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Abstract16

The simultaneous presence of liquid and gas in porous media increases flow heterogene-17

ity compared to saturated flows. However, the impact of saturation on flow and trans-18

port has so far remained unclear. The presence of gas in the pore space leads to flow re-19

organisation. We develop a theoretical framework that captures the impact of that re-20

organization on pore-scale fluid velocities. Preferential flow is distributed spatially through21

a backbone and flow recirculation occurs in flow dead-ends. We observe, and predict the-22

oretically, that this previously-identified flow structure induces a marked change in the23

scaling of the velocity probability density function compared to the saturated configu-24

ration, and a sharp transition to strongly anomalous transport. We develop a transport25

model using the continuous time random walk theory that predicts advective transport26

dynamics for all saturation degrees. Our results provide a new modeling framework link-27

ing phase heterogeneity to flow heterogeneity in unsaturated media.28

Plain Language Summary29

The unsaturated zone, where water and air coexist in the pore space, extends be-30

tween the soil surface and the groundwater level. Its pronounced structural heterogene-31

ity induces complex flow patterns, which lead to rich solute transport behaviors. Inputs32

(precipitation) and outputs (evaporation and deep drainage) induce spatio-temporal vari-33

ability in water saturation (i.e., fraction of the pore space occupied by water), which im-34

pacts flow, transport, and biochemical reactions. It has been observed that water-unsaturated35

conditions lead to a strong separation of flow in regions of high velocity, where most of36

the fluid is transported, and regions of low velocity. We identify the spatial distribution37

and size of the low-velocity regions as key control features on water flow and transport38

of dissolved chemical species, leading to transport behaviors that differ from those de-39

scribed by classical transport formulations. We use these findings to develop a theoret-40

ical framework that allows us to predict flow and advective transport under unsaturated41

conditions, based on parameters that describe the heterogeneity in phase distribution42

within the pore space and that are directly linked to the geometry of the system. These43

results represent a decisive step towards the prediction of fate and transport phenom-44

ena from structural properties in unsaturated porous media.45

1 Introduction46

Unsaturated porous media, where liquid and gas phases coexist, play a central role47

in a broad range of environmental and industrial applications, including contaminant trans-48

port (Lahav et al., 2010; Sebilo et al., 2013), artificial groundwater recharge (Bouwer,49

2002), underground gas storage (Panfilov, 2010), radioactive waste disposal (Winograd,50

1981), and energy storage (Barbier, 2002), among others. Previous studies have shown51

that under saturated conditions, i.e., for single-phase flow, structural heterogeneity in52

the solid phase is sufficient to induce anomalous transport (de Anna et al., 2013; Le Borgne53

et al., 2011; Holzner et al., 2015; Morales et al., 2017; Moroni et al., 2007; Kang et al.,54

2014; Stoop et al., 2019). This typically translates to early solute arrival and longer tail-55

ing at a given control plane, as well as non-Fickian scaling of spatial solute spreading (Berkowitz56

et al., 2006; Bijeljic et al., 2011), all features that cannot be described using classical trans-57

port formulations.58

In unsaturated porous media, the presence of several immiscible or partially-miscible59

fluid phases in the pore space induces complex flow topologies, increasing flow tortuos-60

ity and resulting in more extreme high and low velocities (de Gennes, 1983; Jiménez-Mart́ınez61

et al., 2017; Datta et al., 2013; Birkholzer & Tsang, 1997; Nützmann et al., 2002; Wilden-62

schild & Jensen, 1999). The consequences of this heterogeneity for solute transport prop-63

erties remain controversial. Both an increase (Aziz et al., 2018; Bromly & Hinz, 2004;64

Haga et al., 1999; Padilla et al., 1999) and a decrease (Birkholzer & Tsang, 1997; Van-65
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derborght & Vereecken, 2007) of dispersion with decreasing saturation have been reported.66

However, these studies have resorted to continuum/effective-scale theories, where the use67

of locally-averaged velocity values does not reflect the complexity of the pore-scale ve-68

locity field.69

Here, we use images from millifluidic experiments and pore-scale numerical sim-70

ulations to derive a new theoretical framework linking medium structure parameters and71

saturation degree (Sw, fraction of the pore volume occupied by the liquid) to the prob-72

ability density function (PDF) of both flow rate through pore throats and velocities, and73

to anomalous transport dynamics. We identify a previously-unknown abrupt change in74

the velocity statistics, which become much broader even for low desaturations. Our the-75

ory is built on the partition of the pore space into two contrasting structures, a back-76

bone of preferential flow paths, and dead-end regions of low velocity. While the backbone/dead-77

end structure is known since the work of de Gennes (1983), dead-ends were simply as-78

sumed to have zero velocities, and its direct impact on velocity statistics remained un-79

known. Our theory elucidates the mechanisms leading to the observed transition and pre-80

dicts the change exerted by the presence of dead-ends on the velocity PDF scaling for81

unsaturated systems, compared to fully saturated conditions. Using a continuous time82

random walk (CTRW) approach, parameterized according to the theoretical velocity PDFs,83

we predict a transition from quasi-Fickian to highly anomalous, quasi-ballistic transport84

in unsaturated systems, in agreement with resolved simulations.85

2 Methods86

2.1 Numerical Flow Simulations87

We employ experimental images of a quasi two-dimensional (2D) porous medium88

characterizing the arrangement of two immiscible phases (water and air) under differ-89

ent Sw (1.00, 0.83, 0.77, and 0.71) (Jiménez-Mart́ınez et al., 2017) and simulate flow at90

the pore scale. Experiments were performed for low capillary numbers, hence the air clus-91

ters (non-wetting phase) remain immobile (Tang et al., 2019). Under these conditions,92

variations in the viscosity of the non-wetting phase are not relevant. The dimensions of93

the system are 132 mm×87 mm, and its thickness (vertical gap) h = 0.5 mm. The av-94

erage pore throat width (shortest distance between grains) am = 1.17 mm, and the mean95

pore size (meeting point of pore throats) λ = 1.85 mm, leading to a porosity of 0.71,96

similar to that reported in other studies addressing 2D systems (Andrade, Jr. et al., 1997;97

Tallakstad et al., 2009).98

We numerically simulate 2D steady-state Stokes flow, in which the flow of water99

around the solid grains and air bubbles is exclusively controlled by viscous dissipation.100

The effect of the third dimension on depth-averaged flow is introduced in the Stokes equa-101

tion through a Darcy-like term (Ferrari et al., 2015) representing the drag force exerted102

on the liquid by the upper and lower walls in the experimental configuration (Jiménez-103

Mart́ınez et al., 2017). A constant flow rate of 1.375 mm3/s for the saturated case and104

0.277 mm3/s for the unsaturated cases is imposed at the inlet (Jiménez-Mart́ınez et al.,105

2017). Atmospheric pressure is imposed at the outlet. We assign a no-slip boundary con-106

dition to solid–liquid interfaces and a slip boundary condition to liquid–gas interfaces,107

i.e., zero longitudinal stress is imposed along these interfaces rather than a zero veloc-108

ity (Kazemifar et al., 2016).109

2.2 Particle Tracking Simulations110

To investigate the consequences of our velocity analysis for advective transport, we111

also perform advective particle tracking simulations to allow for a numerical quantifi-112

cation of dispersion. We perform a flux-weighted injection of 104 particles along the in-113

let boundary of the porous medium, over an area with a length equal to the medium width114
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(a) (b)

(c) (d)

Figure 1. Velocity fields obtained from Stokes flow numerical simulations, displayed in terms

of the velocity magnitude v normalized by its mean value v̄, for (a) Sw = 1.00 and (b) Sw = 0.71.

The colorbar is common to subfigures (a) and (b), with red colors indicating high velocities and

blue colors low velocities. Regions where log10(v/v̄) ≤ −1 are shown in the darkest blue tone.

The solid phase (circular obstacles) is shown in gray and air clusters in black. Subfigures (c)

and (d) show the partition of the velocity field into two types of flow structures: (i) backbone

or preferential paths, depicted in red, and (ii) dead-end regions of low velocity, depicted in blue,

for Sw = 0.83 and Sw = 0.71, respectively. The inset in subfigure (d) depicts the geometry of a

dead-end region, with ` representing the dead-end region’s depth.

in the y-direction and a width equal to the average grain size (i.e., 0.83 mm) along the115

x-axis. Particle positions are tracked isochronically over fixed time steps ∆t (t-Lagrangian116

sampling). For Sw = 1.00, ∆t = 0.05 ta, where ta = λ/v̄ is the advective time over117

the mean pore size λ at the mean velocity v̄. For the unsaturated cases, ∆t ranges be-118

tween 0.021 ta and 0.029 ta. A 100 times finer time discretization is introduced at early119

times to improve resolution in the ballistic dispersion regime.120

3 Prediction of Unsaturated Flow Distribution121

3.1 Impact of Saturation on Flow Velocities122

While the simulated velocity fields exhibit limited variability under saturated con-123

ditions (Figure 1a), the flow heterogeneity is strongly enhanced in the unsaturated case124

(Figure 1b). The introduction of air induces a partition of the flow field into two flow125

structures (de Gennes, 1983): a backbone of preferential flow paths, and dead-end re-126

gions (velocity is non-zero (Jiménez-Mart́ınez et al., 2017, 2015)) that branch out from127

the backbone (Figure 1c and 1d). For the Eulerian velocity PDF pE(v), this reorgani-128

zation of flow compared to the saturated case leads to an increase in the probability of129

low velocities (Figure 2a), as they are not only encountered close to the solid–liquid in-130

terfaces but also within dead-end regions (Figure 1b). This is described by the sharp tran-131

sition from a plateau for Sw = 1.00 to a power-law-like behavior for Sw < 1.00. High132
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Figure 2. Numerical (continuous lines) and predicted (dashed lines) PDFs for (a) Eulerian

velocities and (b) pore flow rates, normalized by their respective average values v̄ and q̄, for Sw =

1.00, 0.83, 0.77, and 0.71. The log-log scale highlights the scaling of low magnitudes; the power

law scalings are shown for visual reference. Semi-log insets highlight the exponential behavior at

high magnitudes.

velocities follow an exponential trend, in agreement with existing literature (Datta et al.,133

2013), and can be characterized by a saturation-dependent characteristic velocity vc.134

We partition the flow field into backbone and dead-end regions (Figure 1c and 1d)135

by selecting a velocity threshold at the transition between the power-law and exponen-136

tial velocity regimes. Results suggest a more accentuated flow separation with lower sat-137

uration, where dead-end regions increase both in size and number as Sw decreases, and138

where the dead-end area PDF pA decays as a power-law (Figure 3). Note that previous139

studies in 2D porous media have analyzed air cluster area distributions, rather than fluid140

dead-end area distributions, and found a power-law behavior with an exponential cut-141

off at large cluster sizes (Jiménez-Mart́ınez et al., 2017; Tallakstad et al., 2009).142

3.2 Theoretical Flow Model143

To derive a theoretical framework for pE(v), we first consider the local flow rate144

through a pore throat, or pore flow rate q. It is computed by integrating flow velocities145

over the cross section of the pore throat. For all unsaturated conditions, the PDF of pore146

flow rates over the ensemble of throats pQ(q) shows a scaling similar to that of pE(v) for147

both low and high magnitudes (Figure 2a). However, for Sw = 1.00, pQ(q) increases148

with q at low values instead of the plateau observed for pE(v). For Sw = 1.00, pQ(q)149

is well captured by the flow rate PDF in the backbone pbQ, which follows a gamma dis-150
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tribution,151

pbQ(q) =
qe−q/qc

q2c
, (1)152

where the saturation-dependent characteristic flow rate qc controls the exponential high-153

flow tailing. This is consistent with the random aggregation model of Alim et al. (2017),154

based on the random splitting and merging of flow throughout the pore network (Coppersmith,155

1996).156

To model pQ(q) and pE(v) for Sw < 1.00, we quantify the flow statistics in back-157

bone (pbQ) and dead-end (pdQ) regions. We first determine the ratio f of the area occu-158

pied by dead-end regions to the total area of the pore space (e.g., 0.2601 for Sw = 0.71,159

refer to Supplementary Material for the remaining Sw). We express pQ(q) as160

pQ(q) = fpdQ(q) + (1− f)pbQ(q). (2)161

Next, we determine pdQ. Simulation data suggest that flow-rate magnitudes within162

dead-end regions decay exponentially with depth 0 6 z 6 ` (see Supplementary Ma-163

terial), up to the total depth ` of the dead-end region, which extends from the contact164

with the backbone to the far liquid–gas boundary (see inset in Figure 1d). Such expo-165

nential decay is consistent with the fundamental solutions of the Laplace equation for166

the propagation within the dead-end of the pressure perturbation applied from the bound-167

ary with the backbone (Bland, 1965). We expect macroscopic pressure gradients within168

dead-ends regions to obey a Laplace equation resulting from Darcy’s law (Whitaker, 1986).169

We thus approximate the flow rate decay along the depth as170

qd(z|`) ≈ q0e−z/amH(`− z), (3)171

where q0 = qd(0|`) is the flow rate at the contact with the backbone and H is the Heav-172

iside step function. Since this flow rate profile is monotonically decreasing, the associ-173

ated PDF for a given q0 and ` can be computed as (Aquino & Le Borgne, 2021)174

pdQ(q|`, q0) =

`dqd(z|`)
dz

∣∣∣∣∣
z=zq(q)

−1 , (4)175

where zq(q) is the point at which the flow has a given value q, i.e., qd[zq(q)|`] = q. Thus,176

inverting Eq. (3) for depth as a function of flow rate, computing dqd(z|`)/dz, and sub-177

stituting, Eq. (4) becomes178

pdQ(q|`, q0) =
am
`q
H(q0 − q)H(q − q0e−`/am), (5)179

for the dead-end flow-rate PDF pdQ(·|`, q0), given maximum depth ` and flow rate q0 =180

qd(0|`) at the entrance. Taking q0 to be distributed according to Eq. (1) and averaging181

over the latter, we can now express the flow rate PDF in dead-ends given ` as182

pdQ(q|`) =

∫ ∞
0

dq0 p
d
Q(q|`, q0) pbQ(q0), (6)183

which after computing the integral leads to184

pdQ(q|`) =
am
`qcq

[
e−q/qc(q + qc)− exp

(
−e

`/amq

qc

)(
e`/amq + qc

)]
. (7)185

By approximating ` ≈
√
A, with A the dead-end area, and averaging over areas,186

we obtain an expression for the PDF of dead-end flow rates,187

pdQ(q) ≈
∫ ∞
0

dApdQ(q|
√
A) pA(A). (8)188

–6–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Geophysical Research Letters

10 0 10 1 10 2
10 -4

10 -3

10 -2

10 -1

10 0

10 0 10 1 10 2
10 -4

10 -3

10 -2

10 -1

10 0

10 0 10 1 10 2
10 -4

10 -3

10 -2

10 -1

10 0

Figure 3. PDF of the dead-end areas pA for (a) Sw = 0.83, (b) Sw = 0.77, and (c) Sw = 0.71.

For all three cases, pA is well approximated by a Pareto PDF (Eq. (9)) describing power-law

decay. Corresponding values of the fitting parameter γ describing a power law decay ∝ A−1−γ ,

which decreases with decreasing liquid phase saturation, are also shown. Quantities are non-

dimensionalized with respect to the area a2m associated with the average pore-throat aperture.

The PDF pA of dead-end areas, defined for a given flow field such that pA(A) dA is the189

probability of a uniformly randomly chosen dead-end region to have area in an infinites-190

imal neighborhood dA of A, is shown in Figure 3 for each unsaturated flow field. The191

area PDFs were determined based on the flow field partitions, as shown in Figure 1 for192

Sw = 0.83 and Sw = 0.71. We approximate pA by a Pareto PDF,193

pA(A) =
γ

a2m

(
A

a2m

)−1−γ
H(A− a2m), (9)194

where the exponent γ decreases with decreasing Sw, indicating broader dead-end area195

variability. The approximations thus obtained are plotted as dashed lines in Figure 3.196

We consider the minimum area of a dead-end region to be equal to the area of one pore197

throat, approximated as a2m.198

We can now expand the integrand in Eq. (8) using Eq. 9, obtaining199

pdQ(q) ≈
∫ ∞
0

dA
am

qc
√
A
e−q/qcpA(A). (10)200

Computing this integral, and combining it with the expression for pbQ(q) (Eq. (1)) in Eq. (2),201

we deduce an expression for pQ(q). For q � qc, the latter is controlled by the dead-end202

contribution as long as f 6= 0, corresponding to Sw < 1.00. Notice also that the nested203

exponential in Eq. (7) varies rapidly from zero to unity around q = qce
−`/am , so that204

it is well approximated by a cutoff for A ≈ `2 > [amln(qc/q)]
2. This leads to205

pdQ(q) ≈
∞∫
0

dA
am

qc
√
A

[
1−H

([
am ln

(
qc
q

)]2
−A

)]
pA(A),206

≈ 2γ

q(1 + 2γ)

[
ln

(
qc
q

)]−1−2γ
, q � qc, (11)207

208
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which, combined with Eqs. (1) and (2), leads to209

pQ(q) ≈ 2γf

q(1 + 2γ)

[
ln

(
qc
q

)]−1−2γ
. (12)210

Thus, our model predicts that for Sw < 1.00, pQ(q) scales for low flow rates as211

a power law, q−1, corrected by a logarithmic factor, raised to a power controlled by pA(A)212

through the exponent γ. In the particular case f = 0, i.e., Sw = 1.00, Taylor expan-213

sion of pbQ (Eq. (1)) for low q leads to pQ(q) ≈ q/q2c , linear in q. Proceeding similarly214

for q & qc, for which we must consider contributions from both pbQ(q) and pdQ(q), we215

obtain the exponential decay216

pQ(q) ≈
[

2γf

1 + 2γ
+ (1− f)

q

qc

]
e−q/qc

qc
. (13)217

We now turn our attention to pE(v). It results from the combined effect of pQ(q)218

and the intra-throat variability arising from the local velocity profile within each throat.219

Thus, these two PDFs are related by220

pE(v) =

∫ ∞
0

dq pQ(q)pE(v|q), (14)221

where pE(·|q) is the PDF of velocities associated with a pore throat characterized by q.222

Since pore throat widths are comparable in size to the channel thickness h, we consider223

the impact of this third dimension on the intra-pore, depth-averaged 2D velocity pro-224

file. The latter differs from the parabolic profile expected in a purely-2D scenario (see225

Supplementary Material for plot of velocity profiles across the system). By approximat-226

ing the pore throat as a cuboid channel of width am and thickness h, we express the ve-227

locity profile for Stokes flow over the channel thickness h as a series in the form (Bruus,228

2008)229

vx(y, z) =
4h2∆p

π3µL

∞∑
n,odd

1

n3

[
1−

cosh(nπ yh )

cosh(nπ am2h )

]
sin
(
nπ

z

h

)
, (15)230

where µ is the viscosity of the liquid (wetting) phase, ∆p is the pressure difference across231

the cuboid channel of length L, and the sum extends over odd values of n as indicated.232

Here we have set a local coordinate system at each pore throat, with x representing the233

local mean flow direction, the throat width running parallel to y, and z running along234

the channel thickness. Averaging this function over z values between 0 and h, we obtain235

〈vx(y, z)〉z =
8h2∆p

π4µL

∞∑
n,odd

1

n4

[
1−

cosh(nπ yh )

cosh(nπ am2h )

]
, (16)236

where 〈·〉 denotes the mean value. Given the low variability of pore-throat sizes across237

the medium, we approximate throat widths by their average value am. For the dimen-238

sions of our porous medium (thickness h and average throat width am), this series is gov-239

erned by its first term, reducing the expression to240

〈vx(y, z)〉z ≈
h2∆p

2π4µL

[
1−

cosh(2π yh )

cosh(π amh )

]
. (17)241

The Eulerian velocity PDF associated with the velocity profile across a pore throat with242

local flow rate q is then (see Supplementary Material for further details)243

pE(v|q) =
2h

πamvmax(q)

(C − 1)H[vmax(q)− v]√
[C − (C − 1)v/vmax(q)]2 − 1

, (18)244
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where C = cosh[πam/(2h)], and vmax(q) = αq/(ham) is the maximum velocity within245

the pore throat, with246

α = 2

(
1 + coth

(πam
4h

)[
coth

(πam
4h

)
− 4h

πam

])−1
. (19)247

For Sw = 1.00, the integral in Eq. (14) can then be approximated for v � vc and248

v & vc = qc/(amh), respectively, by using Eq. (1), as249

pE(v) ≈ 2h

πamαvc
tanh

(πam
4h

)
, (20a)250

251

pE(v) ≈ 2h

αamvc
sinh

(πam
4h

)√ v

παvc
e−

v
αvc . (20b)252

Equation (20a) describes a low-velocity plateau, while Eq. (20b) encodes exponential tail-253

ing at large velocities.254

For Sw < 1.00, the previous derivation holds for the backbone component. Sim-255

ilar to pQ(q), pE(v) for v � vc is dominated by the dead-end regions, while for v &256

vc the contribution of both backbone and dead-ends matters. The low-velocity behav-257

ior is controlled by low flow rates. For small q, pE(v|q) becomes arbitrarily narrow, be-258

cause the maximum velocity is linear in q, see Eq. (18). Accordingly, pE(v) is well ap-259

proximated for low v by setting pE(v|q) ≈ δ[v−q/(ham)] in Eq. (14), where δ(·) is the260

Dirac delta, and by using Eq. (12) for pQ(q). We obtain, for v � vc,261

pE(v) ≈ 2γf

v(1 + 2γ)

[
ln
(vc
v

)]−1−2γ
. (21)262

Analogously, for v & vc, pE(v) can be computed using Eq. (13) for pQ(q), and Tay-263

lor expanding Eq. (18) for v ≈ vmax(q), which leads to264

pE(v) ≈
[

2γf

1 + 2γ

√
αvc
v

+ (1− f)

√
v

αvc

]
C∗e

− v
αvc

αvc
, (22)265

where C∗ = 2h sinh (πam/4h) /(
√
πam). Note that for large h values compared to am,266

Eqs. (20a)–(22) reduce to expressions that correspond to those obtained under the as-267

sumption of a Poiseuille velocity profile (fully-2D case) (see Supplementary material for268

a complete mathematical deduction).269

Figure 2 shows the predictions (dashed lines) for both pQ(q) and pE(v). The model270

successfully captures the different regimes and scaling variation for the various Sw. The271

low-velocity plateau for Sw = 1.00 is also captured. The results shown here correspond272

to numerical computation of the full theoretical PDFs according to Eqs. (1), (2), (8), and (14).273

Further details on the regime scalings and parameter values can be found in the Sup-274

plementary Material.275

4 Prediction of Advective Transport276

Using the results of the particle tracking simulations (see Section 2.2), we compute277

(advective) dispersion σ2
x(t), as a function of time t, as the variance of longitudinal par-278

ticle positions. Lower saturation induces larger particle dispersion due to the increased279

velocity heterogeneity, as discussed above. At early times, a ballistic regime, σ2
x ∼ t2280

is observed in Figure 4 for all Sw, which then transitions to an asymptotic superdiffu-281

sive regime. The crossover time between the ballistic and asymptotic regimes is also larger282

for smaller Sw, i.e., the Lagrangian correlation length ζx of velocities along the mean flow283

direction increases with decreasing saturation (refer to Supplementary material for cor-284

relation plots).285
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Figure 4. Advective dispersion σ2
x in time for Sw = 1.00, 0.83, 0.77, and 0.71. Time is nor-

malized by the advective time ta = λ/v̄ over the mean pore size λ. The plot compares σ2
x from

the particle tracking analysis (continuous lines) with σ2
x from a CTRW approach computed using

the predicted velocity PDF pE(v) (dashed lines). Scalings for a ballistic (σ2
x ∼ t2) and a Fickian

(σ2
x ∼ t1) regime are also displayed for reference.

To develop a transport modeling framework that links the dispersion dynamics to286

hydrodynamics, we employ a CTRW approach (Berkowitz et al., 2006; Dentz et al., 2016;287

Cortis & Berkowitz, 2004). The CTRW framework used here models transport in terms288

of Lagrangian particles taking fixed spatial steps of length ζx along the mean flow di-289

rection (s-Lagrangian sampling). Particle velocities remain constant over a step and are290

assumed to fully decorrelate between steps. They are sampled independently in each step291

from the s-Lagrangian velocity distribution, which is given by the flux-weighted pE(v),292

ps(v) = vpE(v)/v̄ (Dentz et al., 2016). This approach captures the intermittent nature293

of the t-Lagrangian velocity signal through the distributed waiting times to cross the fixed294

distance ζx.295

To assess the applicability of our theoretical model to predict advective transport,296

we employ ps(v) defined from the predicted pE(v) (dashed lines in Figure 2a) in the CTRW297

description. Figure 4 shows σ2
x computed from the resulting CTRW for each Sw (dashed298

lines), together with σ2
x computed from the particle tracking simulations. Dispersion is299

well predicted over both the ballistic and superdiffusive regimes, and so the impact of300

Sw on the temporal scaling. A slight overestimation of early-time dispersion is visible301

for Sw = 1.00, which might be explained by the assumption of full velocity decorrela-302

tion beyond ζx. Late-time dispersion is well captured in all cases, exhibiting more pro-303

nounced superdiffusive behavior for Sw < 1.00. Overall, these results support the suit-304

ability of both our theoretical description of velocity statistics and the CTRW to pre-305

dict advective transport in unsaturated porous media, representing a major step towards306

predicting solute transport in such systems from the sole knowledge of the medium’s ge-307

ometry.308

The CTRW model presented here provides a theoretical framework to quantify the309

relationship between dispersive scalings and velocity variability. In particular, the late-310

time scaling is controlled by the low-velocity behavior of pE(v). If pE(v) exhibits power-311

law decay near v = 0, pE(v) ∼ v−θ with 0 < θ < 1, late-time dispersion scales like312

σ2
x ∼ t1+θ (Dentz et al., 2016), between the Fickian and ballistic limits σ2

x ∼ t and313

σ2
x ∼ t2. The scalings found here for saturated and unsaturated conditions correspond314

to two contrasting edge-cases. Under saturated conditions, θ = 0 (Eq. (20a)), which315

leads to logarithmically-enhanced Fickian dispersion (Dentz et al., 2016). Note that pure316

power-law decay characterized by θ > 1 is not integrable near v = 0. In this sense,317
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unsaturated conditions are characterized by maximal variability of low velocities, described318

by logarithmic corrections to power-law decay with θ = 1 (Eq. (21)). This leads to logarithmically-319

inhibited ballistic dispersion. In light of these considerations, along with the fact that320

the unsaturated pE(v) is broader than for the saturated case (Figure 2), the apparent321

power-law scalings in Figure 4 vary slowly with time, as logarithmic corrections and the322

effect of progressively lower velocities come into play. A rigorous derivation of asymp-323

totic dispersion scalings is beyond the scope of this work and will be presented elsewhere.324

5 Conclusions and Outlook325

Here we have presented a new theoretical framework for the prediction of pore-scale326

flow PDFs and advective transport capturing the impact of liquid-phase saturation. Re-327

sults reveal that the introduction of an immiscible gas phase leads to a shift in the scal-328

ing of the velocity PDFs that induces a sharp transition to strongly anomalous trans-329

port. Under saturated conditions, dispersion is quasi-Fickian. In contrast, even under330

slightly unsaturated conditions, dispersion becomes quasi-ballistic. In practice, this su-331

perdiffusive dispersion behavior is sustained until low-velocity cutoffs introduced by ad-332

ditional processes, such as diffusion, become relevant. The long-term residence time of333

a particle in a dead-end region is eventually controlled by molecular diffusion, effectively334

cutting off extreme slow velocities (de Gennes, 1983). While in the presence of diffusion335

the transport is thus always asymptotically Fickian at sufficiently late times, the disper-336

sive scalings related to the velocity variability remain relevant over significant time scales.337

Our CTRW formulation also opens the door to the quantification of nontrivial scalings338

of dispersion (Bijeljic & Blunt, 2006; Aquino & Le Borgne, 2021).339

The theoretical formulation developed here successfully predicts flow and velocity340

PDFs based only on a small set of parameters, which reflect characteristics of the porous341

medium (average pore throat width am and thickness h), the relative occupancy of back-342

bone and dead-ends in the system (power-law tailing exponent γ and ratio of dead-end343

area to total pore-space area f), and flow properties (correlation length of longitudinal344

velocities ζx and tortuosity χ, along with the characteristic flow rate qc, used to deter-345

mine the characteristic velocity vc = qc/(ham)). While the values of these parameters346

depend on properties such as porosity and liquid phase saturation, we expect the uncov-347

ered transition in the velocity PDF and its impact on transport scaling properties to be348

robust.349

We expect the power-law dead-end area distribution to hold for (quasi-)2D systems,350

independently of the detailed pore geometry. In particular, it holds for fully 2D systems,351

and so does the spatial distribution of pore flow rates in dead-end regions (Eq. (3)), pro-352

viding good predictions for h/am � 1. In addition, we also expect it to persist in 3D353

systems, as is known to happen for both wetting and non-wetting phase cluster size dis-354

tributions (Iglauer et al., 2010, 2012; Scheffer et al., 2021). These authors also report this355

behavior for wetting phase saturation degrees lower than 0.71, which we could not achieve356

in the present study, as they would approach the percolation threshold for the experi-357

mental medium. However, following previous works that report a decrease in dispersiv-358

ity once the system is desaturated below the so-called critical saturation (Raoof & Has-359

sanizadeh, 2013), we hypothesize a decrease in the broadness of the velocity distribution360

through an increase in the dead-end area-PDF exponent γ for saturation degrees below361

that critical saturation. In addition, although the present study considers a high poros-362

ity (0.71), the distribution of non-wetting-phase cluster sizes still exhibits power–law be-363

havior for porosity values as low as 0.11 (Iglauer et al., 2010, 2012; Scheffer et al., 2021).364

The effect of broader pore size variability (de Anna et al., 2017) under unsaturated con-365

ditions remains an important open question. Note, however, that even if a different func-366

tional dependency were observed for the dead-end area PDF, our new theoretical frame-367

work provides the means to quantify its impact on flow velocity distributions and trans-368

port. Furthermore, the upscaling of flow and transport presented here is a first step to-369
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wards theoretical assessment of mixing and chemical reactions in unsaturated porous me-370

dia, which are essential processes for the analysis and optimization of environmental and371

industrial systems.372
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(https://doi.org/10.1002/2016WR019849).382

References383

Alim, K., Parsa, S., Weitz, D. A., & Brenner, M. P. (2017). Local pore size corre-384

lations determine flow distributions in porous media. Physical Review Letters,385

119 (14), 144501. doi: 10.1103/PhysRevLett.119.144501386

Andrade, Jr., J. S., Almeida, M. P., Mendes Filho, J., Havlin, S., Suki, B., &387

Stanley, H. E. (1997). Fluid flow through porous media: The role of stag-388

nant zones. Physical Review Letters, 79 (20), 3901–3904. doi: 10.1103/389

PhysRevLett.79.3901390

Aquino, T., & Le Borgne, T. (2021). The diffusing-velocity random walk: a spatial-391

markov formulation of heterogeneous advection and diffusion. Journal of Fluid392

Mechanics, 910 , A12. doi: 10.1017/jfm.2020.957393

Aziz, R., Joekar-Niasar, V., & Martinez-Ferrer, P. (2018). Pore-scale insights into394

transport and mixing in steady-state two-phase flow in porous media. Interna-395

tional Journal of Multiphase Flow , 109 , 51–62. doi: 10.1016/j.ijmultiphaseflow396

.2018.07.006397

Barbier, E. (2002). Geothermal energy technology and current status: An overview.398

Renewable and Sustainable Energy Reviews, 6 (1-2), 3–65. doi: 10.1016/S1364399

-0321(02)00002-3400

Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling Non-fickian401

transport in geological formations as a continuous time random walk. Reviews402

of Geophysics, 44 (2), 1–49. doi: 10.1029/2005RG000178403

Bijeljic, B., & Blunt, M. J. (2006). Pore-scale modeling and continuous time random404

walk analysis of dispersion in porous media. Water Resources Research, 42 (1).405

doi: 10.1029/2005WR004578406

Bijeljic, B., Rubin, S., Scher, H., & Berkowitz, B. (2011). Non-Fickian transport in407

porous media with bimodal structural heterogeneity. Journal of Contaminant408

Hydrology , 120-121 , 213–221. doi: 10.1016/j.jconhyd.2010.05.007409

Birkholzer, J., & Tsang, C.-f. (1997). Solute channeling in unsaturated heteroge-410

neous porous media. Water Resources Research, 33 (10), 2221–2238. doi: 10411

.1029/97WR01209412

Bland, D. R. (1965). Solutions of Laplace’s Equation. Plymouth: Routledge.413

Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineer-414

ing. Hydrogeology Journal , 10 (1), 121–142. doi: 10.1007/s10040-001-0182-4415

Bromly, M., & Hinz, C. (2004). Non-Fickian transport in homogeneous unsatu-416

rated repacked sand. Water Resources Research, 40 , 1–12. doi: 10.1029/417

–12–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Geophysical Research Letters

2003WR002579418

Bruus, H. (2008). Theoretical microfluidics - oxford master series in condenser mat-419

ter physics. Oxford University Press.420

Coppersmith, D. (1996). Advances in cryptology - eurocrypt ’96, lecture notes in421

computer science (Vol. 1070). Springer, Berlin.422

Cortis, A., & Berkowitz, B. (2004). Anomalous Transport in “Classical” Soil and423

Sand Columns. Soil Science Society of America Journal , 68 (5), 1539–1548.424

doi: 10.2136/sssaj2004.1539425

Datta, S. S., Chiang, H., Ramakrishnan, T. S., & Weitz, D. A. (2013). Spa-426

tial fluctuations of fluid velocities in flow through a three-dimensional427

porous medium. Physical Review Letters, 111 (6), 064501. doi: 10.1103/428

PhysRevLett.111.064501429

de Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A. M., Bolster, D., & Davy,430

P. (2013). Flow intermittency, dispersion, and correlated continuous time431

random walks in porous media. Physical Review Letters, 110 (18), 184502. doi:432

10.1103/PhysRevLett.110.184502433

de Anna, P., Quaife, B., Biros, G., & Juanes, R. (2017). Prediction of the low-434

velocity distribution from the pore structure in simple porous media. Physical435

Review Fluids, 2 (12), 124103. doi: 10.1103/PhysRevFluids.2.124103436

de Gennes, P. G. (1983). Hydrodynamic dispersion in unsaturated porous media.437

Journal of Fluid Mechanics, 136 , 189–200. doi: 10.1007/978-1-4757-2558-2 2438

Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T., & Lester, D. R. (2016). Con-439

tinuous time random walks for the evolution of Lagrangian velocities. Physical440

Review Fluids, 1 (7), 074004. doi: 10.1103/PhysRevFluids.1.074004441
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