|E(t)|2 >=

1

4
ε|∇ϕ0|2 =< e(t) > . (30)225

Locally, the energy density converted into seismoelectric signal in one period of oscil-226

lation Tp can therefore be computed using227 ∫ Tp

o

e(t)dt =
1

4
ε|∇ϕ0|2Tp. (31)228

The total converted energy in the sample can then be calculated by integrating Eq. (31) over229

the spatial domain. Doing so for each frequency yields a spectrum of the total converted en-230

ergy. This spectroscopic analysis makes it possible to determine a frequency at which this en-231

ergy is maximum over the sample. In the following, we shall refer to this as the peak frequency.232

2.4 Rock physical relationships considered in this study233

Our focus is on the physics governing the generation of the seismoelectric signal in re-234

sponse to WIFF. For this reason, we only consider clean sandstones with different porosities235

of the matrix and idealized rock physical relationships to link material properties. To relate236
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the porosity φ to the permeability k, we use the Kozeny-Carman equation [e.g., Mavko et al.,237

2009]238

k = b
φ3

(1− φ)
2 d

2, (32)239

where b is a geometrical factor that depends on the tortuosity of the porous medium, and d240

the mean grain diameter. In this analysis, we take b = 0.003 [Carcione and Picotti, 2006]241

and d = 8×10−5 m [Rubino et al., 2009]. These properties are characteristic of a well-sorted,242

fine-grained sandstone. In addition to changes in permeability, porosity variations also imply243

changes in the mechanical properties. To link the porosity and the solid grain properties with244

the elastic moduli of the dry frame, we use the empirical model of Krief et al. [1990]245

Kfr = Ks (1− φ)
3/(1−φ)

, (33)246

247

Gm =
KfrGs

Ks
, (34)248

where Gs is the shear modulus of the solid grains.249

For the numerical study, we follow Nakagawa and Schoenberg [2007] and compute the250

elastic properties of the drained fracture in terms of the shear and drained normal compliances251

ηT =
h

Gmh
, (35)252

253

ηN =
h

Kfr
h + 4

3G
m
h

, (36)254

where h is the fracture aperture and Kfr
h and Gmh are its drained-frame bulk and shear mod-255

uli, respectively.256

In this work, we consider only clean sandstones in which the surface conductivity can257

be neglected. Also, as we consider low frequencies, that is, frequencies lower than Biot’s crit-258

ical frequency, we can safely neglect EDL polarization effects and assume that the electrical259

conductivity has no imaginary part. Under this assumption, the electrical conductivity is given260

by261

σe = σfφm
c

=
σf

F
, (37)262

where σf denotes the electrical conductivity of the pore water, while mc and F are the ce-263

mentation exponent and the formation factor as defined by Archie [1942], respectively. The264

pore water conductivity depends strongly on the amount of total dissolved salts [e.g. Sen and265

Goode, 1992].266

The remaining electrical parameter Q̂
0

V
can be obtained by employing the empirical re-267

lationship proposed by Jardani et al. [2007]268

log
(
Q̂

0

V

)
= −9.2349− 0.8219 log(k), (38)269

where k and Q̂
0

V
are in units of m2 and C/m3, respectively. Below Biot’s critical frequency,270

the effective excess charge density is similar to the one at zero frequency [e.g., Tardif et al.,271

2011; Revil and Mahardika, 2013] and, hence, boundary layer effects can be neglected in the272

test cases considered in the following. We use idealized rock physical relationships to link σe273

and Q̂
0

V
to porosity, but these properties can also be inferred independently by laboratory ex-274

periments [e.g., Jouniaux and Pozzi, 1995; Suski et al., 2006]. Although Q̂
0

V
mainly depends275

on the permeability of the medium (Eq. 38), a recent study of Jougnot et al. [2015] highlighted276

that the pore water salinity also has a significant effect on its amplitude (around one order-277

of-magnitude change for a salinity change of four orders-of-magnitude).278
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The dielectric permittivity of the medium is usually expressed as the product of the di-279

electric permittivity of the vacuum ε0 and the relative dielectric permittivity εr280

ε = εrε0. (39)281

The parameter εr can be determined using a volume averaging approach [Pride, 1994; Linde282

et al., 2006]283

εr =
1

F

[
εfr + (F − 1) εsr

]
, (40)284

where εfr and εsr are the relative permittivity of the water (εfr ' 81) and the solid grains (εsr '285

5), respectively. This model depends on the same parameter as the electrical conductivity, that286

is, the formation factor (Eq. 37), and thus, is directly related to the porosity (F = φ−m
c

).287

3 Insights from 1D analytical solutions288

In some simple cases, the set of equations that govern the generation of seismoelectric289

signals due to WIFF can be solved analytically. Equations that explicitly relate the dependence290

of the resulting electrical potential on rock properties can be useful to understand the under-291

lying physical processes. Recently, Monachesi et al. [2015] solved the governing equations pre-292

sented in the previous section for a 1D case. Here, we present their main analytical solutions293

and results, based on which we then study the seismoelectric signal dependence on the back-294

ground permeability and on the pore water salinity.295

3.1 General solution for a thin layer296

Monachesi et al. [2015] consider a thin layer of thickness 2Lh located at the center of297

an otherwise homogeneous rock sample (Fig. 1). In the following, properties related to the thin298

layer are identified by the subscript ”h” for heterogeneity and the ones corresponding to the299

rest of sample by the subscript ”b” for background. The thicknesses of the two embedding re-300

gions constituting the background are Lb and, thus, the total thickness of the sample is 2(Lh+301

Lb) = L. Assuming a set of boundary conditions analogous to Eqs. (6) to (10), the bound-302

ary value problem given by Eqs. (11) to (14) can be solved in terms of the relative fluid-solid303

displacement w(y, ω). Then, the current density Ji,e(y, ω) can be computed from w(y, ω) us-304

ing Eq. (24). Finally, the electrical potential is obtained by solving Eq. (25) with the adequate305

boundary conditions. The resulting electrical potential as a function of the vertical position y306

and frequency ω is given by [Monachesi et al., 2015]307

ϕ(y, ω) =

 −
iωQ̂

0,h

V

σe
h

Ah

κh

(
e−κh|y| + eκh|y|

)
+ Sh, 0 ≤ |y| ≤ Lh,

− iωQ̂
0,b

V

σe
b

Ab

κb

(
e−κb|y| + e−κb(L−|y|)

)
+ Sb, Lh ≤ |y| ≤ L/2,

(41)308

where Sh, Sb, Ah, and Ab are given by309

Sh =
iωQ̂

0,h

V

σeh

Ah
κh

(
e−κhLh + eκhLh

)
−
iωQ̂

0,b

V

σeb

Ab
κb

(
−κbLh + e−κb(L−Lh) − 2e−κbL/2

)
, (42)310

311

Sb =
2iωQ̂

0,b

V

σeb

Ab
κb
e−κbL/2, (43)312

313

Ah =
(
e−κhLh − eκhLh

)−1 ∆P (βh − βb)∑
j=h,bNjκj coth(κjLj)

, (44)314

315

Ab =
(
e−κbLh − e−κb(L−Lh)

)−1 ∆P (βh − βb)∑
j=h,bNjκj coth(κjLj)

. (45)316

Note that the seismoelectric signal depends on the parameter k, which is related to the dif-317

fusion length, and, thus, among other parameters, to the permeability (see Eqs. 22 and 23) by318

κ =

√
i

Ld
=

√
iωη

kN
, (46)319
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and to the 1D Skempton coefficient β defined by320

β ≡ αBM

Hu
. (47)321

Equation (41), together with Eqs. (42) to (45), constitute the analytical solution of the seis-322

moelectric response of a rock sample containing a central horizontal layer subjected to an os-323

cillatory compressibility test as shown in Fig. 1. It is interesting to note that the seismoelec-324

tric response is highly dependent on the medium permeability through Q̂
0,b

V
and κ. It also de-325

pends on the Skempton coefficient difference between the heterogeneity and the embedding326

background βh−βb, and thus on the compressibility contrast between heterogeneity and back-327

ground. This finding is consistent with the literature on WIFF [e.g. Müller et al., 2010].328

To explore the dependence of the analytical solution on the various rock physical and329

structural parameters, we first consider a sample with a vertical side length of 20 cm composed330

of a stiff, low-permeability background with a porosity of 0.05 (Material 1 in Table 1), per-331

meated at its center by a compliant, high-permeability horizontal layer with a thickness of 6332

cm and a porosity of 0.4 (Material 2 in Table 1). The sample is fully saturated in water and333

subjected to a harmonic compression of amplitude ∆P=1 kPa at frequencies of 101, 102, and334

103 Hz.335

Table 1. Material properties employed in this work. Materials 1 and 2 are the same as the Materials 1 and 3

used by Monachesi et al. [2015], respectively.

336

337

Quartz grain bulk modulus Ks [GPa] 37
Quartz grain shear modulus Gs [GPa] 44
Water bulk modulus Kf [GPa] 2.25
Water viscosity η [Pa× s] 0.001
Water electrical conductivity σf [S m−1] 0.01
Water density ρf [Kg m−3] 103

Material 1 Material 2 Material 3

Porosity φ 0.05 0.4 0.5
Dry rock bulk modulus Kfr [GPa] 31.47 2.88 0.017 / 0.04*
Dry rock shear modulus Gfr [GPa] 37.42 3.42 0.01 / 0.02*
Permeability k [mD] 2.66 3410 9600
Electrical conductivity σe [S m−1] 2.5× 10−5 1.6× 10−3 2.5× 10−3

Moveable charge density Q̂
0

V
[C m−3] 526.8 1.49 0.637

Biot’s critical frequency fc [Hz] 2.99× 106 1.8× 104 8.29× 103

* Calculated using Eqs. (35) and (36) for apertures of 0.03 / 0.06 cm, respectively.

Figure 2a shows the amplitude profile of the resulting relative fluid velocity dw/dt =338

iωw along the y-axis (y ∈ [−L/2, L/2]) for the three frequencies considered. Due to the strong339

contrast between the Skempton coefficients of the two materials, significant relative fluid ve-340

locities arise in both the background and the layer. The relative fluid velocity is higher near341

the contact between the layer and the background and vanishes at the center and at both edges342

of the sample. Under compression, the compliant layers undergoes more deformation than the343

material on either side of it with the result that water is forced out of the layer. The ampli-344

tude of dw/dt reaches larger values for higher frequencies. A significant current density Ji,e345

prevails in the background (Fig. 2b) due to the relative fluid velocity field (Fig. 2a) produced346

by the compression and the relatively large excess charge (Table 1). The maximum current347

densities occur at the contacts between the two materials, where the relative fluid velocity is348
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also highest. Inside the layer, even though significant fluid flow also takes place, the  result-
ing source current density is small since the effective excess charge is much smaller in this 
material characterized by a larger permeability (Table 1, Eq. 38).

Significant electrical potential amplitudes ( Fig. 2c), well above the '  0.01 mV detectabil-
ity threshold of laboratory experiments (e.g. Zhu and Toksöz [2005]; Schakel et al. [2012]), arise 
in response to the oscillatory compression. These results are consistent with those by Joug-
not et al. [2013] for fractured rocks and point to the importance of WIFF effects on seismo-
electric signals in the presence of porosity variations. Inside the layer, the amplitude of the 
electrical potential is constant. This is due to the negligible source current density in this high-
permeability material. Because the electrical potential is continuous, this corresponds to the 
value of the electrical potential at the contact between the two materials.

The resulting electrical potential is not only characterized by its amplitude but also by
its phase θ. In the background, θ shows rapid spatial changes when the frequency is high (Fig. 
2d). Inside the layer, θ remains constant, which is in agreement with the behavior observed
for the amplitude of the electrical potential in this region (Fig. 2c). In general, the phase val-
ues vary strongly within the medium and cover a much larger range than could be expected 
from a frequency-dependent electrical conductivity. For example, Kruschwitz et al. [2010] re-
port a typical induced polarization phase of less than 0.6◦ for a large frequency range (f ∈[10−3; 
104] Hz), while our calculations show a distribution -180 to +180◦ (Fig. 2d). This confirms 
that our assumption concerning the negligible effect of complex conductivity at low frequen-
cies is valid (see section 2.4).

The behavior of the electrical potential curves as a function of normalized time is shown 
in Fig. 3 for the three frequencies considered. The curves correspond to the electrical poten-
tial differences ∆ϕ recorded by an electrode located at the center (y = 0) and a reference 
electrode located at one edge of the sample (y = L/2 or y = −L/2). Note that the integer 
values of t/Tp correspond to the moment of maximum applied stress. This representation al-
lows us to interpret the physical mechanisms in a simple manner: during the compression cy-
cle of the applied normal stress, the fluid inside the compliant layer experiences a  pressure in-
crease and thus water flows f rom the layer into the background, generating a  s ignificant seis-
moelectric signal. Conversely, during the extension cycle, water flows f rom the background
into the layer, generating a seismoelectric signal with an opposite sign. Note that the ampli-
tude and phase of the electrical potential at 102 and 103 Hz are similar with a negligible phase 
lag with respect to the applied pressure. In contrast, the 10 Hz signal depicts different ampli-
tude and phase values. These differences in amplitude and phase are also evident in Figs. 2c 
and d.

In order to explore in detail the dependence of the electrical potential on the frequency
of the oscillatory compression, we show in Fig. 4a the amplitude of the electrical potential along 
the y-axis of the sample for frequencies between 1 Hz and 104 Hz [see Monachesi et al., 2015, 
for the spatial-frequency dependence of the phase]. Between ∼10 and ∼100 Hz, the spatial 
extent and amplitude of the electrical potential in both the background and the layer are larger 
than for other frequencies. It is not straightforward to assign a frequency of maximum spa-
tial extent since different amplitude iso-values have different corresponding frequencies of max-
imum spatial extent. At low frequencies (1-10 Hz), the electrical potential tends to become 
negligible. At higher frequencies (100-10000 Hz), WIFF is comprised in the immediate vicin-
ity of the boundaries of the layer and the magnitude of the electrical potential is non-zero only 
inside the layer. In agreement with Figs. 2c and d, the amplitude of the electrical potential re-
mains constant inside the layer at each frequency.

In Figure 4b we show the distribution of the electrical potential amplitude obtained when 
the material properties of the background and the layer are interchanged. Due to the imposed 
boundary conditions, when the layer is stiffer and less permeable than the background, the elec-
trical potential has a significant amplitude only inside the l ayer. The electrical potential am-399
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plitude is also frequency-dependent, with a maximum at the center of the layer and for a fre-400

quency that is higher compared to the previous situation [Monachesi et al., 2015].401

3.2 Particular solution for a single fracture402

Monachesi et al. [2015] also studied the seismoelectric signal of an homogeneous rock403

sample that is permeated by a single horizontal fracture. This was done by adapting their an-404

alytical solution to an infinitely thin layer at the center of the sample. This yields a simpler405

expression of the seismoelectric response406

ϕ(y, ω) = −
iωQ̂

0,b

V

σeb

Āb
κb

(
e−κb|y| + e−κb(L−|y|) − 2e−κb(L/2)

)
, (48)407

where408

Āb = lim
Lh→0

Ab =
∆P (1− βb)

2
ZN

(1− e−κbL) +Nbκb (1 + e−κbL)
, (49)409

and ZN is the drained normal compliance of the fracture. Note that ZN is the only fracture410

parameter in these equations, while the only structural parameter is the total thickness of the411

sample L. It is also interesting that the seismoelectric signal mainly depends on the background412

permeability kb through κb (Eq. 46) and Q̂
0,b

V
and on the background Skempton coefficient βb.413

Figure 5a shows the spectroscopic analysis for a sample with the same size and background414

material as in Fig. 4a (Material 1 in Table 1) permeated by a fracture. Note the high ampli-415

tudes reached in this case due to the strong compressibility of the fracture.416

3.3 Sensitivity to the background permeability417

From the presented analytical solutions, it is clear that the background permeability has418

a predominant role in the generation of seismoelectric signals. Figure 5b shows the resulting419

seismoelectric signal when the background permeability is one order-of-magnitude larger than420

in Material 1, that is, kb =26.6 mD. As opposed to what was presented by Monachesi et al.421

[2015], we let the permeability vary independently of the porosity, which does not change, so422

that the changes observed are uniquely related to permeability changes. We can observe two423

different effects: as the permeability increases, the maximum amplitude of the signal increases424

and the frequency of maximum extent of the signal is shifted towards higher frequencies. This425

result is consistent with the ones discussed by Jougnot et al. [2013]. The spatial scale at which426

WIFF occurs depends on the diffusion length and, therefore, on the background permeabil-427

ity (Eq. 46). Therefore, the frequency of maximum extent of the signal is mainly controlled428

by the background hydraulic properties, which is consistent with the asymptotic analysis by429

Monachesi et al. [2015]. The shift of maximum WIFF to higher frequencies related to a larger430

permeability also implies a higher fluid velocity and thus a higher amplitude of the electrical431

potential (Fig. 2). The amplitude of the seismoelectric signal is also affected by the imposed432

relationship between the moveable charge density and the background permeability (Eq. 38).433

A larger permeability implies a smaller moveable charge density and thus a decrease of the434

amplitude. The significant increase in amplitude shown in Fig. 5b suggests that the effect of435

a larger fluid velocity due to the shift to higher frequencies dominates over the amplitude de-436

crease due to the smaller moveable charge density.437

3.4 Sensitivity to the pore water conductivity438

The moveable charge density is not only influenced by the permeability. As discussed439

by Jougnot et al. [2015], the pore water salinity, and thus the pore water electrical conductiv-440

ity σf , also affects their moveable charge density through its influence on the thickness of the441

EDL and the associated changes of the Zeta potential [e.g. Revil et al., 1999]. In addition, the442

pore water conductivity also strongly affects the bulk electrical conductivity (Eq. 37). To study443

the effect of salinity changes on the seismoelectric signal, we complement our spectroscopy444

analysis for a pore water conductivity that is one order-of-magnitude smaller (σf = 0.001 S445

–11–



m−1, Fig. 6a) and one order-of-magnitude larger (σf = 0.1 S m−1, Fig. 6b) than in the pre-446

vious cases (σf = 0.01 Sm−1, Fig. 5a). We calculate the corresponding moveable charge den-447

sity as deviations from the value given by Eq. ( 38) with the model proposed by Jougnot et al.448

[2015]. This results in values of Q̂
0,b

V
= 790.12 C m−3 and 351.31 C m−3, for σf = 0.001 S449

m−1, and σf = 0.1 S m−1, respectively. Not surprisingly, the impact of salinity/pore water con-450

ductivity upon the seismoelectric signal is significant: the lower the pore water conductivity,451

the higher the amplitude of the signal. The frequency of maximum extent of the signal is not452

affected by a change in pore water conductivity. Note here that the influence of fluid conduc-453

tivity on the seismoelectric response is more important due to its effect on the bulk electri-454

cal conductivity (Eq. 37) than to its impact on Q̂
0,b

V
, which can be considered a secondary ef-455

fect [Jougnot et al., 2015].456

4 Numerical study of fractured rock samples457

In this section, we numerically solve the governing equations described in the theory sec-458

tion in order to consider 2D fracture geometries. We employ the numerical strategy presented459

by Jougnot et al. [2013] for exploring the generation of seismoelectric signals due to WIFF460

in the presence of fractures. That is, we consider a 2D synthetic rock sample containing meso-461

scopic heterogeneities. Equations (11) to (14) are solved, with the boundary conditions described462

by Eqs. (6) to (10), using a finite element procedure [Rubino et al., 2009]. From the result-463

ing 2D velocity fields, we compute the electrical current density (Eq. 24) and then numeri-464

cally solve Eq. (25) assuming perfect electrical insulation along the boundaries using a finite465

volume approach. To do so, we adapted an open source finite volume numerical code that was466

originally conceived to solve subsurface fluid flow problems [Künze et al., 2014] to the con-467

sidered electrical problem. In an initial analysis, we consider a synthetic homogeneous rock468

sample containing a simple 2D fracture. We then study the effects of different fracture lengths,469

different fracture orientations, and different numbers of fractures in the sample. Finally, frac-470

ture networks with varying degrees of connectivity are explored.471

4.1 Analysis for a single fracture472

We first consider a simple case corresponding to a homogeneous rock containing a hor-473

izontal fracture at its center (Fig. 7a). For the background material, we use for all cases the474

same sandstone as in the analytical study (Material 1 in Table 1). The fracture is modeled as475

a very compliant poroelastic rectangle that is characterized by large values of porosity and per-476

meability (Material 3 in Table 1), with the elastic properties being calculated using Eqs. (35)477

and (36). Given that the fracture does not permeate the entire sample, the analytical solution478

presented in the previous section cannot be used and, instead, the numerical approach is em-479

ployed. This initial case will be the basic geometry for which we will perform the 2D sen-480

sitivity analysis.481

We consider a sample of 6×6 cm2 with a horizontal fracture of 3 cm length and 0.03482

cm aperture located at its center (Fig. 7a). We use 600×600 elements to discretize the en-483

tire domain. The numerical simulations using this mesh were compared to simulations using484

finer meshes to ensure the accuracy of the calculations. We compute the seismoelectric response485

of oscillatory compressions with ∆P = 1 kPa at 40 different frequencies equally spaced on486

a logarithmic scale between 1 and 10000 Hz.487

Figure 7b shows the resulting seismoelectric signal amplitude for a frequency of 142 Hz.488

Note that the electrical problem has been solved using a reference electrode at the origin (x489

= 0 cm, y = 0 cm). The electrical potential generated by this small heterogeneity is maximal490

in the immediate vicinity of the fracture and easily measurable with typical experimental set-491

up in the laboratory. This large signal is due to the high compressibility contrast between the492

fracture and the background, which in turn results in significant WIFF.493
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In Fig. 7, we display the detailed spatial distribution of the electrical potential for a sin-
gle frequency in order to stress the 2D nature of the signal. However, the main interest of our 
approach is to study the spectral dependence of the signal generated by the oscillatory com-
pression through a spectroscopic analysis. In order to best represent these results, Figure 8a 
shows vertical cuts of the seismoelectric signal amplitude through the center of the sample shown 
in Fig. 7a (x = 3 cm) as a function of frequency. These vertical cuts, which pass through the 
center of the fracture, are similar to those presented in the analytical section, but it should be 
noted that in this case the sample is 2D. To complete our study, we use the results of the energy-
based analysis that we developed in Section 2.3 to provide a global measure of the frequency 
dependence of the seismoelectric signal in the sample. Figure 8b shows the total energy con-
verted to the seismoelectric signal in one compression cycle as a function of frequency. To cal-
culate this value, we numerically computed for each frequency the gradient of the electrical 
potential amplitude (Eq. 31) and summed the squared contribution of each pixel weighted by 
its electrical permittivity (Eqs. (39) and (40)) multiplied by one fourth of the corresponding 
period. The resulting spectrum shows a strong dependence of the converted electric energy on 
frequency and a clearly defined peak f requency for which the converted electric energy i s max-
imum. In this case, the peak frequency corresponds to 142 Hz, which is the frequency used
for the 2D representation in Fig. 7b.

4.2 Sensitivity to the fracture length

In this subsection, we investigate the effect of the fracture extent along the x-axis in the 
sample on the amplitude of the seismoelectric signal. We consider two cases where the frac-
ture length is smaller than in the previous section, with fracture lengths of 0.6 and 1.8 cm (Figs. 
9a and d, respectively), and two cases where the extent is larger, that is, 4.2 and 6 cm (Figs.
9g and j, respectively). The latter corresponds to the extreme case of a fracture that perme-
ates the whole sample. As the fracture length increases, so does the spectral range at which
the fracture can be detected, the amplitude of the signal, and the vertical extent of the mea-
surable electrical potential (Figs. 9b, e, h, and k). From the converted energy (Figs. 9c, f, i,
and l) we can also see that the fracture length changes the peak frequency at which the con-
verted energy is higher; larger fractures imply a lower peak frequency and a higher amount
of converted energy. Note that a one order-of-magnitude change in the fracture length from
the sample in Fig. 9a to the one in Fig. 9j implies a shift of almost two orders-of-magnitude
in the peak frequency and an increase of more than two orders-of-magnitude in the converted 
energy.

4.3 Sensitivity to the fracture orientation

To understand the sensitivity to the fracture orientation, we consider four cases where
a 3 cm long fracture is oriented from sub-horizontal to vertical with respect to the x-axis (see 
Figs. 10a, d, g, j and the figure caption for the f racture a ngles). As the orientation of the frac-
ture becomes more vertical, the amplitude of the electrical potential decreases. WIFF takes 
place from the more compliant fracture to the stiff background and vice versa, and is max-
imum when the fracture is perpendicular to the direction of applied stress. In the horizontal 
case, the applied stress strongly deforms the fracture, increases its fluid pressure and produce 
significant WIFF and seismoelectric c onversion. Conversely, in the extreme case of a  verti-535

cal fracture, the fluid mainly flows inside the fracture, which has a low Q̂
0,h

V
and therefore it536

does not produce a significant electrical source current density. The intermediate states (Figs.537

10a, d, and g) show the smooth transition between a horizontal to a vertical fracture. The ori-538

entation does not affect the peak frequency, although the total converted energy is, as expected,539

significantly smaller for more vertically oriented fractures (Figs. 10 c, f, i and l).540
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4.4 Sensitivity to the number of fractures

To understand the aggregate effect of multiple fractures, we consider an increasing amount 
of fractures in a sample of the same size as in the previous cases. The starting point is a sin-gle 
fracture as shown in the fracture length subsection (Fig. 9j). We then consider cases with
2, 3, 4 and 5 equally spaced fractures throughout the sample (Figs. 11 a, d, g, and j). The cor-
responding fracture spacings are 2.97, 1.97, 1.47, and 1.17 cm, respectively. Regardless of the 
number of fractures in the sample, the maximum amplitude of electrical potential does not sig-
nificantly change. As the number of fractures in the sample increases, the vertical extent of
the seismoelectric signal generated by each fracture decreases and the spectral range where
the signal could be detected is shifted towards higher frequencies. Correspondingly, the en-ergy 
plots in Fig. 11 show that the peak frequency for which the maximum of energy is con-verted 
also shifts to higher values as the number of fracture increases. This shift in frequency 
corresponds to the dependence of the diffusion length (Eq. 23) on the frequency; by decreas-ing 
the space between fractures, we decrease the spatial scale at which WIFF between the frac-tures 
can take place, thus the frequency corresponding to the maximum extent of fluid flow
is higher. It is interesting to note that although the peak frequency is affected by the number
of fractures in the sample, this parameter does not seem to influence the total converted en-ergy 
at the corresponding peak frequency (Fig. 11). This suggests that the larger number of fractures 
compensates for the smaller spatial extent of the region in which significant electri-cal potential 
amplitude are produced by each fracture in the sample.

4.5 Analysis of a fracture network

In this subsection, we study the effects of fracture connectivity on the seismoelectric sig-
nal. We consider a similar setup as the one used by Rubino et al. [2014] to explore the depen-
dence of the seismic attenuation on fracture connectivity. We consider a sample of 20 × 20
cm2, discretized by 1000×1000 elements, and examine four different fracture scenarios. In
the first scenario, horizontal fractures are randomly distributed in the sample (Fig. 12a). In the 
second scenario, the horizontal fractures are retained and vertical fractures are added randomly 
under the constraint that none of the fractures is connected to another one (Fig. 12c). The third 
case corresponds to the same number of horizontal and vertical fractures, but with some of
the vertical fractures being connected to the horizontal ones (Fig. 12e). Finally, in the fourth scenario 
we consider the case when all the vertical fractures are connected to some of the hor-izontal ones 
(Fig. 12g). In all the examples, the fractures have an aperture of 0.06 cm. The fracture properties are 
given in Table 1 (Material 3). The maximum pressure applied is the same as in all other examples, 
that is, ∆P =1 kPa, and all the boundary conditions remain the same as in previous cases.

Figure 12 shows the amplitude of the electrical potential of the four geometries consid-ered 
for a frequency of 0.73 Hz. We observe that the presence of vertical fractures that are
not connected to the horizontal ones does not significantly change the amplitude of the seis-
moelectric response (Figs. 12b and d). However, when the vertical fractures are connected to the 
horizontal ones, the spatial distribution and amplitude of the electrical potential does change 
(Figs. 12f and h). Indeed, the maximum amplitude in the sample is lower for a higher frac-ture 
connectivity and larger parts of the sample are “illuminated” with a measurable electri-
cal potential in this case.

To study the dependence of the seismoelectric signal on fracture connectivity at the sam-ple 
scale, we present in Fig. 13 plots of the total converted electrical energy as a function of 
frequency. A clear dependence on fracture connectivity can be observed. Adding the uncon-
nected vertical fractures results in a higher seismoelectric energy, but as the fracture connec-tivity 
increases, there is a decrease in the total energy of the electric field. The peak frequency is also 
affected by the degree of connectivity. When the vertical unconnected fractures are added, the 
peak frequency does not change and corresponds to 0.73 Hz, which was the frequency used in 
Fig. 12. Increasing the fracture connectivity shifts the peak frequency to higher values.

591
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5 Discussion and conclusions

Following Jougnot et al. [2013] and Monachesi et al. [2015], we performed a theoret-
ical (analytical and numerical) study of the seismoelectric signals generated when a rock sam-
ple containing mesoscopic heterogeneities is submitted to an oscillatory compressibility test. 
Heterogeneities are considered mesoscopic when their size is smaller than the typical wave-
length but larger than the pore-scale. In the present contribution we focused on mesoscopic-
scale fractured media and developed a quantitative approach to characterize the dependence 
of the seimoelectric signal with fracture connectivity. The predicted signal is highly frequency-
dependent and hence we illustrated our results in terms of the space-frequency distribution of 
the seismoelectric response, which corresponds to a spectroscopic analysis. The source of this 
frequency-dependent signal is linked to WIFF from the more compliant heterogeneities to the 
background during the compression cycle, and in the opposite direction during the dilatation 
cycle. Our results show that this phenomenon yields measurable seismoelectric signals under 
typical laboratory set-ups in terms of applied pressure, frequency range, and instrument res-
olution [e.g. Batzle et al., 2006; Subramaniyan et al., 2014; Pimienta et al., 2015].

We introduced for the fist t ime an energy-based approach (Section 2.3) to characterize 
the seismoelectric conversion at the sample scale. This approach provides complementary in-
formation to our spectroscopic analysis at the sample scale by allowing for the definition of 
a peak frequency for which the total converted seismoelectric energy is maximum. The total 
converted seismoelectric energy could be compared to the elastic strain energy and energy dis-
sipation as derived by Solazzi et al. [2016]. This is, however, outside the scope of this con-
tribution and we leave this comparison for future publications.

We studied different kinds of mesoscopic heterogeneities: thin layers, single fractures 
and fracture networks. Our results show a strong dependence of the seismoelectric signal on 
mechanical, hydraulic, and structural properties of the background and the mesoscopic het-
erogeneities. In particular, the background permeability via the diffusion length, fracture sep-
aration and fracture length, control the frequency at which maximum WIFF occurs and, there-
fore, also influences the peak f requency. The amplitude of the electrical potential i s mainly 
controlled by the background permeability, the pore water conductivity, compressibility con-
trast between heterogeneity and background, and fracture orientation. These parameters affect 
the bulk conductivity, moveable charge density, and source current density, which define the 
electrical potential distribution in the sample. Similar to what was observed by Rubino et al.
[2013, 2014] for the seismic case, fracture orientation, extent, density, and connectivity influ-
ence the spectroscopic signature of the seismoelectric signal. This is particularly interesting 
for the characterization of fractured media, which is of primary importance in hydrological ap-
plications yet extremely difficult to achieve in practice [e.g. Berkowitz, 2002].

Connected fractures reduce the total energy converted to the seismoelectric signal and 
change the spatial distribution of electrical potential amplitude. For an equal number of hor-
izontal and vertical fractures, the total converted electrical energy decreases by ∼50% for the 
corresponding peak frequency (Fig. 13) when these fractures are connected. The reason for 
this is that the connection to vertical fractures enables part of the fluid pressure increase in re-
sponse to the applied stress to be released from the horizontal fractures into these highly per-
meable regions. This reduces the fluid pressure gradient and, thus, the fluid flow between frac-
tures and background, which in turn results in a decrease of the generated electrical source 
current density and the measurable electrical potential outside the fractures. Given that the de-
gree of fracture connectivity controls the effective hydraulic properties of fractured rocks, this 
connectivity effects are potentially important as they may help to extract this kind of infor-
mation from corresponding seismoelectric measurements.

The present contribution describes analytical and numerical experiments and aims at un-
derstanding how mesoscopic heterogeneities can produce measurable seismoelectric signals 
under laboratory conditions. To the best of the author’s knowledge, these prediction have not 
yet been tested in practice. Such experimental studies would be of significant interest for both643
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the rock physics and the seismoelectric community as they may provide a new rock physical 
characterization tool: seismoelectric spectroscopy.

Besides thin layers or fractures, other types of mesoscopic heterogeneities are known to 
generate significant WIFF [e.g. Batzle et al., 2006; Adam et al., 2009; Müller et al., 2010; Pimienta 
et al., 2015] but remain unexplored in terms of their seismoelectric response. Similar effects
also exist in patch-type partially saturated conditions [e.g. Caspari et al., 2011; Masson and 
Pride, 2011; Rubino and Holliger, 2012]. Such saturation effects and the resulting seismoelec-
tric signals could explain some discrepancies between experimental data and current models, 
such as those shown by Bordes et al. [2015].

The results of this study could also help to better understand seismoelectric conversions
at the field s cale. Indeed, all geological formations contain a  certain degree of mesoscopic het-
erogeneity and, therefore, seismic waves are expected to produce seismoelectric signals asso-
ciated with such heterogeneities as they propagate. These phenomena could be one of the causes 
for the difficulties encountered in seismoelectric field ap plications. For example, high noise 
levels encountered in field applications [e.g. Strahser et al., 2011] could be related to hetero-
geneities of different nature and size that generate multiple seismoelectric source currents when 
traversed by the seismic waves. Further studies accounting for effects such as geometrical di-
vergence and the co-seismic field will be carried out in the near f uture. These are necessary
to quantify the relative contribution of Biot’s slow waves to the total seismoelectric signal that 
would be measured in the field. Our results clearly i llustrate that a  better understanding of the 
role played by mesoscopic heterogeneities is essential for the development of the seismoelec-
tric method.
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applied to a sample containing a single layer.
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the same properties as Fig. 7a but with different fracture orientation, ranging from sub-horizontal to vertical.
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functions of frequency. (c), (f), (i) and (l) Total converted electrical energy as a function of frequency.
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amplitude of the electrical potential at the center (x = 3 cm) of the corresponding samples as functions of
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Figure 12. Left column: Rock samples used to test the effect of fracture connectivity on the seismoelectric

signal. (a) Sample containing horizontal fractures that are not connected between each other. (c) Sample con-

taining the same horizontal fractures as (a), plus vertical fractures, which are not connected to the horizontal

ones. (e) Sample containing the same amount of horizontal and vertical fractures as in (c) but with some of

the fractures connected. (g) Same as (b) but with most of the fractures connected. Right column: Amplitudes

of the electrical potential in the samples shown in the left column for a frequency of 0.73 Hz.
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Figure 13. Total energy converted to seismoelectric signal in one period as a function of frequency for the

samples shown in Fig. 12a, c, e, and g.
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