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Abstract: Tectonic plates are thought to move above the asthenosphere due to the presence of accu-
mulated melts or volatiles that result in a low-viscosity layer, known as lithosphere–asthenosphere
boundary (LAB). Here, we report experiments suggesting that the plates may slide through a solid-
state mechanism. Ultrafine-grained aggregates of Mg2GeO4 and minor MgGeO3 were synthetized
using spark plasma sintering (SPS) and deformed using a 1-atm deformation rig between 950 ◦C and
1250 ◦C. For 1000 < T < 1150 ◦C, the derivative of the stress–strain relation of the material drops down
to zero once a critical stress as low as 30–100 MPa is reached. This viscosity reduction is followed by
hardening. The deformation curves are consistent with what is commonly observed in steels during
the shear-induced transformation from austenite to martensite, the final material being significantly
harder. This is referred to as TRansformation-Induced Plasticity (TRIP), widely observed in metal
alloys (TRIP alloys). It should be noted that such enhanced plasticity is not necessarily due to a phase
transition, but could consist of any kind of transformation, including structural transformations.
We suspect a stress-induced grain-boundary destabilization. This could be associated to the tran-
sient existence of a metastable phase forming in the vicinity of grain boundaries between 1000 and
1150 ◦C. However, no such phase can be observed in the recovered samples. Whatever its nature, the
rheological transition seems to occur as a result of a competition between diffusional processes (i.e.,
thermally activated) and displacive processes (i.e., stress-induced and diffusionless). Consequently,
the material would be harder at 1200 ◦C than at 1100 ◦C thanks to diffusion that would strengthen
thermodynamically stable phases or grain-boundary structures. This alternative scenario for the LAB
would not require volatiles. Instead, tectonic plates may slide on a layer in which the peridotite is
constantly adjusting via a grain-boundary transformation.

Keywords: plate tectonics; lithosphere; asthenosphere; lithosphere–asthenosphere boundary; plasticity;
peridotite; mantle; olivine; enstatite; germanates; plate motion; transformation-induced plasticity;
transformation; martensitic-like transformation; grain-boundary stability

Plain Language Summary: Alpine skiers glide thanks to the force of gravity, but this could
not happen without the transient shear-induced melting of H2O, which lubricates the
sliding. Similarly, tectonic plates move due to slab densification at subduction zones, which
generates a driving force throughout the plate, but it is not clear how plate motion actually
proceeds. The lithosphere–asthenosphere boundary (LAB) is a low-viscosity layer that
seems to accommodate large-scale stresses. Current models consider that the low viscosity
of the LAB could be due to partial melting or to the gathering of water or other volatiles.
In this study, we present experimental achievements that add an alternative mechanism,
requiring neither volatiles nor melting. Tectonic plates may slide on a layer under constant
transformation, via a process resembling “cold welding”.
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Highlights:

1. A viscosity reduction occurs in ultrafine-grained aggregates of Mg2GeO4 and minor
MgGeO3, suggesting transformation-induced plasticity.

2. The lithosphere–asthenosphere boundary (LAB) may not result from partial melting
or volatiles gathering, but from a solid-state disordering.

3. Tectonic plates may slide on a layer (LAB) in which the peridotite is constantly
adjusting via a process resembling "cold welding".

1. Introduction

Plate tectonics is a common process in relatively large terrestrial planets [1] and is
strongly related to the origin and evolution of life [2–4]. From the 1960s, the lithosphere and
asthenosphere have been defined as the rigid material constituting the tectonic plates and
the underlying ductile mantle [5–9]. The term “asthenosphere” was first introduced to des-
ignate the sphere of weakness below the lithosphere by Joseph Barrell in 1914 [10,11], and
convection beneath oceans was proposed by Arthur Holmes in 1929 [12]. Interrogations
about the nature of the lithosphere–asthenosphere boundary (LAB; Figure 1) have recently
emerged [13–17]). The LAB is a global feature at a depth separating the lithospheric plates
from the underlying asthenosphere. Driven by slab pull at subduction zones (e.g., [18,19]),
tectonic plates remain relatively undeformed thanks to decoupling at the LAB [20,21].
Generally considered as a rheological limit between the relatively rigid lithospheric man-
tle and the more ductile asthenospheric mantle, the LAB may contain melt or volatiles
(e.g., [15,22]). However, the LAB is not fully understood yet (e.g., [17,23]), highlighting the
requirement of further experimental works.
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Figure 1. Sketch of the Pacific lithospheric plate focusing on the lithosphere–asthenosphere boundary (LAB). The LAB is a
rheological limit that may have its own rheology (Sections 1 and 2). The LAB is usually simplified as a thermal limit at
1260 or 1300 ◦C and has a standard depth of 80–110 km for ages > 40 Ma. While the overall shear direction is clear at the
subduction interface, questions remain regarding the coupling or decoupling between the lithosphere and asthenosphere.
For sake of clarity, only the continental crust of the overriding plate is represented. Figure adapted from [24]. For the
discussion about the different definitions of the asthenosphere, see Section 5. Vertical exaggeration: ×3.

Tectonic plates are mostly made of peridotite, which constitutes ≈70% of the conti-
nental lithosphere (e.g., [25]) and >90% of the oceanic lithosphere (e.g., [26,27]). Hence, the
rheology of peridotites is the main parameter that controls plate deformation and motion
(e.g., [28]). Natural peridotites mainly consist of olivine and pyroxenes, which are silicates.
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Therefore, geophysicists often consider simplified rocks in the MgO-FeO-SiO2 system for
laboratory experiments (e.g., [29–32]). In the State of the Art (Section 2), we recall various
mechanisms that have been proposed to account for strain localization at the LAB and its
geophysical signatures. Up to date, it is generally accepted that the LAB is characterized
by low seismic velocities due to a reduction of viscosity, which could originate from either
partial melting and melt pooling [33,34], volatiles [22,35,36], grain-size reduction [37,38],
mineral transformations [39,40] and/or grain-boundary disorganization referred to as
“pre-melting” [17,41,42]. Using high-pressure deformation machines such as the Griggs
apparatus [43,44] or the D-DIA [45–47] is key for the understanding of strain localization
at P-T conditions relevant for the LAB. Yet, it has the disadvantage of mixing high-pressure
features with textures generated during pressure loading or unloading. Some high-pressure
phases are highly unstable at atmospheric conditions and thus cannot be recovered [48,49],
and errors in stress measurements at high pressure can make difficult the identification of
subtle processes in stress–strain curves. Hence, using germanates instead of silicates may
bring complementary insights.

Germanates show striking similarities with silicates and have been studied for more
than 60 years (e.g., [50–52]). In particular, the MgO-GeO2 system exhibits a very simi-
lar phase diagram as its natural analogue, the upper mantle (MgO-(FeO)-SiO2 system;
Figure 2) [53,54]. Thanks to very similar properties [55–57], Mg2GeO4 has been used in
numerous studies as an analogue of (Mg,Fe)2SiO4 (natural olivine), notably to investigate
the rheology of the mantle transition zone (MTZ; 410-660 km depth, Figure 2) and the me-
chanics of deep earthquakes (e.g., [45,58]). Indeed, when natural olivine (α) transitions to
wadsleyite (β) at 410 km (14 GPa) and to ringwoodite (γ) at 520 km (18 GPa), α-Mg2GeO4
transitions to γ-Mg2GeO4 at 1 atm when T is lowered below 810 ◦C (Figure 2c). This has
allowed to study olivine rheology within the P range of 1-4 GPa, whereas the direct study of
natural olivine would have required the use of devices dedicated to much higher pressures.
The observations in Mg2GeO4 were then reproduced in (Mg,Fe)2SiO4 in the wadsleyite
stability field (14 GPa) [58] and in Fe2SiO4 [59]. Similarities were also reported between the
pyroxene MgGeO3 (Figure 2d) [54] and its natural analogue (Mg,Fe)SiO3 (Figure 2b) [60].

In this study, we synthetize an analogue of natural peridotites in the MgO-GeO2
system and deform it 1 atm in order to investigate mantle rheology at LAB conditions,
which corresponds to pressures of 2–4 GPa in the natural system.

2. State of the Art: Strain Localization in the Mantle at the LAB

It has been argued that the LAB corresponds to a progressive viscosity reduction
(e.g., [61], but seismological observations show a sharp contrast at the LAB [13,23,62]
indicating lower seismic velocities than that of both overlying and underlying mantle [23],
which seems associated with a lower viscosity [63,64]. In New Zealand, seismological data
revealed that both LAB top and bottom correspond to sharp impedance contrasts [23]. If
the LAB has its own rheology, a drop of viscosity could indeed result from partial melting
(e.g., [33,34]), but also from grain-boundary (GB) pre-melting [17,41]. Olivine, the main
component of the upper mantle, is not expected to melt at these P-T conditions, except
in the presence of a relatively high H2O fraction [65]. For pressures of 2 and 3 GPa (≈67
and 100 km), hydrous peridotites can start melting at ≈1300 ◦C and ≈1400 ◦C, respec-
tively [66,67]. The corresponding critical H2O content depends on the rock composition
and is estimated between 200 ppm [66] and 450 ppm [67]. Alternatively, pre-melting,
i.e., GB disordering in near-solidus conditions promoting diffusion-assisted GB sliding,
could explain seismic velocity reduction [42]. Thus, it is reasonable to consider that other
transformations could be, like melting, preceded by a solid-state viscosity reduction.

On Earth, collisions never occur between two oceanic lithospheres (e.g., [7,68,69], which
suggests that oceanic plates should have the intrinsic ability to maintain their basal stress at
relatively low values. Large time and space scales, such as earthquakes cycles, are usually
discussed in terms of readjustments of the visco-plastic asthenosphere (e.g., [70]). According
to global dynamics modeling, a basal shear stress as low as only 10–100 MPa suffices to allow
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decoupling from the convecting asthenosphere [71]. Most recent numerical models of Earth
global geodynamics give basal strength values of≈150 MPa that account for the characteristic
scales of current plate tectonics [19]. Seismic anisotropy studies, which nowadays provide
the best direct evidence for deformation in Earth’s interior, suggest that most of the plate
motion is accommodated over a thickness > 100 km (e.g., [72]. Recent numerical modeling
also found that the 200-km-thick layer of viscosity reduction, referred to as “asthenosphere”
(see discussion in Section 5.3), is probably much thinner, around 100–150 km or less [73],
which makes wonder whether this could actually correspond to the LAB. Recent studies
present numerical results indicating that the asthenosphere viscosity could be 10 to 100 times
smaller than the average upper-mantle viscosity [73,74]. The viscosity of the mantle below
the plates is estimated between 3 × 1018 and 1019 Pa·s at short time scales (postseismic
response) [74,75] and ≥1019 Pa·s for larger time scales [73]. Notably, smaller viscosities
after larger earthquakes [74,75] suggest that the viscosity reduction in the asthenosphere is
scale-dependent or that enhanced plasticity could happen in response to some stress intensity.
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Figure 2. Comparison of (Mg,Fe)2SiO4 (a) and MgSiO3 (b) with their analogues Mg2GeO4 (c) and MgGeO3 (d). (a) Phase
diagram of Mg2SiO4 and (Mg0.9Fe0.1)2SiO4 (San Carlos olivine) adapted from [60]. The latter composition corresponds to the
San Carlos olivine, extensively studied and considered as representative of the composition of the entire upper mantle. The
main discontinuities in the mantle are (1) the lithosphere–asthenosphere boundary (LAB) at an average depth of ≈100 km,
(2) the α-β transition at ≈410 km, the β-γ transition at ≈520 km and (4) 660-km discontinuity, i.e., top of the Lower Mantle.
(b) Phase diagram of MgSiO3 (natural enstatite) [60]. (c) Phase diagram of Mg2GeO4 (adapted from [76] and [53]) showing
the P-T-conditions for deep earthquakes analogues and the P-T range investigated in this study, which may correspond to an
analogue of the LAB. (d) Phase diagram of MgGeO3 (adapted from [54]) showing the P-T range investigated in this study and the
expected stability fields of unquenchable protoenstatite (pEn) and high-T clinoenstatite (HT-cEn). The white cursors indicate the
sintering conditions (1100 ◦C = 1373 K, see text, Figure S1 and Section 3). Legend: St = stishovite; LT-cEn = Low-T clinoenstatite;
HT-cEN = High-T clinoenstatite; pEn = protoenstatite; References: O.&A.1983 = [48]; R.&L.1959 = [52]; J.2004 = [49]; S.2013 = [45].

Partial melting at the LAB has been proposed as responsible for plate lubrication [77].
At the East Pacific Rise, magnetotelluric surveys show that the LAB exhibits high electrical
conductivity along the spreading direction (8 × 10−2 S·m−1), and significantly lower
values parallel to the ridge (3 × 10−3 S·m−1) [78,79]. Such conductivity values and contrast
cannot be explained by CPO but could be explained by the presence of small amounts
of melt aligned in the spreading direction [80–83]. In this case, because the conductivity
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of partially molten rocks is strongly dependent on the geometrical distribution of the
melt [84], a high melt connectivity is required [81,83,85]. Shear stress gradients [86] can
trigger melt redistribution [87–89]). As a consequence, conductive melt channels constitute
a reasonable explanation for the conductive LAB of very young oceanic plates [78,79,90].
Hence, melt-rich channels have been extrapolated to older lithospheres to account for
anisotropic electrical anomalies of the LAB (e.g., [16,82,89]), some studies further arguing
that the LAB beneath young plates (<25 Ma) would consist of a thin, partially molten layer
of low viscosity that would decouple the overlying brittle lithosphere from the deeper
convecting mantle [16].However, other parameters are known to significantly increase the
electrical conductivity, such as small grain size, which provides a high density of grain
boundaries that transport charges [91], and the presence of volatiles that increase this GB
diffusion (e.g., [92]). It should also be noted that solid-state transformations can induce
electrical conductivity jumps, which was demonstrated during the olivine-spinel transition
in the MTZ (>410 km) [93]. In addition, phase transformations induce significant grain
size reduction (e.g., [39,94]), which suggests that such structural modification may impact
the electrical conductivity as much as melting does [90]. Furthermore, the link between
high-conductivity anomalies and the potential presence of melt-rich channels has been
seriously questioned by recent experimental results [95] and could be explained by the
presence of garnet pyroxenite, i.e., fossilized LAB [90].

H2O, even in small amounts, lowers the melting point of peridotite by ≈100 ◦C at
least, which for instance, induces partial melting in peridotite around 1300 ◦C considering
San Carlos olivine and 0.32 wt.% (3200 ppm) of H2O [65]. Considering additional mantle
minerals such as pyroxenes and spinel or garnet, it is generally considered that partial
melting of hydrous peridotite (1000 ppm H2O) could be shifted down by ≈200 ◦C, i.e.,
1250 to 1350 ◦C at pressures between 2.5 and 3.5 GPa [96], i.e., 80–110 km depth (typical
LAB for a plate age > 50 Ma). Several studies have discussed the influence of H2O on
the LAB, notably on the partial melting that H2O would induce (e.g., [14,65–67,96]). Such
H2O saturation is well known at convergent margins, where dehydrating slabs transfer
H2O to the upper plate and cause subduction volcanism (e.g., [97,98]), but it is not clear
how H2O could be trapped at the LAB, which is a global feature. If H2O is trapped, it
would likely remain within hydrous pyroxenites constituting the fossilized early-stage
LAB that emplaced near the spreading ridge [90], and the LAB of older plates (e.g., 23 Ma,
offshore Nicaragua) likely contains much less H2O [90]. With lower amounts of H2O (e.g.,
50 ppm) the hydrous solidus is almost equal to the dry solidus, inducing partial melting
at temperatures around 1400 ◦C [96]. In other words, partial melting within the LAB is
a matter of debate. Other volatiles have been considered, such as CO2, leading to the
idea that carbonatite melts may exist within the asthenosphere and explain part of its
geophysical characteristics (e.g., [81,83]). Nevertheless, if H2O and/or other volatiles are
actually present at the LAB in significant amounts (i.e., 100–1000 ppm), it should have the
same consequences as observed in subduction zones, i.e., volcanism. Regarding the global
distribution of oceanic volcanism, hydration of the lithospheric mantle in the vicinity of
the LAB appears localized and limited (e.g., [99]).

Over the past decades, considerable efforts have focused on quantifying olivine aggre-
gates rheology in terms of flow laws, implemented in geodynamical models for mantle
thermal convection (e.g., [71]). Experimental studies investigated the effects of temperature
and stress (e.g., [100]), pressure (e.g., [47,101]), volatiles fugacity (e.g., [102]), grain size [37],
crystal preferred orientations (CPO; e.g., [29]) and melt fractions (e.g., [103]). The tradi-
tional view is to consider one dominant deformation mechanism to given conditions [104].
However, olivine aggregates plasticity involves numerous microscopic mechanisms oper-
ating at the same time, within the grains and at grain boundaries [105]. Especially, grain
boundary sliding (GBS) has been associated with various mechanisms, either in metals,
ceramics or rock-forming minerals [106]. Diffusion-assisted GBS has been evidenced in
olivine-rich synthetic peridotites deformed at 1 atm and T > 1300 ◦C, highlighting the
possibility of mantle superplasticity [107]. It should be noted that the diffusion can either



Minerals 2021, 11, 600 6 of 30

occur at grain boundaries (Coble creep; e.g., [106]) or be intracrystalline (Nabarro–Herring
creep; e.g., [108–110]. Dislocation-accommodated GBS has also been evidenced in olivine at
low pressure [111,112] and is claimed to be the main deformation mechanism of the upper
mantle [113]. In addition, disclinations, evidenced at olivine grain boundaries [114], can
accommodate strain. Furthermore, considering relatively low temperatures or relatively
high strain rates, local high stress concentrations (e.g., [115]), force chains (e.g., [116]), and
stress percolation [117] should be considered. The partitioning between intergranular
and intracrystalline high-temperature mechanisms has been quantified at low pressure,
notably showing that intergranular mechanisms make olivine aggregates deform 4.6 times
faster [118]. Recent experimental achievements demonstrate that grain-to-grain interac-
tions significantly contribute to accommodating strain in synthetic peridotites, suggesting
that intergranular plasticity may dominate upper mantle plasticity [105].

Similar investigations have been conducted on pyroxenes (e.g., [119,120]). Notably, the
brittle–ductile transition in the flow law of clinopyroxenite at 1.5 GPa has been evidenced
not to depend on strain rate for T < 950 ◦C but to strongly depend on strain rate for
T > 950 ◦C [121]. Even though pyroxenes tend to be harder than olivine, olivine–pyroxenes
aggregates could be significantly weaker [122], especially due to phase mixing [123,124]
and associated pinning (e.g., [125]).

As recalled above, until recently, melting was the only “transformation” considered
in the interrogations about the LAB reduced viscosity. In this study, based on unexpected
experimental results (Section 4), we propose to broaden the discussion (Section 5), in-
cluding solid-state transformations and potential metastable phases that are not yet fully
understood (e.g., [49,52,126]).

3. Experimental Protocol
3.1. Sample Preparation

Fine-grained (~3 µm) aggregates of Mg2GeO4 + MgGeO3 (7–8 vol.%) were synthesized
from nanosized powders of Mg(OH)2 with average particle size of 50 nm and purity of
>99.98%, and liquid tetraethoxygermanium (T.E.O.G.) with a purity of 99.9%. The latter
was previously used to synthetize Mg2GeO4 [127], as T.E.O.S. is used for the synthesis of
silicates (e.g., [128]). We followed the methodology described by [125] up to the calcination
step. The overall transformation, depending on the relative amounts of reactive species, is
summarized below:

Ge(OC2H5)4 + 2 Mg(OH)2 → Mg2GeO4 + 4 C2H5OH
T.E.O.G. Brucite Forsterite Ethanol

(1)

Ge(OC2H5)4 + Mg(OH)2 → MgGeO3 + 2 C2H5OH + (C2H5)2O
T.E.O.G. Brucite Enstatite Ethanol Butanol

(2)

First, brucite, T.E.O.G. and ethanol (solvent) are mixed for 24 h at ambient temperature.
Then, the slurry is dried at 60 ◦C, while stirring continuously with a magnetic stirrer (for
a week), until a powder is obtained. The latter is calcined at 1080 ◦C for 3 h using a box
furnace under atmospheric conditions to remove the decomposed products (i.e., H2O and
CO2). Using a tungsten carbide die, pellets are shaped (cylinders, diameter: 11 mm). These
pellets are compacted by cold isostatic pressing at 200 MPa for 10 min (≈25% reduction,
diameter: 10 mm). In this study, we used the SPS machine (SPS-110N; Sinterland, Inc.,
Nagaoka, Japan) installed at the Earthquake Research Institute to obtain the dense and fine-
grained aggregate. The sintering technique uses uniaxial loading and pulsed current (DC)
under vacuum condition (≈0.4 Pa) for high-speed consolidation of the powder (Figure 3a).
The powder was heated to 1100 ◦C or 1150 ◦C at a heating rate of 10 ◦C/min and then
held for 20 min under a compressive load of 50 MPa. After the SPS treatment, the applied
pressure was reduced below 13 MPa and the specimens were subsequently annealed at
1000 ◦C for 10 min to relieve the residual strain [129]. The same SPS machine was used in a
recent study on diopside [110].



Minerals 2021, 11, 600 7 of 30

Minerals 2021, 11, x FOR PEER REVIEW 7 of 31 
 

(Figure 3a). The powder was heated to 1100 °C or 1150 °C at a heating rate of 10 °C/min 
and then held for 20 min under a compressive load of 50 MPa. After the SPS treatment, 
the applied pressure was reduced below 13 MPa and the specimens were subsequently 
annealed at 1000 °C for 10 min to relieve the residual strain [129]. The same SPS machine 
was used in a recent study on diopside [110]. 

 
Figure 3. Experimental setup: synthesis and deformation experiment. (a) Spark plasma sintering (SPS) and preparation of 
deformation samples; (b) Design of deformation experiments (top left subfigure inspired from [30]) and schematics of a 
sample before deformation. WC = tungsten carbide. 

Phase identification was conducted using XRD (SmartLab 3 kW system, RIGAKU, 
Japan), confirming that Mg2GeO4 and MgGeO3 crystals grow from nanosized particles 
during SPS (Figure 4). We analyzed the microstructures of samples sintered at 1100 °C 
and 1150 °C in order to fix the experimental protocol (Figures S3 and S4). The etched sur-
face was coated with a carbon layer of 3–5 nm to prevent charging during microstructure 
observations using a scanning electron microscope (SEM) equipped with a field emission 
gun (JEOL JSM-7001F, Nano-Manufacturing Institute, University of Tokyo). At 1100 °C, 
the aggregates present the smallest grain size and porosity (<0.1 vol.%). Grain size and 
porosity measurements are described in previous studies [31,125]. A summary of the syn-
theses is presented in Table S1 and the SPS step is illustrated in Figure S1 and Table S2. 

Each SPS sample was cut to obtain samples for two deformation experiments, which 
consisted of small rectangular parallelepipeds (Figure 3b). The average grain size is ≈3 µm 
for forsterite and <1 µm for enstatite, as illustrated in Figure 4. Raman and XRD analyses 
(Figure S2) confirm that the material consists of α-Mg2GeO4 with minor ortho-MgGeO3, 
consistently with most stability studies on Mg2GeO4 [53,76]) and MgGeO3 [52,54,130]. 
However, as recalled in the introduction, some discrepancy exists between experimental 
studies, some of which reported a metastable enstatite with Cmca symmetry (MgO-SiO2 
system) [49], i.e., not protoenstatite (see the discussion in Section 5.1). 

The initial purpose of this study was to investigate the behaviour of Mg2GeO4. Local 
mixing heterogeneity would induce the presence of MgO and/or MgGeO3 within the syn-
thetic samples. The rheology of MgGeO3 is relatively comparable to that of Mg2GeO4, 
whereas MgO is significantly weaker and would easily control the deformation. For that 
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sample before deformation. WC = tungsten carbide.

Phase identification was conducted using XRD (SmartLab 3 kW system, RIGAKU,
Japan), confirming that Mg2GeO4 and MgGeO3 crystals grow from nanosized particles
during SPS (Figure 4). We analyzed the microstructures of samples sintered at 1100 ◦C and
1150 ◦C in order to fix the experimental protocol (Figures S3 and S4). The etched surface
was coated with a carbon layer of 3–5 nm to prevent charging during microstructure
observations using a scanning electron microscope (SEM) equipped with a field emission
gun (JEOL JSM-7001F, Nano-Manufacturing Institute, University of Tokyo). At 1100 ◦C, the
aggregates present the smallest grain size and porosity (<0.1 vol.%). Grain size and porosity
measurements are described in previous studies [31,125]. A summary of the syntheses is
presented in Table S1 and the SPS step is illustrated in Figure S1 and Table S2.

Each SPS sample was cut to obtain samples for two deformation experiments, which
consisted of small rectangular parallelepipeds (Figure 3b). The average grain size is ≈3 µm
for forsterite and <1 µm for enstatite, as illustrated in Figure 4. Raman and XRD analyses
(Figure S2) confirm that the material consists of α-Mg2GeO4 with minor ortho-MgGeO3,
consistently with most stability studies on Mg2GeO4 [53,76]) and MgGeO3 [52,54,130].
However, as recalled in the introduction, some discrepancy exists between experimental
studies, some of which reported a metastable enstatite with Cmca symmetry (MgO-SiO2
system) [49], i.e., not protoenstatite (see the discussion in Section 5.1).

The initial purpose of this study was to investigate the behaviour of Mg2GeO4. Local
mixing heterogeneity would induce the presence of MgO and/or MgGeO3 within the
synthetic samples. The rheology of MgGeO3 is relatively comparable to that of Mg2GeO4,
whereas MgO is significantly weaker and would easily control the deformation. For that
reason, MgGeO3 is the phase commonly used as deformation marker within Mg2GeO4
samples [45,58]. To avoid residual MgO, T.E.O.G was introduced in excess to get 7–8 wt.%
MgGeO3 (≈6–7 vol.%), as in previous studies on mantle rheology [30,31,125,131]. Never-
theless, considering potential underestimated transformations of MgGeO3, the presence of
the latter should not be ignored in the interpretation of the mechanical data (see Discussion,
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Section 5), as experiments also demonstrated that very small amounts of unstable phase
suffice to radically change the rheology of peridotite [46].

High-resolution images of recovered samples were obtained by transmission electron
microscopy (TEM; JEOL JEM 2011, 200 kV) at the Université de Paris and crystallographic
orientations of Mg2GeO4 were obtained by electron backscatter diffraction (MEB-FEG:
ZEISS ZIGMA; EBSD: Nordlys Nano, Oxford Instruments) at the Laboratoire de Géologie
de l’Ecole Normale Supérieure.

To ensure the observations of this study were not specific to the protocol described
above, five additional samples were deformed in the same conditions for comparison
(Table 1). HG and PB samples are made of Mg2GeO4 and minor MgGeO3, and sample HV
consists of Mg2SiO4 and minor MgSiO3.
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Figure 4. Starting material (SP-307): micrometric Mg2GeO4 with minor MgGeO3 (enstatite analogue). Surface polished using
micrometric diamond suspension and colloidal silica in the end. Thermal etching at 1020 ◦C during 30 min. (a) Scanning
electron microscopy image (secondary electron imaging; SEI) of SP-307, synthetized using SPS and representative of the
starting material for all our experiments on Mg2GeO4 (Table S1); (b) Backscattered electron image of the same area, showing
denser crystals in white, corresponding to MgGeO3; (c) Closer view (SEI) showing grain growth due to thermal etching.
The grain growth is significant at grain boundaries and also noticeable on well-polished grains, reflecting the diversity of
crystal orientations. Additional SEM images of SP-307 (homogeneous) and SP-308 (with mixing defects) are presented in
Figures S3 and S4, respectively.

Table 1. Description of the samples used for the deformation experiments.

Name. Major Phase Fraction Grain Size Minor Phase Fraction Grain Size Synthesis

SP
Mg2GeO4

92–93 vol.% 3 ± 2 µm
MgGeO3

7–8 vol.% <1 µm This study
PB 85–95 vol.% ~30 µm 5–15 vol.% 1–8 µm [131]
HG ~85 vol.% ~150 µm ~15 vol.% 1–10 µm [132]

HV Mg2SiO4 91 vol.% ~0.5 µm MgSiO3 9 vol.% <0.5 µm [125]

The preparation of SP samples is described above. Samples PB and HG were provided
by Prof. P. Burnley. Sample PB is described in [131] and samples HG correspond to the
description provided by [132]. A summary of deformation runs is given in Table S3.

3.2. Deformation Experiments

All the samples described above were deformed in a 1-atm rig, as illustrated in
Figure 3b, at a constant temperature, ranging from 940 to 1260 ◦C (Table S3) using the
same uniaxial deformation testing machine (Shimadzu AG-X) with a furnace attached,
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installed at the Earthquake Research Institute. The same deformation rig was used in a
recent study on diopside [110]. The samples were simply compressed using SiC rods with
Al2O3 and SiC spacers. A heating of ≈7 ◦C/min was imposed to the desired temperature
for each experiment. The material consists of α-Mg2GeO4 with minor ortho-MgGeO3 and
both phases are thermodynamically stable in the deformation conditions (Section 3.1). A
total of 36 deformation experiments were performed on the synthetic material described in
Section 3.1, as well as five additional experiments on materials from other studies (Table 1).

For each sample, a constant strain rate is fixed (from 6 × 10−6 to 3.5 × 10−5 s−1;
Table S3) up to a load target, as illustrated on Figure 5 (loading). These strain rates are
calculated from the piston advancement and the contact area. The piston speed is fixed
to 2 µm·s−1 for most experiments and reduced to 1 µm·s−1 and 0.5 µm·s−1 for additional
experiments to study the impact of strain rate on deformation. Once the load target
is reached, the load is kept constant, which is referred to as “creep test” in this study,
even though the stress is slightly decreasing due to sample widening associated with
its shortening.
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Figure 5. Enhanced plasticity: mechanical data at 1000 ± 7 ◦C. (a) Differential stress as a function of strain for run KG-332
(sample SP-314-2;

.
ε = 3.17 × 10−5 s−1), exhibiting a transient softening during loading; (b) Strain as a function of time at a

constant load of 1096 N (details in Figure S5); (c) Differential stress as a function of strain for run KG-342 (sample SP-322-2;
.
ε = 3.17 × 10−5 s−1); (d) Strain as a function of time at a constant load of 1096 N, showing rehardening after ≈40 min of creep.
The stars account for the four critical stress values marking the onset of plasticity (blue), the beginning of the linear softening
stage (light green), the onset of rehardening (orange) and the beginning of the linear response of the final material (red). Note
that the position of the green star in (c) is uncertain because of the proximity with the load target and that the orange and red
stars are indicated on (d). For detailed information, see Section 4.
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4. Results: Enhanced Plasticity between 1000 and 1150 ◦C

The results of the deformation experiments (Figure 3b) performed on SP samples
(Figure 4) are presented in this section. Additional experiments on PB, HG and HV
samples, are presented in the last paragraph.

Two examples of deformation experiments are presented in Figure 5. Both were
performed at 1007 ◦C and illustrate the variability of the results. A piston displacement
of 2 µm·s−1 was imposed during sample loading (constant strain rate). The stress–strain
curve for run KG-332 (Figure 5a) presents an initial viscoelastic response (linear part),
followed by a significant softening (negative slope) and finally hardening at ≈ 11% strain,
until it reaches ≈150 MPa (load target of 1096 N for a surface of 7.4 mm2).

Once the load target is reached, it is kept constant and the slightly negative slope
in Figure 5a,c means that the sample is slowly widening while shortening. We refer to
this part of the experiment as “creep test”. In Figure 5b, we show the evolution of strain
as a function of time during “creep” (constant load of 1096 N). The strain rate (slope in
Figure 5b) is fairly constant and does not exceed 6 × 10−6 s−1, in spite of a slightly faster
strain at the beginning of the “creep test” (zoom in Figure S5), known as transient creep,
i.e., typical decelerating viscoplastic deformation at the load target (e.g., [133]). In contrast,
the stress–strain curve for run KG-342 (Figure 5c) does not present softening, as the stress
limit of ≈ 200 MPa (load target of 1096 N for a surface of 5.7 mm2) is reached before the
onset of softening. The strain rate of the “creep test” (Figure 5d) is at first ≈ 3 × 10−5 s−1,
i.e., significantly larger than for KG-332, and then drops to 1 × 10−5 s−1 at 16% strain for
no expected reason. The latter corresponds to the hardening as seen in the case of “creep
test” configuration.

During loading at a constant strain rate and 1007 ◦C (Figure 5a,c), the typical viscoelas-
tic behaviour of Mg2GeO4 ±MgGeO3 is observed [55–57], until the stress reaches its critical
value at ≈130 MPa (run KG-332) and ≈150 MPa (run KG-342). This corresponds to the
beginning of a softening stage (pink shade in Figure 5), which ends before the load target
is reached during run KG-332 and after during run KG-342. The softening is followed by a
sharp hardening at 11% and 16% strain, respectively. The difference in critical stress seems
to originate from slight differences in strain rate, as this is the only parameter that varies
between runs KG-332 and KG-342 during loading. Due to the significant difference in
strain at the load target (1096 N; Figure 5a), the contact surface between the piston and the
sample differs, and thus the stresses at target are ≈150 MPa and ≈200 MPa, respectively,
which influences the steady-state strain rate during the “creep test” stage of the experiment
(Figure 5b). For run KG-342, the strain rate keeps a value of ≈3 × 10−5 s−1 and then sud-
denly drops to 1 × 10−5 s−1 (Figure 5d). The mechanical data indicate that the rehardening
observed during the loading stage of run KG-332 (Figure 5a) is observed during the “creep
test” stage of run KG-342 (Figure 5d). It should be noted that the change in strain rate is
much larger and sharper than what is commonly observed during the abovementioned
transient creep. In addition, the final material tends to be harder than the initial material.
Once the softening stage is finished, the material exhibits a constant steady-state strain
rate, until strain-induced cavitation (i.e., tertiary creep) drives strain acceleration and the
coalescence of the cavitation leads to macroscopic fracture of the sample.

The germanate samples were deformed at fixed temperatures ranging from 900 to
1250 ◦C (Figure 6). Experiments at various temperatures reveal that the critical stress is
strongly temperature-dependent, decreasing with temperature as long as T < 1150 ◦C
(coloured curves) and then increasing with temperature for T ≥ 1050 ◦C (grey curves).
The plasticity begins at stresses ≈ 60 MPa at 1054 ◦C and at stresses as low as 20 MPa
for T ≈ 1100 ◦C. Then, due to enhanced plasticity with increasing temperatures, the load
target (1038 N in Figure 6) is reached at decreasing stress values, from≈115 MPa at 1054 ◦C
down to ≈85 MPa at 1100 ◦C. Most surprisingly, at ≈1150 ◦C the material is harder and
at higher temperatures the enhanced plasticity is no longer observed (Figure 6a). The
comparison of the strain rates during the constant-load stage confirms that the material
is harder once the stage of enhanced plasticity ends (Figure 6b). It should also be noted



Minerals 2021, 11, 600 11 of 30

that the steady-state strain rate significantly increases with temperature between 1150 and
1200 ◦C (Figure 6b). The dataset presented in Figure 6 suggests that the enhanced plasticity
only occurs within a temperature window, as illustrated for the entire dataset in Figure 7.

The entire dataset (36 deformation tests; Table S3) is presented in Figure 7, showing the
derivative of the stress–strain relation (i.e., slope of the stress–strain curve) as a function of
temperature (constant for each experiment). It confirms that the enhanced plasticity occurs
within a narrow temperature window, which limits appear to depend on strain rate (Figure 7).
The stage of enhanced plasticity is tentatively referred to as “TRIP” for “TRansformation-
induced plasticity” in Figure 7 due to the similarity between the mechanical data and what is
commonly observed in TRIP alloys (e.g., [134–137]). Importantly, the “transformation” is not
necessarily a “phase transformation”. Its nature is discussed in Section 5.1.
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Figure 6. Set of experiments for a loading rate of 0.2 µm·s−1 up to 1038 N. (a) Stress as a function of axial strain during the
loading step (grey shade) and the creep test (red shade), for temperatures between 1005 and 1207 ◦C; (b) Strain as a function
of time at a constant load of 1038 N. Vertical arrows on (a) account for the load target, i.e., beginning of the “creep test” (b).

Critical stress values can be defined at transitions between deformation stages, as
illustrated in Figure 8 (inset). The values of the critical stress also highlight the temperature
window in which the enhanced plasticity occurs (Figure 8), with a systematic decrease of
critical stresses with increasing temperature for T ≤ 1100 ◦C. In any case, very low strength
is observed for T ≈ 1100 ◦C (Figures 7 and 8). The “creep test” parts of the experiments
(Figure 5b,d and Figure 6b) are summarized in Figure 9. Depending on whether or not
rehardening occurred during loading, the strain rates at the load target (Figure 9a) and
during steady-state deformation (Figure 9b) significantly differ. For low load targets (“creep
tests” with σmax < 60 MPa), strain rates increase with increasing temperature, exhibiting
stress exponents n either >2 (e.g., 1100 ◦C, σ < 20 MPa) or ≈1 (e.g., 1000 ◦C, σ < 20 MPa).
However, experiments with high load targets reveal a complete disorganization of the
temperature dependence (Figure 9). The transient enhanced plasticity stage corresponds to
a change in the main deformation mechanism, especially visible for the set of experiments
performed at ≈1500 ◦C, which exhibits a negative apparent stress exponent (Figure 9b).
Previous studies on Mg2GeO4 ±MgGeO3 in similar conditions but with larger grain sizes
provided stress exponents n≈ 2 [55,56] to n≈ 3 [57], suggesting a deformation controlled by
dislocation creep. The particularity of our study is the very small grain size, which is known
to favour diffusion-assisted grain-boundary sliding (n ≈ 1) instead of dislocation creep
(n ≈ 3), as documented and discussed by numerous studies (e.g., [37,105,107,110,118]).
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Figure 7. Slope of the stress–strain curve as a function of temperature. The observed enhanced plasticity is characterized by an
average plastic response with dσ/dε ≈ 0, which suggests TRIP. Considering the analogy with a martensitic-like transformation (see
Section 5.1), TS and TM would account for the starting temperature and martensitic temperature, respectively, which would define
the “martensitic window”, i.e., domain where the enhanced plasticity is observed. Temperature variation during loading is <6 ◦C.
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Figure 9. Results of creep tests. (a) Strain rate right after the load target is reached; (b) Strain
rate once the secondary creep reaches a steady state. Solid and open circles account, respectively,
for samples that deformed homogeneously until the end of the experiment and samples in which
tertiary creep (cavitation) eventually lead to macroscopic faulting. Stress exponents are indicated
for comparison with other diffusion- and dislocation-dominated deformation mechanisms (see text).
The Temperature variation during each experiment is lower than 5 ◦C.

Observations by TEM on FIB sections (focused ion beam; Figure 10) at olivine grain
boundaries reveal well-preserved triple junctions (Figure 10a), contrary to what is observed
in the case of cavitation at grain boundaries in materials such as tungsten [138]. Along cer-
tain grain boundaries, microstructures compatible with GBS were identified (Figure 10b),
whereas other grain boundaries seem to exhibit crenulations (Figure 10e). Most surpris-
ingly, aggregates of nanometric grains were identified squeezed in gaps between straight
grain boundaries, which may consist of recrystallized material or GBS-induced shavings
(Figure 10g–h) and are not associated with amorphization (Figure 10i). In addition, EBSD
measurements (Figure 11) show that the olivine grains exhibit a CPO with the b-axis
parallel to σmax, which would be consistent with high-temperature GBS [111].

Because the enhanced plasticity and associated rehardening described in this study
are unexpected and puzzling, additional experiments were performed on other germanate
samples (Section 3). The results of these additional experiments are presented in Figure 12:
a moderate stress at a load target (150 MPa) in HG samples [132] does not induce enhanced
plasticity (Figure 12a), but higher stresses do (Figure 12b). In addition, the sample from
Burnley et al. [131] exhibits a much lower critical stress, with enhanced plasticity occurring
at stress levels similar to our SPS samples. The enhanced plasticity is confirmed, but
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for higher critical stresses in case of larger grain size, which suggests that the enhanced
plasticity mechanism is grain-size-dependent.
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Figure 10. Transmission electron microscopy (TEM) images of the sample SP-309-1 (run KG-320). Sample deformed
at 1050 ◦C and >100 MPa; (a) micrometric Mg2GeO4 crystals exhibiting well-preserved triple junctions; (b) Interstitial
nanometric grain likely highlighting GBS (white arrows) and triple junction; (c,d) Representative grain boundaries between
micrometric olivine grains, which do not exhibit any dislocation; (e) Closer view on the grain boundary (d); (f) Electron
diffraction pattern of a micrometric grain of olivine; (g) Aggregate of nanometric grains squeezed in a gap between two
straight grain boundaries after GBS; (h) Closer view on the aggregate; (i) Electron diffraction pattern of the nanograined
aggregates, showing the absence of amorphous material.

5. Discussion

In this study, we document an enhanced plasticity of a peridotite analogue in the
MgO-GeO2 system at 1 atm between 1000 and 1150 ◦C, followed by a sharp hardening.
The mechanical data demonstrate that, within this temperature window, the derivative of
the stress–strain relation of the material drops down to zero once a critical stress as low as
30–100 MPa is reached (Figure 7), and that this critical stress is minimal around 1100 ◦C
(Figure 8). The data are consistent with a “transformation” similar to what is commonly
observed in steels and shape-memory alloys during the shear-induced transformation
from austenite to martensite, the final material being significantly harder. The nature
of the “transformation” is addressed in Section 5.1. TRansformation-induced plasticity
(TRIP) is well known in “TRIP alloys” (e.g., [137,139]) and highly related to the concept of
superplasticity (e.g., [107]), as discussed in Section 5.2.

5.1. The “Transformation”: A Transient Metastable Phase Responsible for Enhanced Plasticity?

Among all the observations presented and discussed above, the rehardening follow-
ing the stage of enhanced plasticity suggests that a “transformation” is taking place and
that this hardening corresponds to the end of the transformation. The mechanical data
presented in this study (e.g., Figure 5a) resembles the typical stress–strain curves of TRIP
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alloys (e.g., [134–137,140]). Strain hardening has been described in various steels endur-
ing TRIP, notably associated with dislocation activity (dislocation strengthening) due to
the martensitic transformation of retained austenite [141]. Depending on the steels, the
observed rearrangement of dislocations has been described either as a displacive, diffusion-
less mechanism [137] or as a diffusion-type mechanism [142]. Such hardening is also well
understood during twinning mechanisms in metal alloys [143–146]. Cold welding, well
known in metals (e.g., [147,148]) and also evidenced in ceramics [149], is strongly related
with lattice reordering and TRIP (e.g., [137,150]).
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Figure 11. Electron backscatter diffraction (EBSD) pole figures on deformed samples. (a) Run KG-329, starting material SP-313-1,
T = 1002 ◦C, σmax = 110 MPa (15,793 analysis points); (b) Run KG-322, starting material SP-310-1, T = 1056.5 ◦C, σmax = 55 MPa
(33,402 analysis points); (c) Run KG-330, starting material SP-313-2, T = 1105.5 ◦C, σmax = 105 MPa (29,215 analysis points);
(d) Same as (c) but data collected near a corner of the sample, where the stress field turns with σmax oriented ≈ 40◦ from the
vertical axis (80,078 analysis points). In any case, the b-axis tends to orient in a direction± 30◦ to the compressive stress. Upper
stereographic projection. MUD = multiples of uniform distribution. Indexation: 55–80% (≈99% Fo +≈1% oEn). The Z direction
is parallel to σ1. Lower hemisphere. For acquisition conditions, see Table S4.
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The increase in transformational strain with decreasing grain size commonly indi-
cates the importance of GB effects, such as the occurrence of GBS [151]. In this study, the
additional experiments performed on similar material with larger grain sizes (Figure 12)
would highlight the grain-size dependence of this TRIP, which would operate via diffusion-
assisted and/or transformation-assisted GBS. Both the microstructural observations
(Figure 10) and the CPO (Figure 11) would be consistent with such GBS. Notably, TEM
imaging (Figure 10) reveals dislocation-free crystals as well as nanomaterial squeezed
between certain straight grain boundaries. Importantly, it should be recalled that both
transformation and structural superplasticity exist (e.g., [151]). The latter corresponds to
a drastic increase in material ductility under restricted conditions (e.g., [152,153]). Super-
plasticity is usually evidenced in tension experiments (e.g., [107]) allowing >100% strain,
whereas the samples deformed in the study only reach ≈ 30% strain in compression with
a pure shear design. Discussing processes, this distinction can be extended to TRIP. Con-
sidering structural superplasticity, several mechanisms mentioned in Section 5.2 could be
involved. Especially, GB reordering (CPO formation) due to a change in the dominant
slip-system is a good candidate for accommodating grain-scale elastic strain during GBS.
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Figure 12. Additional experiments on Mg2SiO4 (+MgSiO3) and Mg2GeO4 (+MgGeO3) samples from other studies.
(a) Experiments that do not exhibit enhanced plasticity; (b) Enhanced plasticity (load target never reached) reproduced in
germanate samples synthetized for previous studies, which we propose to interpret as TRIP. All samples contain minor
enstatite (Table 1). Samples ‘HV’, ‘HG’ and ‘PB’ are respectively described by [125,131,132]. See the signification of the blue
and green stars in Figure 6.

The nature of the “transformation” occurring in germanates is a matter of debate.
Using either SEM imaging, Raman spectrometry, XRD or EBSD analyses, no convinc-
ing trace of any metastable phase was evidenced in the recovered samples, which does
not necessarily mean that such phase did not transiently form. In low-carbon low alloy
steels, high-strain-rate superplasticity was evidenced to be due to a dynamic reverse phase
transformation [154]. Such reverse transformation could apply either for a proper phase
transition or for another kind of “transformation” such as pre-melting or other GB disorder-
ing (Section 5.2). Metastable phases are difficult to observe or reproduce in the laboratory,
and thus often underestimated; yet, some studies suggest that transient phases [155,156] or
grain-boundary instability [40,157] could be responsible of enhanced plasticity.

As far as we know, both above and below the LAB, chemistry and thermodynamics
considerations would indicate that the mantle is made of α-olivine with minor pyroxenes
and garnet, with possibly large variability of the proportion of these “minor” phases. The
low-velocity layer at the bottom of the lithospheric plates (LAB) should also consist of this
material. As recalled in the State of the Art (Section 2), strong seismic reflectors can be
observed at both the top and bottom of the LAB in New Zealand [23], suggesting sharp
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viscosity contrasts, with significantly lower seismic velocities within the LAB compared to
both the lithosphere and the asthenosphere. Such low-velocity zone (LVZ) can be at least
as wide as 70 km (60–130 km depth range) [62]. Here, we argue that possibly unknown
or underestimated phase transformations could be responsible for the enhanced plasticity
evidenced both in the lab and within the LAB.

For comparison, recent experimental achievements suggest that a transitional phase
could play a role in the rheology of the MTZ [155], i.e., where phase transformations
occur. Following an earlier suggestion by Gordon [158], Sammis and Dein [159] examined
the possibility that the transforming zone (MTZ) has a low effective viscosity due to
transformation superplasticity. Poirier [160] suggested that olivine was a martensitic
material and that an intermediate “martensite”, known either as ε*-olivine (e.g., [160]) or
asω-olivine (e.g., [161]), should transiently exist during the olivine-spinel transition within
relatively cold subducting slabs (T < 1100 ◦C). This phase has recently been found within
ringwoodite meteorites [126] due to fast coeval cooling and decompression right after the
impact. In such materials, martensitic transformations can be induced by either changing
the temperature (on cooling) or applying differential stress (e.g., [162,163]).

Metastability is often called on to explain delays or spatial shifts between nominal
minerals and observations of natural systems, for example regarding serpentine minerals,
which is inappropriate as metastability is actually mistaken for variations in composition,
structure, fluid saturation, percolation, O2 fugacity and/or oxidation state [32,164]. Yet,
numerous minerals can be metastable, e.g., metastable olivine involved in deep earthquakes
(e.g., [45,59,165]). Furthermore, some phases do not have any stability field in a P-T diagram,
such as ω-olivine (e.g., [126,160]), which could have a stability field in a P-T-σ diagram.
Thus, the ω-olivine is an example of metastable phase, and, even though it is not expected
to exist in the conditions investigated in this study, it should be taken into account regarding
the composition of the experimental samples (i.e., 93% olivine).

The transient existence of a stress-induced metastable olivine could be considered
among the processes that could account for the observed enhanced plasticity. Theω-olivine
would transiently form through stacking faults during α-β-γ transitions (e.g., [126,166]).
Theoretical developments demonstrate that the shear modulus of the involved slip systems
should decrease considerably near the transition [160], necessarily inducing TRIP. Experi-
ments on Fe2SiO4 have revealed cation disordering associated with the α-γ transformation
followed by a delay in cation reordering [167]. This two-step mechanism was described
as pseudomartensitic [167,168]. In material science, such cation disordering, associated or
not with further transformation, is referred to as premartensitic transition (e.g., [169,170]).
In addition, during the transition from olivine (α) to wadsleyite (β) and ringwoodite (γ),
time-resolved XRD allowed to identify an intermediate phase in which the oxygen ex-
hibits a spinel lattice but cations are disorganized and reorganize later by short-distance
diffusion [171–173], which is very consistent with the abovementioned observations in
Fe2SiO4 [167]. Ultrasonic measurements under synchrotron radiation suggest an effect
of the intermediate phase on the seismic velocities and attenuation that could affect the
410-km discontinuity signature [155]. We argue that if such mechanism is proposed to
explain the LVZ at the 410-km discontinuity, it (or part of it) should also be discussed
regarding the LAB.

Olivine is thermodynamically stable at P-T conditions relevant for the LAB (Figure 2a),
whereas pyroxenes might not be [48,49]. Thus, transformations of the latter may seem more
likely. Over the past decades, numerous phases that are not stable at ambient temperature
and atmospheric pressure have been discovered, some of which described as unquenchable
(e.g., [49,52,174]). In particular, MgSiO3 protoenstatite has a restricted stability field (Figure
2) but has been described as metastable (e.g., [175]). Another possibility could be the tran-
sition from orthoenstatite to Cmca-enstatite [49]. The latter was described as a consequence
of a displacive phase transition, observed at temperatures above 1090–1175 ◦C and up to
1350 ◦C at least [49] (called “ε-En” in Figure 2b for consistency). In the MgO-GeO2 system,
a “clino-from-proto” phase was described [48], i.e., protoenstatite ghosts characterized by
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newly formed clinoenstatite in recovered samples. Because such unstable phases transform
back during the quench, complementary in-situ measurements are required, which is
one of the reasons why synchrotron experiments have become so popular (e.g., [167,168]).
In the experiments of Ozima and Akimoto [48], the protoenstatite is described as un-
quenchable, which is actually not the case in the MgO-SiO2 system. Thus, we propose
that the unquenchable MgGeO3 phase evidenced by Ozima and Akimoto [48] may be
the analogue of the unquenchable MgSiO3 crystals identified by Jackson et al. [49]. We
propose unknown/underestimated transitions in (Mg,Fe)SiO3 as alternative sources for
the enigmatic low viscosity allowing plate motion. One could imagine that the pyroxene
fraction of mantle rocks could control plate velocities and explain why some plates move
faster than others.

Whether or not the abovementioned metastable phases actually form during peridotite
shearing at LAB conditions is unclear. The unexpected enhanced plasticity observed in the
MgO-GeO2 system and potentially responsible for the LAB low viscosity is most probably
due to a general disorganization of grain boundaries within a restricted P-T window
(Section 5.2), and the potential occurrence of a phase transition would definitely drive such
GB disordering. Finally, one could argue that our results question the use of Mg2GeO4 as
an analogue for deep natural olivine: either this behaviour is specific to the MgO-GeO2
system and the analogy is limited, or natural peridotites also endure enhanced plasticity in
certain P-T conditions that remain unknown up to date.

5.2. Plate Lubrication without Partial Melting at the LAB?

The presence of a melt/fluid fraction that would be characteristic for the LAB has
become the basis for interpretations in numerous studies (e.g., [16,23,62]). Beneath the
East Pacific Rise, indeed, the high conductivity values observed in the vicinity of the LAB
(e.g., [78]) can be explained neither by olivine hydration [176] nor by garnet pyroxenite chan-
nels [90]. Conductivity values ≥ 0.1 S.m−1 at 50–100 km depth require >300 wt. ppm H2O
in olivine, implying >1000–1500 wt. ppm H2O in an equilibrated peridotite [176], which is
well above the 0–200 wt. ppm at which peridotite starts melting at these depths [66].

Models considering an anisotropic melt distribution perpendicular to the ridge al-
low to reproduce the observed conductivity data for young oceanic plates (<5 Ma) [78].
Regarding the 20–25 Ma Cocos Plate offshore Nicaragua, garnet pyroxenites best explain
the anisotropic conductive anomaly at 40–60 km depth, but local melt pooling could well
explain another anomaly at about ≈100 km depth [90]. In addition, magnetotelluric sur-
veys in the Pacific Plate with ages >50 Ma do not show any electrical anomaly that would
correspond to the LAB [177,178]. This implies that melt at the LAB is not ubiquitous and
would locally explain high electrical values near oceanic ridges [78] and possibly also in
the bending lithosphere during the subduction of relatively young plates [179].

As detailed in Section 4, the enhanced plasticity observed in this study is not related to
any melting process, consistently with phase diagrams (Figure 2), indicating that the mate-
rial is far from melting conditions. Instead, TEM observations and EBSD measurements are
consistent with solid-state deformation, i.e., GBS and coeval grain rotation (Figure 10). The
additional experiments performed on samples with larger grain sizes (Figure 12) exhibit
higher values of critical stress, which supports a grain-size sensitive deformation mecha-
nism. The aggregates of nanocrystals resemble shavings planed off larger grains during
GBS, which would contribute to the observed plasticity of the germanate samples at 1 atm
between 1000 and 1150 ◦C. For comparison, high-temperature GBS has been evidenced in
San Carlos olivine at 300 MPa between 1100 and 1250 ◦C [111].

Plate lubrication implies lowered viscosities below the lithosphere (e.g., [61,73,75,180]).
Low viscosities are favoured by small grain sizes. Comminution, which is significantly
enhanced by transformations (e.g., [32,39]), has been evidenced to favour strain localiza-
tion (e.g., [38,39,181]). The concept of grain-boundary plasticity becomes more and more
important in the discussion regarding strain localization processes (e.g., [182]). Super-
plasticity is associated to diffusion-assisted GBS (e.g., [107,183]) and is documented in
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olivine-enstatite aggregates [107,184]. These mantle analogues exhibit mineral aggregation
under diffusion-assisted GBS [184] (1200 ◦C, 270 MPa), as also observed in natural shear
zones [185] and in other oxide ceramics (e.g., [183]). In contrast, rheological weakening
of olivine-enstatite aggregates was evidenced due to phase mixing in case of dislocation-
accommodated GBS [123,124] in the same conditions (1200 ◦C, 300 MPa). Superplasticity is
favoured in case of grain size reduction, enhanced diffusivity, suppressed dynamic grain
growth, homogeneous microstructure or reduced number of residual defects [183]. In
polyphasic aggregates, Zener pinning often occurs, which drastically limits the grain size
(e.g., [186,187]).

Microscopic characteristics of deformation processes induce specific CPO (e.g.,
[29,107,188]). The changes in CPO observed in the recovered samples (Figure 11) are gener-
ally attributed to either H2O fugacity [36,189], temperature [190,191] or pressure [35,47].
Notably, the temperature-induced activation of the (010)[100] slip system has been repro-
duced experimentally [55,190], similar to hydrolytic weakening [36]. Olivine slip systems
are sensitive to pressure [192] and a pressure-induced slip transition has been evidenced
in olivine [35,47]. Grain rotation is likely due to a change of dominant slip system from
(010)[100] to (010)[001], as observed in (Mg0.9,Fe0.1)2SiO4 between 2.5 GPa and 3.1 GPa,
reflecting entrainment of sub-lithospheric mantle in the direction of subduction [35]. These
CPO develop in the absence of dislocation activity [191,193] and are consistent with melt-
free solid-state deformation [185,191,194]. In addition, such solid-state deformation of
peridotite has been associated with a post-seismic slip in natural samples that contain the
fossilized trace of a mantle earthquake (>35 km deep) [188,195].

The association of enhanced plasticity and grain rotation suggests that the strength
of the boundary between two grains depends on their respective lattice orientations. The
structure of olivine grain boundaries is an important question (review by [196]). In particu-
lar, natural grain boundaries have their own chemistry because of the incompatibility of
some elements within the crystal lattice [196,197]. In addition, highly deformed samples
(which reached tertiary creep) show cavitation only in enstatite-free aggregates, whereas
enstatite-bearing zones exhibit no cavitation. This suggests that together the olivine and
enstatite lattices can form a larger number of compatible grain-to-grain configurations than
olivine crystals alone.

Pre-melting, introduced in Section 2, consists of a GB disordering in sub-solidus
conditions [41]. This solid-state mechanism provides a robust alternative interpretation
for various geophysical signals and has recently been proposed as a possible origin of the
asthenosphere [198]. However, as explained above, the temperature window investigated
in this study is far from melting or pre-melting conditions, which means that another
solid-state phenomenon should be considered.

The unexpected enhanced plasticity evidenced in this study occurs at critical stress
values as low as 30 MPa at 1100 ◦C. According to global dynamics modeling, a basal shear
stress as low as only ~10 MPa suffices to allow decoupling from the convecting astheno-
sphere [71]. If the surprising behavior observed in Mg2GeO4 at 1 atm is an equivalent of
the deformation mechanism in natural (Fe,Mg)2SiO4 under LAB conditions, the transient
plasticity could account for plate lubrication.

Delayed strain hardening has been observed in (Fe,Mg)2SiO4 during D-DIA exper-
iments, which is interpreted as a change in dominant slip systems [47] around 3–4 GPa.
Low-stress, high-strain experiments on typical dry mantle rock at high pressure and tem-
perature show that at ≈3 GPa, pressure induces the same profound transition in olivine
crystallographic preferred orientation as the one produced by high H2O activity at lower
pressure [35]. Above a confining pressure of ≈4 GPa, the gradual hardening of a-slip on
(010) over at least a 3–4 GPa pressure interval, rather than a sharp “switch” from one slip
system to another, makes meaningless the quest for a single activation volume value for
olivine at high pressure [47]. Nevertheless, none of the cited studies unravels the microme-
chanical phenomenon that could explain the observed switch from enhanced plasticity to



Minerals 2021, 11, 600 20 of 30

rehardening. It seems unlikely that grain rotation alone could strengthen grain boundaries
enough, even though this mechanism cannot be completely ruled out.

5.3. “Asthenosphere” vs. LAB: Collision of Concepts?

Geodetic studies have revealed that for large earthquakes of various magnitudes in
different contexts the response of the asthenosphere is similar [199,200]. This suggests
that the asthenosphere, regardless of compositional variations and volatiles content, has
the intrinsic ability to accommodate tectonic stresses and maintain their basal stress at
relatively low values. Indeed, to account for the standard heat flow of 40 mW·m−2 at the
base of tectonic plates, the viscosity of the asthenosphere should be 3 × 1018 Pa·s [201].
The same estimate of the viscosity is deduced by studies of afterslip relaxation of great
earthquakes [74,75], though the methods used are independent. Nevertheless, for both
methods the thickness of the low-viscosity asthenospheric layer is the same (~100 km).

Interestingly, different research communities use different definitions of the astheno-
sphere, which highlights the uncertainties about the nature and distribution of strain
beneath tectonic plates. According to geodynamicists, the asthénosphère is the part of the
upper mantle in which convection takes place, as illustrated by numerical models (e.g., [71]).
In contrast, according to geodesists, the asthenosphere is a layer just below tectonic plates
with a low viscosity compared to the average upper mantle (e.g., [73,75,202]). The thickness
of the latter is unknown (<200 km; Dr. Luce Fleitout, personal communication) and could
actually overlap with the recent LAB concept.

In addition, it is globally observed that the speed of isostatic rebound is comparable
to the one of tectonic uplifts, i.e., ~10 mm·year−1 [203]. The latter corresponds to the
average horizontal velocity of tectonic plates, which suggests that episodic mantle flows
within the low-viscosity layer would have the same nature as what controls the steady-state
plate velocity.

Assuming a Newtonian fluid for the sake of simplicity, the shear stress τs of the
low-viscosity layer is related to the viscosity η as follows: τs = η· .

γ, where
.
γ is the

shear strain rate. At the tectonic scale, τs = η·VSL/w (Equation (1)) with VSL being the
plate velocity (∼1 cm·yr−1 = 3× 10−10 m·s−1) and w the thickness of the low-viscosity
layer. Thus, a 200-km-thick layer would correspond to a shear stress of 1.5 kPa whereas
a thickness of only 20 km would correspond to a shear stress of 15 kPa. Regarding our
experimental results, assuming that

.
γ ∼ 10−5·s−1, a viscosity of 3 × 1018 Pa.s would

lead (Equation (1)) to a shear stress of 3× 104 GPa, which is not realistic. To reach realistic
values, i.e., τs ∼ 10 MPa, the viscosity should be η ∼ 1012 Pa·s, as illustrated in Figure
13. This large discrepancy could be explained in two ways: either the LVZ would be much
thinner than what we thought (i.e., <100 m instead of >100 km), or the layer would not
deform homogeneously but as a population of extremely localized shear zones representing
only 0.0001% of its volume considering a 100-km-thick layer (Figure 13), i.e., 0.001% of a
10-km-thick LAB. The trade-off between w and η has been evidenced by geodetic studies
on both post-seismic relaxation [74] and post-glacial rebound [204], highlighting the large
uncertainty regarding these two interdependent parameters. According to these geodetic
studies, a thickness of ∼10 km would correspond to a viscosity of ∼ 1017 Pa·s [74], which
would lead to an average shear stress of 3 kPa (Equation (1)). It should also be noted that
τs > 10 MPa would result in large gravity anomalies, never observed in nature [202,205].

5.4. Open Questions: Implications Regarding Phase Transitions in the Mantle

Considering reaction-induced deformability [40,59,159,206], the impact of transient/
unquenchable phases, even in small amounts, could be as important as the one of well-
known minerals (e.g., [155,160,171]). As recalled in Section 5.1, the nature, extent and
potential implications of phase transformations in the mantle are far from a full under-
standing and still a matter of ongoing research (e.g., [126,155,171–173]). Softening mecha-
nisms associated with phase transitions of upper mantle minerals have been particularly
studied in the scope of earthquakes mechanics (e.g., [28,39]), but part of the results may
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also be of significant importance at larger time and space scales. Flattening of the sea-floor
depth-age curve has been interpreted as a response to asthenospheric flow [207], and
transient changes of the rheology of the asthenosphere due to seasonal variations have
been evidenced by geodetic techniques [180]. Transformations, including GB structures,
could play a role, at least as important as P-T-dependent rock viscoelasticity, on large-scale
deformations induced by mass redistributions at the surface of the Earth [208].
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Additionally, the potential existence of transientω-olivine in stressed mantle regard-
less of P-T stability fields could have major consequences on how we understand the
solid-state transitions affecting olivine and pyroxenes and related earthquake trigger-
ing. At relatively low temperatures (T < 1200 ◦C, i.e., lithosphere), the ω-olivine is the
shear-induced intermediate structure that allows the solid-state transition of olivine to HP
spinel phases. Considering our results as exportable to natural olivine at high pressure,
we propose that ω-olivine would not form if the mantle remains unstressed (σ < σc) at
T < 1200 ◦C. Consequently, the α-olivine would remain metastable, as observed worldwide
in cold subducting slabs (e.g., [209,210]).

6. Conclusions

The enhanced plasticity in the MgO-GeO2 system suggests that some kind of transfor-
mation occurs during the deformation of the peridotite analogues in a narrow temperature
window. The mechanical data demonstrate that, for 1000 < T < 1150 ◦C, the derivative of
the stress–strain relation of the material drops down to zero once a critical stress as low as
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30–100 MPa is reached. The enhanced plasticity is followed by a sharp hardening, similarly
to what is commonly observed in steels during the shear-induced transformation from
austenite to martensite, the final material being significantly harder. This TRansformation-
Induced Plasticity, widely observed in TRIP alloys, is evidenced here for the first time in
this mantle analogue.

The high-temperature solid-state deformation is confirmed and would operate via
“transformation”-assisted grain-boundary sliding, possibly due to the stress-induced for-
mation of a transient metastable phase or grain-boundary disorganization that would occur
at temperatures between 1000 and 1150 ◦C. The transient metastable phase could be the
ω-olivine, which stability field in a P-T-σ diagram is unknown and may not even exist.
Another possibility is the transition from orthoenstatite to protoenstatite or Cmca-enstatite,
which stability is debated. The “transformation” appears to occur at grain boundaries, as
coeval grain rotation and grain boundary sliding of olivine are likely. The EBSD mapping
would be consistent with accommodation on the (010)[100] slip system. No dislocation
is observed. The absence of amorphization at grain boundaries is also documented. The
transition seems to occur as a result of a competition between diffusional and displacive
processes, i.e., temperature vs. strain rate, making the material harder at 1200 ◦C than at
1100 ◦C thanks to diffusion that would stabilize thermodynamically stable phases.

The enhanced plasticity evidenced in the MgO-GeO2 system brings into light an
alternative scenario to explain the LAB, which does not require H2O. Contrary to what
is commonly assumed, partial melting is not the only process that may explain the LAB,
and might not be required at all. If partial melting were responsible for decoupling at the
LAB, enormous amounts of volatiles would be required to allow the actual plate motion.
Here we show that this lubrication could be due to another process. The nature of the
“transformation” that seems to affect the vicinity of grain boundaries, still needs to be
deciphered, but our results demonstrate that the viscosity reduction has nothing to do with
partial melting. In addition, the presence of volatiles at the LAB would necessarily lead to
significantly higher diffusivity, either intracrystalline or at grain boundaries, which is not
inconsistent with our findings.

The critical stress values reported in our study seem compatible with modeling of
global geodynamics, but further investigations are required to understand how representa-
tive our experiments are for tectonic-scale considerations. Experimental works are needed
to better understand the potential role of stress-induced transient stability of phases that
would be considered as “metastable”. We suggest that such phase might transiently form
during the superplastic process, which is likely to consist of a general grain-boundary
disordering similar to pre-melting. Hence, we question whether phase or grain boundary
stability and reaction-induced deformability are underestimated in our understanding of
the upper mantle. We insist to the Earth Sciences community on the need to look at grain
boundaries as phases that have their own domain of stability.

In light of these results, HP-HT experiments should be designed to check in which
conditions such plasticity occurs in the MgO-FeO-SiO2 system. This may constitute the
birth of a new paradigm: tectonic plates may slide on a layer in which the peridotite is
constantly adjusting via a process resembling “cold welding”. For relatively old plates
(~50 Ma or older), the LAB might not result from partial melting or volatiles gathering, but
from a solid-state disordering.
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Detailed view of Figure 5b; Table S1: Results of the calcination step; Table S2: Results of the spark
plasma sintering step; Table S3: Summary of deformation conditions; Table S4: Data acquisition
conditions for EBSD measurements.
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