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Abstract. As part of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field campaign, which took

place in January and February 2020 over the western tropical Atlantic near Barbados, the French SAFIRE ATR42 research air-

craft conducted 19 flights in the lower troposphere. Each flight followed a common flight pattern that sampled the atmosphere

around the cloud-base level, at different heights of the subcloud layer, near the sea surface and in the lower free troposphere.

The aircraft’s payload included a backscatter lidar and a Doppler cloud radar that were both horizontally oriented, a Doppler5

cloud radar looking upward, microphysical probes, a cavity ring-down spectrometer for water isotopes, a multiwavelength

radiometer, a visible camera and multiple meteorological sensors, including fast rate sensors for turbulence measurements.

With this instrumentation, the ATR characterized the macrophysical and microphysical properties of trade-wind clouds to-

gether with their thermodynamical, turbulent and radiative environment. This paper presents the airborne operations, the flight

segmentation, the instrumentation, the data processing and the EUREC4A datasets produced from the ATR measurements. It10

shows that the ATR measurements of humidity, wind and cloud-base cloud fraction measured with different techniques and

samplings are internally consistent, that meteorological measurements are consistent with estimates from dropsondes launched

from an overflying aircraft (HALO), and that water isotopic measurements are well correlated with data from the Barbados

Cloud Observatory. This consistency demonstrates the robustness of the ATR measurements of humidity, wind, cloud-base
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15 cloud fraction and water isotopic composition during EUREC4A. It also confirms that through their repeated flight patterns, 

the ATR and HALO measurements provided a statistically consistent sampling of trade-wind clouds and of their environment. 

The ATR datasets are freely available at the locations specified in Table 11.

1 Introduction

The interaction of trade-wind clouds with their environment is at the center of fundamental questions such as the role of clouds20

in climate sensitivity. The EUREC4A field campaign, which took place in Jan-Feb 2020 near Barbados, has been designed

specifically to address this issue (Bony et al., 2017). During one month, four research aircraft, four research vessels, ground-

based observations and a myriad of autonomous observing systems characterized clouds and the environment surrounding

them over a large range of space scales (Stevens et al., 2021). To elucidate the couplings between clouds and circulation, the

nucleus of the experimental strategy was based on the coordinated and repeated flight plans of two core platforms : the High25

Altitude and Long-range Research Aircraft (HALO) operated by the German Aerospace Center (Konow et al., 2021), and the

ATR-42 (hereafter referred to as ATR) operated by the French Service des Avions Français Instrumentés pour la Recherche

en Environnment (SAFIRE). These airborne operations were augmented with other platforms operating within the same area,

including the Twin Otter operated by the British Antarctic Survey (Blyth et al, in prep), the P-3 aircraft operated by NOAA

(Pincus et al., 2021), a Barbadian aircraft operated by the Regional Security System (RSS), the BOREAL and Skywalkers30

UAVs operated by Météo-France, and the CU-RAAVEN UAV operated by the University of Colorado (de Boer et al., 2021). In

addition, ground and ship-based observations from the Barbados Cloud Observatory (Stevens et al., 2016) and a research vessel

(R/V Meteor) were continuously documenting the atmospheric state on the western and eastern sides of the ATR operations

area, respectively.

While HALO was flying at an altitude near 10 km to observe the cloud field from above and to document the environment35

of clouds with dropsondes, the ATR was flying in the lower troposphere to characterize clouds and their environment through

in-situ and remote sensing measurements. To help understand the physical processes that control the climate change cloud

feedbacks and the mesoscale organization of shallow convection, the primary mission of the ATR was to measure the cloud

fraction near cloud base and the dynamical and thermodynamical environment of clouds from the turbulent scale to the meso

scale (Bony et al., 2017).40

Due to the nature of the trade-wind regimes, fullfiling this mission constitutes an experimental challenge. First of all, the

cloud field in these regimes is composed of very small and thin broken clouds, with an expected cloud fraction at cloud base

of only a few percent. Accurate measurements of the cloud-base cloud fraction therefore require both a good sensitivity of the

instruments to the presence of clouds, and an adequate sampling of the cloud field. Secondly, the humidity field is associated

with extremely large and steep vertical gradients, ranging from 80% near the surface, to 100 % within clouds, to less than 5 %45
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Figure 1. The ATR coming back from its successful EMI flight in Barbados on Jan 23 2020.

above the trade inversion (Stephan et al., 2021). These gradients favour phase changes and the deposition of cloud droplets on

airborne sensors, which can affect the response time and accuracy of the measurements.

These challenges were met by fitting the aircraft with a wealth of instrumentation which, in some cases, was used in an

airborne configuration for the very first time. The instrumentation was also chosen to promote redundancy or complementarity

of sensors and measurement techniques. This redundancy was not only important for the post-processing and calibration of the50

data, it was also essential to assess the robustness of the ATR measurements of cloud fraction, humidity and winds.

The goal of this paper is to provide an overview of the operations and measurements of the ATR during EUREC4A. Section 2

presents the aircraft, the operations, the flight patterns and their segmentation, and the weather conditions during the flights.

Section 3 presents the ATR instrumentation, ranging from the core instrumentation of the aircraft to the instruments that were

specifically devised for EUREC4A, and provides a brief description of the data post-processing and of the associated datasets.55

The focus is put on the datasets which have not been subject to specific data papers. Section 4 assesses the internal consistency

of ATR measurements regarding the cloud-base cloud fraction, humidity and wind, and their consistency with observations

from other platforms. Links to the data are provided in Section 5 and a brief summary and conclusions are presented in

Section 6.

3

https://doi.org/10.5194/essd-2021-459

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 4 January 2022
c© Author(s) 2022. CC BY 4.0 License.



2 Flights and operations60

2.1 A challenging start

The SAFIRE ATR42 (F-HMTO) is a turbo-propeller aircraft flying in the lower troposphere (its ceiling is at about 7.5 km)

which has been modified in many ways to fit scientific research purposes. The preparation of the ATR for the EUREC4A

campaign was associated with significant challenges.

First of all, the ATR homebase is in Toulouse (in the south of France) and to join the Carribean during boreal winter,65

the aircraft had to follow the historical route of the Aerospostale through Tenerife (Canary islands), Prahia (Cape Verde) and

Fortaleza (Brazil). As the crossing of the Atlantic ocean required an exceptionally long flight (8 hours) compared to the maximal

autonomy of the aircraft (8.5 hours), the ATR had to be kept as light as possible during the transit. For this purpose, most of

the EUREC4A instruments and aircraft equipment had to be unmounted from the ATR in Toulouse and shipped to Barbados

well in advance of the transit. The final segment from Fortaleza and Barbados was also at the limit of the aircraft autonomy.70

Unfavourable wind conditions imposed a refuel in Cayenne (French Guyana), but the ATR finally landed in Barbados five days

after its departure from Toulouse. It was the most remote campaign ever accomplished by this aircraft.

Second, extraordinary circumstances independent of SAFIRE and EUREC4A considerably delayed the maintenance and

the upgrade of the aircraft avionics during the last months before the campaign. As a result, and for the first time in SAFIRE

history, the full integration of the campaign’s scientific payload into the aircraft could not take place in Toulouse as planned75

but had to be accomplished on site. Most of the aircraft equipment and scientific instruments were mounted on the aircraft

after the ATR landed in Barbados on Jan 19, and the whole EUREC4A payload flew for the first time in the ATR during the

Electromagnetic interference (EMI) flight which took place in Barbados on Jan 23. Although the EMI test was successful, this

first flight with the whole EUREC4A instrumentation revealed a number of problems that had to be fixed. Therefore, the ATR

did not participate in the first coordinated flight of the EUREC4A campaign on Jan 24 but planned another test flight on Jan80

25 (RF02), including special maneuvers for calibration purposes, and started coordinated missions with the other aircraft on

Jan 26. On Jan 26 unfortunately, the Inertial Navigational System (INS) of the scientific instruments showed malfunctioning.

A solution was found, requiring however that for the rest of the campaign, the acquisition rate of navigation data be recorded

at 50 Hz instead of 100 Hz.

Despite these challenges to prepare the aircraft for the campaign, the ATR conducted 19 research flights on 11 operation85

days from Jan 25 to Feb 13 2020 (totalling approximately 82 flight hours, Table 1), and successfully fullfilled the scientific

mission that it aimed to accomplish.

2.2 Flight patterns

The ATR generally performed two flights per day in coordination with the other aircraft. Each research flight was typically 4.590

or 5 hour long, including a transit time from the airport to the EUREC4A circle of about 20 min in each direction. The refuel
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ATR Date Take-off Landing R-pattern L-pattern S-pattern Ferry legs Comment

flight MM-DD UTC UTC Rb/Rt: cloud base/top subcloud-layer near-surface above clouds

RF02 01-25 13:43 17:42 623 m (2Rb) 537, 345 m 4835,4505,2260,2905 m test, no HALO

RF03 01-26 11:59 16:04 780 m (2Rb) 579, 404 m 62 m 2575, 4510 m INS failure

RF04 01-26 16:57 21:26 817 m (3Rb) 613, 398 m 64 m 2570, 1600, 965 m

RF05 01-28 20:36 00:50 669 m (3Rb) 495, 328 m 3215, 2555, 1925 m night landing

RF06 01-30 11:11 15:31 711 m (3Rb) 526, 301 m 62 m 2575, 1625, 640 m HALO on R1

RF07 01-31 14:59 18:48 630 m (3Rb) 383, 203 m 2605, 3235 m

RF08 01-31 19:49 00:01 613 m (3Rb) 464, 306 m 2585, 3240 m night landing

RF09 02-02 11:34 15:37 775 m (2Rb) 621, 314 m 2575, 3230, 1105 m

RF10 02-02 16:44 21:03 781 m (3Rb) 608, 307 m 61 m 3220, 3220, 2580 m

RF11 02-05 08:45 12:59 1900,746 m ( Rt, 2Rb) 552, 276 m 64 m 3215, 3235 m night takeoff

RF12 02-05 13:48 18:04 790 m (3Rb) 513, 235 m 66 m 2265, 3225 m

RF13 02-07 11:30 15:51 2128,1051 m (Rt, 2Rb) 615, 316 m 65 m 2585, 3230 m

RF14 02-07 17:20 21:42 855 m (3Rb) 659, 324 m 61 m 2570, 3210 m

RF15 02-09 08:37 13:08 822 m (3Rb) 621, 304 m 63 m 3210, 4510 m night takeoff

RF16 02-09 14:03 18:23 792 m (4Rb) 68 m 2600, 4495 m RSS2

RF17 02-11 05:55 10:21 1863, 717 m ( Rt, 2Rb) 583, 273 m 4495, 2570 m P33, night flight

RF18 02-11 11:30 15:51 774 m (3Rb) 551, 279 m 66 m 4035, 2420 m

RF19 02-13 07:35 11:52 1985, 801 m (Rt, 2Rb) 600, 303 m 69 m 2250 m night takeoff

RF20 02-13 13:14 17:37 863 m (2Rb) 604,297,154 m 69 m INS failure

Table 1. List of ATR flights with a brief description of the main flight patterns: the mean approximate height (and number) of rectangles

flown around cloud-base (Rb) or cloud-top (Rt), the height of the L-patterns flown near the top and the middle of the subcloud-layer, the

height of the near-surface leg (S-pattern) and of the Ferry legs flown above clouds. 1 On Jan 30 2020, from 11:42 to 12:32 UTC, HALO flew

two race-track patterns above the ATR rectangle. 2 On Feb 9 2020, from 14:32 to 17:00 UTC, the ATR flew within the field of view of the

RSS aircraft. 3 On Feb 11 2020, from 4:17 to 7:25 UTC, the P3 flew two circular patterns within the EUREC4A circle at an altitude of about

7.5 km and dropped 12 sondes along its first circle (from 4:17 to 5:55 UTC) just before the ATR take-off.

in Barbados between two flights was about one hour long, so that within 90 min, the ATR was back in the measurement zone

for a second mission (Table 1). While the ATR was flying in the lower troposphere, HALO was observing the cloud field from

aloft and was droping sondes along three consecutive circles of about 200 km diameter (Konow et al., 2021).

The ATR’s mission was primarily focused on characterizing the cloud-base cloudiness, subcloud-layer properties and their95

signals of spatial organisation at the turbulent scale and at the mesoscale. For this purpose, each flight was composed of a basic

set of patterns near cloud-base and within the subcloud-layer that was repeated independent of meteorological conditions. This

repetition was motivated by the wish to sample the diversity of boundary layer conditions without any bias, and to compare
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Figure 2. (left) Longitude-latitude trajectories of the ATR coloured by the flight altitude (for repetitive flight patterns such as the rectangles,

only the last repetition is visible due to overlap). The dashed circle represents the EUREC4A circle. The ATR track is shown for RF11 (Feb

05) on top of a satellite snapshot of the domain (57-60oW, 11.8-14.8oN) derived from the visible channel of GOES-16 at about mid-flight

time (the tracks of all other flights are shown on Fig. B2). (right) 3D representation of the ATR trajectory during the same flight (RF11),

colored by the relative humidity measured at the flight level.

the flights with each other. Then, depending on flight and weather conditions, a few additional patterns were flown near cloud

top, at cloud-base and/or near the sea surface. Owing to the sharp vertical humidity gradients of the atmosphere and the need100

to minimize the instruments’ memory effects, and due to the abundant presence of sea salt near the ocean surface which can

dirty the instruments’optics, the patterns were preferentially flown from top to bottom.

Shortly after takeoff, the ATR ferried towards the EUREC4A circle generally at an altitude of 2.5, 3.5 or 4.5 km, so above or

around the trade inversion level (Fig. 2). Once arrived over the measurements area, it started to fly large rectangles (or race-track

patterns, also referred to as ’R-patterns’) of about 120 km × 20 km, perpendicular to the mean Easterly wind. The width of the105

rectangle was chosen so as to best sample the cloud field within the rectangle area using horizontal lidar-radar measurements

(section 3.5.3). At least two rectangles were flown around cloud base (around 750 m), at an altitude determined with the help

of the ground-based support (section 2.3). When an extensive stratiform cloud layer was present near the trade-inversion level

(as during RF11, RF13, RF17 and RF19), the ATR could fly an additional rectangle around cloud top (near 2 km). Otherwise

it flew an additional rectangle at cloud-base to increase the cloud-base sampling. The flight trajectories and patterns associated110

with each flight are shown in Figs. B1 and B2.
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Then, to characterize the turbulent and mesoscale organization of the subcloud-layer, the ATR flew two L-shape patterns

within the subcloud-layer, one near the top of the subcloud-layer (generally around 600 m) and the other near the middle of

the subcloud-layer (around 300 m). As the organization of the boundary layer can be anisotropic and dependent on the wind

direction, each L-pattern was composed of two straight legs perpendicular to each other (each leg being about 60 km long): one115

along-wind and one cross-wind. Finally, in daylight conditions a near-surface leg of about 40 km was performed at an altitude

of about 60 m before returning to the Grantley Adams International Airport (BGI) in Barbados through another Ferry leg in

the free troposphere.

A few flights were associated with particular features:

– During RF06 (Jan 30), from 11:42 to 12:32 UTC, HALO flew (twice as fast as the ATR) two race-track patterns above120

the ATR rectangle at an altitude of about 10 km; two dropsondes were dropped at the extremities of the HALO race-track.

This coordinated flight will help compare the cloud detection and characterization performed with the HALO and ATR

measurements.

– During RF16 (Feb 9th), the ATR flew within the field of view of the Regional Security System (RSS) aircraft, which was

flying parallel to the ATR at about the same altitude. On this occasion, the ATR flew 4 rectangles around cloud base. The125

coordination between the two aircraft will help compare the cloud detection performed with the ATR instruments with

the high-resolution pictures taken by the visible camera of the RSS aircraft.

– During RF17 (Feb 13th), the ATR flew during night time. This flight was coordinated with the P-3 aircraft (Pincus et al.,

2021), that dropped sondes (from an altitude of about 7.5 km) along the EUREC4A circle right before the ATR take-off.

2.3 Ground support130

The main role of the ATR during EUREC4A was to measure the cloud fraction and the thermodynamical, dynamical and

microphysical properties of the atmosphere at the interface between the subcloud layer and the cloud layer (Bony et al., 2017;

Stevens et al., 2021). A ground crew estimating cloud base height using real-time observations from several observing platforms

near and within the targeted flight area provided tactical support for each flight mission. It advised the flight planning about the

cloud-base level and about the relevance of flying at the top of the cloud layer when an extensive layer of stratiform cloudiness135

was present near the trade inversion.

As illustrated by Fig. 3, the targetted cloud-base level was not the lifting condensation level (LCL) but the height of the

maximum near-base cloud fraction (zCFmax). This level corresponds to the level where most clouds in the sampling area have

reached their base level, and it is most adequately defined by the height at which a cloud radar reports a maximum cloudiness

near cloud base. The cloud-base height distributions from the ceilometer and estimates of the mixed layer top, sub-cloud layer140

top (h), and lifting condensation level (LCL) from soundings and surface weather data provided further guidance for choosing

the correct cloud base level.

The evening before the flight, and again 2 hours before take-off, a pre-flight estimation of the flight levels was performed

based on near real-time cloud radar, ceilometer, radiosonde and surface weather data from the Barbados Cloud Observatory
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Figure 3. Schematic representation of the trade-wind layer with the different levels considered as part of the ground support to determine

the cloud-base level of the ATR, plus sometimes the cloud-top level. The subcloud layer top, referred to as h or zSC, is defined as the level

of neutral buoyancy of a parcel originating from the surface layer with a 0.2 K excess in θv (section 2.5); zCFmax is the level of maximum

near-base cloud fraction (as would be seen for instance in ground-based radar observations), cbhceil is the peak of the distribution of the

first-detected cbh of the ceilometer, zRHmax is the level of maximum relative humidity (RH) at the mixed layer top, and LCL is the lifting

condensation level. zinv,RH and zinv,θv are the inversion heights based on the maximum gradients in RH and θv , and zCFinv is the second

level of maximum cloud fraction around the inversion.

(BCO, Stevens et al. (2016)) and R/V Meteor, as well as satellite imagery from the GOES-16 Advanced Baseline Imager145

(https://doi.org/10.7289/V5BV7DSR).

During the flights, real-time ATR lidar backscatter quick-looks and visual impressions from the pilots, as well as real-time

information from the HALO dropsondes and lidar (WALES) quick-looks (Konow et al., 2021) were used to fine-tune the flight

level. To provide spatial context between the East-West anchor points (R/V Meteor on the eastern side and BCO on the western

side), satellite imagery and HALO data were used to anticipate horizontal gradients in the levels. In case the cloudiness was150

associated with very shallow clouds and the cloud-base height was exhibiting strong gradients across the sampling area, a slight

adjustment in the cloud-base flight level along the rectangle or in between subsequent rectangles was allowed to improve the

sampling of clouds. Occasionally, the cloud-base level was slightly adjusted between the northern and southern halves of a

given rectangle. However it was never adjusted between the eastern and western sides of the rectangle, so that the cloud field

within the rectangle was sampled at the same height by the horizontal lidar-radar measurements performed from opposite sides155

of the rectangle (see Chazette et al. (2020) for an illustration of the sampling by horizontal lidar measurements).

At the beginning of the last rectangle of each flight, the level of the L-patterns to be flown within the sub-cloud layer was

determined. The first L-pattern was flown near the top of the subcloud layer, about 150-200 m below the lowest cloud base leg

(to make sure no cloud is present), and the second L-pattern was flown near the middle of the subcloud-layer. Finally, shortly

before the ferry back to Barbados and when daylight was still present, the ATR flew short straight legs near the sea surface160

(S-pattern).

Over the campaign, the cloud base flight level ranged from about 600 to 850 m, the L-pattern near the top and the middle of

the subcloud-layer were flown around 500-600 m and 200-400 m, respectively, and S-patterns were flown about 60 m above

the sea surface (Table 1, Fig. 4).
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Figure 4. Vertical distribution of the number of R-, L- S- and Ferry patterns flown by the ATR during the whole EUREC4A campaign. Also

reported are the ranges of subcloud-layer top heights (zsc) and inversion heights (zinv) derived from dropsondes (Table 3).

2.4 Flight segmentation165

To aid in the analysis of the flight data, each flight is segmented into non-exclusive timestamps summarized in a set of YAML

files (Table 2). Different kinds of segments are defined, that correspond to basic patterns (‘R-pattern’, ‘L-pattern’, ‘S-pattern’)

or to particular phases of the flight (e.g., ‘Ferry’). The vertical level at which these patterns are flown (at cloud-top, cloud-

base, near the top of the subcloud-layer, near the middle of the subcloud-layer, near the sea surface, above or below the trade170

inversion level) is also indicated as a ’note’ in the YAML files. The vertical excursions of the ATR are referred to as ’Profiles’,

and the direction (upward or downward) in which they were realized is also reported. An example of flight segmentation is

shown for RF11 (Fig. 5). The vertical and horizontal trajectories of each flight are shown in Figs. B1 and B2.

The characterization of the turbulence ("T") requires to consider straight and stabilized legs of at least 30 km (Lenschow

et al., 1994). For this reason, the R- and L-patterns were also associated with a finer segmentation in straight horizontal legs175

of equal duration and length (Fig. 6 from Brilouet et al. (2021)): short segments of approximately 30 km (5 min flight) are

referred to as ‘T-shortlegs’, and longer segments of approximately 60 km are referred to as ‘T-longlegs’. The longest stabilized

segments in one direction are also reported as ’T-longestlegs’; in contrast with the ’T-shortlegs’ or ’T-longlegs’, these segments

can have various lengths, ranging from 60 to 125 km.
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Figure 5. (a) Time-height trajectory and (b) longitude-latitude trajectory of the ATR during RF11 (Feb 5th, 2020), illustrating the different

patterns and segments of the flight. Also reported is the subcloud-layer top diagnosed from HALO dropsondes (Table 3).

Figure 6. Segmentation of the R- and L-patterns into straight and stabilized segments of equal duration and length for turbulence studies

(T-shortlegs: 30 km/5 min in red, referred to as rnx or lnx where n is the pattern number, T-longlegs: 60 km/10 min in purple, referred to

as RnX or LnX ). Also reported are the longest stabilized legs in one direction (T-longestlegs, 120 km/20 min or 60 km/10 min, in green,

referred to as RLi or LLi where i = 1,..P where P is the number of such segments for the flight). A similar nomenclature is used for the

segmentation of the S-patterns. See Table 2 for the definition and the nomenclature of these segments. After Brilouet et al. (2021).
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kind note name geometry number

R-pattern
cloud-top

Rn rectangle of 120 km × 20 km
4

cloud-base 50

L-pattern
top-subcloud-layer

Ln 2 perpendicular legs of 60 km (10 min)
18

mid-subcloud-layer 22

S-pattern near-surface Sn 40 km (7 min) 14

Ferry

above-inversion ferry leg AIFn 35

below-inversion ferry leg BIFn 7

in-cloud ferry leg ICFn 3

Profile
upward UPn 50

downward DNn 95

T-shortlegs

cloud-top
rnx

30 km (5 min)

31

cloud-base 354

top subcloud-layer
lnx

63

mid subcloud-layer 65

near-surface snx 22

T-longlegs

cloud-top
RnX

60 km (10 min)

16

cloud-base 182

top subcloud-layer
LnX

33

mid subcloud-layer 32

near-surface SnX 16

T-longestlegs

cloud-top
RLn

120 km (20 min) or 60 km (10 min)

15

cloud-base 118

top subcloud-layer
LLn

N

mid subcloud-layer N

near-surface SLn 16

Table 2. Segmentation of the ATR flights into patterns (’kind’), flown at different levels (’note’). Each segment is associated with a ’name’,

where n = 1, 2,.. N (N being the number of patterns of the ‘kind’ category flown during the flight), X = A, B, C.... and x = a, b,.. h. See Fig. 6

for an illustration of the sub-segmentation of the patterns into T-shortlegs, T-longlegs and T-longestlegs segments. Also reported is the total

number of segments in each category. This information is included in a set of YAML files (one file per flight).

2.5 Environmental conditions associated with each flight180

To aid in the analysis of the ATR data, we summarize in Tables 3 and 4 the main environmental conditions associated with

each flight, as well as qualitative descriptions of the prominent cloud types and mesoscale cloud patterns present during each

flight, plus some information about aerosols and the presence of precipitation. The prominent cloud types are determined by
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Flight Date zLCL zSC zINV ωSC ωINV ωFT RHFT PW EIS LTS Vs

m m m hPa day−1 hPa day−1 hPa day−1 % mm K K m s−1

RF03 01-26 683 700 2060 -24.46 30.63 -38.32 4.71 28.93 -0.34 15.79 4.88

RF04 01-26 727 690 2800 44.99 5.56 -42.52 4.81 29.64 -1.22 14.65 3.08

RF05 01-28 503 630 2650 32.86 21.71 40.33 12.69 40.17 -1.60 15.99 7.48

RF06 01-30 570 650 2670 NA NA NA 9.45 36.39 -2.47 14.36 8.61

RF07 01-31 534 640 2440 -4.45 128.82 -47.21 6.24 39.79 -3.06 14.37 7.23

RF08 01-31 525 660 3490 6.25 55.93 58.36 6.51 38.11 -3.28 14.27 6.43

RF09 02-02 719 730 2760 18.87 -29.50 37.28 5.70 34.68 2.06 17.85 6.34

RF10 02-02 681 700 2910 32.70 29.52 22.50 6.00 34.90 0.66 16.83 5.39

RF11 02-05 565 750 2850 -65.94 71.06 96.74 6.59 36.71 -1.52 15.26 10.01

RF12 02-05 589 730 2930 -10.35 31.92 61.23 6.98 36.28 -2.07 14.71 9.40

RF13 02-07 758 790 2850 95.51 -12.03 -12.28 8.74 32.62 0.53 15.96 11.70

RF14 02-07 747 870 2810 47.77 27.28 84.52 9.75 34.11 0.21 15.90 9.55

RF15 02-09 605 770 2770 -59.37 109.04 69.89 16.89 34.76 -3.65 12.87 10.34

RF16 02-09 644 820 3050 -32.78 99.56 108.33 15.12 36.72 -3.56 12.81 11.05

RF17 02-11 619 730 3760 -17.89 -192.49 -137.04 21.07 42.51 -3.51 12.88 10.96

RF18 02-11 605 760 2860 23.10 -42.02 -172.31 26.12 43.72 -3.35 13.33 10.32

RF19 02-13 622 740 1960 81.38 4.42 84.52 29.29 44.79 -2.47 13.86 10.87

RF20 02-13 68 740 2110 12.33 -33.00 111.24 31.40 42.74 -2.58 13.57 10.72

average 632 727 2762 10.62 18.02 19.13 12.67 37.09 -1.73 14.74 8.58

std dev 75 61 432 42.95 71.15 80.89 8.51 4.41 1.67 1.40 2.45

Table 3. Meteorological conditions associated with each ATR flight, and their average over all flights. All quantities are computed from the

JOANNE dropsondes dataset (George et al., 2021) as averages over 3 consecutive circles flown during each ATR flight. zINV , zSC and zLCL

are the trade-inversion height, the subcloud-layer top height and the lifting condensation level height, respectively. zINV is defined as the

height where the moist static energy is minimum between 1300 and 4000 m. zSC is defined as the lowest altitude above 200 m where θv(z)

exceeds by more than 0.2 K the mass-weighted average of θv from 200 m to z (Canut et al., 2012; Rochetin et al., 2021; Touzé-Peiffer et al.,

2021). zLCL is diagnosed as zLCL = z20m - (Cpd((TLCL-T20m)/g)), with TLCL = 1/((1/(T20m-55)) - (log(RH20m)/2840)) + 55 where T is

the temperature and RH the relative humidity. ω is the vertical velocity measured at the scale of the EUREC4A circle by dropsondes (Bony

and Stevens, 2019; George et al., 2021); ωSC and ωINV are the mass-weighted averages of ω in a 200 m layer centered around zSC and

zINV , respectively. ωFT and RHFT (FT referring to the lower free troposphere), are the mass-weighted averages between 4000 and 6000 m

of ω and RH, respectively (note that ω was not measured during RF06). PW (precipitable water) is the mass-weighted integral of water vapor

specific humidity from the surface to the altitude of the dropsonde launch (about 10 km). EIS (the estimated inversion strength) and LTS (the

lower-tropospheric stability) are two measures of the lower-tropospheric stability defined as LTS = θ700hPa - θ1000hPa (Klein and Hartmann,

1993) and EIS = LTS - Γ850
m (z700hPa - zLCL), where Γ850

m is the moist-adiabatic θ gradient at 850 hPa (Wood and Bretherton, 2006). Note

that the surface relative humidity used in this calculation is derived from each dropsonde at 20 m rather than assumed to be fixed and equal

to 80% as in Wood and Bretherton (2006). Vs is the near-surface wind speed computed from the zonal and meridional wind components

measured by dropsondes at 20 m.
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Low-level clouds Aerosols Precipitation

Flight Date cloud types cloud pattern AEC VDR dust drizzle rain

(VS, CH, StCH, ExStCH, CS) (SU, GR, FL, FI) km−1 % % %

RF03 01-26 VS, CH, StCH FI, GR - - 4.3 2.2

RF04 01-26 StCH, CS, VS, CH FI, GR 0.02±0.02 0.8±0.1 0.6 0.2

RF05 01-28 VS, CH SU, GR 0.06±0.04 0.5±0.1 0.1 0

RF06 01-30 VS SU 0.09±0.10 1.4±0.5 + 0.1 0

RF07 01-31 StCH, CH, VS SU, GR, FL 0.14±0.06 2.1±0.2 ++ 2.5 1.3

RF08 01-31 StCH, VS, CH, ExStCH SU, GR, FL 0.2±0.08 2.2±0.3 ++ 1.2 0.6

RF09 02-02 CS, CH, StCH FL 0.14±0.06 3.0±0.6 ++ 0 0

RF10 02-02 CH, StCH, ExStCH FL 0.16±0.04 2.7±0.4 ++ 1.1 0.2

RF11 02-05 CH, StCH GR, FL 0.13±0.08 1.4±0.1 + 1.9 0.2

RF12 02-05 VS, CH GR, SU 0.13±0.07 1.4±0.2 + 0.2 0

RF13 02-07 VS, CH, StCH FL, FI 0.06±0.04 0.4±0.3 0.1 0

RF14 02-07 VS, CH, StCH FL, FI 0.04±0.04 0.3±0.2 0.3 0

RF15 02-09 VS, CH, StCH SU, GR 0.18±0.10 0.6±0.1 0.3 0.1

RF16 02-09 VS, CH, StCH SU, GR 0.18±0.07 0.9±0.2 2.3 0.8

RF17* 02-11 ExStCH FL, SU 0.15±0.16 0.7±0.1 9.1 9.8

RF18* 02-11 ExStCH, VS FL, SU 0.19±0.13 1.0±0.2 + 5.1 9.3

RF19 02-13 StCH, CS GR, FL, FI 0.09±0.08 0.6±0.3 3.4 1.3

RF20* 02-13 CS, VS, ExStCH GR, FL, FI 0.05±0.04 0.6±0.4 1.6 0.6

Table 4. Cloud, aerosol and precipitation conditions associated with ATR flights. Through the combined analysis of Fig. B2, GOES-E

animations (section A), BCO radar information and C3ONTEXT results (Schulz, 2021), the prominent low-level cloud types (at the scale of

the R- and L-patterns) and cloud mesoscale patterns (at the scale of the EUREC4A circle) are reported for each ATR flight. The different

low-level cloud types considered are very shallow cumuli (VS), vertically developped chimney clouds (CH), chimney clouds with stratiform

outflow below the inversion (StCH) and chimney clouds with an horizontally extended stratiform layer (ExStCH). Clear-sky is referred to as

CS. The mesoscale cloud patterns (referred to as SU, GR, FL or FI for Sugar, Gravel, Flowers and Fish) are defined in Stevens et al. (2020).

They are written in bold when there is a consensus about their prominence during the flight. The aerosol extinction coefficient (AEC), volume

depolarization ratio (VDR) and dust condition are from Chazette et al. (2020); dust+ corresponds to 1%≤ VDR < 2% and dust++ to VDR

≥ 2%. The fractional areas (in %) of the R-patterns flown at cloud-base covered by drizzle or rain are derived from the BASTA radar using

reflectivity thresholds of -20 dBZ and 0 dBZ to distinguish clouds from drizzle and drizzle from rain, respectively (section 3.5.3). Asterisks
∗ indicate the presence of deeper congestus clouds with cloud-top at 5 km (for RF17 and RF18) or alto-stratus layers between 5 and 8 km for

RF20.
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watching animations of the GOES-16 satellite imagery centered on each ATR flight (see their description in Appendix A) plus

BCO radar observations. The prominent mesoscale cloud patterns are determined visually from the analysis of the GOES-16185

movies associated with each ATR flight and the results of the mesoscale cloud patterns overview of Schulz (2021).

Daily reanalyses from ERA5 (Hersbach et al., 2020) suggest that over the EUREC4A circle, the sea surface temperature

(which corresponds to the foundation temperature and is free from diurnal variations) was 26.9 °C on average and exhibited

day-to-day variations of only ± 0.1 °C. On the other hand, weather conditions varied considerably during the campaign (Ta-

ble 3): the first day of ATR operations (Jan 26) was associated with much drier conditions in the free troposphere and much190

weaker trade winds than the last day of operation (Feb 13); the lower-tropospheric stability was particularly high during RF09-

10 (Feb 2) and RF13-14 (Feb 7), and particularly low during RF15-16 (Feb 9) and RF17-18 (Feb 11); ω in the lower free

troposphere was associated with a large-scale ascent during RF17-18 (Feb 11) but it was associated with subsidence on RF05

(Jan 28), RF11-12 (Feb 5) and RF15-16 (Feb 9); the LCL and subcloud heights were particularly low on RF07-08 (Jan 31) and

particularly high on RF13-14 (Feb 7).195

Consistently with these contrasted environmental conditions, the most prominent cloud types and mesoscale cloud patterns

encountered during each flight also varied (Table 4). For instance, small thin clouds prevailed during RF05 and RF06 (Jan

28 and Jan 30), but deeper cloud systems associated with the presence of stratiform cloudiness around the trade inversion

level and rain were present during RF03 (Jan 26), RF07 (Jan 31), RF17-18 (Feb 11) and RF19 (Feb 13). The mesoscale cloud

patterns associated with each ATR flight were often a mix of several patterns. Yet, a few flights were associated with a greater200

prominence of specific mesoscale patterns. For instance, RF06 (Jan 30) was clearly associated with a Sugar pattern, while RF09

and RF10 (on Feb 2) were clearly associated with a Flowers pattern, RF09 sampling mostly the clear-sky part of the pattern

and RF10 sampling more of the cloudy area. The Gravel pattern occurs often in association with other patterns, especially with

the Sugar pattern, as found during RF05 (Jan 28), RF12 (Feb 5), RF15 and RF16 (Feb 9).

Finally, an episode of dust occurred from Jan 31 to Feb 5, and on Feb 11, as also observed from Ragged Point in Barbados205

and from the R/V Ron Brown (Stevens et al., 2021).

3 Instrumentation and datasets

The ATR instrumentation used for EUREC4A (Fig. 7) was composed of an ensemble of in-situ probes and sensors to measure

the dynamical, thermodynamical and microphysical properties of the atmosphere near the aircraft, passive radiometers to

measure broadband radiative fluxes and spectrally-resolved infrared radiances, a laser spectrometer to measure the isotopic210

composition of water vapor in-situ, and a lidar and two Doppler cloud radars to characterize the macrophysical properties of

clouds and the presence of precipitation and aerosols away from the aircraft. All instruments are used in the EUREC4A datasets

presented in this paper except the Gerber, Nevzorov, FSSP300 and FCDP probes.

The quality control, the calibration and the processing of the datasets derived from the core instrumentation of the ATR

(referred to as SAFIRE-CORE, SAFIRE-RADIATION, SAFIRE-CLIMAT and SAFIRE-CAMERA), from the microphysical215

probes (UHSAS and PMA), from the Doppler cloud radars (BASTA and RASTA) and from the combined radar-lidar dataset
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KH20
Fine Wire

Scientific Pitot/Static

LicorUHSAS

FSSP300

Spare canister

Picarro & WVSS-II inlets

Gerber probe
2DS & FCDP

CDP

Dew point
hygrometer inlet

ALIAS lidar window

Camera

BASTA windows

LWC300

Nevzorov

Rosemount temperature
(non deiced)

Rosemount temperature
(deiced)

Enviscope-Vaisala
Relative humidity

Scientific Pitot/Static

RASTA Windows

Radiation Pyranometer&Pyrgeometer

Radiometer CLIMAT Window

Camera Window

Figure 7. Location on the ATR of the main instruments discussed in this paper. Upper to lower panels show the aircraft from different view

points: right, left, bottom and top, respectively. The exact positions of each instrument are given in Tables 5 to 9. Note that the Gerber,

Nevzorov, FSSP300 and FCDP probes are not used in the EUREC4A datasets presented in this paper.
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(BASTALIAS) are presented below. The processing of the lidar dataset (ALIAS), the turbulence dataset (SAFIRE-TURB) and

the isotopic dataset (Picarro) are fully described in separate papers (Chazette et al. (2020), Brilouet et al. (2021) and Bailey

et al. (submitted), respectively); only the main aspects of these datasets are summarized below.

3.1 Aircraft navigation, attitude and meteorological data (SAFIRE-CORE)220

3.1.1 Inertial/Navigation system

The ATR Inertial Navigation System (INS), also named AIRINS, is an iXblue inertial navigation system using a Fiber-Optic

Gyroscope. By construction, an inertial unit is drifting and the position needs to be reset by a GPS position to provide accurate

parameters. It is done by using a Trimble BX992 GPS. The AIRINS-GPS positioning system then provides groundspeed,

acceleration, attitudes angles and speed platform components in an Earth-based coordinate system.225

During EUREC4A, three problems occurred that impacted the measurements and the data processing: (1) A failure in the

internet ouput of the AIRINS-GPS system prevented us from recording the data at 100 Hz as usual; the data were recorded

instead at 50 Hz on a serial output, and then they were synchronized and averaged at 25 Hz and at 1 Hz. (2) During RF03, the

GPS was rejected by AIRINS, which resulted in an incorrect position (true heading and attitude) and thus unreliable horizontal

wind measurements for this flight; a corrected position (derived from the GPS only) was used in the V2 version of the SAFIRE-230

CORE dataset, as well as in the RF03 files of other ATR datasets. (3) For RF20, the inertial/GPS data are available at 1 Hz

only.

3.1.2 Pressure, anemoclinometric and wind measurements

The SAFIRE ATR is equipped with a five-hole radome that measures the distribution of pressure around the nose of the aircraft

(Table 5): the difference of pressure measured between two holes in the vertical or horizontal planes informs about the attack235

angle and sideslip angle, respectively (Lenschow, 1986). The static and dynamic pressures are measured by Rosemount or

Thales transducers connected to Pitot tubes on both sides of the radome. The static pressure, which corresponds to the pressure

corrected from the airflow disturbance produced by the aircraft, is determined using a pre-established calibration based on

specific flights and maneuvers. The dynamical pressure is obtained by subtracting the static pressure from the total pressure

measured at the central radome hole. The true air speed (TAS), which is the speed of the aircraft relative to the airmass through240

which it is flying, is calculated from the dynamical and static pressures.

The wind is then inferred from the difference between the speed of the aircraft relative to the Earth and the true air speed

(Lenschow, 1986). The high rate wind measurements of the ATR have been very robust since its first field campaign in 2006

(Saïd et al., 2010). Unfortunately, because of a hose leak between a hole of the radome and a pressure transducer inside the

radome, the measurement of the vertical wind is not reliable from RF02 to RF08. The horizontal wind measurements were not245

significantly affected by this problem.
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Instrument Brief description Position on ATR

5-hole

radome

For measuring the differential pressure

around the nose of the aircraft

radome

Pitot probes Rosemount and Thales transducers

connected to Pitot probes measuring

static and dynamic pressure

fuselage

Rosemount 1 E102AL non-deiced temperature sensor nose (right-hand side); [N1-

4, FR2-3]

Rosemount 2 E102AL deiced temperature sensor fuselage (right-hand side);

[N1-8, FR15-16]

Fine wire fine wire resistance for measuring fast

temperature fluctuations

nose (left-hand side); [N1-

1, FR2-3]

Table 5. Core instrumentation of the ATR for pressure and temperature measurements. See Annex C for the correspondance between the

position H, N or FR and the ATR configuration (H refers to an aircraft window, N to the nose of the aircraft and FR to a particular position

along the fuselage).

3.1.3 Air temperature

During EUREC4A, the air temperature was measured by 2 Rosemount sensors E102AL (Table 5). The first one is located on

the nose of the aircraft, inside a non-deiced housing, and the second one is located on the fuselage inside a deiced housing

(Fig. 7). The static temperature, which is the temperature corrected for aircraft speed and recovery factor of the housing, is250

calculated as:

Ts =
Tt

1 + rf

((
1 + ∆P

Ps

)Ra/cpa

− 1
) if ∆P > 6

where Tt is the measured total temperature (°C), ∆P the dynamic pressure (hPa), Ps the static pressure (hPa) and rf the

recovery factor (rf =0.98)
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From RF09 to RF20, fast (turbulent) temperature fluctuations were also measured at 200 Hz (and averaged at 25 Hz) with a255

fine wire temperature sensor. The fine wire is a 5 µm platinium wire soldered on a support and mounted inside a SFIM T4113

housing. Despite its fragility (a fine wire can easily break during takeoff or landing when the aircraft encounters particles or

insects), it remained intact during the whole campaign. Despite its housing, the response time of the Rosemount sensor can

sometimes be affected by the presence of cloud droplets. The fine wire can also be affected by this problem, but it recovers

much more quickly, emphasizing the complementarity of the two sensors (Brilouet et al., 2021). The total temperature from the260

fine wire is derived by fitting and calibrating its raw measurements against the total temperature measured by the non-deiced

Rosemount sensor. The resistance of the fine wire being subject to oxidation, this calibration is performed for each individual

flight. The static temperature is estimated using the same method as for the Rosemount sensor, using (for the lack of better

estimate) the same recovery factor.

The Rosemount and fine wire temperature data are processed at 1 Hz and at 25 Hz. From RF09 to RF20, the turbulence265

dataset (SAFIRE-TURB) uses the fine wire data as the best estimate for fast fluctuations, and the Rosemount data as a spare

(Brilouet et al., 2021).

3.1.4 Humidity

No less than five instruments measured humidity in-situ on board the ATR (Table 6), in addition to the cavity ring-down spec-

trometer (CRDS) presented in another section of this paper (section 3.6). Each instrument is based on a particular measurement270

principle or technology, and therefore exhibits specific strengths and limitations in terms of stability, response rate, sensitivity

to the presence of condensation or measuring range. The comparison and fine analysis of the different measurements makes

it possible to calibrate and correct or bypass the shortcomings of each measurement, so as to produce high quality humidity

datasets. The main features associated with these instruments and the processing of their measurements are outlined below.

A chilled mirror dew point hygrometer (Buckresearch 1011C) measured the atmospheric dew and frost points. This mea-275

surement, made by cooling a reflective condensation surface until an optical system detects the presence of condensation, is

traditionally considered as a reference measurement for humidity. However, this type of hygrometer can have limitations when

the aircraft undergoes large changes in altitude, passes through a cloud or samples environments with high humidity contrasts.

This sensor also has a slow response time and show limitations in very dry conditions such as those encountered above the

trade inversion.280

A Humicap 180C Enviscope-Vaisala capacitive sensor was placed inside a non-deiced Rosemount E102 housing. This sensor

is made of a hygroscopic dielectric material whose capacitance is dependent on humidity. After correcting for the effects of

aircraft speed, it measures relative humidity directly with a short response time. However, the sensor is sensitive to the presence

of cloud droplets and it can report relative humidities above 100 %. Its measurements are thus considered only in unsaturated

environments, and under these conditions they help assess the robustness or even calibrate the measurements of other sensors.285

Unlike previous sensors, the Water Vapor Sensing System (WVSS-II) from SpectraSensors can measure humidity with a

good reliability and regularity, without being affected by the presence of cloud droplets or very dry air. This is due to its

particular technology, based on tunable diode laser absorption spectroscopy in the near-infrared (1.37 µm), and to the fact that
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Instrument Brief description Position on ATR

Dew point Buckresearch 1011C chilled mirror dew

point hygrometer

window (right-hand side);

[H32, FR32-33]

WVSSII Water Vapor Spectro Sensor;

near-infrared tunable diode laser

absorption

window (right-hand-side);

[H6, FR19-20]

HUMAERO Enviscope hydroscopic dielectric material

placed between a pair of electrodes

(capacitive hygrometer)

window (right-hand-side);

[N1-10, FR15-16]

Picarro inlet L2130-i cavity ring-down laser

spectrometer

window (right-hand-side);

[inlet: H6, FR19-20]

Licor 7500A Near-infrared gas analyzer for measuring

rapid humidity fluctuations

window (left-hand-side);

[H3, FR19-20]

KH20 Campbell krypton hygrometer for

measuring rapid humidity fluctuations

nose (left-hand-side); [N1-

3, FR3-4]

Table 6. Humidity sensors. Note that the cavity ring-down spectrometer (whose inlet is shown here) is represented in Table 9. See Annex C

for the correspondance between the position on the aircraft and the ATR configuration.
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its sampler has been designed to minimise the biases associated with the presence of cloud droplets or aerosols. Therefore, for

this campaign it is considered as a reference for slow humidity measurements, and it is used to adjust or calibrate humidity290

measurements from other sensors. The WVSS-II measures the mixing ratio of water vapor relative to dry air in ppmv. The

volumic concentration is converted to a mass concentration to provide absolute humidity measurements in g m−3.

Finally, two additional instruments were used to measure rapid fluctuations of humidity: a Licor LI-7500A and a Campbell

Scientific krypton hygrometer (KH20).

The Licor LI-7500A is a near-infrared gas analyser originally designed to measure eddy-covariance fluxes on ground towers,295

which has been adapted by SAFIRE to perform airborne measurements. Its strength lies in its short time response, but its main

limitation is its high sensitivity to the presence of liquid water (its performance can be affected even a few seconds after

leaving a cloud). Periods when the humidity measurement is affected by condensation (typically inside clouds) are detected on

the basis of the strength of CO2 measurements made by the same sensor. The Licor performance can also be affected by the

presence of sea salt, particularly when the aircraft is flying low near the sea surface. To minimise this problem, the lowest legs300

were performed at the end of the flight, and the Licor window was cleaned before each subsequent flight. The Licor humidity

measurements (in g m−3) are calibrated against the WVSS-II absolute humidity measurements of RF13, and the calibration

coefficients are the same for all flights. As the Licor clock is initialized manually, it is sometimes delayed by a few seconds.

This delay is subsequently corrected during post-processing. The corrected and synchronized time parameter of the Licor

instrument is also used to correct a delay of 3 s of the WVSS-II sensor induced by the interface of the instrument. Note that305

Licor data were not recorded during the flights RF05 and RF06.

The KH20 uses the absorption of the UV light emitted at 123.58 and 116.49 nm by a krypton lamp to estimate the water

vapor density. Also originally designed for eddy-covariance measurements on ground towers, this instrument has been heavily

modified by SAFIRE to be operated on the ATR: the housing of an older humidity sensor (a Lyman-alpha hygrometer) was

used to install the source lamp and detector, and the electronic box was installed inside the cabin. This sensor was less sensitive310

to the presence of cloud droplets than the Licor, but it was more affected by sea salt. Therefore, as the Licor it was cleaned

before each subsequent flight. The KH20 measures rapid fluctuations of humidity but not absolute humidity. Absolute values

(in g m−3) are obtained by calibration against the slow (1 Hz) humidity measurements of the WVSS-II (Brilouet et al., 2021).

Based on the processing of these different measurements, two humidity datasets have been produced: one at 1 Hz, included

in the SAFIRE-CORE dataset, and another at 25 Hz, which is included in the SAFIRE-TURB dataset. Note that in the SAFIRE-315

TURB dataset, the calibration of the humidity measurements is performed on a leg by leg basis, both for the Licor 7500A and

the KH20 sensors.

3.2 Radiative measurements

3.2.1 Broadband radiative fluxes (SAFIRE-RADIATION)

Kipp and Zonen sensors mounted at the top and at the bottom of the ATR measured upwelling and downwelling broad-320

band radiative fluxes (Table 7): CGR4 pyrgeometers measured hemispheric longwave fluxes in the 4.5–42 µm spectral range,

20

https://doi.org/10.5194/essd-2021-459

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 4 January 2022
c© Author(s) 2022. CC BY 4.0 License.



Instrument Brief description Position on ATR

CLIMAT

CE332

Downward-staring infrared radiometer

measuring irradiance at 8.7 µm, 10.8 µm

and 12.0 µm and used to infer SST

bottom; [OB1, FR15-16]

Pyrgeometer Kipp and Zonen CGR4 sensor measuring

hemispheric broadband upwelling and

downwelling longwave (4.5–42 µm)

bottom and top; [EB, FR22-

23 and EH, FR23-24]

Pyranometer Kipp and Zonen CMP21 and CMP22

sensors measuring hemispheric upwelling

and downwelling shortwave in two

spectral ranges: 0.75–2.7 µm (red dome)

and 0.2–3.6 µm (clear dome)

bottom and top; [EB, FR22-

23 and EH, FR23-24]

Cameras High-resolution visible cameras (AV

GT1920C and Mako G-223) looking

sideways and downward (respectively)

bottom [OB3, FR15-16]

and right-hand side window

[H4, FR18-19]

Table 7. Core instrumentation of the ATR for radiative measurements. See Annex C for the correspondance between the position on the

aircraft and the ATR configuration.

CMP21 pyranometers measured hemispheric shortwave radiation in the 0.75–2.7 µm spectral range (red dome), and CMP22

pyranometers measured hemispheric shortwave radiation in the 0.2–3.6 µm spectral range (clear dome).

Measuring upwelling and downwelling radiative fluxes requires the aircraft to be in a plane and stable position. For this

reason, the SAFIRE-RADIATION dataset includes two sets of variables for each radiative flux: raw fluxes, and fluxes corrected325

for the attitude of the aircraft. In the time series of corrected fluxes, whenever the roll or pitch of the aircraft was greater than

± 5° the radiative measurements were considered as ’undefined’, and otherwise the downwelling shortwave measurements

were corrected for the attitude of the aircraft. This correction requires to know the offset of the sensor installation, which

corresponds to the bias associated with the potential tilt of the mechanical installation of the sensors relative to their support.

This offset must be estimated every time the sensor has been re-mounted on the aircraft (such as done at the arrival of the ATR330

in Barbados, section 2.1). It was determined through specific manouvers performed during the test flight RF02.

21

https://doi.org/10.5194/essd-2021-459

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 4 January 2022
c© Author(s) 2022. CC BY 4.0 License.



All pyrgeometers and pyranometers worked properly during the campaign except one: the CMP21 pyranometer (red dome)

at the top of the aircraft. Because of this malfunctioning, the downwelling 0.75–2.7 µm irradiance measurements were either

absent or unvalidated during the campaign. However all other upward and downward longwave and shortwave fluxes, including

the downwelling shortwave measurements over the 0.2–3.6 µm spectral range, are available and distributed in the SAFIRE-335

RADIATION dataset at 1 Hz.

3.2.2 Infrared brightness temperatures (SAFIRE-CLIMAT)

In addition to broadband radiometers, the ATR carried a nadir-viewing multispectral radiometer, the CLIMAT CE332 instru-

ment, developed by the Laboratoire d’Optique Atmosphérique (LOA) in collaboration with CIMEL (Brogniez et al., 2003).

This radiometer measures infrared radiances and brightness temperatures at three wavelengths: 8.7, 10.6 and 12 µm (Table 7).340

It is done by comparing the radiances measured on the observed target with that measured by looking at a reference cavity

maintained at a given temperature. During the post-processing, the measurements performed at 6 Hz are synchronized and

averaged at 1 Hz. They are included in the SAFIRE-CLIMAT dataset. It is planned to estimate the sea surface temperature

from these measurements.

3.2.3 Visible images (SAFIRE-CAMERA)345

To visualize the context of the data acquired by in-situ measurements or remote sensing, two high-resolution cameras were

mounted on the aircraft. One camera, an AV GT 1920C model with a resolution of 1936 × 1456 pixels and a wide angle (focal

length of 4.8 mm), took high frequency images (10 frames per second) through the ATR window on the side of the horizontally-

staring lidar and radar instruments. The other camera, a Mako G-223 model with a resolution of 2048 × 1088 pixels and a

focal length of 16 mm, looked down towards the sea surface at a moderate frequency (1 frame per second). The images taken350

through the aircraft windows often appear dark because the choice was made to avoid saturation due to the brightness of the

clouds as much as possible, especially when the sun is behind the aircraft (Fig. 8a). The downward-looking camera can detect

the presence of clouds below the aircraft and can help characterise the state of the ocean surface (Fig. 8b).

Three types of products are derived from these cameras: movies (in avi format) are produced for each camera (“window” or

“ground”) and for each flight, and high-resolution images (in bmp format) are produced for the window camera for R and L355

patterns.

3.3 In-situ turbulence measurements (SAFIRE-TURB)

The 5-hole nose radome and specific temperature and humidity sensors mounted on the ATR (Rosemount and fine wire ther-

mometers, Licor and KH20 hygrometers, see Tables 5 and 6 and section 3.1) measured rapid fluctuations of the three wind

components, temperature and humidity. Based on these high frequency (25 Hz) measurements, the SAFIRE-TURB turbulence360

dataset was produced to characterize the turbulent characteristics of the atmosphere through a number of diagnostics. The data

processing strategies, the calibration methodologies, the procedures of quality control applied to the 25 Hz temperature and
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a) b)

Figure 8. (a) Example of a cumulus scene captured by the visible camera through the aircraft window on 5 February 2020 at 15:56 UTC. (b)

Image acquired a few minutes earlier by the camera looking down towards the ocean.

moisture measurements, and the methods used to estimate the turbulent diagnostics are explained in details in Brilouet et al.

(2021).

The dataset includes two kinds of products: ’Turbulent fluctuations’ and ’Turbulent moments’. The ’turbulent fluctuations’365

include time series of high-frequency fluctuations of the dynamical and thermodynamical variables over straight and stabilized

segments of T-shortlegs, T-longlegs or T-longestlegs kind (Table 2). For each segment, the fluctuations time series are either

detrended (’DET’) or high-pass-filtered (’FIL’) with a cutoff frequency of 0.018 Hz (about 5 km wavelength). The comparison

of the ’DET’ and ’FIL’ calculations informs about the homogeneity of the sample and about random and systematic sampling

errors.370

The ’turbulent moments’ include means, variances and covariances of dynamical and thermodynamical variables, turbulent

kinetic energy and dissipation rate, third order moments and skewnesses of wind components, potential temperature and water

vapor mixing ratio. They also include characteristic lengthscales such as the integral lengthscale or the wavelength of the verti-

cal velocity density energy spectrum peak, error estimates on the turbulent moments, and quality flags on the temperature and

humidity measurements. These diagnostics are produced for each type of segment (T-shortlegs, T-longlegs and T-longestlegs).375

This dataset is produced for two levels of data processing. In the Level 2 dataset, the turbulent moments and fluctuations

are calculated for each humidity sensor and each temperature sensor, and a quality flag is associated with each sensor. In the

Level 3 dataset, a ’best estimate’ of the turbulent moments and fluctuations is provided, together with a quality flag; for each

segment, the best estimate corresponds to the moments and fluctuations computed from the sensor that has the best quality flag

over this segment. The dataset is distributed in NetCDF files whose nomenclature is summarized in Table 3 of Brilouet et al.380

(2021).
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Instrument Brief description Position on ATR

UHSAS optical-scattering aerosol particle

spectrometer measuring aerosol sizes

from 0.06 to 1 µm

pod under left wing;

[CPCGB, FR18-19]

FSSP300 optical-scaterring aerosol and cloud

particle spectrometer measuring particle

sizes from 0.45 to 20 µm

fuselage corona (left hand

side); [CPCGH, FR18-19]

FCDP optical-scattering cloud particle

spectrometer measuring particle sizes

from 1 to 50 µm

pod under right wing;

[PDC]

CDP-2 optical-scattering droplet spectrometer

measuring particle sizes from 2 to 50 µm

pod under left wing; [PGC]

2D-S optical array stereo probe imager

measuring particle sizes from 10 µm to

2 mm

pod under right wing;

[PDC]

LWC300 hot wire probe measuring liquid water

content up to 3 g m−3

fuselage corona; [N1-5,

FR13-14]

Table 8. Microphysical probes mounted on the ATR for EUREC4A. See Annex C for the correspondence between the position on the aircraft

and the ATR configuration.
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3.4 In-situ aerosol and cloud measurements

The ATR payload included a suite of six instruments to measure in-situ aerosol and cloud properties (Table 8). The Ultra

High Sensitivity Aerosols Spectrometer (UHSAS), the Forward-Scattering Spectrometer Probe (FSSP300) and the LWC300

were operated by SAFIRE. The Cloud Droplet Probe (CDP-2), the Fast Cloud Droplet Probe (FCDP) and the 2D-Stereo385

(2D-S) are part of the Microphysics Airborne Plateforme (PMA), a French national facility operated by LaMP (Laboratoire

de Météorologie Physique). Before take-off, all the data acquisition systems were synchronized to the aircraft central time

database (GPS).

3.4.1 Aerosols (UHSAS)

A UHSAS-A probe (airborne version, serial no: 1303-007) was mounted on the lower left-hand pod on the fuselage section390

(Fig. 7). This probe is an optical-scattering aerosol particle spectrometer developed and commercialized by Droplet Measure-

ment Technologies (DMT) that counts and sizes particles in the 0.06 to 1 µm range. The sizes are then sorted into 99 linearly

spaced size bins of fixed width (9.7 nm).

The operating principle is as follows: the external air drawn at a controlled flow rate (about 50 sccm) enters the instrument

optical detector, where it is aerodynamically focused and brought through a laser beam (Nd3+:YLiF4 laser operating at 1053395

nm). The laser light scattered by each aerosol particle is collected by two pairs of Mangin collection optics and the scattered

intensity is measured with a dual Avalanche photodiode/low-gain PIN photodiode detection system. The size of each particle

is derived from the scattered intensity by using Rayleigh (40-300 nm) or Mie (300-1000 nm) scattering models implemented

in the instrument (they are not corrected for variations in particle refractive index or non-sphericity). The UHSAS-A used in

EUREC4A was last maintained and calibrated by DMT in December 2018 and a calibration check was performed at SAFIRE400

prior to the campaign in May 2019.

According to the manufacturer, UHSAS operation is limited to a non-condensing environnement. Ladino et al. (2017) re-

ported that UHSAS measurements are subject to water contamination when performed in a cloudy area, which is also visible

in our data. Therefore, UHSAS measurements made in cloudy area (determined by LWC > 1 mg m−3 using CDP and 2D-S

data, as in the case of Ladino et al. (2017)) are rejected. Moreover, the UHSAS has a maximum count rate of 3000 per second405

and Cai et al. (2008) has shown that the detection efficiency decreases when the particle concentration exceeds 3000 cm−3 due

to coincidence effect. Therefore, points where the total count exceeds 3000 per second are removed from the data. According

to Cai et al. (2008), particle concentrations in the small size range come with a caveat that the detection efficiency of a UHSAS

(lab version) tends to decrease for particles smaller than 100 nm. Finally, inspection of the housekeeping data revealed erratic

variations in the sample flow rate between 32 sccm and 50 sccm, caused by a loose electrical connection at a mass flow con-410

troller. Periods of large sample flow variation are manually identified and discarded. The aerosol concentration is calculated

from the probe counts per second and the sample flow rate converted from mass (sccm) to volumetric flow rate (cm−3) using

temperature and pressures measurements from the aircraft core instruments (sections 3.1.2 and 3.1.3).
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Figure 9. (left) Evolution of the total concentration of aerosol particles (per cm−3) within the subcloud layer and at cloud base derived from

UHSAS data (vertical bars represent the standard deviation across the different R-patterns or L-patterns during each flight). Note that the

time axis is not linear and markers are only related by a line to ease readability. (right) Probability distribution function of the aerosol particle

size derived from UHSAS data over the R-patterns flown at cloud-base; the mean of each ATR flight is shown in grey, and the mean over all

flights in shown in black.

The total concentration of aerosol particles and the particle size distribution measured by UHSAS during the different ATR

flights is shown in Fig. 9. The concentrations in the subcloud layer and at cloud-base are generally similar, although a few415

flights (RF06, RF11, RF15 and RF17) show a slightly reduced concentration at cloud-base. In every case, the concentration

is highly variable, with two main regimes: average aerosol concentrations are about 100 cm−3 in half of the flights and about

300-400 cm−3 in the other half. The particle size distribution also varies among flights, with the highest variability occurring

in the frequency of large particles (diameters larger than 300 nm).

3.4.2 Cloud microphysics420

Cloud microphysical measurements were made with two instruments: the CDP-2 which counts and sizes cloud droplets in the

2-50 µm size range, and the 2D-S which images cloud, drizzle and raindrops in the 10-1280 µm nominal size range (Table 8).

Both instruments were mounted under the wings of the ATR, one on the right side and the other on the left side (Fig. 7).

Throughout the campaign, the optics of the 2D-S and CDP-2 (and FCDP) probes were cleaned after each flight to remove

traces of dust and salt. At low altitudes where the air is warm, the temperature of the CDP-2 and 2D-S lasers increased rapidly425

and therefore the instruments were often switched off by the operator to avoid damaging the probe. As a result, few CDP-2 and
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2D-S measurements are reported along the subcloud layer legs.

CDP-2: cloud droplets

The CDP-2 (serial no. 1711-111, equipped with anti-shatter tips) is a cloud particle spectrometer that counts and sizes cloud430

droplets in the 2-50 µm range and sorts them into 30 size categories with a resolution of 1-2 µm. The 1 Hz raw data (histograms

of counts per second) are processed using DMT’s built-in counting and sizing algorithms based on the Mie scattering model,

assuming that droplets are spherical with a refractive index of 1.33, and converted to concentrations with the probe sample

volume. The sample volume is calculated using the true air speed of the aircraft from SAFIRE-CORE data and the calibrated

sample area (0.292m2) determined prior to the campaign by mapping the probe’s response to calibrated water microdroplets435

injected across the laser beam with an apparatus similar to Lance et al. (2010). At 100 m s−1, which was the typical ATR

airspeed during the scientific flights, the sample volume was about 30 cm3 s−1. The calibration of the CDP-2 with respect to

particle size was regularly monitored during the campaign by means of calibrated glass bead injection tests.

Measurements in the subcloud layer reveal that the CDP-2 can detect non-cloud droplet particles such as large/ultra-large

aerosols. Although these particles may not satisfy the underlying assumption of the CDP-2 sizing algorithms, it was decided440

not to filter out these measurements in the CDP-2 files so that further investigations of large aerosols may be conducted, at least

qualitatively. However, the response of the CDP-2 to such aerosol particles being unknown, the data taken in non-cloudy areas

are subject to unquantified errors.

2D-S: cloud droplets, drizzle and raindrops445

The 2D-S (serial no: 006) is an optical array probe imaging cloud, drizzle and rain particles in the range 10–1280 µm (the

stereo capability of the probe is not used here): an array of 128 photodiodes is illuminated by a laser sheet; when a hydrometeor

crosses the sample area (about 0.128 cm × 6.3 cm, located between a pair of emitting/receiving arms), it shades some of the

photodiodes. The binary state (occluded/non occluded) of the photodiodes is recorded at high frequency (up to 17 MHz for

this probe), producing time-discretized black-and-white slices of the particle’s silhouette which are subsequently concatenated450

to reconstruct a projected 2D black-and-white image of the hydrometeor with a resolution of 10 µm.

The raw data (from either vertical or horizontal channel, whichever worked best during the flight) is processed using the

LaMP in-house processing routines which stem from the early release of the SPEC 2DSView software and are continually

updated to integrate state-of-the-art corrections.

The calculation of the sample volume takes into account the decrease in field depth with particle size and follows the455

manufacturer’s formula given in Lawson et al. (2006) and the overload periods of the probe. Artifacts due to noisy or dead

pixels are identified and removed using the pixel analysis described in Lawson (2011). This probe is equipped with anti-

shattering arm tips (K-tip, Korolev et al. (2013)) designed to prevent ice/droplet fragments from falling into the probe sample

volume and contaminating the measurement at the lower end of the size spectra (note that no ice was sampled along the ATR

flights of EUREC4A). In addition to the K-tip, a splash/shatter detection and removal algorithm based on arrival time analysis460

is applied (e.g. Field et al. (2006), Korolev and Field (2015)). The size of particles seen out of focus is corrected using the
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Korolev (2007) diffraction correction. Despite these efforts to clean artifacts, the concentration in the first few bins remains

questionable for reasons described in Thornberry et al. (2017) and Bansemer (2018) (the contribution of remnant noisy events

is amplified in the concentration calculation due to the small sample volume). The size of truncated particles (partial images)

is corrected according to Korolev and Sussman (2000) and the nominal size range (10-1280 µm) is extended to 2.56 mm in465

post-processing.

Once most of the artifacts have been corrected, a series of geometrical descriptors, e.g. size (defined here as the diameter of a

circle having an area equal to the projected area of the particle, often referred to as surface equivalent diameter in the literature,

Deq), area or perimeter are retrieved from each individual 2D image. Statistical properties are then calculated at 1 Hz, such

as the particle size distribution (PSD) or the total concentration (calculated as the sum of bin concentrations). The mass size470

distribution (MSD) is computed from the PSD assuming that the particles are spherical with a liquid water density of 1 g cm−3.

PMA composites

As the cloud drop size distribution is broad, a combined PMA dataset is produced that merges the CDP-2 and 2D-S data

into a single composite spectrum that ranges from 2 µm to 2.55 mm, at the native size resolution of the CDP-2 up to 43 µm,475

the 10 µm size resolution of the 2D-S up to 1 mm and a coarser resolution of 100 µm from 1.05 up to 2.55 mm. We define

a cloud mask and a drizzle mask based on the liquid water content (LWC) and the particle size (diameter D): a cloud particle

is identified when the LWC of droplets smaller than D0 exceeds LWC0, where LWC0 and D0 are specified thresholds of

LWC and D, respectively. There is no simple definition of cloud situations, and therefore the values of these thresholds remain

uncertain. Here, we use LWC0 = 0.010 g m−3 (which is consistent with other observational and modeling studies of trade-wind480

clouds such as Heymsfield and McFarquhar (2001) or vanZanten et al. (2011)) and D0 = 100 µm (which is consistent with the

AMS glossary definition of cloud drops as water particles between 1 and 100 µm in diameter). We assume that drizzle occurs

(drizzle mask is set to 1) when 100 ≤ D < 500 µm, and rain occurs when D ≥ 500 µm.

The cloud LWC was inferred from the size distribution of cloud particles measured by the CDP-2 and 2D-S probes. It

was also measured independently by a hot wire probe (DMT LWC-300) that was part of the core instrumentation of the485

ATR (Table 8, note that the LWC300 sensor broke during RF14 and was immediately replaced by a new one). The hot wire

estimates the LWC by measuring the heat released by the vaporization of water droplets on a heated cylinder exposed to the

airstream. This calculation is made with the Particle Analysis and Display System (PADS) software, using the aircraft airspeed,

pressure and deiced temperature measured by the ATR and the formulas given in the DMT PADS Manual Hot Wire Module

3.5.0 DOC-0290 Rev A. However, the collection efficiency of the sensor is limited for small droplets (< 10 µm) and the490

evaporation of large drops (> 50 µm) can be incomplete, which can underestimate the LWC measurement in drizzle and rain

conditions (DMT LWC-300 LWC operator’s manual DOC-0361 Rev C). The LWC estimate derived from the CDP-2 and 2D-S

probes (distributed in the PMA composite dataset) is thus considered to be more precise than that derived from the LWC-300

(distributed in the SAFIRE-CORE dataset).

Cloud droplet number concentrations at cloud base, and their relationships with aerosol number concentrations (derived from495

UHSAS) are shown on Fig. 10a. Cloud droplet number concentrations tend to be about 2/3 of the aerosol concentrations, with a
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Figure 10. (a) Relationship between the concentration of aerosols (from the UHSAS dataset) and the concentration of cloud droplets (from the

PMA dataset, excluding drizzle and rain particles) calculated for the R-patterns flown at cloud-base during the whole EUREC4A campaign.

The mean of each ATR flight is reported together with the standard deviation among the different R-patterns of the flight. Other panels (b-c-d)

show the probability distribution function (calculated over all the R-patterns flown at cloud-base or at cloud-top) of (b) the total concentration

of cloud particles (c) the median volume diameter (MVD) of cloud particles, and (d) the in-cloud liquid water content (LWC) derived from

the composite PMA dataset. The mean of each quantity is reported, together with the 10th and 90th percentiles of each distribution (in

brackets). (b-d) histograms are calculated for in-cloud conditions (where cloud particles can coexist with drizzle or rain particles).
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strong case-to-case co-variability (correlation of 0.94). At larger aerosol concentrations, the cloud droplet concentrations tend

to disproportionately decrease. This could be indicative of a lower maximum of cloud-base supersaturations in an aerosol rich

environment, or a less cloud-active aerosol in conditions when the concentrations are high. The distribution along all the R-

patterns of the droplet number concentration, MVD and LWC values of the clouds derived from the PMA composite dataset is500

shown on Fig. 10b-d. Cloud particle concentrations are very variable but, on average, they tend to be much larger at cloud base

(median of 128 cm−3) than in the stratiform layers of trade-cumuli detraining near the inversion level (median of 46 cm−3);

on the other hand, cloud particle sizes and cloud liquid water contents tend to be much smaller at cloud base (about 10 µm and

50 mg m−3, respectively) than at cloud top (about 24 µm and 200 mg m−3 near the inversion level). The range of MVD values

measured near cloud base and cloud top during EUREC4A are similar to those measured in trade cumuli over the Indian ocean505

(Heymsfield and McFarquhar, 2001) or in cumulus clouds over the sea around the United Kingdom (Raga and Jonas, 1993).

3.4.3 Datasets

An aerosol dataset was produced on the basis of UHSAS measurements. It is distributed as an ensemble of NetCDF files (one

file per flight) that include products such as the Particle Size Distribution (PSD) and the total concentration of particles (NT),

all processed at a frequency of 1 Hz.510

A cloud dataset was produced on the basis of CDP-2 and 2D-S measurements (future versions of the dataset might include

data from the FSSP-300 and FCDP probes). It is distributed as a set of NetCDF files (one file per flight) which include the

following products: particle size distribution (PSD), total particle concentration (NT) and liquid water content (LWC, assuming

particles are spherical with a density of 1 g cm−3), all processed at a frequency of 1 Hz.

The data are distributed for two levels of processing: the level 2 dataset is associated with single instruments (either 2D-S515

or CDP-2) while the level 3 dataset corresponds to a combined PMA dataset that merges CDP-2 and 2D-S data into a single

composite spectrum that spans the range 2 µm to 2.55 mm. The composite dataset includes additional products such as a cloud

mask, a drizzle mask and a rain mask (defined in section 4.3), as well as the 6th moment of the particle size distribution to ease

the comparison with radar reflectivities. The periods of flight when the probes are switched off are filled with NaN values. All

datasets also include the time and aircraft position from the SAFIRE-CORE dataset.520

The LWC measurements from the LWC-300 are included in the SAFIRE-CORE dataset at 1 Hz.

3.5 Lidar and radar remote sensing

3.5.1 Horizontal lidar measurements (ALIAS)

To characterize the presence of clouds and aerosols in the lower troposphere, the ATR was equipped with a lightweight

backscatter lidar named ALiAS (Airborne Lidar for Atmospheric Studies) emitting at the wavelength of 355 nm and detecting525

polarization (Table 9, Chazette et al. (2012, 2020)). The main role of this lidar was to measure, together with the BASTA radar,

the fractional area covered by the cloud field near the cloud-base level. For this purpose, the line of sight of the lidar was

oriented horizontally, looking through one of the ATR windows (UV fused silica glass) on the right side of the aircraft (Fig. 7).

30

https://doi.org/10.5194/essd-2021-459

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 4 January 2022
c© Author(s) 2022. CC BY 4.0 License.



Instrument Brief description Position on ATR

ALiAS Horizontally-staring backscatter lidar

operating at 355 nm and detecting

polarization

window (right-hand side);

[H36, FR34-35]

BASTA Horizontally-staring bistatic FMCW 95

GHz Doppler cloud radar

window (right-hand side);

[H28-H30, FR30-32]

RASTA Two antennas zenith and

backward-looking 95 GHz Doppler

pulsed cloud radar

[FAr-OH4, FR32-33]

Picarro L2130-i cavity ring-down laser

spectrometer

window (right-hand-side);

[H6, FR19-20]

Table 9. Lidar-radar remote sensing and stable isotopologue measurements. See Annex C for the correspondance between the position on

the aircraft and the ATR configuration.

The native resolution of the lidar backscatter profile along the line-of-sight is 0.75 m. However, to improve the signal to

noise ratio, a low-pass filter has been applied and the resolution was downgraded to 15 m. In addition, the backscatter profile530

was averaged over 50 consecutive shots during the acquisition, which corresponds to approximately one recording every 5 s
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(averaging time 2.5 s and recording time 2.5 s). The backscatter lidar observations are used to define a cloud mask in the

direction perpendicular to the aircraft trajectory. In this direction, the signal was distinguishable from noise up to a distance

of about 8 km in clear-sky conditions. However, this range was reduced in the presence of strong scattering, for instance from

thick clouds. It means that during the R-patterns, as the aircraft was flying rectangles of about 120 km (along track) × 20 km535

(cross track), the lidar was able to sample most of the rectangle area unless thick clouds within the rectangle extinguished the

lidar signal at some distance of the aircraft.

Both aerosol and cloud products have been derived from the ALiAS observations, and the data are distributed as a set of

NetCDF files (one per flight) for different levels of processing. Level 1 provides the raw profiles at native resolution recorded

by the acquisition system. Level 1.5 data are geolocated, calibrated and corrected for geometric factors and molecular trans-540

mission, and time series of the apparent backscatter coefficient (ABC) and Volume Depolarization Ratio (VDR) are produced

with a resolution of 15 m along the lidar line of sight. Level 2 provides cloud and aerosol detection information and products,

including a cloud mask and an aerosol extinction coefficient (AEC) along the horizontal line of sight. Level 3 provides statis-

tics about the length of the cloud chords inferred from the lidar cloud detection. The ALiAS dataset is described in detail in

Chazette et al. (2020).545

Fig. 11 shows the relationship between the total concentration of particles measured by the UHSAS microphysical probe

(section 3.4.1) and the aerosol extinction coefficient retrieved from ALiAS lidar data. Although the two instruments sample the

atmosphere very differently (the lidar probes the atmosphere horizontally perpendicular to the aircraft trajectory over a range

of several kilometers while the UHSAS probes the atmosphere in-situ along the aircraft trajectory), the two measurements

are highly correlated (R = 0.89). It shows the consistency of the two measurements and confirms the strong variability of the550

atmospheric load in aerosols during the campaign (Fig. 9).

3.5.2 Horizontal radar measurements (BASTA)

To characterize the cloudiness in synergy with the lidar, an horizontally-staring cloud radar named BASTA (Bistatic Radar

System for Atmospheric Studies) was mounted on the right-hand side of the ATR (Table 9). BASTA is a 1 W bistatic FMCW

(Frequency Modulated Continuous Wave) 95 GHz Doppler cloud radar developed from the ground-based BASTA system555

(Delanoë et al., 2016). It was used in an aircraft for the first time during EUREC4A, with two antennas of 20 cm (0.95°

beamwidth) installed in back lateral windows of the ATR (Table 9). The radar was operated in two modes, one after the other,

at 12.5 m and 25 m range resolutions with 0.5 and 1 s time resolutions respectively. It led to a measurement in one mode every

1.5 s. The maximum range was 12 km with an ambiguous velocity of 9.85 m.s−1 for both modes. The minimum detection

range is about 80 m from the aircraft due to coupling between the two antennas.560

The Level 1 of BASTA product contains, for both modes, the calibrated and range corrected radar reflectivity, the Doppler

velocity and a mask distinguishing the meteorological target from background noise and surface echoes. The calibration of

the radar has been derived from other field campaigns and confirmed using in-situ data (a reflectivity was calculated from

the CDP and 2D-S cloud particles data and compared with radar measurements in cloudy conditions). The sensitivity of the

radar is estimated at around -35 dBZ at 1 km. Level 2 data are the most elaborated product, the two modes being combined565
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Figure 11. Relationship between the total concentration of aerosols measured by UHSAS at cloud-base and the aerosol extinction coeffi-

cient measured by the horizontally-pointing ALiAS lidar at cloud base. Horizontal and vertical bars represent ± the standard deviation of

measurements across the different R-patterns of each flight.

to optimise the advantages of each range resolution. Within the first 250 meters, the 12.5 m mode is used while the 25 m

mode covers the rest of the profile. The combined reflectivity and Doppler profiles are available every 1.5 s. The radar gates

are geolocated in latitude, longitude and altitude in order to derive maps. The reflectivity is corrected for gaseous attenuation

using colocated information from dropsonde temperature, humidity and pressure. A parameterisation of liquid attenuation for

both cloud and precipitation as a function of reflectivity was derived thanks to in-situ data and applied to correct reflectivity570

for liquid attenuation. The corrected reflectivity is then used to distinguish cloud areas from drizzle or rain (section 3.5.3). The

radar Doppler velocity is corrected for aircraft motion and folding using gate-to-gate correction. All files are available in a

self-documented NetCDF file.

3.5.3 Combined lidar-radar measurements (BASTALIAS)

Based on ALiAS and BASTA data, a combined dataset was developed that takes advantage of the lidar-radar synergy and575

complementarity to improve the detection of clouds, drizzle and rain (Fig. 12).

For this purpose, the two modes of the BASTA radar products are merged on a single horizontal grid (resolution of 12.5 m

within the first 200 m from the aircraft, and 25 m beyond this distance), and a single time resolution (1.5 s). Then the reflectivity

is corrected for liquid and gas attenuation and the radar sensitivity is defined as a function of the distance from the aircraft.
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Radar reflectivity (1.5s)
Two modes merged on a single grid
• from 0 to 200 m => 12.5 m 
• from 200 m to 12km => 25m 

Correction for liquid and gaseous attenuation

Corrected radar reflectivity

 Classification cloud drizzle rain

Hydrometeor 1 Z  -15 dBZ -15 dBZ < Z  0 dBZ Z > 0 dBZ

Hydrometeor 2 Z  -17 dBZ -17 dBZ < Z  0 dBZ Z > 0 dBZ

Hydrometeor 3 Z  -20 dBZ -20 dBZ < Z  0 dBZ Z > 0 dBZ

ABC from ALIAS (5s, 15m)

Adaptative threshold to define cloud or 
rain

Radar sensitivity corrected for 
attenuation

Remove isolated cloud pixel and fill 
some gaps using binary dilatation

Identify noise in the 
measurements
ABC < 30 A.U. is considered as 
noise => noise mask
binary dilatation on the noise 
mask

lidar mask at the ALIAS’ time and range resolution

Lidar data are gridded onto the merge radar range resolution
Radar time is used as reference, closest lidar time profile to radar profile is 
used (equivalent to 4 radar profiles for 1 lidar profile)

noise molecular/aerosol Cloud or drizzle/rain

clear clear molecular/aerosol cloud

cloud cloud cloud cloud

drizzle drizzle drizzle drizzle

rain rain rain rain

can’t detect cloud Don’t know molecular/aerosol cloud

radar
lidar

• Radar can detect drizzle or rain 
anywhere up to 12 km

• Radar can detect cloud only in the 
range of sensitivity allowing cloud 
detection

• Lidar can detect cloud up to the last 
liquid pixel.

Figure 12. Cloud detection algorithm applied to BASTA+ALiAS data to detect hydrometeors (clouds, drizzle and rain).

A first classification of hydrometeors is then made on the basis of radar observations. As the reflectivity associated with the580

presence of a remote hydrometeor depends on the drop diameter, reflectivity thresholds can be used to distinguish cloud droplets

from drizzle or rain. The definition of these thresholds differs across ground-based radar studies; the threshold distinguishing

clouds from drizzle (Zd) is often set at -20 dBZ (e.g. Kato et al. (2001)), but it can also be set at -17 dBZ or -15 dBZ. The

BASTALIAS dataset thus considers three options for the definition of cloud droplets, associated with each of these thresholds.

The threshold distinguishing drizzle from rain is set at Zr = 0 dBZ.585

To assess the ability of these reflectivity thresholds to distinguish between cloud, drizzle and rain situations, we calculate

the reflectivity ZPMA that would correspond to the drop size distribution of the PMA dataset. It is done using the T-matrix

approach and accounting for the beam orientation and for the non-sphericity of large particles (for the smallest particles,

ZPMA follows Rayleigh theory and is equal to 10 log10(M6), where M6 is the 6th moment of the drop size distribution). The

distribution of ZPMA values for situations classified by the PMA microphysical masks (based on LWC and D measurements,590

section 3.4.2) as cloud-only, drizzle-only or rain-only shows that clouds and rain are mainly associated with reflectivities lower

than -20 dBZ and larger than 0 dBZ, respectively (Fig 13), which supports the Zd and Zr thresholds used in the BASTALIAS

dataset. Reflectivities between -20 and 0 dBZ are predominently associated with drizzle. However, drizzle is associated with a

broader range of reflectivities and therefore its identification from reflectivity thresholds remains imperfect.

Since the sensitivity of the radar decreases as the distance from the aircraft increases, BASTA can only detect clouds within a595

limited distance from the aircraft; beyond this point, the radar can only detect drizzle or rain. The range over which the radar can

possibly detect clouds (Dradar
cloud ) is determined by the distance at which the expected radar sensitivity corrected for attenuation
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Figure 13. Probability distribution function of equivalent radar reflectivities calculated for each ATR flight from the PMA particle size distri-

bution for situations defined as cloud-only, drizzle-only or rain-only by PMA masks (based on LWC and cloud drop diameter, section 3.4.2).

The PMA measurements were performed along the R-patterns flown around the cloud-base level.

equals Zd. In the trade-wind boundary layer conditions of EUREC4A, the radar could detect clouds over a maximum horizontal

distance ranging from 1.5 to 3.5 km (2.2 km on average) for Zd = -20 dBZ and from 2.9 to 6.2 km (3.8 km on average) for Zd

= -15 dBZ. On the other hand, drizzle and rain could be detected at any distance up to 12 km if there is no rain in the vicinity600

of the aircraft.

In parallel, the ALiAS lidar data at their original resolution (level 1.5 data from Chazette et al. (2020)) are analyzed to

determine the horizontal lidar profile that corresponds to the molecular or aerosol backscatter, to estimate the noise level, and

to detect the presence of clouds. The lidar cloud detection methodology used in the BASTALIAS dataset is inspired from that

developed for the Calipso space lidar and the airborne LNG lidar (Ceccaldi et al., 2013). Although derived from a different605

methodology, the lidar-only cloud mask of the BASTALIAS dataset is very consistent with that proposed by Chazette et al.

(2020), showing the robustness of the cloud detection from lidar measurements. This information is then used to define a

lidar pseudo cloud mask at the same space and time resolution as the radar information (for this purpose, each radar time is

associated with the closest lidar observation in time). The cloud detection by the lidar is considered impossible beyond the

distance from the aircraft (Dlidar
cloud) at which the lidar backscatter signal is completely extinguished or undistinguishable from610

noise. During EUREC4A, Dlidar
cloud ranged from 0 to 8 km, and was about 5 km on average.

Finally, the lidar and radar cloud masks are analyzed jointly to make a final classification of hydrometeors and a lidar-radar

cloud mask (Fig. 12). The synergy between lidar and radar is illustrated by two examples of individual radar and lidar profiles

along their horizontal line of sight (Fig. 14). In the first one, derived from a flight (RF05) associated with small very shallow

clouds (‘Sugar’, Table 3), the lidar detects three clouds in a row which are not detected by the radar; beyond Dlidar
cloud (6.3 km),615
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Figure 14. Illustration of cloud, drizzle and rain detection by horizontal remote sensing using lidar-radar synergy. The maximum distances

Dlidarcloud and Dradarcloud over which cloud detection is possible with the ALiAS lidar or BASTA radar are indicated by green dash-dot and red

dotted vertical lines, respectively. The range over which hydrometeor detection is no longer possible with radar or lidar is indicated in orange

–it corresponds to the maximum of (Dlidar
cloud, Dradar

cloud). The classification of hydrometeors is reported on the lidar and radar signals: drizzle,

rain, clouds detected only by lidar, and clouds detected by radar or both radar and lidar. On Jan 28th, 2020 (RF05) at 23:11:30 UTC, the lidar

(ALiAS, upper left panel) detects three areas of strong backscatter along its line of sight, while the radar (BASTA, lower left panel) detects

no hydrometeor in the range (0-1.8 km) in which it could possibly detect clouds; the areas of strong lidar backscatter therefore correspond

to the presence of thin clouds; beyond 6.3 km, the lidar signal is fully extinguished and cloud detection is no longer possible. The cloud

detection from ALiAS Level 2 and Level 3 (L23) dataset (performed at a horizontal resolution of 15 m, as opposed to 25 m for BASTALIAS)

and using the methodology described in Chazette et al. (2020)) is also reported (note that the ALiAS L23 times have to be shifted by −10 s

to coincide with those of BASTALIAS). On Feb 5th, 2020 (RF11) at 09:54:15 UTC, the lidar (upper right panel) measures four areas of

strong backscatter and is fully attenuated beyond 3 km. The radar reflectivity (bottom right panel) shows that the first area corresponds to the

presence of clouds, but that the following areas correspond to the presence of drizzle or rain (the cloud-drizzle and drizzle-rain transitions are

defined by reflectivity thresholds, set here at -20 dBZ and 0 dBZ, respectively). In this case, no cloud can be detected beyond 3 km. This case

is from an R-pattern flown near the inversion level; no cloud mask is available from the ALiAS L23 dataset on R-patterns above cloud-base.

the backscatter signal is extinguished and the cloud detection becomes impossible. In the second example, from RF11, the radar

detects a cloud within the first kilometer, and then drizzle and rain. Wherever the radar detects drizzle or rain, the hydrometeors

detected by the lidar are not considered as a cloud in the cloud mask.
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Figure 15. (top) Reflectivity corrected for attenuation (in dBZ) and (bottom) Doppler velocity (vertical component Vz and radial component

Vx, in m s−1) from the vertically-pointing RASTA radar and from the horizontally-pointing BASTA radar displayed as a function of height

(for RASTA) or horizontal range (for BASTA), along a subcloud-layer leg during RF17 (from 09:06:09 to 09:20:03 UTC on Feb 11 2020).

3.5.4 Vertical radar measurements (RASTA)

RASTA is an up-looking pulsed 95 GHz Doppler cloud radar with two antennas (zenith and up backward –with an elevation620

of 66.7◦–, 30 cm large, Table 9). The radar was dedicated to the characterization of cloud microphysics and dynamics. The

radar was operated at 30 m resolution with a maximum range of 6 km at 1 s integration. Both Doppler moments (reflectivity

and velocity) and spectrum are available. As for BASTA, the radar reflectivity is range-corrected and calibrated, and the

background noise is removed using a thresholding technique based on the background noise characteristics. The derived mask

is refined thanks to some image processing. The reflectivity is corrected for gaseous attenuation using colocated information625

from dropsonde temperature, humidity and pressure. Once the Doppler velocity is unfolded and corrected from aircraft’s

motion and when backward and zenith antennas are simultaneously available, the vertical velocity and the along-track wind

components of the cloud/precipitation wind are retrieved. Two antennas allow us to retrieve the two components of the wind in

the plane defined by the two antennas.

Level 2 data are distributed as a set of NetCDF files for the flights during which the radar was operating and clouds were630

detectable with the radar (RF03, RF04, RF11, RF12, plus all flights from RF13 to RF19). For all these flights but two (RF11
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and RF12), two antennas were working (zenith and up-backward), which allows us to derive wind information (its radial

component) in addition to cloud information. For RF11 and RF12, only one antenna (zenith) was working and therefore the

wind information is not available.

Fig. 15 shows the reflectivity and Doppler velocity measured in the vertical and radial directions by the RASTA and BASTA635

radars during a leg of RF17. During this flight, the height of precipitating cloud tops could exceed 3 km. The vertical and radial

reflectivity structures tend to reflect each other, suggesting a well-defined geometry (or aspect ratio) of the clouds. The vertical

structure of the Doppler velocity from RASTA exhibits a maximum positive velocity near cloud top and negative velocities in

the parts of clouds that are associated with falling hydrometeors (rain or drizzle).

3.6 Water stable isotopes (Picarro)640

In addition to characterizing the meteorological, turbulent, microphysical, cloud and radiative properties of the atmosphere,

the ATR measured the water isotopic composition of the atmosphere using a customised fast response cavity ring-down spec-

trometer from Picarro (version L2130-i). This effort took place as part of a wider EUREC4A-iso initiative involving multiple

platforms and instruments (Stevens et al., 2021; Bailey et al., submitted). The rationale for isotopic measurements is that by

quantifying the relative content of isotopically heavy (1H2H16O, 1H18
2 O) and light (1H16

2 O) water molecules in the atmosphere,645

it is possible to get information about the transport, mixing and phase changes of water. Isotopically heavy water molecules are

associated with lower saturation vapor pressures and smaller diffusion velocities than their most abundant, lighter counterparts.

Therefore, the three main components of the boundary layer moisture budget, namely ocean evaporation, convective drying and

moistening by hydrometeor evaporation, carry a distinct stable water isotope signature (Risi et al., 2019). Specificities in the

water vapor cycling associated with different mesoscale cloud organisation patterns, therefore result in characteristic isotopic650

fingerprints (Aemisegger et al., 2021b). Whether these fingerprints are primarily due to the local processing of water vapor in

the marine boundary layer, or result from the interaction with the large-scale flow, is one of the questions to be addressed with

water isotope tracers.

The isotopic composition of atmospheric water vapor on board the ATR was measured with a sampling frequency of 1 Hz

(Table 9). The CRDS system uses laser absorption spectroscopy as a working principle: the different isotopic molecules having655

different rotational-vibrational energy level structure, they exhibit different transition frequencies in the near-infrared region

of the spectrum. Three nearby absorption peaks in the near-infrared region (7199–7200 cm−1) corresponding to the three

molecules (2H1H16O, 1H18
2 O and 1H16

2 O) are thus scanned by a laser in continuous wave operation mode. Laser light is in-

jected through a semi-transparent mirror into a 35 cm3 cavity with three mirrors in ring configuration (Crosson, 2008). A

photodetector is placed behind another mirror and measures the light intensity leaking out of the cavity. The isotope concentra-660

tion is determined by measuring the exponential ring-down time of the laser intensity after the laser source has been switched

off. The higher the heavy isotope concentration, the faster the decay of the laser intensity.

In the ATR, a rearward facing 30 cm long stainless-steel inlet with 1
4 -inch outer diameter was fitted to one of the front

windows on the right-hand side of the aircraft (Fig. 7, Table 6). A 1.5 m heated PTFE line with 10 mm inner diameter was

flushed with an inlet pump (KNF, HN022AN.18) at a rate of 13 Lmin−1. A filter (0.2 µm PTFE vent filter) was installed at665
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the end of the inlet line to prevent particles from entering the laser spectrometer. A subsample from the inlet line was drawn

into the instrument by a second pump (KNF, N920AP.29.18). The flow rate through the laser system was 280 mL min−1 and

the residence time of the vapor sample in the system was 7-14 s, depending on the ambient pressure. This bottom-up residence

time estimate from the gas flow setup was confirmed by a correlation analysis of the water vapor mixing ratio measured by the

Picarro and the ATR’s dew point hygrometer. A time lag of between 6 s and 15 s was found for the Picarro with synchronized670

computer clocks and was corrected in the post-processing. More details on the setup can be found in Bailey et al. (submitted).

To assess the instrument’s precision and drift, calibration gases were measured on the ground pre- and post-flight using a

Picarro Standards Delivery Module (SDM). The high precision liquid pumps of the SDM deliver a thin stream of liquid water

of known isotopic composition into a vaporiser heated to 140 ◦C. In the vaporiser, the liquid water droplets are completely

evaporated in a dry air stream, which was produced by pumping ambient air through a drying unit (Drierite) using a small675

air pump. In addition to the ground-based calibration runs, four in-flight calibrations were performed to assess the impact of

aircraft vibrations on the precision of the measurements.

Recent studies have indicated that the precision of laser spectrometers in laboratory settings is comparable to the one of

conventional isotope ratio mass spectrometer systems. However, for atmospheric field applications, the overall measurement

uncertainty can result from a range of factors such as calibration, sensitivity to variations in water concentration, and retention680

effects from the tubing (Aemisegger et al., 2012). A detailed post-processing procedure was therefore applied to account for

these factors. In particular, a two-stage correction procedure following Weng et al. (2020) was applied at water vapor mixing

ratios lower than 10’000 ppmv to correct for a known concentration-bias in laser spectrometric isotope measurements. The

water vapor mixing ratio measurement from the CRDS system was calibrated based on a linear correction determined in the

laboratory using a dew point generator. More details on the post-processing are available in Bailey et al. (submitted). The685

dataset is distributed on AERIS as an ensemble of self-documented NetCDF files (Aemisegger et al., 2021a).

4 Consistency among observations

The ATR measured humidity, winds and clouds with multiple instruments based on different observation techniques. This

redundancy and/or complementarity is an opportunity in several respects. It is an asset for the quality control of the data from

each instrument and for the processing of combined datasets taking advantage of the complementarity of the instruments. It also690

allows the robustness and the statistical representativeness of the measurements to be assessed. This last point is particularly

important for EUREC4A, as the experiment was designed on the premise that the relationships between clouds and their

environment could be characterized by combining measurements from several instruments and/or observing platforms that

sample the atmosphere differently (Bony et al., 2017; Stevens et al., 2021).

The objective of this section is to verify this premise by comparing some of the main ATR measurements made by different695

instruments using different techniques and/or samplings. We also assess the consistency between the ATR measurements and

the simultaneous dropsonde measurements (George et al., 2021) or BCO ground-based observations (Stevens et al., 2016).
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4.1 Humidity

On-board the ATR, humidity was measured by several instruments but the WVSS-II sensor was considered as a reference for

the calibration of the SAFIRE-CORE and SAFIRE-TURB datasets (Brilouet et al., 2021) because of its reliability and because700

it was the least affected by the presence of condensation or very dry air (section 3.1.4). The Picarro CRDS measured water

vapor with a similar sampling, and its data were calibrated on the basis of laboratory measurements (section 3.6). During most

ATR flights, HALO (or, on Feb 11th, the P-3) was flying circles of 200 km diameter at high altitude, measuring water vapor

every 5 min and with a vertical resolution of about 10 m with Vaisala RD-41 dropsondes (George et al., 2021).

The comparison between these different measurements is presented in Fig. 16 for each ATR flight. For the SAFIRE-CORE705

and Picarro measurements, the mean and standard deviation of the water mixing ratio are calculated over all the ’T-shortlegs’

segments (Table 2) associated with a given kind of segment. Note that the legs flown around the middle and the top of the

subcloud-layer have been considered together because the subcloud-layer is well mixed vertically (Albright et al, in prepara-

tion). For dropsondes, they are calculated over all available level-4 measurements in a layer comprised between the minimum

altitude minus 50 m and the maximum altitude plus 50 m sampled by the ATR for a given pattern. Most of the soundings710

data within the EUREC4A circle are derived from HALO dropsondes; these data include a correction for the dry bias of these

dropsondes (George et al., 2021).

For each flight and each pattern, the ATR measurements (SAFIRE-CORE and Picarro) generally exhibit a good agreement,

both in terms of mean humidity and standard deviation: over the cloud-base rectangles (R-patterns), the mean discrepancy

between the two datasets is 0.084 g kg−1 (0.63 %) and 0.21 g kg−1 (18.7 %) for the mean and standard deviation, respectively.715

Thoses differences are slightly larger on L-patterns (0.27 g kg−1 or 1.85 % and 0,21 g kg−1 or 29,4 %, respectively) and on

S-patterns close to the surface (0.28 g kg−1 or 1.86 % and 0.13 g kg−1 or 33.5 %). The most notable exceptions occur on

Feb 11 2020 (RF17 and RF18), when the aircraft flew within or below precipitating clouds (Table 4): along a few legs, the

quality of CRDS measurements was affected by the presence of cloud droplets or precipitation in the air inflow system.

The ATR measurements are also in good agreement with the dropsondes data, including when all the measurements show720

a small variability. Even the standard deviations show good agreement, which is somewhat surprising given the much larger

domain sampled by the HALO measurements. However, ATR and HALO measurements disagree more during RF09 (on

Feb 9th) and RF14 (on Feb 7th), when the cloud organization was very heteorogeneous at the mesoscale (Table 3 reports a

prominence of flower and fish organisation on these days). During most of RF09 for instance, the ATR was sampling the clear-

sky area surrounding cloud flowers while the dropsondes were sampling both clear-sky and cloudy areas. During RF06 (on Jan725

30), the variability of dropsonde measurements was very small because the corresponding HALO flight was much shorter and

was associated with the launch of only 2 dropsondes in the ATR area (as opposed to about 36 for other flights).

This comparison suggests that despite their different sampling and observing techniques, the ATR and HALO generally

measured statistically consistent variabilities of humidity around cloud-base, within the subcloud-layer, and near the surface.

The main discrepancies occurred when the scale of the cloud field organization was much larger than the scale of the area730
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Figure 16. Comparison for each ATR flight of the water vapor mixing ratio inferred (green) from the SAFIRE-CORE dataset, (red) from

the Picarro dataset and (blue) from the JOANNE dropsondes dataset. The top, middle and bottom panels are associated with different

kinds of ATR patterns: R-patterns (flown at cloud base), L-patterns (flown in the subcloud-layer) and S-patterns flown near the sea surface,

respectively. Note that the time axis is not linear. The standard deviation of dropsondes data is computed on the basis of all the individual

dropsondes launched during each ATR flight.
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probed by the ATR. In these cases, the differences are likely to be representative of real spatial differences associated with

different samplings.

4.2 Horizontal wind

The wind was measured both in-situ using the aircraft probes (section 3.1.2) and through remote sensing using the Doppler

radars BASTA and RASTA (sections 3.5.2 and 3.5.4). In parallel, the wind was measured by dropsondes (George et al., 2021).735

Fig. 17 compares the wind speed measured in the subcloud-layer or near the surface by the aircraft probes and by the HALO

dropsondes at 60 m. The wind speed being quite similar near the surface and within the subcloud layer, we primarily consider

the ATR measurements over L-patterns because these patterns are available for every flight and are associated with longer

measurements. Despite the different flight patterns of the ATR and HALO, the average wind speed measured by the two aircraft

is very consistent: the dropsonde and ATR measurements correlate strongly (R = 0.98) and differ by only 0.7 ± 0.5 m s−1.740

The two Doppler radars also measured the radial component of the horizontal wind along their line of sight. For BASTA,

this information is retrieved on every flight, but for RASTA it is available only for RF03, RF04, and RF13 to RF19, when

backward and zenith antennas were operating simultaneously. The radial component of the wind (perpendicular to the aircraft

trajectory) derived from BASTA and RASTA along R-patterns is compared to the horizontal wind measured by the aircraft

probes and projected along the radars’ line of sight (Fig. 17). For BASTA, the information is derived from the 3rd gate (about745

25 m from the aircraft) and for RASTA it is from the 4th gate (about 60 m above the aircraft). The radar Doppler and in-situ

measurements correlate strongly with each other (0.99 for the BASTA estimates, 0.94 for the RASTA estimates) and differ by

-0.61 ± 1.22 m s−1 and 0.24 ± 1.3 m s−1, respectively, over the whole campaign. The difference between BASTA estimates

and in-situ measurements reduces to 0 ± 1.22 m s−1 when RF17 and RF18 are not considered, showing that most of the

uncertainty in wind retrieval from horizontal radar measurements occurs in the presence of rain. This bias arises because the750

vertical component of the wind has to be taken into account if the radar beams are not perfectly horizontal, which requires

to account for the terminal speed of the hydrometeors. This might be corrected in future versions of the BASTA dataset. The

radar Doppler measurements also agree with the HALO radiosonde measurements of the horizontal wind at the same height

projected along the line of sight of the radars (not shown); on average over the campaign, the BASTA and RASTA estimates

differ from the HALO dropsondes data by -0.45 and +1 m s−1, respectively.755

In summary, the horizontal wind measurements of the ATR are consistent with each other and with the dropsonde mea-

surements made along the EUREC4A circle. It confirms that the flight strategy resulted in a good statistical sampling of the

lower-tropospheric wind.

4.3 Cloud-base cloud fraction

One of the original motivations for the EUREC4A campaign was to test the mixing-desiccation mechanism by which increased760

convective mixing in the lower troposphere dries the atmosphere around cloud base and reduces cloudiness (Bony et al., 2017).

This mechanism, which has been shown to contribute to the strong positive feedback of low-clouds and the high climate
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Figure 17. (Top) Comparison of the wind speed measured by the core instrumentation of the ATR (SAFIRE-CORE) in the subcloud layer

with the near-surface wind measurements (at 60 m, close to the altitude of the near-surface legs of the ATR) from the HALO dropsondes.

Note that the time axis is not linear. (bottom) Comparison of the radial component of the wind (perpendicular to the aircraft) derived from

the aircraft probes (SAFIRE-CORE dataset) with that inferred from (left) the horizontally-staring BASTA Doppler radar at 25 m from the

aircraft or (right) the vertically-pointing RASTA Doppler radar at 60 m above the aircraft; the comparison is done for all R-patterns flown at

cloud-base during the EUREC4A campaign (note that there were no wind measurements from RASTA from RF05 to RF12 and on RF20).

Data points are shown in grey, and the binned relationship between the two measurements is shown in blue.
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sensitivity of a number of climate models, remains to be tested observationally. Such a test requires measuring the cloud

fraction at cloud base CFb together with the lower-tropospheric mixing from convection and larger-scale vertical motions.

Reflecting the view that clouds are both bodies interacting with radiation, collections of particles, and a particular state of765

atmospheric water (Siebesma et al., 2020), we estimate CFb in different ways, using various observations ranging from lidar and

radar remote sensing, to in-situ microphysical measurements (defining the cloud mask either from the cloud particle properties

directly or from the equivalent radar reflectivity calculated from these properties), to high-frequency humidity measurements.

Using horizontal lidar-radar measurements from ALiAS and BASTA together with the BASTALIAS cloud detection algo-

rithm described in section 3.5.3, we diagnose the cloud fraction within the rectangle area associated with the R-patterns flown770

at cloud base: for each R-pattern, we divide the total number of points classified as ’cloudy’ along the instruments’ line of

sight by the total number of points where a cloud detection is possible. The resulting time series of CFb is shown in Fig. 18,

which uses a reflectivity threshold for the cloud-drizzle transition of -20 dBZ. Using a different threshold (-17 dBZ or -15 dBZ)

makes very little difference in the time series (not shown). CFb is small on average (3.5 %) but it ranges from 0 to 6 % across

flights. Minima in CFb occurred during RF09 and RF14, when the ATR was flying within the clear-sky area of a field of ’cloud775

flowers’ organised at the mesoscale (Table 4).

Most of the cloud fraction (from 60 to 100 %) is composed of clouds which were detected by the lidar only (Fig. 18). As

explained in section 3.5.3, it is because a large proportion of clouds in the trades are small (a few hundred meters) and optically

thin (especially at cloud base where the liquid water content is small), and because in the trade-wind boundary layer, horizontal

radar measurements can only detect clouds over a range of 2-3 km from the aircraft, while horizontal lidar measurements can780

detect clouds over a distance at least twice larger.

Using reflectivities at the 5th gate (i.e. about 90 m above the aircraft), and a threshold of -20 dBZ to distinguish clouds from

drizzle, a cloud fraction can also be diagnosed from the vertically-pointing cloud radar measurements (RASTA, section 3.5.4).

The CFb estimates from RASTA are in good agreement with those from BASTALIAS, except on RF17 and RF19 during which

RASTA measurements seem to be dominated by rain.785

A cloud fraction estimate can also be diagnosed from in-situ measurements of cloud microphysics (section 3.4.2) using two

methods. The first one consists in using the PMA hydrometeors masks defined as LWC ≥ 0.010 g m−3 and D < 100 µm, and

the drizzle mask as 100 ≤ D < 500 µm. We then compute a cloud fraction along the aircraft trajectory as the ratio between

the number of points classified as ’cloud-only’ over the total number of valid measurements. Although the sampling along

the aircraft trajectory is much less extensive than that of horizontal lidar-radar measurements, the time evolution of the CFb790

derived from PMA data is highly correlated (R = 0.90) with that from BASTALIAS (Fig. 18). The presence of drizzle can make

the definition of the cloud base cloud fraction ambiguous as drizzle can fall within the cloud base. For this reason, we also

compute a cloud fraction considering both clouds and drizzle, diagnosed either from BASTALIAS data or from PMA cloud

microphysical data. The cloud+drizzle fraction differs from the cloud-only fraction mostly on Feb 11, during which the ATR

flew during night time (RF17) or in the morning (RF18) in the presence of cloud flowers and a strong ascending motion in the795

free troposphere (Table 2.5). However, even in the presence of drizzle and rain, estimates from the two measurements are very

consistent with each other (R = 0.90, Fig. 18).
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Figure 18. (top) Cloud-base cloud fraction (CFb) inferred from ATR observations across or along the R-patterns flown at cloud-base:

from horizontal radar-lidar remote sensing (BASTALIAS), from horizontal lidar only (ALiAS), from in-situ microphysical measurements

(PMA) using an hydrometeor classification based either on (D, LWC) or on reflectivities (Z) inferred from the particle size distribution,

from in-situ humidity measurements at the turbulence scale (RH from SAFIRE-TURB), and from the vertically-pointing RASTA radar.

(middle) Comparison of the fractional area covered by "clouds only" (in black) or by "clouds+drizzle" (in orange) inferred either from the

BASTALIAS lidar-radar dataset or from the PMA dataset using both types of hydrometeor classification. Note that the time axis is not linear.

(bottom) Correlation (R) and linear regression coefficient (S) between the CFb estimates derived from different ATR datasets.
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Finally, recognizing that clouds occur in saturated (or, in the presence of sea salt, nearly saturated with respect to pure

water saturation) conditions, it is possible to define a pseudo cloud fraction from the high-frequency (25 Hz) / small-scale

(4 m) measurements of relative humidity: using the SAFIRE-TURB dataset, we reconstruct high-resolution timeseries of800

humidity mixing ratio, temperature and then relative humidity by adding the turbulent fluctuations of each variable measured

over stabilized segments (T-shortlegs) to the mean of each segment (section 3.3, (Brilouet et al., 2021). Then, by counting

the proportion of measurements having a relative humidity exceeding a threshold RHc, we define a pseudo cloud-fraction

from the SAFIRE-TURB dataset. The time series of CFb obtained with this method using a threshold RHc = 0.98 is in good

agreement and correlates well with the cloud fraction estimated from BASTALIAS (R = 0.76) or PMA data (R = 0.71). The805

best correlation with BASTALIAS and PMA data is obtained during the second half of the campaign (after RF09), when the

high-frequency measurements of humidity were of best quality (Brilouet et al., 2021).

The values of CFb derived from the different datasets obviously depends to some extent on the thresholds used to define

cloudy conditions. However, sensitivity tests suggest that the high correlation among the different estimates remains for a range

of threshold values. Considering the diversity of measurement techniques (in-situ microphysical and turbulent measurements,810

horizontal lidar-radar measurements, vertical radar measurements) and spatial samplings (rectangle perimeter or rectangle area)

leading to consistent results, the CFb estimates from the ATR can be considered as robust.

4.4 Water isotopic composition

To assess the consistency of isotopic data between the ATR Picarro dataset and the ground-based measurements from the BCO

(Fig. 19), we select the data collected at altitudes lower than 400 m (this height is well below cloud base for all flights and815

contains the ground-based measurements at the airport) and compute the mean value for each flight (ATRalt≤400m). The BCO

data is averaged over each flight’s period (BCOflights). The vapor sampled by the Picarro onboard the ATR was drier (-0.7 g

kg−1) and more depleted (-1 ‰ in δ18O ‰ and -4.3 ‰ in δ2H) than at the BCO (Table 10). The d-excess was nearly identical

except for RF04, RF07 and RF08 for which the d-excess at the BCO was lower. Similar differences between the BCO and the

R/V Atalante were recorded during a comparison stop offshore the BCO (personal communication Gilles Reverdin). A possible820

explanation for the observed differences could be the effect of sea spray evaporation due to the wave activity at the cliff in front

of the BCO that enriches and moistens the air close to the land-based site. The flight-to-flight isotope variability recorded by

the ATR agrees well with the one observed at the BCO: correlations between ATRalt≤400m and BCOflights range from 0.7 to

0.82 (Table 10). Due to their spatial separation, the instruments did not measure the exact same air, or if so, due to advection,

with a time lag. Therefore, the qualitative and quantitative match between the datasets suggests that the measurement are of825

good quality, and that distinct mesoscale environmental conditions were measurable during the different research flights.

5 Data availability

All the datasets discussed in this paper are available on the EUREC4A database of AERIS (https://eurec4a.aeris-data.fr), and

their respective DOIs are summarized in Table 11.
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δ18O δ2H d-excess Specific humidity

[‰] [‰] [‰] [g kg−1]

ATRalt≤400m -10.6 ± 0.6 -71.0 ± 2.2 14.1 ± 2.7 15.2 ± 0.7

BCOflights -9.6 ± 0.7 -66.7 ± 2.4 10.0 ± 3.3 15.9 ± 0.7

Correlation 0.75 0.80 0.70 0.82

Table 10. Mean values and standard deviations over all flights for the measurements made by the Picarro onboard the ATR and at the BCO

during the ATR flights, as well as the Pearson correlation between the two data sets.

Dataset Link Description Principal investigator Citation

Flight segments doi.org/10.25326/315 This paper S. Bony Bony et al. (2021)

Satellite movies doi.org/10.25326/299 This paper B. Fildier Fildier et al. (2021b)

SAFIRE-CORE doi.org/10.25326/298 This paper CNRM/TRAMM CNRM/TRAMM et al. (2021)

SAFIRE-RADIATION doi.org/10.25326/84 This paper CNRM/TRAMM CNRM/TRAMM (2020a)

SAFIRE-CLIMAT doi.org/10.25326/61 This paper CNRM/TRAMM, LOA CNRM/TRAMM (2020b)

SAFIRE-CAMERA doi.org/10.25326/297 This paper C. Cornet Cornet and JIANG (2021)

PMA/CDP-2 doi.org/10.25326/209 This paper P. Coutris Coutris and Schwarzenboeck (2021a)

PMA/2D-S doi.org/10.25326/219 This paper P. Coutris Coutris and Schwarzenboeck (2021b)

PMA/CloudComposite doi.org/10.25326/237 This paper P. Coutris Coutris (2021)

UHSAS doi.org/10.25326/220 This paper P. Coutris, G. Ehses Coutris and Ehses (2021)

BASTA doi.org/10.25326/314 This paper J. Delanoë Le Gac et al. (2021)

BASTALIAS doi.org/10.25326/316 This paper J. Delanoë Chazette et al. (2021)

RASTA doi.org/10.25326/313 This paper J. Delanoë Caudoux et al. (2021)

PICARRO doi.org/10.25326/244 Bailey et al. (submitted) F. Aemisegger Aemisegger et al. (2021a)

SAFIRE-TURB doi.org/10.25326/128 Brilouet et al. (2021) M. Lothon, P.-E. Brilouet Lothon and Brilouet (2020)

ALIAS basic data doi.org/10.25326/57 Chazette et al. (2020) P. Chazette Chazette (2020a)

ALIAS cloud products doi.org/10.25326/58 Chazette et al. (2020) P. Chazette Chazette (2020b)

ALIAS aerosol products doi.org/10.25326/59 Chazette et al. (2020) P. Chazette Chazette (2020c)

Table 11. List of ATR datasets derived from EUREC4A.
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Figure 19. Comparison of the ATR isotope measurements below 400 m (δ18O, δ2H and d-excess expressed in ‰, specific humidity in

g kg−1, and length of measurements expressed in min) with the ground-based measurements from the Barbados Cloud Observatory (BCO)

during each ATR flight.
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6 Summary and conclusions830

The EUREC4A field campaign, which aims at better understanding the link between clouds and circulation in the region of the

trades, based its core experimental strategy on the coordinated operations of two research aircraft (Bony et al., 2017; Stevens

et al., 2021): the French ATR aircraft flying in the lower troposphere and the German HALO aircraft flying at an altitude of

9-10 km. This paper presents the EUREC4A’s ATR operations and presents the 19 ATR flights (totaling approximately 82 flight

hours) that took place from Jan 25 to Feb 13, 2020 over the tropical Atlantic ocean, east of Barbados.835

The ATR mission focused on characterizing the thermodynamic, dynamical, microphysical, turbulent and cloud properties

of the lower atmosphere. One of its specific roles was to measure the cloud-fraction around cloud-base to help test low-cloud

feedback mechanisms. For this and other purposes, the ATR was equipped with a rich and extensive instrumentation composed

of in-situ sensors, radiometers and active remote sensing. Eighteen coordinated research missions followed a repeated flight

plan consisting of rectangles (or R-patterns) flown at cloud-base or cloud-top, L-legs flown within the subcloud layer (L-840

patterns), straight legs flown 60 m above the sea surface (S-patterns), and ferry legs flown in the lower free troposphere above

clouds.

The first part of this paper presents the ATR operations, the flight patterns and the flight segmentation (summarized in a

collection of YAML files). It also shows that during its 19 missions, the ATR sampled very contrasted environmental conditions.

The second part of this paper presents the ATR instrumentation used during EUREC4A: 3 temperature sensors, 5 humidity845

sensors, 2 broadband radiometers, an infrared spectrometer, 2 visible cameras, 6 microphysical probes, an horizontally-staring

backscatter lidar, 2 Doppler cloud radars (1 pointing horizontally and 1 pointing vertically), and a laser spectrometer for water

isotopologues. The paper presents the different instruments, highlighting the complementarity that results from their differ-

ent working principles. Then it presents the main aspects of the data processing and the datasets produced from the different

measurements: the core thermodynamical, dynamical and radiative measurements (SAFIRE-CORE, SAFIRE-RADIATION,850

SAFIRE-CLIMAT, SAFIRE-CAMERA), turbulence measurements (SAFIRE-TURB, Brilouet et al. (2021)), aerosol (UHSAS)

and cloud microphysical (PMA) measurements, horizontal lidar measurements (ALiAS, Chazette et al. (2020)), horizontal

radar (BASTA) and lidar-radar (BASTALIAS) measurements, vertical radar measurements (RASTA) and water isotopic mea-

surements (Picarro).

Finally, the paper assesses the consistency among the different ATR measurements, and between the ATR measurements855

and those performed by other instruments on different platforms such as HALO or the BCO.

The large variability of the aerosol load in the atmosphere (ranging from 50 to 500 cm−3) is measured consistently by the

ALiAS lidar and by UHSAS microphysical probes (sections 3.4.1 and 3.5.1). The measurements of humidity, wind and cloud-

base cloud fraction also exhibit a good consistency among the different ATR datasets. The mean specific humidity measured

by in-situ sensors differs from that measured by the ATR Picarro laser spectrometer by less than 0.1 g kg−1 at cloud-base,860

and by less than 0.3 g kg−1 within the subcloud layer; larger disagrements occur on RF17 and RF18 when the Picarro mea-

surements were impacted by cloud droplets and precipitation in the air inflow system. Estimates of the radial component of

the wind from the Doppler cloud radars are in good agreement with the aircraft probes measurements, with a discrepancy of -
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0.61± 1.22 m s−1 for BASTA and 0.24± 1.3 m s−1 for RASTA. Finally, a cloud-base cloud fraction was estimated for the first

time from horizontal lidar-radar measurements (BASTALIAS), and other estimates were derived from in-situ microphysical or865

turbulent measurements along the aircraft trajectory. These different estimates are in good agreement with each other (correla-

tions of 0.76 and 0.91 between BASTALIAS and SAFIRE-TURB or PMA estimates, respectively). The cloud-base fractional

areas associated with "clouds plus drizzle" estimated either from BASTALIAS or from PMA datasets are also consistent with

each other (correlation of 0.92). The good consistency obtained despite fundamentally different measurement techniques and

different atmospheric samplings (in-situ sensors sample the atmosphere along the aircraft line of flight, i. e. along the rectangle870

perimeter, while horizontal lidar-radar remote sensing samples the interior of the rectangle) shows that the ATR measurements

of humidity, wind and cloud-base cloud fraction are robust.

The ATR measurements of humidity and winds exhibit a good consistency with HALO dropsondes measurements: the wind

measurements from the ATR and from HALO are highly correlated (R = 0.98) and differ by only 0.7 ± 0.5 m s−1; the ATR

humidity measurements are also in good agreement with the dropsondes data, both in terms of mean and variability. It shows875

that the measurements made by HALO and the ATR are consistently representative of the explored area, despite the complexity

of the cloud organization and its inner heterogeneity.

These results thus verify two premises which were at the basis of the EUREC4A experimental strategy: 1) it is possible to

measure the cloud-base cloud fraction in a robust way, and 2) the repeated flight patterns of HALO and the ATR allow us to

sample the atmosphere statistically in a consistent way, except when the cloud field is organized on a scale much larger than the880

scale of the ATR flight pattern (which only occurred twice out of the 18 flights). It is therefore legitimate to use observations

from the different EUREC4A platforms together to carry out process studies. The availability of data from the ATR and other

platforms together with the large diversity of environmental conditions and clouds encountered during the campaign should

thus make it possible to better understand the physical processes underlying the cloud-circulation interactions in the trades.

Appendix A: Satellite movies885

Satellite animations were made to visualize the clouds scenes sampled by the ATR and other platforms during the campaign.

Geostationary images shown here are from the GOES-16 visible channel in daytime (channel 2) and infrared channel in

nighttime (channel 13). They are retrieved at 1 min time increment and 500 m resolution in daytime, 2 km resolution in

nighttime. The code is modular (Fildier et al., 2021a), and it can be used to generate movies with any combination of platforms

making measurements in the region captured by the mesoscans (50.1323-61.3010◦W, 8.2457-17.9343◦N). It can also include890

the trajectory of the radiosondes and dropsondes launched. Here, movies are restricted to the ATR track in the domain 57-

60◦W, 11.8-14.8◦N. The source code to generate GOES movies is archived at https://doi.org/10.5281/zenodo.4777954 and in

the github repository https://github.com/bfildier/EUREC4A_movies.
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Figure B1. Vertical trajectories of each ATR flight, with the main patterns highlighed in color. R-patterns at cloud base and/or cloud top

(orange), L-patterns in the subcloud-layer (blue), S-patterns near the sea surface (red), Ferry legs (black) and upward/downward profiles

(turquoise). Also reported (dashed line) is the subcloud layer top height diagnosed from dropsondes (Table 3).

Appendix B: Research flight trajectories

Appendix C: ATR instrumental configuration895
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Figure B1. (continued)
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Figure B2. Longitude-latitude trajectories of the ATR coloured by the flight altitude. For repetitive flight patterns (e.g., the rectangles), only

the last repetition is visible due to the overlap. The dashed circle shows the EUREC4A circle along which HALO was flying. The ATR

tracks are shown on top of a satellite snapshot of the domain (57-60oW, 11.8-14.8oN) derived either from MODIS Terra /Aqua images (when

available during the flight), or from GOES-16 (using either the C02/visible or C13/infrared channel) at about mid-flight time.
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Figure B2. (continued)
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Figure C1. Instrumental configuration of the ATR showing the nomenclature used in Tables 5 to 9.
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