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ABSTRACT

Bifurcations and tipping points (TPs) are an important part of the Earth system’s behavior. These critical points represent thresholds at which
small changes in the system’s parameters or in the forcing abruptly switch it from one state or type of behavior to another. Current concern
with TPs is largely due to the potential of slow anthropogenic forcing to bring about abrupt, and possibly irreversible, change to the physical
climate system and impacted ecosystems. Paleoclimate proxy records have been shown to contain abrupt transitions, or “jumps,” which may
represent former instances of such dramatic climate change events. These transitions can provide valuable information for identifying critical
TPs in current and future climate evolution. Here, we present a robust methodology for detecting abrupt transitions in proxy records that is
applied to ice core and speleothem records of the last climate cycle. This methodology is based on the nonparametric Kolmogorov–Smirnov
(KS) test for the equality, or not, of the probability distributions associated with two samples drawn from a time series, before and after any
potential jump. To improve the detection of abrupt transitions in proxy records, the KS test is augmented by several other criteria and it is
compared with recurrence analysis. The augmented KS test results show substantial skill when compared with more subjective criteria for
jump detection. This test can also usefully complement recurrence analysis and improve upon certain aspects of its results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062543

Paleoclimate proxy records are used to reconstruct past states of
the Earth’s climate. These records sometimes contain “jumps,” or
abrupt transitions, which may serve as evidence of dramatic shifts
in the Earth’s past climates. Such jumps are likely to be caused
by the climate system as a whole—or by the subsystem associ-
ated with the proxy record under study—crossing a tipping point
(TP), at which self-reinforcing feedbacks push the system out of
its stable state. Present-day global warming and other impacts of
human activity have led to concerns about potential TPs, which,
when crossed, could bring irreversible change to the physical
climate system and impacted ecosystems.40,56,61 Therefore, iden-
tifying and describing jumps associated with TPs in paleoclimate
is essential to properly understanding the Earth system’s under-
lying bifurcation mechanisms and may allow us to make more
robust predictions for future climate. As paleoclimate records
vary in their origin, time spans, and periodicities, an objective,
automated methodology like the one proposed and demonstrated

herein is crucial for identifying and comparing TPs. To deter-
mine the nature of the tipping mechanism requires theoretical
and modeling work.2,28,39 For the sake of brevity, we assume for
the moment that each jump in the time series identified by the
methodology described herein is equivalent to an abrupt climate
transition and use jump and abrupt transition interchangeably.

I. INTRODUCTION

Proxy records show that climate during the last glacial period
of about 115 000–11 700 yr ago was highly variable and charac-
terized by rapid changes in temperature and precipitation occur-
ring on centennial to millennial time scales. Among the most
remarkable climatic events of this time period were Heinrich
events,34 associated with iceberg surges in the North Atlantic,
as well as Dansgaard–Oeschger events,17 which were associated
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with a warming of several degrees Celsius over as little as a few
decades.36,64 Such transitions have been reproduced in modeling
studies3,7,27,50,79 and are likely to have been driven by major shifts
in ice–ocean–atmosphere interactions;9,43 however, the exact mech-
anisms driving these changes remain uncertain.5,10,13,63,75

Establishing precise dates for critical transitions in Earth’s cli-
matic history from jumps in the proxy records is a major challenge
in paleoclimate studies.41,42,55 For the last glacial cycle, reliable dating
estimates may be obtained for ice core records, such as the one pro-
duced by the North Greenland Ice Core Project (NGRIP).58 These
records contain several types of proxies found in distinct layers of
annual snow accumulation, which allow a relatively high sampling
resolution. Still, the uncertainties in their dating have been shown to
progressively increase for older layers.8

Speleothems also contain distinct layers, which may be accu-
rately and precisely dated, mainly by U-Th dating. The descriptions
and classifications of climatic events are typically performed by visu-
ally inspecting the record, which is both time consuming and rather
subjective. In records where independent dating is not available, the
age estimates are typically established by synchronization, or “wig-
gle matching,” with well-dated records such as the NGRIP record
or speleothem records. With improvements in sampling and dating
methodologies, the dates for recognized climatic events have fre-
quently been revised over the last few decades,16,17,37,58 thus making
age estimates in older studies unreliable. Therefore, given the large
number of climate records in use and the need to frequently revise
the findings from earlier studies, an automated statistical test is the
preferred way of robustly analyzing the records.

Early examples of abrupt transition detection in climate time
series include analysis of Nile River data.11,14 Transition detection
and change point detection algorithms have since increased in pop-
ularity within a variety of disciplines where nonlinear processes are
involved, including signal processing, bioinformatics, and finance.
The spreading of such algorithms has also contributed to a growing
interest in applying such methods to climatic time series.6,26,31,44,59,71

Truong et al.70 have recently compiled a review of various change
point detection methods.

In recent years, recurrence analysis19,45 has been
successfully applied for identifying transitions in paleoclimate
data.18,22,23,31,47,54,60,69,74 Still, climate variability includes both deter-
ministic and stochastic processes, while paleoclimate time series are
characterized by high levels of noise and a nonuniform resolution, as
well as by irregular periodicities. These combined sources of uncer-
tainty highlight the need for the development of alternative methods
as well.

Here, we present a methodology for automatically detecting
abrupt transitions in paleoclimatic proxy records of many types
and on several time scales. This statistical method is based on the
Kolmogorov–Smirnov test and it can be applied to different types
of records extending over distinct time spans, thus allowing one
to objectively compare them. The jumps so identified in climatic
time series may then be further explored with a full hierarchy of
models to improve our understanding of the Earth’s bifurcation
mechanisms29,30 and identify possible TPs for future climates.

The paper is organized as follows. In Sec. II, we present an aug-
mented Kolmogorov–Smirnov (KS) test and perform receiver oper-
ating characteristic (ROC) analysis for varying parameter values. In

Sec. III, we apply the method to two paleoclimate records of the
last climate cycle, a Greenland ice core,58 and a speleothem com-
posite record from China12,73 and compare these results with those
of recurrence analysis. Conclusions are drawn in Sec. IV.

II. METHODOLOGY

A. Kolmogorov–Smirnov (KS) test

Our methodology is based on the nonparametric KS test, a
goodness-of-fit test for a time series {xk : 1 ≤ k ≤ K} named after
Andrey Kolmogorov38 and Nikolai Smirnov.66 The two-sample KS
test compares the empirical distribution functions of two samples,
just before and just after a potential change point, in order to test
the hypothesis that the two samples come from the same continu-
ous distribution. This test is applied here to a proxy time series, to
compare two samples drawn from before and after a potential jump
in the paleoclimate record.

The equality of the two samples is quantified using the KS
statistic DKS,15,49 defined as the greatest vertical difference at any
point between the cumulative distributions F1 and F2 of the two
samples,

DKS = sup
k

|F1(xk) − F2(x`)|, (1)

with ` = k + w. Here, F1 and F2 are the empirical distribution func-
tions of the samples drawn from the two intervals I1 = {t − w
≤ k ≤ t} and I2 = {t ≤ ` ≤ t + w} within a window length w from
before and after time t, while sup(·) is the supremum of the distance
between the two. Since both F1 and F2 lie between 0 and 1, one also
has that 0 ≤ DKS ≤ 1.

Figure 1 illustrates the quantification of the KS statistic for two
different pairs of samples from the NGRIP δ18O time series,58 with
a window of w = 2000 yr. Following Eq. (1), the KS statistic is equal
to the greatest vertical distance between the two curves in Figs. 1(b)
and 1(c), respectively, and clearly the larger distance corresponds to
a greater degree of discontinuity.

The null hypothesis that the samples are drawn from the same
distribution is rejected if DKS is greater than a critical value,67

DKS > c(α)

√

n1 + n2

n1n2

. (2)

Here, n1 and n2 are the sizes of the two samples, and c(α) is the
inverse of the Kolmogorov distribution at a chosen significance
level α,

c(α) =

√

−
1

2
ln

(α

2

)

. (3)

B. Application of the KS test to paleoclimate data

Since paleoclimate records vary in their length, resolution,
dominant periodicity, and amplitude, the notion of “abruptness”
requires a more precise definition than what is evaluated in Eq. (2).
The KS test can give very different results depending on the win-
dow length being used. As may be seen in Fig. 1, the window length
is inadequate when it is significantly shorter or significantly longer
than the time interval between two discontinuities. Thus, to adapt
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FIG. 1. Example of the KS test applied to the NGRIP δ18O time series.58 (a) Snapshot of the record at 21–43 ka b2k. The green and orange rectangles correspond to the
sample windows of equal width w used for evaluating the KS statistic, green before and orange after the potential jump. (b) and (c) Empirical distribution functions of the two
pairs of samples. The length of the black double arrow is equal to the KS statistic DKS.

the KS test to detect transitions that may occur at distinct recur-
rence times, we introduce a varying window length wi, with a range
between wmin and wmax,

wi = wmin

(

wmax

wmin

)(i−1)/(Nw−1)

, (4)

where Nw is the number of distinct window lengths used in the
analysis.

For each window wi, the KS statistic is calculated following
Eq. (1). As climatic variability occurs at a spectrum of different time
scales that may be as short as one hour or as long as the age of the

Earth,52 the frequency at which transitions are detected is subject to
the values of wmin and wmax. Thus, the values of these two parameters
should correspond to the time scale at which a given paleorecord is
investigated.

By calculating the KS statistic of Eq. (1), as visualized in Fig. 1,
for every time step in a paleoclimate record, one may obtain a time
series of DKS with higher values that correspond to a higher degree
of discontinuity in the record. Following Eq. (2), one wishes to
define a critical value above which the discontinuity between two
samples compared with the KS test is classified as an abrupt transi-
tion. As noted by Conover,15 however, in almost any goodness-of-fit
test, the null hypothesis will be rejected if a large enough sample
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size is employed. Therefore, we replace the critical value defined in
Eqs. (2) and (3) by a cut-off threshold Dc for the KS statistic, with
0 ≤ Dc ≤ 1, and scale DKS by the sizes of the two samples,

1 −
1 − DKS

1 −

√

n1+n2
n1 ·n2

> Dc. (5)

Furthermore, as the KS test by itself does not depend on the
amplitude of the “jump” in the time series, it is desirable to discard
any smaller jumps that may be the result of an error in the observed
data, e.g., measuring error or small-scale variability that occurs over
time intervals shorter than the sampling resolution of the proxy
record. Thus, for each of the two adjacent samples drawn from I1

and I2, respectively, we compute the mean change |x̄1 − x̄2| in mag-
nitude between them, as well as the standard deviation for the two
samples, σ1 and σ2. For a transition to be considered significant, the
change in magnitude between the two samples in proportion to their
standard deviation needs to exceed a threshold σc,

|x̄1 − x̄2|

σ1

> σc and
|x̄1 − x̄2|

σ2

> σc. (6)

Last, as the KS test requires a large enough sample size to be
significant, we specify a minimum sample size threshold, nc. For any
window wi, if either of the two samples has a size n smaller than nc,
the result of the KS test is deemed insignificant,

ni ≥ nc. (7)

An abrupt transition at time t is detected when all of the
conditions in Eqs. (5)–(7) are satisfied. The dates for which these
conditions are satisfied are obtained as time intervals of varying
lengths, as shown in Fig. 2 for two different window lengths. The
precise date for a transition within such a time interval is then deter-
mined by the maximum DKS value found within that time interval.
When several time steps share the same value DKS that equals the
maximum over the given interval, the time step corresponding to
the maximum change in magnitude |x̄1 − x̄2| is used; moreover, if
there is more than one such time step, then the one with the earlier
date is used.

Since the transition dates so identified will vary depending on
the window length, the priority assigned to the results obtained with
different windows will depend on that length. Given that the statisti-
cal significance of the KS test improves with the sample size, we first
identify the transitions detected with the longest window, namely,
wN. These results are then supplemented with additional transitions
detected for the next-longest window, wN−1, and eventually to all
other window lengths, until w1.

Finally, as the same transition may be found at slightly differ-
ent dates depending on the window length that is used, we want
to ensure that each of the transitions thus identified is a separate
event and thus avoid having the same transitions identified multi-
ple times at neighboring dates. Hence, for window wi we discard
transitions identified at time t if the interval {t − wi ≤ t ≤ t + wi}

contains transitions that were previously identified with greater
window lengths. These steps are visualized in Fig. 3.

C. Characterizing Greenland interstadials and stadials

Many of the abrupt transitions in the NGRIP δ18O record
correspond to shifts between a warmer climate during Greenland
Interstadials (GIs) and a colder climate during Greenland Stadi-
als (GSs). In order to determine whether a transition in the proxy
record marks the start of a GS or a GI mode, we computed two addi-
tional time series for the proxy record and plot them in Fig. 4: they
correspond to the stadial and interstadial values in the record.

To transcribe the bistable behavior, observed at varying charac-
teristic time scales in climate records, we employ a running window
wi of varying length, according to Eq. (4), to extract samples from the
wi-filtered time series. These samples are then divided into two sets,
below and above the mean value of the series, for each wi. The GS
values are then calculated from the 25th percentile of the set below
the mean, while GI values are calculated from the 75th percentile of
the set above the mean.

These GS and GI values calculated with each wi window are
then averaged, yielding the blue (“stadial”) and the red (“intersta-
dial”) curves in Fig. 4. These two curves are then averaged at each
time t, yielding the purple curve in Fig. 4. These curves help visually

FIG. 2. Main transitions detected for the NGRIP δ18O record58 (black line) that satisfy the conditions in Eqs. (5)–(7) using windows of length w = 1000 yr (long, blue bars)
and 200 yr (short, magenta bars).
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FIG. 3. Schematic of the steps involved in identifying abrupt transitions with a
varying window lengthwi . Steps 2–5 are repeated for every window length defined
in step 1, starting with the longest window wN and ending with w1. Steps 3–5 are
repeated for every continuous interval within which the conditions in Eqs. (5)–(7)
are satisfied. Step 4 is used to discard transitions that match those already
detected with a longer window. Abrupt transitions are identified in step 5.

FIG. 4. NGRIP δ18O record58 (black line). The red line corresponds to the calcu-
lated interstadial values (GI), the blue line corresponds to the calculated stadial
values (GS), and the purple line is the average between the red and blue lines.
The purple line represents the threshold that is used to identify shifts between
stadials and interstadials.

identify dominant GS and GI regimes within the time series and are
compared with the proxy values at the detected transitions. When
a detected transition coincides with the proxy record crossing the
middle curve (purple), it is recognized as corresponding to a shift
between a stadial and an interstadial.

D. ROC analysis of jump identification in paleodata

A receiver operating characteristic (ROC) curve illustrates the
diagnostic capabilities of a binary classifier.24,33 ROC curves were
first used during World War II to measure the ability of a radar
receiver operator to correctly detect enemy aircraft from radar
signals.53,57 A binary classifier classifies the elements of a given set
into two groups, such as “pass” or “fail.”62 Here, the ROC curves
are used to compare the efficacy of different criteria used in our
augmented KS methodology for detecting abrupt transitions, as
described in Sec. II B above, and to optimize its parameters.

The conditions in Eqs. (5) and (6) are binary classifiers, whose
parameters Dc and σc we wish to tune to bring our results closer to a
desired goal. In the case at hand, the goal is provided by the heuris-
tically determined change points of Rasmussen et al.,58 which we
compare with the abrupt transitions identified in Fig. 2 of Sec. II B.
The two ROC curves for Dc (red) and σc (blue) are plotted in Fig. 5.

In order to plot such curves, we must first define the following
concepts and numerical definitions:

• True positive or “hit”: a positive classifier value that corresponds
to a known positive; for example, if the condition in Eq. (5) is
“pass” at t = 28 900 yr, a time that corresponds to the Start of GI-4
given by Rasmussen et al.58

FIG. 5. ROC curves for the parameters Dc (red) and σc (blue), which control
minimum jump size. Please see the text for details.
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• True negative or “correct rejection”: a negative classifier value that
corresponds to a known negative; for example, if the condition in
Eq. (5) is “fail” at t = 20 000 yr, a time that does not correspond
to any event given by Rasmussen et al.58

• False positive or “false alarm”: a positive classifier value that cor-
responds to a known negative; for example, if the condition in
Eq. (5) is “pass” at t = 20 000 yr, a time that does not correspond
to any event of Rasmussen et al.58

• False negative or “miss”: a negative classifier value that corre-
sponds to a known positive; for example, if the condition in Eq. (5)
is “fail” at t = 28 900 yr, it means that it does not agree with the
identification of the Start of GI-4 given by Rasmussen et al.58

• True positive rate: TPR =
sum of true positives

all known positives
.

• False positive rate: FPR =
sum of false positives

all known negatives
.

A good classifier is one that finds as many true positives and
true negatives as possible, and as few false positives and false nega-
tives as possible. Hence, we aim for a TPR that is close to 1 and an
FPR that is close to 0.

Note that, given the known imperfections in the NGRIP
record’s dating, we allow for a difference of up to 30 yr when com-
paring the jumps identified by our augmented KS methodology
with those determined by the subjective expert methods used by
Rasmussen et al.58 Some similar tolerance has to be used in any com-
parison of change point analysis methods for time series with dating
uncertainties.

Every point on the two ROC curves in Fig. 5 corresponds to
a different parameter value: for example, the values of Dc range
from 0 to 1. Point (0, 0) on the graph corresponds to parameter
values that always yield a negative result, i.e., such a value does
not identify any jumps in the record. Point (1, 1) corresponds to
parameter values that always yield a positive result, i.e., such a value
identifies a jump at every single step in the record. One seeks an
optimal balance between the two extremes by finding the point on
the ROC curve that is closest to the error-free point (0, 1), calculated
as the maximum value of J = TPR − FPR, where J is the Youden76

J-statistic.
The area under the curve (AUC) is an important measure of the

performance of a classifier.33,48 The closer the ROC curve is to point
(0, 1) on the graph, the higher its AUC and the better the classifier’s
diagnostic ability. Thus:

• If AUC = 1, the classifier is “perfect”; e.g., in our case, it finds the
exact same jumps as in Rasmussen et al.58

• If AUC is close to 1, the classifier is “good.”
• If AUC is only a little above 0.5, the classifier is “poor.”
• If AUC = 0.5, i.e., the area under the curve is the same as the

area under the diagonal in Fig. 5, the classifier is considered to
be “useless,” i.e., only as good as a random guess.

• If AUC < 0.5, the classifier is doing the opposite of what was
intended.

In Fig. 5, the ROC curves for the parameters Dc and σc have
AUCs of 0.929 and 0.866, respectively. Thus, both classifiers are
quite good, but Eq. (5) is the better one of the two.

The optimal values of Dc and σc are 0.735 and 1.92, respec-
tively. However, since these values are obtained independently of
one another, they do not equal necessarily the optimal values that
can be computed through multi-dimensional optimization. In the
meantime, given that the separate AUCs are quite high, we use in
practice parameter values that are slightly different from the values
above.

III. APPLICATIONS

A. Greenland ice core record

As discussed in Sec. II, our augmented KS test has been tuned
to identify jumps that match the stadial–interstadial boundaries
identified heuristically for the NGRIP ice core record.58 Following
the optimization via ROC analysis, we chose the parameter values
Dc = 0.77 and σc = 1.9 for the criteria given by Eqs. (5) and (6). The
range of window lengths wi in Eq. (4) corresponds to the centennial-
to-millennial time scale of glacial–interglacial transitions, and thus
we used wmin = 0.1 kyr and wmax = 2.5 kyr to calculate DKS. The
minimum sample size used is nc = 3.

The GS and GI boundaries in Rasmussen et al.58 were estab-
lished using both δ18O and Ca2+ proxies from the NGRIP record.
In the present analysis, though, for the sake of simplicity and to
allow a more direct comparison between ice core and speleothem
records, we only used the δ18O proxy values. The results of this aug-
mented KS test for the NGRIP δ18O record are shown in Fig. 6. Note
that the interstadials associated with the gray bars in the figure are
not necessarily delimited by the most abrupt transitions: they were
identified by the stadial–interstadial boundaries determined follow-
ing the procedure described in Sec. II C, by relying on the additional
information contained in Fig. 4.

Our method properly identifies most of the abrupt transitions
described by Rasmussen et al.,58 including Dansgaard–Oeschger
events and glacial–interglacial transitions. In addition to the sta-
dial–interstadial transitions, the KS method also identifies abrupt
transitions that are not associated with these climatic shifts. The
total number of transitions detected is, therefore, higher than in
Rasmussen et al.58

For example, while Rasmussen et al.58 show a firm bound-
ary between the Eemian interglacial and GS-26 at 119 140 yr b2k,
we find this transition to be occurring over several steps, between
120 760 and 118 320 yr b2k. We also find several such events during
GI-21.1, between 84 760 yr b2k and 77 760 yr b2k and during GI-
23.1, between 104 020 yr b2k and 91 740 yr b2k, as well as distinct
events during stadials at 109 300 yr b2k, 86 160 yr b2k, and 67 260 yr
b2k.

Furthermore, several notable differences in timing of the sta-
dial–interstadial transitions are observed. Here, GI-23.1 is found to
end at 91 740 yr b2k, an earlier time than the 90 140 yr b2k given
by Rasmussen et al.,58 where the following GS-23.1 is identified as
a “quasi-stadial” and a full GS only begins at 87 600 yr b2k. Fur-
thermore, the GI-5.1 interstadial, at 30 840–30 600 yr b2k, is not
identified here at all, while in the place of GI-2.2 and GI-2.1, we only
identify a single warming event at 23 360 yr b2k. The most likely rea-
son is that δ18O is the only proxy used in the present analysis, while
Rasmussen et al.58 used Ca2+ as well.
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FIG. 6. NGRIP δ18O record58 (black line): (a) 7.8–47.1 ka b2k; (b) 45.8–85.1 ka b2k; and (c) 83.8–122.3 ka b2k. Vertical lines represent detected transitions, with red lines
for warming transitions and blue lines for cooling ones. Grey bars represent interstadials.
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B. China speleothem record

In order to determine whether our augmented KS test may be
successfully applied to other types of records with different time
scales and resolutions, and subject to different nonlinear trends,
we applied the test to a composite speleothem record.12 This com-
posite δ18O record was constructed using multiple speleothem
records from three caves in China, the Hulu, Sanbao, and Dongge
caves,72,73,77 and it is reproduced here in Fig. 7.

While this speleothem record extends back to 641 ka BP, we
apply our methodology only to the time interval covered by the
NGRIP record, i.e., the past 122 ka. To obtain a clean comparison
with the results of Sec. III A, we run the method with the same set-
tings and using the same parameter values as there. The abrupt tran-
sitions identified therewith, including stadial–interstadial changes,
are shown in Fig. 7.

Our method identifies the start of the Holocene, at 11 510 yr
b2k; GS-1 or Younger Dryas, at 12 800 yr b2k; the GI-1, at 14 620 yr
b2k; most of the known Dansgaard–Oeschger events; as well as
the beginning of the Last Glacial Period, at 120 450 yr b2k. Due to
a lower resolution of the speleothem record, as well as to a gen-
erally less abrupt nature of the warming events, fewer transitions
are identified than in the NGRIP record; those missed include the
one attributed to the GI-18 interstadial at 64 100 yr b2k and, most
strikingly, the entire GI-25 interstadial at 110 640–115 370 yr b2k.

Some of the transitions are identified at a different time than in
the NGRIP record, e.g., the beginning of the Last Glacial Period is
identified to occur approximately 1300 yr earlier. Such differences
are likely the result of different dating methods used for the two
records and are consistent with uncertainties that arise from layer-
counting-based dating of ice cores.8 Some events, however, display a
very different pattern, e.g., GI-23.1 ends at 99 200 yr b2k and is fol-
lowed by an additional cooling transition at 98 070 yr b2k, while in
the NGRIP record, a significant cooling transition during GI-23.1
does not take place until 91 740 yr b2k, which marks, therewith, the
end of this interstadial. GI-5.1, while not identified in the NGRIP
record at all, is found here to end at 30 660 yr b2k and, as this date
is not preceded by a warming transition, appears as an extension of
GI-5.2.

C. Comparison between the Greenland and China

records

The results in Sec. III B demonstrate that the KS detection
method, as augmented herein, may be applied successfully to dif-
ferent types of records, of different origin, resolution, and other
characteristics. Given the well-established transition dates in Ras-
mussen et al.,58 the ROC analysis has only been used here to tune the
method for the NGRIP record.

One may be able to improve the results in Sec. III B further by
additional tuning of the method’s parameters to account for the dif-
ferences between speleothem and ice core records, in particular, the
varying resolution of the former. Here, we merely wish to demon-
strate the applicability of the methodology to different types of
records; hence, a more accurate identification of abrupt transitions
is not our primary goal.

Although we have not performed specific tuning for the China
cave composite record, it is quite encouraging that the method was

nevertheless capable of finding transitions that closely match those
in the NGRIP record. The differences in our results between the two
records are most likely due to their different age models as well as
to actual differences in climate evolution between Greenland and
China; they are thus less likely to be caused by inconsistencies in the
method itself. Furthermore, note that the NGRIP record comes from
a single, continuous ice core, while the Chinese speleothem record
is a composite from three caves many hundreds of kilometers apart.
Therefore, the differences in geochemical properties of the individ-
ual speleothems, as well as regional climate differences, may affect
the continuity of this record.

D. Comparison with recurrence analysis

To further evaluate the methodology of this paper, we compare
the results from the transition detection method for the NGRIP δ18O
record with an analysis based on the recurrence plots (RPs) intro-
duced by Eckmann et al.19 and popularized in the climate sciences
by Marwan et al.45,46 The RP for a time series {xk : k = 1, . . . , K} is
constructed as a square matrix in a Cartesian plane with the abscissa
and ordinate both corresponding to a time-like axis, with one copy
xi of the series on the abscissa and another copy xj on the ordinate. A
dot is entered into a position (i, j) of the matrix when xj is sufficiently
close to xi, i.e., |xi − xj| < ε with ε being the recurrence threshold.
For the details—such as how close is “sufficiently close”—we refer to
Eckmann et al.19 and Marwan et al.46

Clearly, all the points on the diagonal i = j have dots and,
in general, the matrix is rather symmetric, although one does not
always define closeness symmetrically; to wit, xj may be “closer to” xi

than xi is to xj.19 An important advantage of the recurrence method
is that it does apply to dynamical systems that are not autonomous,
i.e., that may be subject to time-dependent forcing. The latter is cer-
tainly the case for the climate system on time scales of 10–100 kyr
and longer, which is affected strongly by orbital forcing.

Eckmann et al.19 distinguished between large-scale typology
and small-scale texture in the interpretation of the square matrices
of dots that are the visual result of RP. Thus, if all the characteristic
times of an autonomous dynamical system are short compared to
the length of the time series, the RP’s typology will be homogeneous
and, thus, not very interesting. In the presence of an imposed drift,
a more interesting typology will appear.

The most interesting typology in RP applications so far is asso-
ciated with recurrent patterns that are not exactly periodic but only
nearly so. Hence, such patterns are not that easily detectable by
purely spectral approaches to time series analysis. Marwan et al.46

discuss how to render the purely visual RP typologies studied up to
that point more objectively quantifiable by recurrence quantification
analysis (RQA)45 and bootstrapping.20,21

While the selection of an optimal recurrence threshold ε is not
straightforward, several rules of thumb have been proposed.45 For
example, it has been suggested that it should not exceed 10% of the
maximum phase space diameter51,78 and that it should be at least five
times larger than the standard deviation of the observational noise,68

a value which is difficult to estimate for ice core δ18O, but likely
exceeds 0.2h. Thus, we chose a ε of 1.3h, which is close to the
maximum value allowed by the first condition. The RP of NGRIP
δ18O obtained using this threshold is shown in Fig. 8, middle panel.
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FIG. 7. China cave δ18O composite record12 showing the last climate cycle (black line) and the abrupt transitions therein: (a) 7.8–47.1 ka b2k; (b) 45.8–85.1 ka b2k; and
(c) 83.8–122.3 ka b2k. Same conventions as in Fig. 6.
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FIG. 8. Comparison of visual and quantitative identification of recurrences in the NGRIP record:58 (a) time series; (b) recurrence plot (RP); and (c) recurrence rate (RR)
measures. Magenta crosses represent local RR minima and they correspond to abrupt transitions.
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FIG. 9. Difference between abrupt transitions detected in the NGRIP δ18O record with the KS and RQA methods (Ti ) and their closest neighboring transitions in Rasmussen
et al.

58 (Xi ); normal distributions for different window lengths w were calculated from the means and standard deviations of Ti − Xi . (a) Results of the augmented KS test;
and (b) RQA results using the RR. The Y-axes have the same scale in both panels. As the distributions for w = 0.25 kyr and w = 1 kyr in panel (a) are nearly identical, the
lighter curve is hidden behind the darker curve.

Following Ref. 45, visual inspection of RPs may be comple-
mented by RQA, which quantifies selected recurrence characteristics
(see also Ref. 69). One of the simplest RQA measures is the recur-
rence rate (RR), namely, the density of dots within the recurrence
plot, which describes the probability of states of the system recur-
ring within a particular time interval. By evaluating RQA measures
such as RR in a sliding window, it is possible to identify changes in
the time series. The bottom panel of Fig. 8 shows the RR computed
over a 1000-yr sliding window; this window was found to have the
most effective length, among those evaluated, for identifying abrupt
transitions (Fig. 9).

Low RR values correspond to an unstable behavior of the sys-
tem. Thus, abrupt transitions in a time series may be identified by
the local RR minima. As it is often unclear whether neighboring
minima represent several distinct events or a single event, we select
local minima with the greatest prominence, a measure originally
used in mountaineering and geography to distinguish indepen-
dent mountains from sub-peaks25,35 and, in recent years, successfully
applied in other fields.1,32,65 Prominence is defined as the shortest
vertical distance between a peak and a saddle that connects it to any
higher peak; if no higher peak exists, the peak’s prominence is equal
to its elevation. In finding minima, the sign of RR is reversed. RR
minima with a prominence greater than the standard deviation of
the RR time series mark the dates of the abrupt transitions identified
by windowed RQA (magenta crosses in Fig. 8).

The major transitions identified by our KS method in Fig. 6 are
also identified by RQA in Fig. 8, but properly recognizing the transi-
tion points by RQA becomes more challenging at time scales shorter
than the window length. For example, the transitions between GI-
17.2 and GI-16.1c, at 59 440 and 58 040 yr b2k, respectively, are
properly identified by the KS method but they are not easy to distin-
guish on the RP and only one transition, at 59 170 yr b2k, is found by
RQA. Likewise, none of the sub-events during GI-1 between 14 075

and 12 896 yr b2k are identified by RQA. Furthermore, for the Dans-
gaard–Oeschger events of GI-18 to GI-2.1 at 64 100 to 22 900 yr b2k,
RQA only identifies either the start or the end of the event.

On the other hand, recurrence analysis appears to be more
useful for recognizing changes in periodicity in paleorecords. Such
changes are clearly visible in the RP at 71 000 yr b2k (GI-19.2) and
at 14 700 yr b2k (start of GI-1), when more frequent interstadials
occur and the record is characterized by greater variance than before
71 000 yr b2k or during the Holocene. While these two transitions
have also been identified with the KS method, there is no clear
distinction between them and the other transitions in Fig. 6.

We have seen that the augmented KS test uses a variable win-
dow length to find transitions at different time scales. For comparing
it with RQA, though, it is desirable to use equivalent window lengths
for both methods. We show, therefore, in Fig. 9 a general compar-
ison of the two methods, including the effect of the window length
on their performance.

In the figure, abrupt transitions are identified using three dif-
ferent window lengths. Windows used for the KS test are half the
length of those used in RQA because the KS test compares two
neighboring samples of a time series, while the RR is calculated for
a single sample. For both methods, we calculated the difference in
years between each of the detected transitions (Ti) and their closest
neighboring transitions in Rasmussen et al.58 (Xi).

For better visual presentation, the distribution of these differ-
ences was modeled using a normal distribution. While varying the
window length has a significant impact on the total number NT of
identified transitions in both methods, the dates of these transitions
are consistently in good agreement with those of Rasmussen et al.58

only for the KS test; in the latter case, Ti − Xi has means ranging
between 22 and 41 yr and standard deviations ranging between 118
and 134 yr. Transitions found by RR are in their best agreement
with those of Rasmussen et al.58 for w = 1 kyr, where Ti − Xi has

Chaos 31, 113129 (2021); doi: 10.1063/5.0062543 31, 113129-11

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

a mean of 71 yr and a standard deviation of 89 yr; however, for both
the longer and the shorter windows the standard deviation is much
larger.

This analysis suggests that the accuracy of the detected transi-
tions is less sensitive to window length for the augmented KS test
than for the RR test of RQA. The KS test is, therefore, the more
robust method for establishing precise dates of abrupt transitions,
while the transition dates detected by RQA are inconsistent from
one window length to another.

IV. CONCLUSIONS

We have shown here that the Kolmogorov–Smirnov (KS) test,
which by itself is a powerful tool for quantifying discontinuities
in a time series, may be adapted for paleoclimate data analysis
when combined with additional statistical tests. Given its statistical
robustness and relative simplicity, the methodology described in this
paper is very effective in detecting abrupt transitions in paleoproxy
records.

We tested the applicability of the methodology on two paleo-
records from the last climate cycle. In future studies, we aim to apply
this method to various records with a different origin, nature, and
length, which originated on different continents and ocean basins.
A database of paleoproxy records with automatically detected tran-
sitions, currently under development4 will include a much more
extensive application of the augmented KS methodology. Here, the
parameters required were conveniently tuned for the NGRIP record,
using the transition dates of Rasmussen et al.58

To evaluate time series with different resolutions, periodicities,
noise levels, and strength of the signal, different settings may be
used. The Dc parameter specifies the desired level of “abruptness,” nc

relates to the record’s resolution and to the desired degree of robust-
ness of the KS test, while the σc parameter specifies the magnitude
of the jumps in relation to background noise. By modifying the win-
dow length used for evaluating the KS statistic, the transitions may
be found for different time scales of interest.

A good understanding of the record’s characteristics is quite
helpful in selecting the desired parameter values and it can be aided
further by using automated methods for determining them. The
formulations of Eqs. (6) and (7) that target the additional crite-
ria of rate-of-change and minimum sample size have improved the
method’s ability to focus on the most distinct transitions. Still, the
introduction of a variable window length in Eq. (4) and the pro-
cedure for identifying distinct transitions among those found with
different window lengths (cf. Fig. 3) are our two most critical mod-
ifications of the KS test: they allow one to apply it to study a record
under distinct “magnification lenses.”

Comparison of our augmented KS method with recurrence
analysis, a frequently used method for transition detection in pale-
oclimate studies, indicates that our KS method is more useful at
determining individual jumps in the record and finding their pre-
cise dates, particularly when variable time scales are involved. On
the other hand, recurrence analysis may help establish particularly
important transitions that correspond to a change in a record’s char-
acteristic time scale. The two methodologies appear thus to be both
useful and to complement each other.

Since the KS methodology gives precise dates for the abrupt
transitions it identifies, its wider application may help reconstruct
the chronology of Earth’s climatic events and build improved age
models for records in which “wiggle matching” is typically used as
the dating method. Furthermore, this objective approach to identi-
fying abrupt climate transitions can improve our understanding of
the Earth’s bifurcation mechanisms and TPs. This, in turn, will allow
us to construct better nonlinear and stochastic models of the Earth’s
climate and its interactions with ecosystems.28,30
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