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Abstract: Coastal areas host highly valuable ecosystems that are increasingly exposed to the threats of
global and local changes. Monitoring their evolution at a high temporal and spatial scale is therefore
crucial and mostly possible through remote sensing. This article demonstrates the relevance of
topobathymetric lidar data for coastal and estuarine habitat mapping by classifying bispectral data
to produce 3D maps of 21 land and sea covers at very high resolution. Green lidar full waveforms
are processed to retrieve tailored features corresponding to the signature of those habitats. These
features, along with infrared intensities and elevations, are used as predictors for random forest
classifications, and their respective contribution to the accuracy of the results is assessed. We find
that green waveform features, infrared intensities, and elevations are complimentary and yield the
best classification results when used in combination. With this configuration, a classification accuracy
of 90.5% is achieved for the segmentation of our dual-wavelength lidar dataset. Eventually, we
produce an original mapping of a coastal site under the form of a point cloud, paving the way for 3D
classification and management of land and sea covers.

Keywords: topobathymetric lidar; full-waveform lidar; classification; coastal habitats; habitat
mapping

1. Introduction

Monitoring coastal areas is essential to the preservation of the land-water contin-
uum’s habitats and the services they provide, particularly in a context of local and global
changes [1]. Seagrasses, salt marshes, mangroves, macroalgae, sandy dunes, or beaches are
examples of such habitats that continually interact with the tide levels. They can be found
along the temperate shorelines and play key roles in the ecological equilibrium of these
ecotones. Seagrasses ensure water quality and are a significant carbon sink, along with
salt marshes and mangroves [1,2]. Coastal habitats also provide protection from marine
hazards to coastal communities and infrastructures and supply many recreational activities
such as snorkeling, fishing, swimming, and land sailing [1–3]. Finally, they support a wide
range of endemic species by offering them nurseries, food, and oxygen [1,2]. However,
coastal (including estuarine) habitats are exposed to a plethora of natural and anthropic
threats that may be amplified by global changes. Thorough observation of coastal processes
is necessary to identify the trends of evolution of these fragile environments. It requires
regular data acquisition along the shoreline with spatial resolution and time spacing both
adapted to the task. However, the surveying complexities inherent to land-water contin-
uum areas hinder their monitoring at a time scale relevant to their fast evolution, and over
large, representative extents. Remote sensing can adequately address this issue.
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Due to the presence of water, coastal surveys are conventionally split between topo-
graphic and bathymetric campaigns, both constrained to the tide and the field accessibility.
Subtidal areas can be surveyed with waterborne acoustic techniques, while supratidal
domains are documented with passive or active imagery using satellite, airborne, or un-
manned aerial vehicles (UAV) [4–6]. Boats being unable to reach very shallow areas and
imagery being limited by the water surface, intertidal, and shallow water areas are harder
to accurately monitor [7]. Distinct terrestrial and marine surveying campaigns can also be
difficult to merge, considering they might rely on different reference systems, and their
thin overlapping area can be challenging to sample thoroughly with ground control points.
Existing seamless surveying techniques over land-water interface areas are summarized in
the following section.

Multispectral or superspectral imagery can be used for coastal habitat mapping. In
clear and shallow water, traditional image classification techniques can be applied [7]. A
more accurate approach consists in suppressing the effects of water on light refraction and
diffusion by using inversion models on superspectral imagery. Using such models, it is pos-
sible to obtain satellite-derived bathymetry [8] or satellite-derived topobathymetry [9,10],
which are proven to improve the classification of coastal covers obtained [11]. Bathymetry
can also be extracted using multispectral imagery, as demonstrated in [12]. Multispectral
imagery has the advantage of being accessible with different platforms: UAVs, planes, or
satellites nowadays all benefit from multiband sensors. The cost of acquisition can therefore
be lowered depending on the chosen source, and the revisit time can allow high temporal
resolution monitoring.

Hyperspectral imagery is the last passive imagery-based method to map the land-
water continuum [13,14]. The key principle of methods using hyperspectral imagery to
study submerged areas is to model the interactions of light with the water column and
correct them to obtain imagery unaffected by these processes. By inversing a radiative
transfer model of the water column, it is possible to derive the seafloor reflectance and
estimate the bathymetry [15]. These products are adapted to the characterization of sea
bottom types and can be used for benthic classification tasks.

Although satellite passive imagery overcomes the issue of accessibility and temporal
resolution, its spatial resolution is sometimes too coarse to spot specific changes (depending
on the sensor and the quality of pan-sharpening), and it only penetrates water in shallow,
clear areas [16]. The main issue with passive imagery remains the depth range in which it
is usable. Due to optical phenomena, past a certain depth threshold that varies with water
clarity, passive imagery can no longer give information on what lies beneath the water
surface. Bathymetry extraction via active imaging then becomes the only way to gather
information on these areas. Furthermore, even in shallow waters, bathymetry derived from
active sensors gives access to the seabed covers’ elevation but also to the seabed’s elevation
itself, providing 3D information on these covers, which enables biomass estimation or
other structural assessments [17–20]. The bathymetry measurements obtained with active
sensors (airborne bathymetric lidar or waterborne acoustic soundings) also leverage a
higher vertical precision, useful for ecological structural assessments [12].

Airborne topobathymetric lidar is a reliable alternative: it ensures information con-
tinuity between land and water, covers vast areas quickly, penetrates a depth of up to
dozens of meters and has a higher spatial resolution than satellite imagery [21,22]. Current
approaches to map coastal interfaces using airborne lidar mostly make use of the digital
terrain models or digital surface models derived from the lidar point clouds (PCs), includ-
ing those obtained for the water bottoms after removing points corresponding to the water
bodies [17]. Fewer studies rely on the 3D PCs of the lidar surveys to generate coastal or
riverside habitats maps. Directly processing the PCs and avoiding rasterization has the
advantage of preserving the dense spatial sampling provided by lidar sensors. It also opens
possibilities for 3D rendering of the results, and structural analysis thanks to the rich spatial
information contained in PCs. Indeed, the vertical repartition of the points offers useful
information on scene architecture, providing relevant features to determine their origin,
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namely for vegetation or building identification. Analysis of this geometrical context is the
most frequently used method to produce maps of land and water covers [23–25]. Research
works conducted on PCs processing mostly rely on the computation of geometrical features
using spherical neighborhoods [23] and, more recently, on deep neural networks [26].

Another possibility with airborne lidar is to exploit the spectral details contained in
the backscattered signals. These can be recorded under the form of time series of inten-
sities received by the sensor: lidar waveforms. Each object of the surveyed environment
illuminated by the sensor’s laser reflects light in a specific way, generating a characteris-
tic signature in the signal. Waveforms consequently provide additional information on
the structure and physical attributes of the targets. The shape, width, and amplitude of
their spectral signature—a peak—are information that can be used for land and water
covers mapping [27–29]. Waveforms are therefore a useful indicator of the diversity of
coastal areas. Though many methods have been proposed to process airborne topographic
lidar full-waveforms, airborne bathymetric lidar full-waveforms are, to the best of our
knowledge, much less explored. They are even less employed for classification tasks, and
often only analyzed to retrieve bathymetry. There are currently three main approaches
to waveform processing. The first consists in decomposing the waveforms to isolate each
element of the train of echoes in the signal [30,31]. The second consists in reconstructing
the signal by fitting statistical models to the waveforms [32]. Knowing how to approximate
the sensed response allows to extract the position and the attributes of each component.
The last approach is to analyze waveforms straightforwardly as any 1D signal to detect
their peaks [27], using first derivative thresholding for example. Identifying waveform
components is useful in order to localize the objects populating the scene, but also to extract
features to describe them and prepare their automatic classification [27,33,34].

Classification of land or water covers using lidar data has been well explored recently.
Even when using waveform data, most of the published research is based on 2D data
classification [17,25,27,29,33] while fewer articles exploit PCs [24,34,35]. Many studies
researching ways to classify lidar data used machine learning algorithms such as support
vector machine (SVM), maximum likelihood (ML), or random forests. The maximum
likelihood is mostly used for 2D lidar data, while SVM and random forests have been
proofed on PCs. SVM and random forest seem to have similar classification performances
on 3D lidar data [36]. However, with these algorithms, the spatial context around each
point is not considered and does not impact the prediction [36]. Research papers show that
conditional random field (CRF) and Markov random field (MRF) classifications produce
better results in that way [36,37]. However, these require heavier computation and are
more difficult to apply to large datasets. Currently, there is a consensus on the efficiency
of random forest on that aspect [36]. Contrary to SVM, CRF, or MRF, it is easy to apply to
large datasets. Random forest is, furthermore, robust to overfitting issues and offers the
possibility to retrieve predictors contribution easily. In this article, we therefore wish to
implement a hand-crafted features’ random forest classification to map coastal habitats.
Although machine learning classification of lidar waveform features has been explored
previously, we have found no point-based studies dedicated to mapping a large number of
habitats both marine and terrestrial. Previously cited studies such as [24,34,35] classified
either only marine or only terrestrial habitats from PCs and [27] processed 2D data to
produce their map of coastal habitats.

The present study aims at mapping an array of 21 habitats of the 3D land-water
continuum seamlessly using exclusively airborne topobathymetric bispectral lidar. Our
objective is to bridge the gap between marine and terrestrial surveys, demonstrate that
efficient methods can be developed to automatically map the land-water interface, and
show that an integrated vision of coastal zones is feasible and advised. Our contributions
consist in (1) developing a point-based approach to exploit full-waveform data acquired
during topobathymetric surveys for subtidal, intertidal, and supratidal habitats mapping,
(2) quantifying the contribution of green waveform features, infrared (IR) intensities, and
relief information to the classification accuracy based on a random forest machine learner.
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We improve an experimental method presented in a previous work [29] and test it on a
wider area including both emerged and submerged domains to determine the suitability of
full-waveform lidar data for coastal zone mapping. UAV data, inexpensive to implement,
is used to estimate the accuracy of the resulting very high spatial resolution maps, which
are produced under the form of PCs, paving the way for 3D classification of land and sea
covers using solely topobathymetric lidar data.

2. Materials
2.1. Study Area

The study location was chosen along the northern coasts of Brittany, France, for its
ecological diversity and due to the availability of full-waveform lidar data acquired by
the French Hydrographic Office (Shom) as part of the Litto3D® project [38]. The study
area, presented in Figure 1, features typical coastal habitats such as fine sand or pebble
beaches, a sandy dune, rocky areas provided with macroalgae, seagrass meadows, and
salt marshes at the estuary of a local river. It also hosts a small resort town, Sables d’Or les
Pins (48◦38′27′′N: 2◦24′24′′W). Buildings, tar or concrete-covered paths, boats in mooring,
vehicles in parking lots, wooded areas populated with evergreen pine trees or deciduous
species, and crop fields are also present in the selected zone. All these habitats are home to
a rich variety of species: shellfish; dune plant vegetation; green, red, and brown seaweed;
eelgrasses; evergreen and deciduous trees; crops; and salt marsh plants such as glasswort,
common soda, sea purslane, or sea lavender.

2.2. Full-Waveform Airborne Topobathymetric Lidar

Airborne lidar is an active remote sensing technique that uses the backscatter of laser
light in the environment to compute ranges to the ground cover and produce 3D maps
of the environment, knowing the absolute position of the sensor. Topobathymetric lidar
relies on two different lasers with distinct wavelengths: a green laser is added to the usual
IR laser to detect the seabed or riverbed [21,22,39]. It exploits the physical properties of
the green spectrum that penetrates the water surface, whereas the IR light does not. Lidar
waveform is the recording of the full backscattered signal on the surveyed environment. A
waveform consists in samples of recorded backscattered intensities over time. Since laser
light is reflected by objects standing on its path, each element illuminated by the lidar laser
backscatters a fraction of the emitted beam, which results in a peak in the waveform. Peaks
are theoretically more or less intense depending on the object’s albedo, its geometry and
the laser incidence angle [40]. Due to the different layers of coverage in the environment
(tree canopy, tree branches, bushes, soils, for example), there can be several peaks in the
same waveform, all corresponding to a different layer in the reality. A typical topographic
waveform (i.e., resulting from a laser beam hitting the land) has as many peaks as there
are objects of different elevation in its way [28,39]. A bathymetric waveform usually has
three main components: the first is the water surface return, the second is the water column
return (originating from the backscatter of photons on particles suspended in the water
such as sediments or nutrients), and the third is the return originating from the reflection
on the seabed or riverbed [21,22,39]. Since all objects present in the cone illuminated by the
laser reflect some light towards the sensor, they all contribute to the recorded waveform’s
shape [28]. Each element of the landscape/seascape is therefore characterized by the shape
of its component in the waveform, which can be used for land or sea cover detection
and classification [27,29,34,41]. In this work, backscattered intensities are converted into
pseudo-reflectances by dividing them with the emitted pulse’s intensity. Examples of
a typical bathymetric waveform and a typical topographic waveform are presented in
Figure 2.
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2.3. Datasets

The lidar data [42] used for this research were acquired over the coast of Sables d’Or
les Pins in September 2019 by the Shom as part of the Litto3D® project [38], using a Leica
HawkEye 4X sensor. The HawkEye 4X produces laser pulses at wavelengths of 515 nm and
1064 nm on three different channels. Depths under 10 m have a dedicated shallow green
laser, while a more powerful laser, the deep channel, is used to detect deeper seabed. These
two channels provide PCs with a density of at least five points per m2 and one point per m2

and they have a laser spot size diameter of 1.8 m and 3.4 m, respectively. The IR laser has a
laser spot size of 0.2 m and a point density of at least 10 points per m2. For green channels
only, backscattered intensities are recorded with a time frequency of 1.8 GHz, providing
waveforms with a sample every 556 picoseconds. This information is not available for the
IR laser.

The survey was conducted with a constant laser amplification. Due to the power
needed to penetrate through several meters of water, the shallow laser’ backscattered
intensities tend to be saturated over highly reflective land surfaces, but they are still usable.
The deep channel’s returned intensities, however, are systematically saturated and do
not provide usable information for land cover classification. In this study, only shallow
full waveforms were used, considering the selected area’s range of depths. The green
waveforms used were available for every shallow green laser shot. Over the studied
area, their average density was 3.75 waveforms per m2. Reanalyzed echo PCs for both
shallow green and IR wavelengths were also used: the IR PC brought additional spectral
information, while the green PC was used to accurately position the raw waveforms, since
this PC underwent refraction correction before delivery. The effects of refraction were not
corrected in the raw waveform files.

To provide knowledge on the environment on site, ground truth data (presented in
Figure 3) were acquired in the form of photoquadrats and UAV imagery. They helped label
the lidar data to perform habitat classification. UAV imagery was acquired over five smaller
areas of interest, each representing typical coastal habitats, in March and April 2021 using
an RGB DJI Phantom 4 Pro V2, and a Parrot Sequoia+ including a near IR nadiral sensor
(770 nm to 810 nm) with a zenithal irradiance sensor. These flights were calibrated with a
total of 55 ground control points. An array of 150 photoquadrats were captured with RGB
cameras and georeferenced, to seize the ecological diversity of the study area. Over marine
parts of the study site, a PowerVision unmanned surface vehicle (USV) was used to gather
knowledge of the seabed covers. The underwater images were acquired in September
2021. An RGB orthoimage acquired in 2014 over the whole area was also used to give extra
information on the habitats present on site four years prior to the data acquisition.
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3. Methodology

The algorithm developed in this study was first introduced in [29] to identify marine
habitats using green full-waveform spectral features. In [29], only seagrasses and sediments
(two classes) at few meters’ depths were classified. We significantly improved this algorithm
and adapted it to the classification of 21 habitats across the land-water interface, to test its
abilities in supratidal and intertidal environments.

The enhanced version presented here was tailored to the identification of land and
sea covers: the seabed or riverbed type was considered in the presence of water while we
focused on the surface cover over terrestrial areas (i.e., if there were two layers of surface
covers, such as a trees and grass beneath it, the land cover was labelled as tree). It used a
supervised point-based classification algorithm trained on various sets of input features
and evaluated on a test dataset. Classified PCs of the whole area were also produced to
observe the ability of each predictor sets to produce a map of the habitats in the study area
using this approach.

3.1. Classes of Land and Sea Covers Investigated

A total of 21 classes of land and sea covers has been designed based on on-site
observations and photo-interpretation. These classes are illustrated in Table 1.
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Table 1. Classes of land and sea covers identified in the study area.

Class Name Illustration Waveform Class Name Illustration Waveform
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3.2. Data Pre-Processing

The classification algorithm developed for this research aimed at processing bispectral
lidar data. Two PCs were therefore used, but full-waveforms were available only for the
green wavelength. IR data were thus incorporated as reflected intensities only. Due to
the sensor’s configuration, IR and green lasers of the topobathymetric lidar used are not
co-focal. They also do not have the same swath, density, and precision. The two resulting
PCs are consequently different, and the points acquired do not have identical locations. A
preprocessing step was therefore required to obtain the IR backscattered intensity at each
green waveform’s location. Intensities of the IR PC were matched with each point of the
green waveforms PC, which was kept as the reference PC, using the median IR intensity
of the 10 nearest neighbors of each green waveform’s location in the IR PC, which was
computed and assigned to the waveform as an attribute. To this end, we used the PC
processing software “CloudCompare” [43], in which the neighborhood search is performed
by computing the 3D Euclidean distance between each point of the reference PC and the
points of the compared PC. The coordinates of the waveforms’ cover component were used
to locate each waveform and obtain a green waveform PC. Consequently, each waveform
was synthesized as a point, and we obtained a green waveforms PC. The IR PC was cleaned
manually beforehand, to ensure all noise points, significantly above the surface, were
removed from the data.

The median intensity of the 10 closest neighbors in the IR PC was chosen for two
reasons. First, the number of 10 neighbors was relevant considering the difference of the
two lasers’ spot sizes and the resulting density of the PCs. Second, the use of the median
intensity was more suited to the task than the mean intensity to avoid outliers’ artefacts in
spheres located at the interface of two habitats.

3.3. Training and Testing Datasets

Two main datasets were designed to perform the data classifications and assess their
quality, called the training dataset and test dataset. We collected 1000 training and 500 test-
ing samples of each class. To do so, we first drew polygons over representative areas of
the 21 land and water covers, based on the ground-truth data, and made sure none of the
polygons intersected. We used these to segment the PC and extract points located within
representative areas of each class. For each class, we then randomly selected 1000 of them
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for the training datasets and 500 others for testing, which resulted in training and test
datasets of 21,000 and 10,500 items, respectively. This draw without replacement ensured
that no training and testing points were the same and that they were all independent. We
chose to use the same areas for random drawing of training and testing points in order to
account for the widest diversity possible in the training and testing samples. The resulting
training and test points have a mean distance of 1.6 m; their repartition is presented in
Figure 4.
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samples. The resulting training and test points have a mean distance of 1.6 m; their rep-
artition is presented in Figure 4. 

  
(a) (b) 
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Each array of coordinates, IR intensities, and waveform features was associated to 
one integer label between 1 and 21, forming a dataset with the structure illustrated in 
Figure 5. 
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The point-based classification method is described in the following paragraphs. It 
relied on the interpolated IR intensities and on spectral features extracted from the green 
waveforms.  

Figure 4. Repartition of the training and test data over the study area (datum: WGS 84; projection:
UTM 30N). (a) Training data distribution; (b) test data distribution. S. = submerged, Ev. = evergreen,
Dec. = deciduous. The size of the points in the illustration may give a false impression of overlapping,
but all points have distinct locations.

Each array of coordinates, IR intensities, and waveform features was associated to one
integer label between 1 and 21, forming a dataset with the structure illustrated in Figure 5.
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The point-based classification method is described in the following paragraphs.
It relied on the interpolated IR intensities and on spectral features extracted from the
green waveforms.
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3.4. Waveform Processing Method

The waveform processing steps are presented in Figure 6 and detailed in the follow-
ing paragraphs. All these steps were performed using tailored scripts developed with
Python 3.8.8.
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Figure 6. Flowchart of the overall methodology.

The base concept consists in extracting tailored features from the relevant part of
the waveforms. Here, we considered this part to be any return detected after the water
surface component in submerged domains, and the part of the waveform encompassing
the backscattered signal in terrestrial zones. In these zones, the sole processing was to
isolate the useful part of the green waveform by identifying where the backscatter begins
and the noise ends. This was made by evaluating the mean level of noise observable at the
beginning and at the end of the waveform and extracting the part of the wave where the
intensity was above this noise level.

To distinguish marine and terrestrial waveforms, we relied on a flag attributed by the
Leica survey software Leica LIDAR Survey Studio (LSS) to points in the PC that correspond
to an interpolated water surface under which refraction correction is made. Since waveform
files integrate this information, it was possible to use it to differentiate submerged and
emerged areas. This step is a pre-classification made by LSS before the data was delivered
to us.

In submerged areas, further processing was required to detect the different peaks and
isolate the parts of the signal that correspond to the water surface and the water column
components. All green waveforms were first filtered using the Savitzky–Golay piecewise
polynomial functions estimation method to remove the noise. As explained in [29], a
threshold was then applied to the first derivative of the smoothed waveforms to bring out
the peaks. This step was well suited to the detection of the most significant peaks; however,
depending on local conditions affecting the reflection of light, some bottom returns may be
less intense and hard to expose. We therefore included a second thresholding: when only
one peak was identified with the first threshold, another derivative thresholding step was



Remote Sens. 2022, 14, 341 12 of 30

introduced to try to detect peaks after the water surface (i.e., the peak already detected).
This second threshold had a lower value, which would exacerbate noise if it were used on
the whole waveform, but it was adapted to the detection of more attenuated returns when
used on the underwater part of the waveform. If no additional return was identified with
this first derivative thresholding, we concluded that no seabed was retrieved and discarded
the waveform since there was no return to compute features on.

The same correction of the signal’s attenuation in water as the one in [29] was applied
to bathymetric waveforms; it relied on the fitting of an exponential function on the water
column component to compensate for the effects of water absorption and diffusion in
water on the bottom return. This was based on the estimation of the diffuse attenuation
coefficient [21,22] through the evaluation of the intensity gradient at the end of the surface
return. However, since there were mathematical limitations to this approach in very shallow
water areas, no correction was applied in depths under 0.125 m since the optimization was
impossible on a water column component containing less than two waveform samples (one
sample corresponds to 0.063 m in that scenario). In places where depths were smaller than
0.125 m and over land, the attenuation was fixed at 0.

The waveform processing is summarized and illustrated in Figure 7.
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3.5. Waveform Features’ Extraction

Once all waveform components corresponding to ground or seabed covers were
isolated, these intensities time series were converted into pseudo-reflectance series by
dividing them with the emitted laser pulse intensity. This allowed us to remove potential
bias induced by slightly varying emitted laser intensity. Statistical parameters were then
computed on these truncated and normalized waveforms. They were selected based
on [27,29,44] and are described in Table 2.

Table 2. Name and definition of the features extracted from the green waveforms during processing
and used as input variables to the random forest model.

Name Definition

Z Elevation of the ground (beneath any surface cover)

Diffuse attenuation coefficient
estimated value

Value of the coefficient of attenuation of light in water
(=0 for depths < 0.125 m and on land)

Complexity of the peak Number of sign changes of the peak’s first derivative

Mean Mean pseudo-reflectance of the peak
(after attenuation correction)

Median Median pseudo-reflectance of the peak
(after attenuation correction)

Maximum Maximum pseudo-reflectance of the peak
(after attenuation correction)

Standard deviation Standard deviation of the pseudo-reflectance of the peak
(after attenuation correction)

Variance Variance of the pseudo-reflectance of the peak
(after attenuation correction)

Skewness Skewness of the peak
(after attenuation correction)

Kurtosis Kurtosis of the peak
(after attenuation correction)

Area under curve Area under the curve formed by the peak
(after attenuation correction)

Amplitude Amplitude of the pseudo-reflectance of the peak
(after attenuation correction)

Time range Time duration of the peak
(in number of samples)

Total Sum of pseudo-reflectance values forming the peak
(after attenuation correction)

Height Difference of altitude between the peak of the first layer
of cover and the last peak.

Maximum before correction Maximum pseudo-reflectance of the peak (without
attenuation correction)

Position of the maximum in the peak Position of the maximum in the peak (in sample indices)

The terrain’s elevation value was also extracted: for topographic waveforms, it cor-
responds to the last return’s altitude (computed using traditional time of flight range
measurement, extracted from the PC). For bathymetric waveforms, it was computed using
the depth of the last return identified by our algorithm and withdrew to the altitude of
our detected surface return, positioned with the PC. The vertical reference was the IGN
1969 system.

The spectral features computed on the truncated green waveforms, the IR intensities
associated with the points and the elevations were then used as predictors for random
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forest classifications of ground covers over the study area. The 21,000 items of the dedicated
dataset were used for the algorithm’s training, and the 10,500 items of the testing dataset
were used to assess the quality of the predictions.

3.6. Random Forest Classification

Contrary to [29], the data were not rasterized but features were directly classified to
produce a 3D habitat map so as to avoid information loss. We also relied on a different
classifier to predict data labels. A random forest model with 150 trees was used for the
classification step. Considering that we wished to apply it to a dataset containing 24.5
million items after fitting, we chose a high number of trees to populate the forest, knowing
that more trees theoretically equal to better classification accuracy and that the number of
trees needs to be adapted to the complexity of the dataset. We also based our choice on the
observation made in [45] on several different datasets that state that past 128 trees in the
forest, classification accuracy gains become negligible for each additional tree, compared to
computational demands. The maximum tree depth was not fixed so that nodes expanded
until the leaves were pure. We relied on impurity to determine whether a leaf has to be split
or not using the Gini impurity criterion, which was calculated using the following formula:

GiniIndex = 1−∑
j

p2
j , (1)

where pj is the probability of class j. This criterion is close to 0 when the split is optimal.
We controlled the generalizability and over-fitting of the model by monitoring the

generalization score obtained on random out-of-bag samples at each fitting step. The
random forest implementation of the Python library scikit-learn was used.

3.7. Comparative Study

Random forest classifications were launched on several sets of predictors that were
clustered based on their conceptual similarity. The performance metrics of each group of
features were then retrieved. This allowed us to evaluate the contribution of each family of
feature to the classification accuracy. The feature sets were the following:

• Statistical features: mean, median, maximum, standard deviation, variance, amplitude,
and total;

• Peak shape features: complexity, skewness, kurtosis, area under curve, time range,
and height;

• Lidar return features: diffuse attenuation coefficient estimated value, maximum,
maximum before attenuation correction, position of the maximum in the peak, and
associated IR intensity;

• Green spectral features: all features extracted from the green waveforms, except
elevation (which is later referred to as Z).

We also performed importance variable contribution analysis by dropping green
waveform features one by one and computing the classification accuracy difference between
the reduced set of 15 predictors and the full 16 attributes.

3.8. Results’ Quality Assessment

Classification performances were assessed by considering the values obtained on
the test dataset by the random forest classifier for the following metrics: overall accuracy
(OA, ratio of correct predictions, best when its value is 1), precision (fraction of correct
predictions among each ground truth classes, best when its value is 1), recall (fraction
of correct estimation for each predicted classes, best when its value is 1), and F-score
(combination of precision and recall, best when its value is 1). The precision, recall, and
F-score were computed for each label, and their unweighted mean was used to compare
the results obtained. Confusion matrixes presenting the producer’s accuracies (PA) were
also created to analyze the performances of classification on each of the 21 classes.
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3.9. Spatialization of the Random Forest Predictions

Although coordinates were not used during classification, the arrays of features were
geolocated with the position of the waveform’s last echo, as illustrated by Figure 5. To
visualize our classification results as PCs, we associated the predictions’ vector to these
coordinates. This allowed us to obtain the result under the form of a classified PC. The fact
that we did not rasterize our data had the advantage of preserving the spatial density and
therefore the spatial resolution, while also avoiding the critical issue of mixed pixels [46].

Each waveform was localized with the planar coordinates of its last return using the
PC coordinates. For bathymetric waveforms, this ensured that the effects of refraction of
the laser beam on the air/water interface were considered, since the green PC was corrected
before data delivery.

4. Results
4.1. Random Forest Classifications’ Performances on the Test Dataset

Ten random forest models were trained on the training dataset—one for each configu-
ration of predictors defined in Section 3.7. Their performances were evaluated using four
metrics computed on the predictions made on the test dataset. Four of them were then
used to predict labels for the complete study area and produce habitat maps under the
form of PCs.

Fitting the models to the 21,000 items training dataset took on average 0.4 s. Predictions
on the test dataset (which contains 10,500 items) required a mean computing time of 0.2 s.
The complete area, representing a total of more than 24.5 million items, was covered in 17
to 18 min. All computations were made on a machine equipped with an AMD Ryzen 9
5900X 12-Core CPU and an NVIDIA GeForce RTX 3080 GPU.

The classification metrics obtained on each set of features defined in Section 3.7. are
presented in Table 3. The very close values observed between the four criteria for each
feature set are due to the averaging of each metric’s value obtained for each classification
label. They are also explained by the fact that all classes are balanced. The scores obtained
show that our method does not have a systematic tendency to over- or under-estimate
some classes.

When using only subsets of green waveform features, the random forest predictions
were more often false than they were correct. However, grouping the waveform variable
families improved the accuracy by at least 4%. The best configuration—composed of peak
shape features and lidar return features—provided a classification accuracy of 69%. Glob-
ally, coupling statistical features with peak shapes features tended to result in accuracy loss
while using combinations where they were not mixed resulted in classification performance
gains. Indeed, the complete set of features obtained through green waveform processing
predicted the habitat type with an OA of 56%, while the output of the classification of
statistical and lidar return features was correct in 67% of cases (see Table 3).

The addition of IR intensity values to the full set of green waveform parameters
improved the OA of 13%, which is 5% above the best OA obtained on a subset of green
waveform attributes. The contribution of the elevation to the classification accuracy was
even higher: there was a 31.5% gain in OA between the green spectral features’ classification
and the classification of green spectral features and elevations. Gathering the three sources
of information produced the most accurate result, with an OA of 90.5% (Table 3).
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Table 3. Performance metrics obtained by each random forest experiment.

Features Set Overall
Accuracy Recall Precision F-Score

Statistical features 0.45 0.45 0.444 0.444
Peak shape features 0.463 0.463 0.452 0.455
Lidar return features 0.479 0.479 0.471 0.474

Statistical features + Peak shape features 0.519 0.519 0.512 0.513
Peak shape features + Lidar return features 0.686 0.686 0.681 0.681
Statistical features + Lidar return features 0.662 0.662 0.657 0.657

Green spectral features 0.559 0.559 0.552 0.552
Z 0.551 0.551 0.549 0.549

IR intensity 0.241 0.241 0.238 0.238
Green spectral features and IR intensity 0.691 0.691 0.687 0.687

IR intensity + Z 0.75 0.75 0.745 0.746
Green spectral features + Z 0.874 0.874 0.875 0.873

Green spectral features + IR intensity + Z 0.905 0.905 0.905 0.905

4.2. Green Waveform Features’ Contribution to the Classification Accuracy

Figure 8 illustrates the contribution of each predictor to the accuracy of the classi-
fication of green waveform features. It sheds light on the value-added of each attribute
computed on the truncated waveforms. This assessment reveals that 9 of the 16 features
extracted on each waveform contributed positively to the classification performance. The
seven others had a negative impact on the quality of the random forest predictions. They
were mostly parameters of the “statistical features” set, although each type of waveform
parameter—statistical, peak shape-related, or lidar return-related—was represented in the
nine positively contributing attributes.
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An in-depth analysis of the four last random forest experiments is provided in the
following sections.
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4.3. Land-Water Continuum Habitat 3D Modelling

By running the waveform processing algorithm and the classifiers on the whole
study area, we obtained a 21-class semantic segmentation of our complete bathymetric
lidar dataset.

As expected, when dealing with PCs and not rasters, the results were noisy, but some
areas had lower speckle than others. The observable ratio between information and noise
gradually improved with the addition of IR intensity and elevations. The best output
was obtained by combining green waveform features, IR intensities, and elevations; it is
presented in Figure 9. The other results are presented in Appendix A (Figures A1–A3).
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Figure 9. Projected 3D map of the habitats obtained with the predictions of a random forest classifier
on green spectral features, infrared intensities, and elevation values; orthoimage of the study area.
The orthoimage was captured in 2014, while lidar data are not contemporaneous as they date from
2019. S. = submerged, Ev. = evergreen, Dec. = deciduous.

The main strength of this result was the distinction between submerged and emerged
domains: except for boat false-positives on the water surface, marine classes were rarely
detected over land, and vice versa. Globally, this map showed better definition of the
considered habitats than the others (see Figures A1–A3), and fewer classification errors,
although improvements on some classes coexisted with poorer performance on other
classes. Figures 10–13 gave a more detailed insight into the classification in specific areas.
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4.3.2. Salt Marsh Classification 
Figure 11 presented a closer look at the classification obtained in the salt marsh area. 

The three types of salt marsh distinguished—low, mid, and high marsh—appeared to be 
well identified.  

Figure 10. Urban area and sand beach classification: Extract of the projected 3D map of the habitats
obtained with the predictions of a random forest classifier on green spectral features, infrared
intensities, and elevation values, and extract of an orthoimage of the same area. The orthoimage was
captured in 2014, while lidar data are not contemporaneous as they date from 2019. S. = submerged,
Ev. = evergreen, Dec. = deciduous.

Remote Sens. 2022, 13, x FOR PEER REVIEW 19 of 32 
 

 

 
Figure 11. Extract of the projected 3D map of the habitats obtained with the predictions of a ran-
dom forest classifier on green spectral features, infrared intensities, and elevation values, and ex-
tract of an orthoimage of the same area. The orthoimage was captured in 2014, while lidar data are 
not contemporaneous as they date from 2019. S. = submerged, Ev. = evergreen, Dec. = deciduous. 

The classification of the salt marsh channels was less correct: instead of wet sand and 
submerged sand, the classifier predicted rock and submerged rock in various areas. 

4.3.3. Seagrass Meadow Classification 
In Figure 12, the focus was set on the seagrass meadow located in the north of the 

study site. Emerged and submerged parts of the rocky island were well mapped, even 
though submerged rock was detected in places where the seabed is sandy. The two types 
of underwater vegetation we attempted to map were very precisely defined: the patches 
of seagrass meadow and macroalgae were mapped with very low confusion with sub-
merged sand or rock. However, the type of underwater vegetation (macroalgae or 
seagrass) was not correct in all places. There were classification errors in the seagrass 
meadow, where macroalgae was detected. Seagrasses were also found in macroal-
gae-covered areas.  
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predictions of a random forest classifier on green spectral features, infrared intensities, and elevation
values, and extract of an orthoimage of the same area. The orthoimage was captured in 2014,
while lidar data are not contemporaneous as they date from 2019. S. = submerged, Ev. = evergreen,
Dec. = deciduous.
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Figure 12. Seagrass meadow classification: Extract of the projected 3D map of the habitats obtained
with the predictions of a random forest classifier on green spectral features, infrared intensities, and
elevation values, and extract of an orthoimage of the same area. The orthoimage was captured in 2014,
while lidar data are not contemporaneous as they date from 2019. S. = submerged, Ev. = evergreen,
Dec. = deciduous.
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4.3.1. Urban Area and Sand Beach Classification

As Figure 10 shows, the detection of planar, highly reflective surfaces such as tar and
concrete was accurate, but their specific type was sometimes misidentified. Although the
pier located north of Figure 10 was correctly mapped as concrete, there was confusion
between soil and tar on the sandy dune (southeast of the same figure).

The classification of roof was satisfactory both west and east of the area presented in
Figure 10 but showed cases of overdetection. In the urban area developed on the sandy
dune (southeast of Figure 10), tar, rooves, trees, and shrubs were distinguished precisely,
but sandy dune vegetation, shrubs, and trees were sometimes confused for rooves or tar.
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A weaker aspect of this result was the classification of the sand beaches: patches of
wet sand were well defined, but the borders between wet and dry sand featured many false
detections of pebble. Confusion between pebble and sand was high, as shown in the wide
area of sand beach that is classified as pebble in the northeast in Figure 10.

4.3.2. Salt Marsh Classification

Figure 11 presented a closer look at the classification obtained in the salt marsh area.
The three types of salt marsh distinguished—low, mid, and high marsh—appeared to be
well identified.

The classification of the salt marsh channels was less correct: instead of wet sand and
submerged sand, the classifier predicted rock and submerged rock in various areas.

4.3.3. Seagrass Meadow Classification

In Figure 12, the focus was set on the seagrass meadow located in the north of the
study site. Emerged and submerged parts of the rocky island were well mapped, even
though submerged rock was detected in places where the seabed is sandy. The two types
of underwater vegetation we attempted to map were very precisely defined: the patches of
seagrass meadow and macroalgae were mapped with very low confusion with submerged
sand or rock. However, the type of underwater vegetation (macroalgae or seagrass) was
not correct in all places. There were classification errors in the seagrass meadow, where
macroalgae was detected. Seagrasses were also found in macroalgae-covered areas.

Figure 12 also showed the precision of the classification of boats: boats mooring in
the seagrass meadow were correctly labelled even though no training or test data were
collected in that area for the boats class.

4.4. Confusion Matrix Obtained with Green Waveform Features, Infrared Intensities and
Elevations on the Test Dataset

The confusion matrix obtained using green waveform features, IR intensities, and
elevations on the test dataset is presented in Figure 13. It confirmed the observations made
on the visual results. All classes were predicted with at least 70% of correctness. The most
frequent confusions were between seagrasses and macroalgae, deciduous and evergreen
trees, and submerged rock and submerged sand, which corroborated the observations
made on the application of the model to the broader dataset.

The other confusion matrixes can be found in Appendix B (Figures A4–A6).

5. Discussion

We improved an approach initially designed to distinguish two seabed covers—fine
sediment and seagrass—to map all land and sea covers present in our study scene in 3D.
The findings showed lidar waveforms can be used to classify and map habitats of the
coastal fringe and bridge the gap between marine and terrestrial surveys. All 21 selected
classes were classified with at least 70% of accuracy in the best configuration obtained,
which had an OA of 90%. Here, we discuss the results obtained regarding the classification
predictors and the methodology employed. We also provide potential explanations for the
performances of the algorithm.

5.1. Green Waveform Features

Our research partially aimed at exploring whether green lidar waveforms can be
relevant for coastal habitat mapping. We defined 16 features to extract from the portions
of the waveforms that correspond to layers of ground or seabed covers. These were
efficiently retrieved both on land and underwater. However, our approach did not handle
extremely shallow waters, where the surface component and the bottom return overlap in
the waveforms. In these cases, the peak detection employed did not distinguish the seabed
from the water surface and no features were retrieved. There was consequently a 24 m
wide band without data in the surf zone on the sand beaches in our processed lidar dataset.
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We also noticed cases of confusion between seabed return and noise in the water column
component of the waveform, which resulted in a mis-located detected seabed. These issues
could be handled by improving the way the different waveform components are isolated:
using waveform decomposition [31] or deconvolution [47,48] could produce better results
on that aspect.

The features defined to describe the spectral signatures of coastal habitats seemed to
be equally relevant for land and sea covers mapping. However, they did not provide a
highly accurate classification (56% of OA). This can be explained by analyzing the green
waveforms obtained with the HawkEye III on land. Since this sensor was particularly
designed for bathymetry extraction, its green lasers are set to be powerful enough to reach
the seabed up to several dozens of meters in coastal waters. Over land, the laser power is so
high that most of the waveforms originating from highly reflective surfaces are saturated.
The green wavelength alone might consequently not encompass a fine enough range of
intensities over land to allow separation of similar environments such as plane habitats,
different types of herbaceous vegetation, etc. The shapes of the saturated waveform returns
are also affected: there is lacking information on the shape of the peak around its maximum.
This can explain why there was a lot of confusion between topographic habitats when
using green waveforms only.

Though green information alone may not be enough to distinguish the 21 habitats
accurately, our findings suggested that a finer selection of the waveform attributes used for
classification could enhance the green waveform feature predictions. The results presented
in Table 3 and Figure 8 revealed negative interactions between some of the features chosen.
Combining the full sets of statistical and peak shape features (defined in Section 3.7) resulted
in lower accuracy than using them separately. Furthermore, the predictors’ contribution
assessment (Figure 8) showed that out of the 16 predictors, only nine contributed positively
to the classification accuracy. This might be due to information redundancy between
features relying on similar concepts such as mean and median intensity, for example. It
could be due to the correction of attenuation performed on bathymetric waveforms. This
exponential correction produced extremely high values of backscattered intensities under
water, which made little sense physically. On the other hand, topographic waveforms were
not corrected: their typical intensity order of magnitude was several times smaller, which
might have disrupted the classifier. Fixing the issue of attenuation correction and using
only a selected set of waveform predictors based on an assessment of their contribution
would certainly result in better results when using the green wavelength alone.

The three different types of waveform features appeared to be complimentary: the
nine predictors with a positive influence on the OA (Figure 8) represented each feature
family defined in Section 3.7. This was consistent: the shape of the waveform return is
characteristic of its nature, and the complexity, length, shape, maximum, and position of its
maximum sum up the essential information differentiating one waveform from another.

5.2. Infrared Data

The addition of the IR wavelength increased the OA by 13%. The classification results
certainly benefited from IR light’s interaction with water and chlorophyll pigments, which
provided essential information for the labelling of vegetation and other topographic classes
such as wet sand. Considering that the green wavelength was less adapted to land cover
classification, the performance increase obtained by using both lasers was expected.

Our research showed the added value of topobathymetric lidar: on top of providing
quasi-continuity between land and water, both wavelengths provided complementary
information for land covers’ classification. The IR PC alone could not provide a coastal
habitat map since it did not reach the seabed and riverbed; the OA obtained using only this
wavelength (24%, presented in Table 3) confirmed that. They also showed that green lidar
features alone do not provide a sufficient basis for classification either, reaching an OA of
only 56%. Coupling both wavelengths improved the overall result significantly, bringing
together the strengths of IR data on land covers, and the ability of green lidar to penetrate
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the water surface. The matrixes presented in Figures A4 and A5 show that the addition
of IR intensities to green waveform features resulted in an accuracy increase for all but
two of the 21 classes. The gain ranged between 0% (submerged sand) and 39% (tar). The
minimum accuracy observed over the 21 labels rose from 21% to 29%. Water covers classes
such as seagrass and submerged rock also benefited from the addition of IR intensities,
as their accuracy showed an improvement of 1% and 6%, respectively. As HawkEye III
is tailored for bathymetry, its green laser’s power was set to be high, which resulted in
saturated intensities over land. The IR channel provided complimentary information
in places when the green channel was weaker, which partially explains the algorithm’s
performances we observe. The classification accuracies obtained for land covers confirm
that; for example, the classification of soil, wet sand, and lawn was significatively enhanced:
+28%, +34%, and +23% of OA, respectively. Our future work will focus on exploiting both
IR and green waveforms for habitat classification, to maximize the accuracy attainable with
full-waveform topobathymetric lidar.

5.3. Ground and Seabed Elevation

Similarly to the IR data, elevations contributed greatly to the improvement of the
OA of the habitat classification, but could not be separated from spectral predictors and
used alone to provide accurate detection of land and sea covers. Indeed, Table 3 revealed
that elevations produced a classification with an OA of 55%, which is less than what can
be achieved with spectral predictors. This was expected since many different habitats
coexist at similar altitudes and are mainly differentiated by their reflectance. However, for
some others, mainly salt marsh types, elevation is an intrinsic quality and the base of their
definition. This explains why those are the type of classes that benefited the most from
the addition of elevation to a set of spectral predictors in terms of classification accuracy.
Respectively, the classification accuracy of low salt marsh, mid salt marsh, and high salt
marsh rose from 71%, 76%, and 21% by adding elevations to the green waveform features
in the set of predictors (see Figures A4 and A6).

Even though elevation combined with spectral information already provided high
classification accuracy (90%, see Table 3), the values extracted with our approach were
not always consistent with those provided by the original PCs in marine areas, as ex-
plained above. To remove artifacts due to water quality, a post-processing step could be
implemented, and the neighboring elevations could be used to regularize the processed
PC obtained.

5.4. Classification Approach

Our results showed that topobathymetric lidar is fitted to the classification of coastal
habitats. Although elevations, IR intensities, and green waveform features did not produce
high accuracy classifications of the land-water continuum, they were complimentary and
achieved high-precision results when combined. To the best of our knowledge, no similar
papers proposing point-based land and water covers mapping from bispectral lidar data
were published, so no direct comparisons of results are possible. However, our observations
corroborate those made in [35], which successfully used random forest algorithms to classify
full-waveform lidar data over urban areas and obtained an overall accuracy of over 94%
when identifying four types of land covers. This paper only focuses on terrestrial areas but
confirms the high accuracy we observe when using waveform features without rasterization
for mapping purposes. Class-wise, our results seem more homogeneous for the land covers
we have in common, although this means that our approach performs less accurately than
theirs on some urban classes. Indeed, ref. [35] presents a PA of 94.8% for buildings, which
is higher than we observe on our roof class (89%), but our vegetation classes (trees and
shrubs) have an average PA of 82.6%, while theirs is 68.9%, and our natural ground classes
(soil, lawn, salt marsh) reach an average PA of 91.6%, higher than the 32.7% presented
in [35]. Our approach and the method introduced in [35] perform similarly on artificial
ground (for us, tar and concrete), with PAs of 96% and 96.4%, respectively.
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Although we found no other research performing point-based classification of subtidal,
intertidal, and supra-tidal habitats, we can compare our findings to those in [34], where the
authors also observed that the use of waveform data improves seabed maps and obtained
an OA of 86% for their classification of seabed substrates and aquatic macrovegetation.
Their approach provides a better mapping of low underwater vegetation on soft substrate
(100% versus 85% of PA in our case) but a less accurate detection of hard seabed substrate
(68% versus 90% of PA in our study). Again, although we have less accurate results for
some classes, our method seems to provide more balanced and homogeneous performances
among different classes.

Our results also confirm those from [27], where 19 land-water continuum habitats
were classified with an OA of 90%, and in which the authors concluded that the best
classification results were obtained when combining spectral information and elevation.
However, in [27], the authors used digital models of waveform features that they obtained
by rasterizing their data, and they relied on an ML classifier. Although our metrics are
similar, our classification has the advantage of preserving the spatial density and repartition
of the data.

Other studies such as [49–51] used 2D lidar-derived data and imagery along with
machine learning classifiers to map similar coastal habitats as the ones we attempted to
map. They obtained performance scores in the same range as ours, with OA between
84% and 92%. The authors did not use waveform data in these studies and observed
low accuracy when classifying only digital elevation models obtained with lidar surveys,
therefore requiring the additional processing of imagery. Our approach has the advantage
of requiring only one source of data out of the two sources often used in existing literature,
which facilitates both acquisition procedures and processing.

Globally, our results are in line with [27,35,52], which all state that bathymetric lidar
waveforms are well suited for benthic habitats mapping and observe the same complemen-
tarity between spectral and elevation information for habitat mapping. Our method offers
an OA similar to existing research in lidar data classification for habitat mapping, while
extending the application to a wider range of habitats—both marine and terrestrial—and
avoiding information loss through rasterization. Although the PAs obtained for some
classes are lower than results previously presented in other studies [34,35], this method
also has the advantage of offering homogeneous performances and low inter classes PA
differences, contrary to other existing research results [34,35].

The random forest models trained showed low overfitting, as the extended application
results illustrated. The classification of boats located outside of the training and test data
collection area, for example, illustrated that the classifiers obtained could be applied to
other datasets accurately. Natural, semi-natural and anthropic habitats were well distin-
guished, and vegetation was precisely isolated, which opened perspectives for ecological
assessments of those coastal areas. The remaining errors often involved classes that were
close semantically. For example, there was confusion between salt marsh and high natural
grasses but low confusion between lawns and low marsh. A potential improvement could
be to review the classes defined initially and distinguish vegetation by layers (herbaceous,
arbustive, arborescent) and by their natural, semi-natural, or anthropic nature.

Besides the quality of the training and test datasets established, a source of explanation
for remaining classification errors could be found in the technical specifications of the
sensor. The diameter of the HawkEye III’s green laser’s footprint is 1.80 m, which means
that the returned waveform condensates information in a 2.5 m2 area. This parameter may
have had an influence on the ability of a given array of features to describe pebble or sand,
mostly at interfaces between habitats. This could partially explain the confusion between
deciduous and evergreen trees: in a mixed-species forest, two different trees can coexist in
a 2.5 m2 patch.

Although the main issues identified visually reflected in the metrics computed on the
test dataset, there was a gap between the estimated quality of the map and the statistics
computed. For example, the classification of portions of sandy beaches as pebble was
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not as obvious in the confusion matrix as it is in the map. This showed the influence of
the way the test dataset is built. Further work should try to incorporate validation maps
in addition to test datasets to qualify the output on the complete study site. A finer tree
species inventory could also be integrated to better assess the results obtained.

Nonetheless, our results highlighted a strong classification approach, leveraging the
strengths of 3D bispectral data. Working at the PC scale and not in 2D opens perspectives
for 3D classifications, identifying all layers of land and sea cover, mostly in vegetated
areas, by using waveform segmentation instead of waveform PC segmentation, as experi-
mented in [53]. It also shows possibilities for post-processing and neighbor-based result
regularization, as well as the exploitation of spatial information through the addition of
geometrical features such as roughness or local density. Lastly, the accurate classification
of habitats through 3D data offers opportunities for structural ecology assessments and
communication of these results to environmental managers through virtual reality or more
relatable 3D visualizations, for the implementation of sustainable integrated management
of coastal areas. Figure 14 provides a 3D view of the 3D habitat mapping achieved in the
present study.
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classifier trained on green waveform features, infrared intensities, and elevations. S. = submerged,
Ev. = evergreen, Dec. = deciduous.

6. Conclusions

In this article, we proposed an approach to map coastal habitats exclusively using
topobathymetric lidar, including both full waveforms and reanalyzed echoes. We produced
results under the form of PCs and extended the application of our best classifier—which
obtained 90% of OA on the test dataset—to a dataset of 24.5 million points covering a
very diverse coastal area. A total of 21 classes of land and sea covers were defined and
mapped in 3D. We found that green waveforms and IR intensities complement each other:
while green data provided strong results in submerged areas, the IR wavelength improved
the distinction of land covers. Elevations further increased the classification accuracy by
perfecting the classification of plane classes and classes, such as low, mid, and high salt
marsh, which were principally differentiated by their elevation. It is of special interest to
note that green waveforms alone produced better results than IR intensities or elevations
alone. However, the combination of the three sources of information yielded the best result,
highlighting that they each bring a specific contribution to the result. Our research showed
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how fit topobathymetric lidar is to the classification of such numerous land-water interface
habitats. We enhanced a waveform processing method to apply it to topo-bathymetric
environments. The use of PCs instead of rasters and the addition of a second wavelength
provided an original 3D map of 21 coastal habitats at very high spatial resolution. This
provides encouraging perspectives for 3D mapping and ecological assessment of the land-
water interface and paves the way to integrated management of coastal areas, bridging the
gap between marine and terrestrial domains.
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Appendix B contains the confusion matrix or difference matrixes obtained for 3 ran-
dom forest experiments: the classification of green waveform features only, the classification
of green waveform features and IR intensities, and the classification of green waveform
features and elevations.
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