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Abstract 

The MMX infrared spectrometer (MIRS) is an imaging spectrometer onboard MMX JAXA mission. MMX (Martian 
Moon eXploration) is scheduled to be launched in 2024 with sample return to Earth in 2029. MIRS is built at LESIA‑
Paris Observatory in collaboration with four other French laboratories, collaboration and financial support of CNES 
and close collaboration with JAXA and MELCO. The instrument is designed to fully accomplish MMX’s scientific and 
measurement objectives. MIRS will remotely provide near‑infrared spectral maps of Phobos and Deimos contain‑
ing compositional diagnostic spectral features that will be used to analyze the surface composition and to support 
the sampling site selection. MIRS will also study Mars atmosphere, in particular spatial and temporal changes such 
as clouds, dust and water vapor.
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Introduction
MIRS (MMX InfraRed Spectrometer) is an imaging 
spectrometer working from 0.9 to 3.6  µm with spectral 
resolution better than 20 nm. MIRS will work during the 
3 years of the MMX stay in circum-Martian space (Kura-
moto et al. 2021). The imaging spectrometer will provide 
global spectral characterization of Phobos and Deimos 
to map the surface composition, to support the Phobos 
sampling site selection and give detailed surface com-
position of the two sampling sites. MIRS will also study 
Mars atmosphere with particular attention to local time 
variation on the spatial distribution of water vapor, dust, 
clouds, and other atmospheric species, which could not 
be traced by previous satellites on the sun-synchronous 
polar orbit.

MIRS will contribute to the two major goals (Kuramoto 
et al. 2021) of the MMX mission:

1. Clarify the origins of the Martian moons and con-
strain processes for planetary formation and mate-
rial transport in the region connecting the inner and 
outer solar system

2. Clarify the driving mechanism of the transition of the 
Mars–moons system and add new knowledge to the 
evolution history of Mars.

Controversy on the origin of the Martian moons
The origin of Phobos and Deimos is a debated question 
and attacking this problem represents the major MMX 
mission goal. Remote sensing observations by Viking 1 
and 2, Mariner 9 and Phobos-2 revealed that the heav-
ily cratered surface, the mass and the low density of 
Phobos and Deimos shared similarities with asteroids. 

In addition, as detailed in the following sections, their 
spectra are very different from those of the martian 
surface, being red sloped (i.e., reflectance increases 
with wavelength), without strong absorption features 
and resembling the spectra of primitive C- and D-type 
asteroids.

Following the aforesaid observations, it was suggested 
that Phobos and Deimos could be captured asteroids. 
Asteroidal capture by a planet is possible if a dissipa-
tive process is at play to extract orbital energy from 
the passing body. This requires either that the object 
is braked in a circumplanetary atmosphere (Sasaki 
1990), or in 3-body encounters where a binary aster-
oid is split by tides, and one body remains trapped in 
planetocentric orbit, and the others escape the planet 
(Hansen et  al. 2018), or if tidal dissipation is intense 
enough (Kaula 1964). However, none of these pro-
cesses can easily explain the close-to-zero inclination 
of Phobos and Deimos (with respect to Mars’ equato-
rial plane). Indeed objects coming from the Asteroid 
belt may encounter Mars with high inclinations (Mars 
obliquity varies between 10° and 40° (Laskar and Robu-
tel 1993; Touma and Wisdom 1993). Captured objects 
may remain on high eccentricity and high inclinations 
orbits with respect to the planet. Whereas tides may 
damp orbital inclination and eccentricity of a captured 
Phobos in less than 4.6 Gyrs (Burns 1992), owing to its 
larger size and closer distance to Mars, they are much 
less efficient for the case of Deimos that orbits beyond 
6 Martian radii (Szeto 1983; Burns 1992).

An alternative explanation for the formation of a 
Martian disk was fostered by Craddock (2011) who 
suggested that an impact onto Mars may have formed 
a circumplanetary disk, and that Phobos and Deimos 
accreted locally from disk material. Reaccumulation 
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of disk material into rubble piles naturally leads to the 
formation of a collection of a dozen of moons (Rosen-
blatt and Charnoz 2012; Rosenblatt et al. 2016; Canup 
and Salmon 2018) with masses between those of Dei-
mos and up to 1000 times Phobos. Most moons would 
be tidally driven inward over time and impacts on the 
planet. In this view (Rosenblatt et  al. 2016), Phobos 
would be the last surviving moon of this old population, 
whereas Deimos would be the only moon that accreted 
beyond Mars’ synchronous orbit, and have experienced 
only little dynamical evolution.

Recently, Hesselbrock and Minton (2017) suggested 
that Phobos suffers multiple cycle of tidal destruction 
and re-accretion close to Mars’ Roche limit (about 3 
Mars radii), implying potentially that the today Phobos 
may have accreted only recently (< 100 Myrs).

In the giant impact hypothesis, Phobos and Deimos 
would be made of a mix (50–50%) of Martian mantle and 
impactor material (the origin of which is unconstrained). 
The temperatures that were reached during the impact 
are just high enough to melt silicate minerals, in the 
range of 2000 K only (Hyodo et al. 2017). However, this 
would be enough to devolatilize material and the result-
ing composition could resemble devolatilized Martian 
mantle with maybe substantial signs of oxidation if the 
impactor was water rich (Hyodo et  al. 2018; Pignatale 
et al. 2018).

Regardless of the origin of Martian moons, exogenic 
materials from the natural meteoroid impact and Mar-
tian materials ejected by small impacts on Mars would 
be mixed in the regolith of Phobos and Deimos (Ramsley 
and Head 2013; Hyodo et  al. 2019), whereas, these late 
accreted masses are of the order of ~ 1000–10,000  ppm 
fraction in their regolith (Hyodo et al. 2019) and thus the 
change in the bulk surface composition would be negligi-
ble. If Phobos is formed by a giant impact, Phobos should 
contain high-temperature phase materials representing a 
mixture of Martian silicates (from crust and mantle).

MIRS will be able to characterize the global composi-
tion of Phobos and Deimos surface material (and subsur-
face through the mapping of crater ejectas) and will be 
able to support the selection of the two Phobos sampling 
sites. In combination with the sample return from Pho-
bos, MIRS data will help deciphering whether Phobos 
composition is closer to that of C-D type asteroids (with 
similarity to carbonaceous chondrites and presence of 
organics or ices), which would imply a capture origin, or 
is more similar to a devolatilized and/or hydrated Mar-
tian mantle. This latter case would indicate, at the same 
time, a giant impact origin for Phobos and Deimos and 
would also give clues to the characteristics of the putative 
impactor onto Mars (see paper by Nakamura et al. 2021).

MIRS scientific objectives
MIRS is expected to characterize Phobos and Deimos 
surfaces and Mars atmospheric composition by remotely 
identifying diagnostic features in the near-infrared spec-
tral range.

MIRS is used to achieve several of the mission require-
ments (MR), in particular:

MR.1: To grasp the surface distribution of the con-
stituent materials of Phobos. Hydrous minerals 
and other related minerals should be identified and 
characterized spectroscopically for main parts of the 
full body in correspondence with its topography (at 
horizontal spatial resolutions of 20 m or better) and 
in a radius of 50  m or more around the sampling 
point (at spatial resolutions of 1 m or better).
MR.2: To grasp the distribution of constituent mate-
rials of Deimos, from spectroscopic information. 
Clarify the surface distribution of hydrous miner-
als and other related minerals corresponding to 
its topography for some characteristic areas of the 
moon’s surface with a horizontal spatial resolution 
of 100 m or better.
MR.3: To constrain transport processes of dust and 
water near the Martian surface, continuous obser-
vations of the mid- to low-latitude distributions of 
dust storms, ice clouds, and water vapor in the Mar-
tian atmosphere will be performed from high-alti-
tude equatorial orbit in different seasons to within 
1-h time resolutions.

Phobos
Due to the proximity of Phobos and Deimos to Mars, 
accurate analyses were possible only with the arrival of 
space missions (Mariner and Viking orbiters). The first 
images of Phobos from Mariner 7 allowed the estima-
tion of the size and of the albedo of the satellite, found to 
be the darkest object known in the Solar System at that 
time (Smith 1970). Later measurements confirmed the 
low albedo of Phobos (7.1 ± 1.2%, Simonelli et al. 1998). 
Higher-resolution imaging from Viking 1 and 2 revealed 
the complex surface geomorphology of Phobos, charac-
terized by km-long grooves, craters in a variety of deg-
radation states with variable diameter up to the larger 
9.4-km-sized Stickney crater (Thomas et al. 1979).

Several spectra of Phobos were acquired by Mariner 
9, Viking 1 and 2 confirming that it is a dark body with 
featureless spectra in the visible–UV range comparable 
to low-albedo asteroids (Pang et  al. 1978; Pollack et  al. 
1978). Thanks to the Phobos-2 mission, spatially resolved 
spectra were acquired with the imaging spectrometer for 
Mars (ISM), revealing heterogeneity in reflectance and 
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spectral properties across Phobos surface at spatial reso-
lution of 0.7–1 km (Bibring et al. 1989, 1992). Two spec-
tral units were identified, the ‘red unit’ occupying most of 
the surface, and the ‘blue unit’ associated with Stickney 
crater. The two units differ mainly on spectral slope and 
brightness, the red one having a higher spectral slope, 
and the bluer one being brighter and with a lower slope 
(Murchie et al. 1991; Murchie and Erard 1996). Blue unit 
is associated with fresher areas close to the Stickney cra-
ter and initially considered as fresh ejecta deposit. How-
ever, high resolution images from HiRISE instrument on 
Mars Reconnaissance Orbiter (MRO) revealed that blue 
unit is seen both inside and outside the crater rim, and 
that within it several underlying spots of the red unit are 
present (Thomas et al. 2011), indicating that Phobos has 
a heterogeneous composition made of blocks of red and 
blue units (Basilevsky et al. 2014).

No clear absorption bands were detected from Pho-
bos-2 data, and spectra acquired from ground-based tel-
escopes observations indicate no 3 µm absorption feature 
due to hydrated minerals with an upper limit of 5–10% 
(Fig. 1 from Rivkin et al. 2002).

The featureless red-sloped low-albedo spectra of Pho-
bos, coupled with its low density (1860 ± 13  kg   m−3, 
Willner et al. 2014), were associated with primitive outer-
belt/outer Solar System bodies, such as the D-type aster-
oids, Jupiter Trojans, ultrared transneptunians (Rivkin 
et al. 2002).

Further high-resolution spectra were acquired by 
the CRISM and OMEGA spectrometers, respectively, 
onboard MRO and Mars Express missions (Fig. 1). These 

instruments acquired high signal-to-noise ratio (SNR) 
spectra revealing spectral features in both Phobos units 
(Fig. 1), at a spatial resolution of about 350 m/pixel (Frae-
man et al. 2014). The red unit of Phobos and also Deimos 
show a weak 0.65 µm absorption feature consistent with 
desiccated Fe-phyllosilicate such as nontronite (Murchie 
et  al. 2008; Fraeman et  al. 2014). An alternative inter-
pretation of this feature includes anhydrous silicates and 
space weathering effects producing micro- and nano-
phase iron which acts as Rayleigh scatters generating 
the 0.65  µm feature (Clark et  al. 2012). This feature on 
Phobos was confirmed from ground-based observations 
covering the red unit (Murchie et al. 2015), by Pathfinder 
data (Simonelli et  al. 1998), and by ROSETTA mission 
observations with its OSIRIS cameras (Pajola et al. 2013).

CRISM also detected a sharp absorption at 2.8  μm in 
both units of Phobos, and on Deimos, with depth varying 
from 1 to 10% (Fraeman et  al. 2014). Note that CRISM 
data in the 2.70–2.76  μm wavelength range were com-
promised by a boundary between filters mounted to 
the IR detector that blocks higher orders from the dif-
fraction grating; these wavelengths were not routinely 
downlinked by the instrument. This feature is stronger 
on Deimos and Phobos red unit, and weaker on Phobos’ 
bluer unit. An absorption feature in the 3-μm region was 
observed on several asteroids, and it is typically caused 
by a combination of the very strong OH-radical absorp-
tion feature and the first overtone of the 6-μm  H2O 
fundamental (Rivkin et  al. 2002). Adsorbed water has a 
symmetric stretch, giving rise to an absorption feature at 
3.1 μm, and an antisymmetric stretch feature at 2.9 μm. 

Fig. 1 Left: single scattering albedo spectra (SSA) for the Phobos blue and red units, and for Deimos, derived from CRISM‑MRO spectra, extracted 
from Fraeman et al. (2014). Right: combination of several spectra covering the 0.3–3.6 μm range of Phobos and Deimos, extracted from Rivkin et al. 
(2002)
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Structural hydroxyl (OH) that has been incorporated into 
mineral lattices produces a stretch absorption at 2.7 μm. 
The depth of the fundamental  H2O/OH feature depends 
on many parameters besides abundance of hydrated 
material, including particle size, albedo, and temperature. 
In the case of Mars satellites, the strength, position, and 
shape of the 2.8 μm band is attributed to OH, and there 
is no clear evidence of absorptions in the 3–3.1  micron 
region due to adsorbed water or water ice (Rivkin et al. 
2002; Fraeman et al. 2014).

No other diagnostic absorptions appear in the VIS–
NIR range in either Phobos or Deimos spectra, in par-
ticular any related to common ferrous minerals (olivine, 
pyroxene). The red slope and the absorption bands 
detected in the visible and NIR region are consistent with 
those of hydrated asteroids interpreted to have primitive 
composition (C-, G-, P-, and D-class asteroids, Fraeman 
et  al. 2014). The emissivity spectra of Phobos derived 
by TES data suggest an ultramafic composition with the 
presence of phyllosilicates and feldspathoids in some 
regions (Giuranna et  al. 2011). Recently, Glotch et  al. 
(2015) from MIR data, suggest the presence of bound 
molecular water and carbonate on the surface of Phobos. 
This result needs confirmation, but these aforementioned 
observations seem to point to a spectral analogy between 
the Mars moons and primordial asteroids, thus favoring 
the asteroid capture hypothesis.

Deimos
The first data of Deimos were also acquired by Mariner 
9 and Viking orbiters, suggesting that Deimos was spec-
trally similar to C-type objects (summarized by Burns 
1992), an idea that was challenged by Grundy and Fink 
(1992) who found much steeper spectral slopes for this 
body that were inconsistent with carbonaceous chon-
drites and more consistent with reddish D-type asteroid. 
As indicated in the previous section and shown in Fig. 1, 
Deimos shares similar spectral properties with Phobos 
red unit, in terms of high spectral slope, and it shows the 
same faint features at 0.65 μm and 2.8 μm, possibly indi-
cating a composition rich in desiccated phyllosilicates.

Rivkin et  al. (2002) observed Deimos using the IRTF 
and combined several spectra obtained from the litera-
ture to generate a complete spectrum from 0.3 to 3.6 μm 
(Fig. 1). While there is strong caveat in the whole near-
infrared range and that the spectral resolution of the 
data is usually low, they confirm, from their analyses, the 
anhydrous nature of the surface of Deimos, placing lim-
its on the 3-μm band depth at roughly 10–20%. They also 
state that spectral analogs for the Martian satellites are 
difficult to find in the asteroid belt, and it seems that the 
outer-belt D asteroids have spectra which bracket spec-
tral pattern of Deimos.

The Viking data suggested the trailing side is about 10% 
brighter than the leading side. This leads us to assume a 
modest difference in materials composition or properties 
on the two sides of Deimos. This is consistent with the 
successive Hubble Space Telescope data that also showed 
slight leading/trailing differences on Deimos (Zellner and 
Wells 1994). Differences exist in the visible albedo and 
are correlated with topography rather than found in more 
coherent units as on Phobos (Thomas et al. 1996). High 
spatial resolution color observations of Deimos were not 
obtained by Phobos-2, and the Viking data which exist 
are in a very restricted wavelength range. The Imager for 
Mars Pathfinder (IMP) obtained disk-integrated, visible-
range spectrophotometric data for the sub-Mars hemi-
spheres of Deimos (Murchie et al. 1999), showing Deimos 
is quite homogeneously red, consistent with the results of 
Grundy and Fink (1992).

Although there may be small differences in the material 
properties of Phobos and Deimos, the drastic visual dif-
ference most probably derives from the smoothing effects 
of the large impact that formed the 10-km wide southern 
polar depression on Deimos (Thomas et  al. 1996). This 
impact is relatively much larger than the Stickney impact 
crater on Phobos. Thus some previous suggestions that 
the lack of grooves on Deimos stemmed from a lack of 
large craters (Thomas et al. 1979) need revision, either in 
the fracture origin of grooves or on the timing of ejecta 
re-accretion covering the effects of fracturing. Extend 
these analyses in the near-infrared spectral range is fun-
damental in order to explore the possible spatial variation 
of the chemical composition of Deimos and answer the 
still open questions.

MIRS in the exploration of the Phobos and Deimos surface
Fraeman et al. (2014) proposed two hypotheses to explain 
the spectral features on Phobos and Deimos. The first 
invokes the presence of highly desiccated Fe-phyllosili-
cate minerals inherent to Phobos and Deimos, consistent 
with the presence of primordial material in the Moons’ 
formation region, and the second appeals exogenic pro-
cesses associated with the solar wind which may have 
created Fe and OH on the moons’ surface. However, there 
are no telescopic- or space-based data sets with sufficient 
spectral range and SNR levels to independently validate 
this feature’s presence. OMEGA observations of Phobos 
do cover the necessary wavelength range, but a detector 
boundary with an unknown offset near 2.7 μm makes it 
impractical to detect a weak absorption. Observations 
of Phobos and Deimos with MIRS will allow to check 
the presence of this absorption feature and its variation 
on the whole Phobos and Deimos surfaces, and possibly 
discard one of these hypotheses described by Fraeman 
et  al. (2014) by characterizing the 2.7-μm absorption 
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band features (i.e., band peak position and shape; Don-
aldson et al. 2016, and Pieters et al. 2009, for instance). At 
further extent, detection of phyllosilicates would imply 
that the origin of Phobos from a Giant impact is less 
likely. Yet, a global assessment of composition is needed 
to identify and evaluate the properties and geologic con-
text of different materials. As presented in Pieters et  al. 
(2014), diverse materials are known to exist across the 
surface of Mars moons and it is essential to document 
their characteristics, distribution, and the spatial rela-
tionships between them. MIRS will be on front seat to 
fulfill this goal.

MIRS will observe Phobos and Deimos in the 0.9–
3.6 μm range with a spectral resolution better than 20 nm. 
For Phobos, MIRS will acquire spectra at SNR > 100 and 
at a spatial resolution of about 20  m (for ± 30° latitude) 
during the QSO-M (quasi-satellite orbit—medium alti-
tude, see Table 3) global survey. A higher spatial resolu-
tion of 1 m will be reached over an area within 50 m from 
the selected sampling sites. The spectral radiometric 
absolute accuracy is expected to be of 10%, and the rela-
tive accuracy of 1%. The high SNR and unprecedented 
spatial resolution achieved by MIRS will permit to fully 
characterize the composition and mineralogy of both the 
red and blue units on Phobos and further investigate the 
local compositional heterogeneity associated with the 
different geomorphological features across Phobos sur-
face. The capability of MIRS fulfills completely mission 
requirements for Phobos. It will also possibly provide 
new insights into space weathering processes thanks to 
resolved spectral observations of small fresh craters.

MIRS is expected to spectroscopically detect and 
characterize, if any, water (ice) (absorption bands at 1.5, 
2.0 and 3.0–3.2  μm), hydrous silicate minerals (features 
at 2.7–2.8 μm, and minor overtones at 1.4 and 1.8 μm), 
or anhydrous silicates (bands in the 0.9–1 and 2.0  μm 
regions). If possible, also to measure organic matter (3.3–
3.5 μm). Thanks to high SNR, it will also allow a detailed 
characterization of the absorption bands detected, per-
mitting by the precise investigation of the band center, 
depth and area to well constrain the mineralogy, species 
abundances and composition of Phobos. These unprece-
dented data will allow scientists to cast light on the origin 
of Mars moons.

For Deimos, MIRS is expected to spectroscopically 
map major regions at a spatial resolution better than 
100 m and at SNR better than 100 below 3.2 µm in less 
than 2  s, and detect the same major absorption bands 
as observed in Phobos. Such observational conditions 
will allow us to spatially probe the surface of Deimos 
and constrain the surface composition as well as search 
more efficiently possible weak spectral features (a full 
characterization of the bands is possible for band depth 

as weak as 3%, estimated from a Monte Carlo approach, 
and based on synthetic spectra reaching SNR of about 
100), as in the case of Phobos. The data will also favor the 
search for physical and chemical heterogeneity that could 
be linked to topography or linked to the Martian phase 
aspect. Do the particle size or the chemical content of 
the leading and trailing sides are different, as suspected 
from the observation performed with HST in the visible 
range? The lack of current data of Deimos, especially in 
terms of spatially resolved spectral data, considerably 
reduce our ability to constrain the surface properties of 
it, and even if Deimos is not the target for the sampling, 
we will clearly be able to take advantage of this mission to 
considerably improve the physical and chemical knowl-
edge of the surface of this satellite, and bring new insights 
about the history of the Martian environment.

Temperature on Phobos and Deimos
Temperature is a fundamental physical parameter that 
affects a number of physical processes important for 
remote sensing of planetary surfaces, including the 
reflected and emitted radiance. On solar system bodies 
the temperature is primarily determined by the helio-
centric distance, its time derivative and by variations 
in the illumination caused by the cycles between day 
and night and seasons. In addition, on atmosphere-less 
bodies, such as Phobos and Deimos, temperatures are 
also controlled by the physical properties of their sur-
faces, the most important one being the albedo, the 
roughness, the heat capacity, the density, and the ther-
mal conductivity of the surface. The latter is function of 
the porosity of the material and grain size in the case 
of regolith. When illumination conditions vary periodi-
cally and thermal conductivity is independent of depth, 
it is possible to define the thermal inertia as the square 
root of the product of thermal conductivity, density, 
and heat capacity, and show that surface temperatures 
are governed by the value of the thermal inertia (e.g., 
Spencer et al. 1989). When its value is lower than some 
hundreds J  m−2   s−1/2   K−1 at heliocentric distances of 
few AU, temperatures can vary dramatically between 
winter and summer and between day and night (e.g., 
Delbo et al. 2015).

The latter is the case of the surfaces of Phobos and Dei-
mos that express temperatures ranging between ~ 50  K 
and ~ 300  K (Kührt and Giese 1989). These large tem-
perature variations are in part due to the low value of the 
thermal conductivity (Gatley et al. 1974) or thermal iner-
tia (Lunine et al. 1982; Kührt et al. 1992). The large tem-
perature variations are also caused by the complex orbital 
geometry of these satellites, including their synchronous 
rotations with their orbital periods, the eclipses they are 
subject to, and the seasons. In the case of Phobos, which 
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orbits Mars at an altitude of only ~ 6000  km from the 
surface of red planet, the reflected scattered light and 
thermal emission from Mars are also important in deter-
mining the surface temperature of the satellite (Kührt 
and Giese 1989). The low albedo of these satellites and 
its variations across the surface, with values ranging 
between 0.05 and 0.10 in the visible band (Fraeman et al. 
2014), also contribute to temperature differences.

It is known that temperature can affect the near-infra-
red spectral features (e.g., Singer and Roush 1985; Roush 
and Singer 1987; Lucey et  al. 1998; Moroz et  al. 2000). 
For instance, at low temperature, the visible and near-
infrared bands narrow and the band contrast increases 
compared to their measurements at higher temperatures. 
The change in the spectral band properties is related to 
the composition of the surface and the grain size of dust 
potentially covering it. It is therefore conceivable that 
spectral observations of the martian moons’ surfaces at 
different temperatures (e.g., different time of the day) will 
help constraining their composition.

By means of computer codes that implement the so-
called thermal (or thermophysical) models (e.g., Delbo 
et al. 2015 for a review) we calculate model temperatures, 
or the corresponding emitted infrared radiance as a func-
tion of physical parameters such as the albedo, rough-
ness, and thermal inertia, which are adjusted until best 
match between the model predictions and the observa-
tions are obtained, thereby constraining the physical 
properties of the surface (Delbo et al. 2015). Modeling of 
surface temperatures will be essential to estimate the heat 
and radiation environment for near surface operations of 
MMX, which is important to support the sampling sites 
selection and operations.

On the other hand, the physical parameters estimated 
from the analysis of the infrared observations will be 
interpreted in terms of grain sizes of the surface rego-
lith (e.g., Gundlach and Blum 2013; Sakatani et al. 2017; 
Ryan et al. 2020) or porosity of surface rocks (as in Grott 
et al. 2019), using radiative transfer models. This will con-
tribute to provide geologic context of Phobos returned 
samples. Thermal inertia (or conductivity) values have 
been derived for Phobos by several authors using meas-
urements from different space missions and also from 
ground-based data: Gatley et  al. (1974) found thermal 
conductivity values that would correspond to a thermal 
inertia < 15  J   m−2   s−1/2   K−1 using Mariner 9 radiometric 
data, while Lunine et al. (1982) obtained a range of ther-
mal inertia values between 40 and 70  J   m−2   s−1/2   K−1 
from Viking data, and Kührt et  al. (1992) determined 
thermal inertia values between 20 and 40 J  m−2  s−1/2  K−1. 
All these values are quite low and would imply that the 
surface is made of a fine-grained particulate material 
(regolith). Kührt and Giese (1989) proposed that thermal 

properties dependent on temperatures must be used on 
Phobos and Deimos. Bandfield et al. (2018) found that the 
best effective thermal inertia value is 150 J  m−2  s−1/2  K−1, 
a value that they claim to be still compatible with particu-
late regolith. The same authors also reported a more suc-
cessful model fit where thermal inertia varies with depth, 
from 50 at the surface to 1000 J  m−2  s−1/2  K−1 in the shal-
low subsurface. Smith et al. (2019) derived the first disk 
resolved map of the thermal inertia of some regions of 
Phobos. They found a mean thermal inertia value of 
42 J  m−2  s−1/2  K−1 with a range of values between 20 and 
100 J  m−2  s−1/2  K−1.

MIRS will measure the spectral radiance of the surface 
within the instrument footprint (Fig.  2). This is essen-
tially the reflected solar spectrum with superimposed 
minerals absorption bands. At wavelengths longer than 
about 2.5 μm the so-called thermal tail kicks due to Pho-
bos thermal radiation become more important than the 
reflected sun-light. The thermal tail is a strong function 
of the temperature and thus MIRS data can be used to 
derive the surface temperature as long as the latter is high 
enough to produce a radiance signal above the instru-
ment sensitivity. The thermal tail is also function of 
the infrared emissivity. Modeling the thermal tail is an 
important aspect of the MIRS data analysis, in particu-
lar in the region around 2.7–2.8 μm where the reflectance 
spectra will be investigated for the presence of the phyl-
losilicate and water bands.

Despite MIRS is not a proper thermal instrument due 
to its limited wavelength extension in the infrared, the 
thermal tail can be used to assess the surface temperature 
and its spatial and temporal variations. From temperature 
measurements, information about the surface thermal iner-
tia of Phobos will be derived. This has been done at similar 
wavelengths with the OSIRIS-REx Visible and InfraRed 
Spectrometer (OVIRS; Reuter et al. 2018) onboard NASA’s 
OSIRIS-REx asteroid sample return missions (Lauretta 
et al. 2015) to successfully determine the thermal inertia of 
the surface of the asteroid Bennu with spatial resolutions of 
some meters (DellaGiustina et al. 2019).

Mars
Mars atmosphere
Mars atmosphere is strongly coupled to the surface. This 
is especially the case regarding volatiles species in strong 
interaction with the polar caps. This effect, together with 
seasonal variation of the radiative balance, induces a high 
seasonality in the volume mixing ratio of species such as 
 H2O, CO or  O2. The suspended dust particles from the 
surface contribute to localized heating of the atmosphere 
and have a significant impact on the global climatol-
ogy on Mars, especially during the dust storm seasons. 
All of these atmospheric components (Table  1)  present 
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significant signatures in the MIRS spectral range, from 
0.9 to 3.6 µm (see Fig. 3).

While being the main Martian atmospheric compo-
nent,  CO2 presents a strong seasonal cycle due to its 
condensation at the polar caps, which induces strong 
fluctuation of Martian surface pressure. On top of that, 
small oscillations of the surface pressure, which are key 
diagnostic to meteorological events, were observed by 
OMEGA onboard Mars Express (Forget et al. 2007; Spiga 
et al. 2007). MIRS will have the capability to monitor  CO2 
and thus pressure through inversion of its 2.0  µm band 
as it was performed with the OMEGA data. While the 
large-scale annual variation of water vapor has been sta-
ble for more than 20 Martian years (Montmessin et  al. 
2017), questions remain on the interaction between water 
vapor, ice clouds and dust on regional scales. The spatial 
resolution of MIRS for Mars observations (< 10 km) will 
extend the existing records on these observations and 

better constrain the interdependencies between these 
major atmospheric components. It is noteworthy that 
the MIRS measurements provide the first opportunity for 
investigating the diurnal variation and the transport pro-
cesses of water vapor with time-resolved pictures of the 
atmospheric phenomena from the equatorial orbit.

Most of the information about water vapor on Mars 
has been obtained for more than two decades from 
MAWD onboard Viking 1 and 2, TES onboard Mars 
Global Surveyor, SPICAM, OMEGA, and PFS onboard 
Mars Express, CRISM onboard MRO missions (e.g., see 
review for SPICAM in Montmessin et al. 2017). These 
observations revealed a global cycle of water vapor, 
which is mainly driven by dynamics and sublimation–
condensation process between the atmosphere and 
the polar caps, with a column integrated abundance 
peaking up to 40 pr-µm during northern summer in 
the polar region. On the other hand, local events such 

Fig. 2 Left: preliminary temperature calculation on Phobos using the Gaskell shape model (Gaskell 2011). The model was reduced to 98,000 facets 
to speed‑up calculations. Temperatures decrease from yellow to red to blue. Right: spectral radiance calculated using the thermal model and 
assuming that the reflected light component is a reddened solar spectrum. The spectral radiance is normalized to 1 at the peak of the curve. Notice 
the strong thermal tail that arises in MIRS relevant wavelengths and its strong dependence on temperature

Table 1 Main targets of the Mars science measured by MIRS

Target Parameters Spectral range

Ice cloud formation and evolution Water ice clouds 1.5, 2 and 3‑µm bands

Dust clouds/storms formation and evolution Dust CO2 2.7‑µm band
or 0.9–3.6 µm

Water cycle H2O 2.6‑µm band

Atmospheric composition and dynamics Surface pressure CO2 2.0‑µm band

CO 2.3‑µm band

Limb observations for middle atmosphere O2 dayglow (water index) 1.27‑µm band
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as surface–atmosphere interaction and water vapor 
transport due to so-called rocket dust storm, that can 
lift dust rapidly and efficiently to high altitude (Spiga 
et  al. 2013), are not well understood. Characterization 
of such local events requires high-frequency monitor-
ing of water vapor with different local times. MIRS will 
have the first capability to monitor water vapor at low- 
to mid-latitude on a daily basis using its 2.6  µm band 
(Maltagliati et al. 2008). The adsorbed water in the reg-
olith also can be monitored by the 3.0 µm band (Aud-
ouard et  al. 2014). Water ice clouds also present large 
seasonal variations and spatial distribution, associated 
with both the water cycle and general atmospheric cir-
culation (Montmessin et al. 2004). The most predomi-
nant ice clouds formation is found in a belt around the 
equator during Mars’ aphelion season. These clouds 
are due to the release of large amount of water from 
the northern polar cap during spring and summer: this 
induces an increase in water vapor content at mid- to 
low-latitude where it can be uplifted by the Hadley cir-
culation and this uplifting brings air charged in water 
to higher altitudes where low temperatures and pres-
sures favor cloud condensation, allowing the seasonal 

persistence of this so-called Aphelion cloud belt. Water 
ice clouds can also be found at higher latitude during 
winters over polar caps (Fedorova et  al. 2006; Mont-
messin et  al. 2017; Vincendon et  al. 2011). Water ice 
clouds will be identified primarily through their spec-
tral features between 0.9 and 3.6 µm (Olsen et al. 2017). 
In addition to the water ice clouds, MIRS may be able 
to investigate the mesospheric  CO2 ice clouds. Recent 
observations have revealed the presence of the  CO2 
ice clouds at remarkably high altitudes (above 40  km; 
mesosphere) (e.g., Montmessin et  al. 2006; Aoki et  al. 
2018). However, the formation process of these pecu-
liar clouds has not been measured even though it has 
been suggested that the clouds form in supersaturated 
pockets of air created by the interference of thermal 
tides and gravity waves (e.g., Clancy and Sandor 1998; 
Spiga et  al. 2012). Its monitoring in the morning or 
evening will provide a first insight on its formation pro-
cess. Vincendon et  al. (2011) proposed a procedure to 
process CRISM observations to discriminate  H2O and 
 CO2 ice clouds by combining its visible images and 
near-infrared spectra and demonstrated its useful-
ness by comparing it with previous observations. This 

Fig. 3 Expected features of the Mars atmosphere observed by MIRS. The synthetic spectra are calculated by the widely used DISORT‑based 
radiative transfer model for Mars (Ignatiev et al. 2005). A typical condition of Mars atmosphere is assumed. The surface albedo of Mars is assumed 
to be 0.15 (uniform). The thick curves in the figure show the spectra for the clear sky condition, and the dashed curves include the effects of dust or 
water ice clouds. For gases,  CO2, CO, and water vapor are calculated separately (red, orange, and blue curves, respectively). The calculated synthetic 
spectra are convolved with the instrumental line shape of MIRS that is a Gaussian function whose FWHM is 20 nm. The sampling step is 10 nm
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procedure will be tentatively applied to coordinate 
MIRS and OROCHI observations to investigate mes-
ospheric  CO2 ice clouds.

The relatively long lifetime of CO has a capability to 
trace the atmospheric dynamics on Mars. Its detection 
and quantification thus would allow for further refine-
ment of current atmospheric dynamical models (e.g., 
Daerden et  al. 2019). CO presents only a weak band at 
2.3–2.4  µm within MIRS wavelength range. However, 
previous observation with OMEGA and CRISM, both 
instruments having similar SNR as MIRS, demonstrated 
the detectability of this compound. In addition, while 
the formation of CO is intrinsically linked to the  CO2 
cycle, its non-condensation during polar winter, contrary 
to  CO2, induces a relative enrichment at mid- to high-
latitudes. While we expect global detection of CO, the 
equatorial orbit of the MMX mission will make Hellas 
Planitia, where clear seasonal variations due to  CO2 con-
densation during southern winter have been evidenced 
by OMEGA and CRISM, our prime target for CO moni-
toring (Encrenaz et al. 2006; Smith et al. 2009).

O2 is an oxidant tracer for atmospheric photochemis-
try on Mars. During the diurnal variation, it is formed 
through ozone UV photodissociation in the lower atmos-
phere (Fedorova et  al. 2006). This induces a dayglow at 
1.27  µm whose mapping thus provides a tracer for  O3 
and its variations.  O2 dayglow shows its maxima during 
early spring at high latitudes, while low latitudes show a 
maximum at aphelion due to a peak in ozone concentra-
tion related to lower abundances of hydrogen radicals 
(Lefèvre et al. 2004). At high latitudes,  O2 can also be pro-
duced by  CO2 photodissociation, as it can be observed 
on the nightside at high latitudes via recombination of 
O brought in a downwelling general atmospheric circu-
lation on the dayside in the upper atmosphere (Bertaux 
et al. 2012). This nightglow emission is a unique tracer for 
downward advection transport mechanism to constrain 
the mesospheric dynamics. The dayglow of  O2 formed via 
 O3 dissociation will be detectable with the MIRS instru-
ment in nadir observations but also measurable at limb, 
which will provide its vertical profiles as well as an index 
of water vapor vertical profiles (Clancy et al. 2017). The 
nightglow would require limb observations at high lati-
tudes that could technically be doable by MIRS, but may 
be extremely challenging to perform given MMX equato-
rial orbit. Another possible tentative measurement within 
the MIRS wavelength range would be the one of OH Mei-
nel bands at 1.45 and 2.9 µm as detected by the CRISM 
instrument (Clancy et  al. 2013). However, the detection 
of these extremely faint bands would require the accu-
mulation of observations of the polar night limb and thus 
be subjected to the same limitation as the  O2 nightglow 
observations. As such, and while these two observations 

will be tentative, they are not considered a prime target 
for the MIRS instrument.

Mars surface and dust
Although the specifications of the MIRS imaging spec-
trometer are quite similar to previous instruments, such 
as OMEGA aboard MEX, the orbit of MMX can offer 
some advantages for global mapping of the red planet. 
The expected geometric resolution is ~ 2 km at the foot-
print on Mars surface, so a spatial binning can be possible 
to increase the SNR and save data volume. Being placed 
on the same orbit as Phobos around Mars, at about 
6000 km of altitude, the spacecraft will have a ~ 7 h orbit 
around the planet, allowing to complete a global map-
ping of the surface of Mars within a few days. In addition, 
the well-controlled scanner system enables the specific 
pointing of the instrument, thus allowing MIRS meas-
urements to obtain wide spatial coverage in hourly time-
scale. Both these observing modes will be very useful to 
follow the temporal evolution of the atmospheric aero-
sols with a meso-scale spatial resolution. In that respect, 
MIRS will complement adequately the instruments that 
are already observing the Martian surface and atmos-
phere from orbit. Its coverage will be more similar to 
that obtained with the MEX/OMEGA instrument, with 
the interesting capability to analyze the same area at high 
temporal resolution (5 times every 30 min), or to obtain 
almost global mapping of the sunlit hemisphere with 5 h 
of observations. This capability will allow to survey rap-
idly changing atmospheric events. Based on the similari-
ties with previous observations, existing techniques that 
have already been applied to analyze the spectral cubes 
from the atmosphere of Mars with previous missions can 
be also applied to the MIRS data and improved.

The analysis of the spectra taken on the slopes of large 
volcanoes, such as the Olympus Mons can help to probe 
different atmosphere thicknesses and detect the column 
density of  H2O,  CO2 and dust constituents in the Martian 
atmosphere (Combes et al. 1991; Rosenqvist et al. 1992). 
To go further into the analysis of the different atmos-
pheric constituents, Mars limb observations should allow 
to directly recover at first order the spectral signature of 
aerosols present in the atmosphere though it will depend 
on the properties and composition of the aerosols at dif-
ferent altitudes (Erard et  al. 1994). Furthermore, limb 
observations by MIRS have a capability to investigate the 
vertical structure of aerosols in a global view. It is inter-
esting to note that high-altitude (above 60 km)  H2O was 
first identified by SPICAM occultation (Maltagliati et al. 
2011, 2013) especially in the southern summer, which 
happens to be a dusty season. They reported the links 
between such high-altitude  H2O and aerosols in their 
vertical profiles within a short time-scale. This implies 
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the importance of aerosols for key processes in the Mar-
tian water cycle and climate as a whole. MIRS will pro-
vide further information of the new pathway of water loss 
proposed by recent studies (Chaffin et al. 2017; Heavens 
et al. 2018).

A better estimate of the reflectance spectrum from 
the light backscattered by atmospheric aerosols can be 
obtained by comparing the successive observations of 
identical zones on the surface of Mars within a short time 
and with varying phase angles. Such a set of measure-
ments permits to decorrelate the surface reflectance sig-
nal from the light scattered by the aerosols suspended in 
the atmosphere of Mars and gives information on the aer-
osols size and composition properties. Such an analysis 
for the ISM data (on-board Phobos-2 spacecraft) taken 
over Tharsis and Ophir Planum showed that the spectra 
thus obtained are consistent with a particle size distribu-
tion having an effective radius of 1.2 ± 0.2 μm (Erard et al. 
1994). Features of the spectrum indicate the presence 
of water ice, and possible absorption due to clays and/
or sulfates. The overall parameters that can be obtained 
from such an analysis include the scattering albedo, the 
phase function of the aerosols, the optical thickness, τ, 
of the atmosphere and the aerosols size distribution with 
possible indications on their shape.

Vincendon et  al. (2007, 2009) have shown that the 
introduction of a radiative transfer model can improve 
on the first estimates for these values, which was dem-
onstrated as an application to the OMEGA data. It was 
also possible during Martian dust storms to obtain typi-
cal properties of the Martian suspended dust in terms 
of scattering albedo and optical depth by applying inde-
pendent components multivariate methods to separate 
the spectrum signal of the aerosols from the one from 
the surface and the atmospheric gas (Määttänen et  al. 
2009). An improvement of the method used to correct 
for aerosols light scattering by multi-angle analysis over 
11 different viewing geometries to retrieve the Mars sur-
face photometric properties was developed for CRISM 
by including non-isotropic surface materials reflectance 
(Ceamanos et  al. 2013; Fernando et  al. 2013). Further 
CRISM observations of the limb of Mars allowed to 
retrieve locations and properties of the aerosols on the 
atmosphere of Mars (Smith et  al. 2013). To go further, 
combined observations of CRISM limb observations, 
MCS and MARCI were used to determine the compo-
sition and sizes of Mars mesospheric aerosols and ice 
clouds dynamics (Clancy et al. 2019).

Finally, the combination with lander infrared meas-
urements can allow to confirm and better constrain the 
local properties of atmospheric dust from the ground 
(Ockert-Bell et  al. 1997). Assuming that Mars rovers 
are still active on the surface of the planet during the 

mission, it can be envisioned to combine the orbital 
measurements with those that will be made locally by 
using the infrared channel of the SuperCam instru-
ment on Mars, for example (Maurice et al. 2021; Wiens 
et  al. 2021) and the MastCam-Z multispectral camera 
observations (Bell et  al. 2021). All these studies will 
improve our understanding of the optical properties 
of the Martian aerosols, their evolution with time and 
the exchanges between the surface and the atmosphere 
of the planet. In the end, understanding fully the con-
tribution of aerosols to the measured reflectance from 
orbit will enable an improved understanding of the 
scattering properties of the Martian surface.

MIRS instrument
Push‑broom spectrometer
MIRS is a spectrometer that uses the well-known push-
broom acquisition principle (Fig.  4). A single detector 
acquisition (2D matrix) provides the image of a strip 
in one direction (spatial), and the spectrum of each 
point of the strip in the second direction (spectral). The 
second spatial dimension results from the motion of 
MIRS Line of Sight in the along-track direction either 
thanks to the spacecraft speed or by actuation of MIRS 
scanner.

The start of each image acquisition has to be adjusted 
so that:

– All images are as contiguous as possible: no overlaps, 
no holes.

– Integration time is sufficient to guarantee the 
required SNR, and short enough not to degrade the 
spatial resolution.

Spectral radiance

Re-imaging
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Fig. 4 Scheme for a push‑broom spectrometer



Page 12 of 28Barucci et al. Earth, Planets and Space          (2021) 73:211 

We define the subsatellite point as the projection of 
MMX—Z axis on the celestial body of interest. Subsat-
ellite ground speed varies and might not be adapted to 
MIRS acquisition principle. For Phobos observation on 
low-altitude trajectories, ground speed can be too high 
to ensure sufficient integration time between 2 images. 
However, for Phobos observation during descent phases, 
ground speed is nearly null. For Mars observation, 
ground speed is low enough to cover large zones.

In order to adjust ground speed of MIRS Line of Sight 
projection on celestial body of interest to these situations, 
MIRS is equipped with an along-track scanner with ± 20° 
optical amplitude. This scanner can also be used to per-
form observations of zones with specific phase angle and 
local solar time by commanding a constant along-track 
bias. Meanwhile, the cross-track latitudes can be reached 
using the spacecraft maneuvers.

Instrument concept
MIRS is an infrared imaging spectrometer (Fig. 5). Based 
on scientific objectives, the MIRS technical requirements 
have been derived as presented in Table  2. The spectral 
dispersion is obtained with a low-density groove grating 
working in order 1. The telescope is composed of two 
free form mirrors (highly aspherical mirrors) focusing 
the scene target on the entrance slit of the spectrometer. 

The collimator is also composed of two free form mir-
rors projecting the entrance slit at infinity. The grating is 
located at the pupil of the instrument. Then two dioptric 
objectives are used. The first one projects the spectral 
image on a filter that sorts the grating orders. The sec-
ond one projects this spectral image on the detector, but 
also images the pupil on a cold stop in order to limit the 
background flux due to the thermal emission of the spec-
trometer. The detector and the cold stop are encapsulated 
in a cryostat and cooled down to 110  K (120  K for the 
cold stop).

A shutter is placed in the slit plane in order to close the 
spectrometer cavity after the telescope and acquire back-
ground images that can be subtracted to science data.

A cover is positioned at the entrance of the instrument 
to limit dust pollution when landing on Phobos.

MIRS is mounted on the exploration module (Fig.  6) 
and is connected to the MDP for data management (TC/
TM and image compression) and the PDCU for power 
supply (Fig. 7).

MIRS consists of three subunits:

– An Optical Box (OBOX) (Fig.  8A, B) containing all 
the optical components (Fig. 8C): mechanisms (scan-
ner, shutter, dust cover), a telescope, a spectrometer, 
a calibration source, and a detector package with 

Fig. 5 MIRS optical design overview



Page 13 of 28Barucci et al. Earth, Planets and Space          (2021) 73:211  

its dedicated proximity electronic. MIRS OBOX 
is mounted on a dedicated bracket outside MMX 
eXploration module, with a nadir pointing (Fig. 6)

– An Electronic Box (EBOX) (Fig. 9A) containing the 
low-voltage power supply board (LVPS) (Fig.  9B) 
and the interface control unit board (ICU) (Fig. 9B). 
MIRS EBOX is located inside MMX exploration 
module (Fig. 6)

– An Interconnection harness linking the EBOX to 
the OBOX.

The OBOX is thermally uncoupled from the interface 
bracket. Two radiators ensure a passive cooling of the 
OBOX:

– 1 Dedicated to the spectrometer.

– 1 Dedicated to the detector package.

An open–close mechanism called dust cover is imple-
mented on the MIRS OBOX entrance to protect the 
spectrometer from dust contamination (Fig. 8A).

The optical alignment is mechanically ensured with a 
stiff foot called Reference foot and a flexible one, i.e., a 
bipod called Axis foot. The third foot is mounted with 
regard to the Detector package center of mass. Figure 8B 
shows the external mechanical interfaces on the MIRS 
OBOX, while Fig. 8C shows the inside of the OBOX and 
the optical layout.

The EBOX (Fig. 9A) is the electronic box of the MIRS-F 
spectrometer. Its mass is about 1.2 kg. This unit is ther-
mally coupled to the spacecraft descent module and is 
black anodized on its external surfaces. Figure  9 shows 
the two-subunits of the EBOX, i.e., the LVPS and the 
ICU.

Fig. 6 MIRS on MMX exploration module

Table 2 MIRS performance requirements

Requirement ID Requirement

MIRS‑PE‑001 Spectral range: 0.9–3.6 µm

MIRS‑PE‑002 Spectral resolution (sampled) < 20 (+ 10%) nm

MIRS‑PE‑003 Spectral sampling: 10 (+ 10%) nm

MIRS‑PE‑004 IFOV: ≤ 0.41 mrad, goal: 0.35 mrad

MIRS‑PE‑005 FOV: ≥  ± 1.65°

MIRS‑PE‑006 SNR: ≥ 100 in [2.7—3.2] µm in less than 2 s integration, for 30° solar incidence, at 1.5 au, with Lambertian albedo at 30° phase angle

MIRS‑PE‑007 Modulation transfer function shall be higher than 8% at Nyquist frequency in the spatial direction

MIRS‑PE‑008 MIRS boresight orientation with respect to MMX spacecraft shall be known with an accuracy better than ± 1.4 mrad

MIRS‑PE‑009 MIRS boresight relative orientation between successive acquisitions of an observation sequence shall be known with an accuracy 
better than ± 0.17 mrad
Note: an observation sequence is:
 A complete observation run when the scanner is not used (e.g., Phobos global mapping)
 The observation phase corresponding to a scan when the scanner is continuously rotating during images acquisition (e.g., Mars, 
Phobos landing)

MIRS‑PE‑010 Spectral registration: knowledge better than 5 nm

MIRS‑PE‑011 Absolute radiometric calibration: better than 10%

MIRS‑PE‑012 Relative radiometric calibration: better than 1%

MIRS‑PE‑013 Distortion (spatial): knowledge better than 0.5 pixel. Goal 0.2 pixel
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MIRS data shall be composed of:

• Science data are 2D raw data (Phobos, Deimos, 
Mars).

• Calibration data are 2D images of dark (shutter acti-
vated) and 2D images with the calibration source.

• Housekeepings (temperature, currents and voltage, 
statuses).

The instrument will produce 2D data cubes (λ, y) with 
typically images of 256 × 200  px2.

MIRS has a data interface with the Mission Data Pro-
cessor (MDP) which also has a data interface with the 
MMX spacecraft Management Unit (SMU) and the Mis-
sion Data Recorder (MDR). All telemetry data will be first 
transferred into the MDR via MDP without any compres-
sion. Telemetry data will be reloaded from MDR to MDP 
for the compression process (CCSDS122.0-B-1 standard).

MIRS mechanisms
Three mechanisms are implemented in MIRS.

Scanner mechanism
The along-track scanner mechanism (Fig.  10) is used 
to adjust ground speed with respect to the line of sight 
and also to reach specific phase angles. It is a single-
axis scanner. A cam and lever mechanism transforms 
the rotation of the stepper geared motor to obtain the 
mirror movement. The full mechanical angular science 
stroke is [−  10°, + 10°] (which allows a [−  20°, + 20°] 
optical range for MIRS line of sight). The equipment is 
also able to target a calibration position at + 17°. Mirror 
hinge is made with 2 cantilevered flexural pivots. No 
angular sensor in the equipment. The main character-
istics are:

• Dimensions: 50 × 40 × 80 (mm).
• Mass: 190 g.
• Power: Operating 1.5 W.
• Temperature range: [-50, + 60] °C.
• Position knowledge: ± 0.35 mRad.
• Position resolution: ± 40 µRad in full step mode.

Fig. 7 MIRS block diagram
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Shutter mechanism
The MIRS shutter mechanism (Fig. 11) masks the spec-
trometer entrance slit (1 × 10  mm2) in order to allow 
background acquisitions that can be subtracted to the 
science data. The design has a high space heritage and 
has already been qualified and flown on different space 
instruments: DIRS/Cassini-Huygens, OMEGA/Mars 

Express, VIRTIS/Venus Express and Rosetta, SuperCam/
NASA Mars 2020 mission. The mechanism concept is 
based on a mono-stable actuator using steppers and per-
manent magnets: it keeps one stable position when the 
actuator is un-energized. The main characteristics are:

• Dimensions: 20 × 20 × 24 (mm).

Fig. 8 MIRS OBOX external interface (A and B) and MIRS optical layout (C)

Fig. 9 MIRS EBOX. Assembled view (A), separated view (B)
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• Mass: < 50 g.
• Low power consumption: < 1 W.
• Blade angular stroke: 20° − 0/ + 5°.
• Number of actuations > 1 million
• Temperature range: − 50 °C to 60 °C (has been used 

down to 150 K).

Cover mechanism
The MIRS cover mechanism (Fig.  12) closes the optical 
entrance (~ 50 × 90  mm2) to protect optics from dust 
during landing phases on Phobos surface. The design is 
based on a space qualified Phytron moto-reduction sys-
tem and a 3 bars mechanism. It allows opening and clos-
ing the cover (5 actuations). The cruise stable position is 
obtained with actuator in un-energized mode when the 
connecting rods are aligned. The cover mechanism is also 

equipped with an additional HDRM (hold down release 
mechanism) to prevent failure mode due to dust intru-
sion inside cover or moto-reduction system. The main 
characteristics are:

• Dimensions: 200 × 130 × 45 (mm).
• Mass: < 500 g.
• Power: operating 8 W/30 s, emergency 10 W/10 min.
• Cover angular stroke: 0°–120°.
• Number of actuations: 5.
• Temperature range: − 50 °C to + 120 °C.

MIRS detector
The MIRS detector (Fig.  13) is based on COTS SWIR 
hybrid CMOS detector (Neptune) developed by Lynred 
and delivered with a cryocooler by Ricor (K508 refer-
ence). This assembly has already been used for several 
space missions and is fully qualified. The estimated life-
time of this cryocooler (of about 10,000 h) is well adapted 
to the MIRS operation lifetime requirements (estimated 

Fig. 10 MIRS scanner mechanism

Fig. 11 MIRS shutter mechanism layout

Fig. 12 MIRS cover concept

Fig. 13 Detector assembly
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operations duration of about 2000  h). The volume is 
around 138 × 56 × 70 mm.

The detector format is 500 columns by 256 lines with 
square pixels of 30  µm pitch, sensitive to 0.45–3.8  µm 
made of photovoltaic diode in HgCdTe coupling via 
indium bump to a ROIC allowing different types of read-
out, gain and integration time control.

Its nominal working temperature is 110 K, with active 
cooling. To reduce background a cold pupil around 120 K 
is physically present in the cryostat. Thanks to backside 
illumination and anti-reflection coating optimized in the 
optical bandwidth, the quantum efficiency is up to 0.8, 
insuring high sensitivity, and low PRNU (< 20%). The 
dark current @110  K is given under 62.5 ke/s (n-on-p 
technology).

The ROIC allows the readout of one image frame while 
the next is under integration, two independent readout 
output may be programmed to decrease the readout 
time. The gain of each line may be programmable with 
low and high gain to optimized the readout noise with 
the signal, typically the noise is < 150 e with integrated 
charge of 0.5 Me and < 340 e with 2.5 Me, respectively. 
The maximum readout frequency of each single output 
is 8 MHz, allowing a minimal readout time of 3.2 ms for 
the whole area. The windowing readout mode is possible 
by programming the serial register of the ROIC, 1 indi-
cates a line to be read (then the whole pixel of the line as 
to be red) and 0 indicates a line to be swapped out (dur-
ing the programming of the ROIC, the gain of each line is 
chosen).

For the purpose of MIRS, only one half of the total 
sensitive surface will be used, leading to a readout of 
250 × 256 pixels. The register is programmed at each 
power-on of the ROIC, the integration time is then man-
aged by a single input signal. Proximity electronics inher-
ited from previous instrument will only use one output 
@1 MHz with 12 bits ADC.

The detector has 2 integrated temperature sensors, 
one of them is used for the control of the cryocooler, and 
both will be monitored. A specific proximity electron-
ics close to the cryostat is connected to the detector via 
a flex-ribbon to minimize the thermal link. It will insure 
the management of the bias polarization of the detec-
tor, the digitalization of the video signal and temperature 
sensor and the management of the cryocooler. A specific 
thermal strap links the cryocooler to a dedicated radiator 
to dissipate the 4–8 W needed to cool down the detector 
head.

Thermal architecture
OBOX is an external onboard subunit and thus sees 
spacecraft external thermal environment (Fig. 14). OBOX 
is located on an MMX bracket on which it is thermally 

insulated in a semi enclosure (on the + Y side of the 
spacecraft (S/C)). OBOX lateral sides are radiatively 
insulated, thanks to MLIs. OBOX is split in two thermal 
zones: a “warm” zone containing the cryocooler and a 
“cold” zone containing the spectrometer and the optical 
components.

The cryocooler is a Ricor K508 Stirling rotary cryo-
genic cooling machine which maintains the FPA at 110 K 
during science operations. OBOX + Y side has a “warm” 
radiator which evacuates the cryocooler heat dissipation. 
The cryocooler and “warm” radiator assembly are ther-
mally insulated from the spectrometer.

A “cold” radiator is providing to the spectrometer an 
operating temperature below 250  K. OBOX mecha-
nisms are thermally insulated from the optical bench and 
directly linked to this radiator. A survival system com-
posed by heaters and mechanical thermal switches pre-
vents OBOX from being colder than 230 K when MIRS is 
not operating.

EBOX is an internal onboard subunit. It is located 
inside MMX cavity and is thermally coupled to a S/C 
internal panel thanks to several screws and to thermal 
filler. EBOX is black painted in order to be radiatively 
coupled with S/C internal cavity walls.

Both MIRS subunits have one thermometer read by 
MMX system at any time, and several internal sensors 
read by MIRS when operating.

Electrical architecture
MIRS is composed of three electronics boards: one 
located inside the optical box (OBOX), and the two oth-
ers inside the electronics box (EBOX). These electronics 
boards (Fig. 15) are:

• The low-voltage power supply board (LVPS) which 
generates, from an unregulated 32–50 V primary bus 
(provided by the power distribution control unit), 
all secondary voltages needed to supply the differ-
ent subsystems of MIRS instrument. This board is 
located inside the EBOX.

• The interface control unit board (ICU) which 
accommodates a reprogrammable FPGA to manage 
raw data handling and storage, and TM/TC com-
munication with the mission data processor (MDP) 
through a redundant SpaceWire link (SpW). The 
ICU board controls all mechanisms (scanner, dust 
cover, shutter), switch on/off the calibration lamp, 
controls the Neptune detector and its readout 
electronics. The ICU includes also two full bridges 
motor drivers to control step motors dedicated to 
dust cover and scanner, and a slow ADC for house-
keeping monitoring (component temperatures, sec-
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ondary voltages and primary current). This board is 
also located inside the EBOX.

• The readout electronics board of the MWIR detec-
tor. This board, called proximity electronics (PE), 
which accommodates a low-power 12-bit ADC at 
1 MSps to sample one video output of the detec-
tor. A video amplifier is implemented on this board 
to match the dynamics of the detector signal to the 
ADC full-scale. The ADC integrates an 8-chan-
nel multiplexer, and the other channels are used to 
monitor the temperature of each mechanism and 
the spectrometer through a PT100 temperature 
sensor. A particular attention is given to PE board 
in order to provide very stable voltages for detec-
tor polarization by the use of linear regulator and 
common mode and differential filters. This board is 
located inside the OBOX, as close as possible to the 
detector.

Three shielded wire harnesses are used to connect the 
EBOX to the OBOX. The first one is used to provide all 
power signals to each mechanism, the two others con-
nect directly the ICU board to the PE board for data and 
power signals. Low-voltage differential signaling (LVDS) 

transceivers are implemented on ICU and PE boards for 
digital data link transmission.

An 8-layer flex PCB is used to connect the PE board to 
both detector connectors: the first one (A) for analogue 
signals and the other one (B) for digital signals.

Digital electronics
The MIRS digital electronics is based on a FPGA device 
(Fig.  16), a NG-Medium from NaNoXPlore, and an 
embedded processor (soft IP, 8051 family). The main 
functions to be handle are communication with the MDP 
through Space Wire RMAP protocol, command diction-
ary support with TC/TLM (science data, housekeeping 
telemetry, and status telemetry), control of MIRS subsys-
tems (detector and cryocooler, shutter, calibration lamp, 
scan mirror, dust cover), algorithm for image auto-expo-
sure, data acquisition (2D images and housekeeping), and 
data processing.

The specificity of the design is its ability to perform the 
digital signal processing on 2D images (including image 
stacking, dark subtraction, region of interest extrac-
tion, spatial binning, spectral binning), on the fly, dur-
ing detector read out and image transfer on Space Wire 
link. Additionally, detector readout and image transfer 

Fig. 14 MIRS thermal architecture
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are performed during detector integration, in order to 
avoid (or minimize, depending on the integration time 
selected) dead time in the observation. The embedded 
processor is responsible for determining the best detec-
tor integration time and stacking factor to optimize SNR 
and avoid blurred images (Fig. 17). Also the processor has 
the capability to compute and update the scanner param-
eters (e.g., speed) during observations.

MIRS performances
MIRS performances have been simulated considering:

• Spectral resolution and spectral sampling.
• Spatial resolution.
• Signal-to-noise ratio.

In order to meet the spectral resolution requirement, 
the slit width is chosen so that its image on the focal 
plane convolved by the instrument PSF is spread on two 
pixels. The current optical design performances yield to a 
spectral sampled resolution less than 22 nm.

The spatial resolution is linked to the optical quality 
specified in terms of MTF (modulation transfer function) 
amplitude at Nyquist frequency. The requirement is > 8% 
over the field of view and spectral range. The instru-
ment MTF is assessed by product of the optical FTM, the 
detector FTM and the smearing FTM.

Values @ Nyquist frequency:

• FTM optics: 0.4 (for both directions).
• FTM detector: 0.56 (for both directions).
• FTM smearing: takes into account S/C jitter (0.01° in 

2 s) and Vsat.
• Across-track (S/C jitter only): 0.5 pixel ≥ instrument 

FTM = 0.2
• Along-track worst case: 0.5 pixel (S/C jitter) + 1 pixel 

(Vsat)  ≥ instrument FTM = 0.13.

Therefore, the requirement is met for all cases.
The SNR is assessed considering:

• Spectrometer temperature: 250 K.
• Detector temperature: 110 K.

Fig. 15 MIRS electrical architecture



Page 20 of 28Barucci et al. Earth, Planets and Space          (2021) 73:211 

• Cold stop at 120 K.
• Reflected solar flux at 1.5 AU.
• Target albedo
• Lambertian surface.
• 30° sun illumination angle.
• Optical transmission.
• Detector performance (quantum efficiency, dark 

current, readout noise, quantification noise).

The SNR is limited by the maximum integration time 
allowable for an observation.

To calculate the maximum integration time, we need 
to consider two limits:

• Detector saturation that limits the elementary 
acquisition integration time,

• Pixel scroll due to MIRS movement with respect to 
the target in order to preserve the spatial resolution 
that limits the number of accumulations of elemen-
tary acquisitions.

Fig. 16 FPGA general architecture

Fig. 17 Digital electronics detailed architecture
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For Phobos observations, the typical SNR profile is 
reported in Fig.  18. Note that SNR can be efficiently 
improved by integrating photons during a longer dura-
tion. For example, on QSO-M, the pixel scroll is higher 
than 3 s on 85% of the orbit.

For Mars observations, the different SNR profiles for 
a single accumulation are shown in Fig.  19. Depending 
on the various cases, the integration time is between 75 
and 130 ms. The geometric nadir resolution is 2 km on 
ground (requirement is 10  km) so a spatial binning is 
possible to increase the SNR and save data volume.

MIRS observations
For several reasons, among which the fact that Pho-
bos sphere of influence is very close to its surface, pure 
Keplerian motion of a satellite around it is not possible. 
Quasi-satellite orbits (QSOs) are therefore used and cor-
respond to an MMX orbit around Mars with carefully set 
differences with Phobos orbit in order to induce a relative 
movement of MMX spacecraft around Phobos. Altitude 
varies during each revolution of MMX around Phobos 
and QSOs with various altitude ranges are defined in 
order to allow both global mapping and detailed analysis 
of landing site candidates (see paper by Nakamura et al. 
2021).

Phobos
Phobos spectral observation by MIRS will consist of:

• A global mapping, performed from High and 
Medium altitude (see Nakamura et  al. 2021 for 
orbit definition), to determine Phobos composition.

• A detailed observation of the landing site candidates, 
from medium and low altitude, to identify their ther-
mal and compositional characteristics and provide 
the necessary information to select the 2 most inter-
esting sites.

• A close observation of the 2 landing sites, during the 
vertical descent phase, to have a detailed spectral 
map to contribute to the selection of the sampling 
spot.

Global mapping
The first 2  months of Phobos observation will be per-
formed from high- and medium-altitude equatorial 
quasi-satellite orbits (QSO), at a time when Sun eleva-
tion on Phobos (β angle) is low, which is favorable for the 
observation of North and South hemispheres. Priority is 
given to the zone within ± 30° latitudes, but higher lati-
tudes (poles observation) are also important to settle the 
question of Phobos origin.

On the maps in Fig.  20, it is shown that high-resolu-
tion coverage of Phobos can be achieved by MIRS from 
medium equatorial quasi-satellite orbit. Coverage can be 
global from a 3D quasi-satellite orbit that allows visibility 
of high latitudes.

Fig. 18 Typical SNR profile for Phobos—QSO‑M in 2‑s integration time
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Landing sites candidates observation
Landing site candidates will be observed from medium 
(QSO-M) and low altitude equatorial quasi-satellite 

orbits (QSO-LA, -LB’, -LC’, Table 3). They will be in a flat 
zone for safe MMX landing and within latitudes ± 30°. 
Analysis of data collected from a given QSO will allow 

Fig. 19 Mars SNR in different radiance cases. SP#1: simulated MIRS SNR for the average Mars radiance observed by VIRTIS during Rosetta flyby 
(Coradini et al. 2010). SP#2: SNR for simulated Mars radiance at Ls 150° over dark highlands. SP#3: SNR for simulated Mars radiance at Ls 270° over 
Hellas Basin. SP#4: SNR for simulated Mars radiance at Ls 60° over the north plains

Fig. 20 Left: example of geometric resolution for equatorial QSO‑M Nov 2025 (β = 3°). Most of Phobos is covered with high resolution. Zones in 
white cannot be observed because of MMX equatorial trajectory and Phobos flat shape on highest latitudes (poles). Right: example of geometric 
resolution for 3D‑QSO‑M Sep–Oct 2026 (β = − 6°). Highest latitudes (poles) can be observed thanks to MMX 3D trajectory that allows visibility of 
high latitudes
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to select the remaining best candidates to observe on the 
next QSO. It is therefore very important to ensure that 
data volume and data downlink rate are compatible with 
the timely analysis and selection process.

The lower the altitude is, the faster MMX relative speed 
to Phobos is. Therefore, for low-altitude QSOs MIRS 
along-track scanner will be used during observations to 
reduce the ground speed of MIRS Line of Sight projec-
tion on Phobos so that it is compatible with geometric 
pixel resolution and integration time.

In order to get as much information as possible for 
spectrographic and thermal inertia characterization, each 
site will be observed with several couples of phase angle 
and solar local time, in addition to the couple 10°/12 h.

Landing sites close observation during descent
During the 2 descent phases, MIRS will perform two 
50-m large spectrographic maps, from altitudes 2  km 
down to 1 km, with a geometric resolution between 0.7 
and 0.35  m. Additionally, to contribute to the selection 
of the sampling spot that will be chosen within a 2-m 
square zone centered on landing site, MIRS will perform 

a finer map from lowest possible altitude to get the best 
resolution.

Mars
In order to better understand the transport processes of 
dust and water between atmosphere and surface, large 
zones of Mars atmosphere will be observed several times 
with a time-resolution below 1  h. During most of its 
3-year mission, MMX trajectory will be in quasi-satellite 
orbit around Phobos, which is very similar to Phobos 
orbit around Mars: nearly equatorial and circular, with 
a period of 7 h40’. Consequently, Mars observation slots 
will occur every 7 h40’ at best and will last a maximum 
of 3 h50’ (corresponding to the time MMX is above Sun-
lighted part of Mars).

Each observation of a zone will consist of a series of 
west–east stripes: MIRS along-track scanner will move 
the line of sight along west–east while MMX spacecraft 
maneuver will perform the cross-track offsets before the 
acquisition of each stripe. To optimize coverage, it is pro-
posed that MMX compensates during observations the 
yaw offset of the stripes induced by the small inclination 
of MMX orbit.

In Fig.  21, we present 3 examples of observations: on 
the left, a zone on the south hemisphere is observed 3 
times with a time resolution of 45 min. On the center, a 
central zone is observed 5 times with a time resolution 
of 30 min: the longer the total time span is, the shorter 
the coverable west–east span of the zone is. On the right, 
a single observation of most of Mars disk lighted zone 
is performed. To gather further information on Mars 
atmosphere composition, MIRS will also perform various 
kinds of limb observations.

Table 3 Different orbits for landing sites selection

QSO Period β (deg) Distance to 
Phobos center 
(km)

Number of landing 
site candidates to 
observe

M Mid‑Nov/
mid‑Dec 
2025

3 50 × 100 50

LA Mar 2026 − 21 30 × 50 20

LB’ Apr 2026 − 25 22 × 32 10

LC’ Jul 2026 − 17 20 × 27 5

Fig. 21 Example of Mars observations on QSO‑M Dec 2027. Left: 3 observations of South hemisphere with 45 min time resolution: 1h30 time span. 
Center: 5 observations of a central zone with 30‑min time resolution: 2 h time span. Right: global coverage of lighted part of Mars
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Deimos
Deimos being around 2.5 times farther from Mars center 
than Phobos, it will be observed during multiple fly-bys, 
from the elliptical orbits of MMX around Mars (Fig. 22). 
Current baseline is that MMX will remain on each of the 
three foreseen orbits the necessary time to perform ten 
Deimos fly-bys.

It is a real challenge for observations as MMX relative 
velocity to Deimos being very high, distance will evolve 
very quickly, reducing the duration of observation slots 
with a geometric resolution below 100 m. A key issue is 
the setting of the minimum distance to Deimos: the far-
ther the safer for MMX trajectory, the shorter the better 
for geometric resolution.

Conclusions
MIRS is an imaging spectrometer that uses the push-
broom acquisition principle. The near-infrared wave-
length range in 0.9–3.6 µm has been chosen to optimize 
the study the Phobos and Deimos surface composition as 
well Mars atmosphere with a spatial resolution of 20  m 
or better on Phobos surface. It will be also a fundamental 
instrument to evaluate sampling site candidates.

For Phobos, MIRS will allow to obtain a global map-
ping, performed from high and medium altitude. It will 
allow to investigate the surface composition as well the 
thermal characteristics and to provide, with observa-
tions during the closer orbits, the necessary informa-
tion to select the most interesting sampling sites. MIRS 
will allow also to have a detailed spectral map to char-
acterize the sampling spot with the close observation of 
the two landing sites, during the vertical descent phase 
down to a distance from the surface of at least 400 m. 
MIRS will allow to characterize the Deimos surface 

composition to investigate the compositional analogy 
with Phobos. MIRS will provide the first opportunity 
for investigating the Martian diurnal variation and the 
transport processes of dust and water vapor with time-
resolved pictures of the atmospheric phenomena from 
the equatorial orbit.

The MIRS instrument together with the MMX payload 
and sample analysis will be able to clarify the origin of the 
Martian moons and may also be able to elucidate the pro-
cess of the evolution of the Mars environment.
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