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Abstract. Cloud radars are capable of providing continuous
high-resolution observations of clouds and now offer new
capabilities within fog layers thanks to the development of
frequency-modulated continuous-wave 95 GHz cloud radars.
These observations are related to the microphysical prop-
erties of clouds. Power law relations in the form of Z =
a ·LWCb are generally used to estimate liquid water con-
tent (LWC) profiles. The constants a and b from the power
law relation vary with the cloud type and cloud characteris-
tics. Due to the variety of such parameterizations, selecting
the most appropriate Z–LWC relation for a continuous cloud
system is complicated. Additional information such as liquid
water path (LWP) from a co-located microwave radiometer
(MWR) is used to scale the LWC of the cloud profile. An
algorithm for estimating the LWC of fog and warm clouds
using 95 GHz cloud radar–microwave radiometer synergy in
a variational framework is presented. This paper also aims to
propose an algorithm configuration that retrieves the LWC of
clouds and fog using radar reflectivity and a climatology of
the power law parameters. To do so, variations in the scal-
ing factor lna (the logarithm of pre-factor a from power law
relation) when MWR observations are available are allowed
in each cloud profile to build a climatology of the scaling
factor lna that can be used when MWR observations are not
available. The algorithm also accounts for attenuation due to
cloud droplets. In this algorithm formulation, the measure of
uncertainty in the observations, the forward model, and the
a priori information of desired variables acts as weights in
the retrieved quantities. These uncertainties in the retrieval
are analyzed in the sensitivity analysis of the algorithm. The

retrieval algorithm is first tested on a synthetic profile for dif-
ferent perturbations in sensitivity parameters. The sensitivity
study has shown that this method is susceptible to LWP in-
formation because LWP is point information for the whole
cloud column. By further investigating the sensitivity analy-
sis of various biases in LWP information, it was found that
it is beneficial to incorporate LWP, even if it is biased, rather
than not assimilate any LWP.

The algorithm is then implemented in various cloud and
fog cases at the SIRTA observatory to estimate LWC and
the scaling factor. The scaling factor (lna) changes for each
cloud profile, and the range of lna is consistent with sug-
gested values in the literature. The validation of such an al-
gorithm is challenging, as we need reference measurements
of LWC co-located with the retrieved values. During the
SOFOG-3D campaign (southwest of France, October 2019
to March 2020), in situ measurements of LWC were collected
in the vicinity of a cloud radar and a microwave radiometer,
allowing comparison of retrieved and measured LWC. The
comparison demonstrated that the cloud–fog heterogeneity
played a key role in the assessment.

The proposed synergistic retrieval algorithm is applied to
39 cloud and fog cases at SIRTA, and the behavior of the
scaling factor is studied. This statistical analysis of scaling
is carried out to develop a radar-only retrieval method. The
climatology revealed that the scaling factor can be linked to
the maximum reflectivity of the profile. From climatology,
the statistical relations for the scaling factor are proposed for
fog and clouds. Thanks to the variational framework, a stand-
alone radar version of the algorithm is adapted from the syn-
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ergistic retrieval algorithm, which incorporates the climatol-
ogy of the scaling factor as a priori information to estimate
the LWC of warm clouds. This method allows the LWC es-
timation using only radar reflectivity and climatology of the
scaling factor.

1 Introduction

Low-level clouds cover a significant area globally and con-
tribute 60 % of the net radiative forcing in Earth’s radia-
tion budget (Hartmann et al., 1992). Among all the uncer-
tainties in climate sensitivity estimates, the representation of
boundary layer clouds has a significant contribution, specifi-
cally in the sensitivity of boundary layer clouds to changing
surface and boundary layer properties (Bony and Dufresne,
2005). The impact of clouds on climate is further com-
plicated by feedback mechanisms, temperature dependence
(Stephens, 2005), and cloud–aerosol interactions (Rosenfeld
et al., 2014; Fan et al., 2016). Understanding boundary layer
cloud dynamics under changing atmospheric circumstances
will help to minimize model uncertainty and climate sensi-
tivity (Bony and Dufresne, 2005). On the other hand, low-
visibility phenomena like fog and haze have economic im-
plications in transportation, especially in the aviation sector.
Short-range fog forecasts are still inaccurate due to the com-
plexity of fine-scale processes involved in the fog life cycle
(Martinet et al., 2020).

Active and passive remote sensing instruments are suit-
able for long-term cloud observations from space and the
ground (Zhu et al., 2017). Such spaceborne (e.g., CloudSat,
Stephens et al., 2002; CALIPSO, Winker et al., 2010) and
ground-based sensors provide observations of various macro-
and microphysical properties of clouds at different tempo-
ral and spatial resolution (Illingworth et al., 2007). Earlier
studies demonstrated the quantification of cloud microphys-
ical parameters such as effective radius (re) and cloud liquid
water content (LWC) using different parameterization with
single- or multi-sensor observations as input. The mass of
water content in each cubic meter of dry air at a given alti-
tude is defined as LWC, which is an important parameter for
understanding the cloud lifetime and evolution processes.

At 95 GHz (3.2 mm), the Rayleigh regime is still valid as
the radar wavelength is nearly 2 orders of magnitude larger
than the observed cloud droplet size, which is invariably less
than 50 µm (Miles et al., 2000). The cloud droplets larger
than this size have appreciable terminal velocity, fall out of
the cloud, and are termed drizzle droplets. Therefore, radar
reflectivity can be considered proportional to the sixth mo-
ment of the droplet spectrum, and LWC is proportional to
the third moment of the droplet spectrum. However, Mie
scattering becomes significant at larger sizes, such as drizzle
droplets. An empirical approach of estimating LWC using
the radar reflectivity factor by assuming the shape of droplet

size distributions (DSDs) is demonstrated in the literature.
Z–LWC relationships derived using in-situ-measured droplet
spectra collected from a research aircraft are proposed in At-
las (1954), Sauvageot and Omar (1987), and Fox and Illing-
worth (1997). Table 1 shows details of empirical relations
between the radar reflectivity factor Z and the LWC from the
literature for a given cloud type. Typically, radar reflectiv-
ity Z and cloud liquid water content (LWC) are related to a
power law equation given as

Z = a ·LWCb , (1)

where a and b are constant coefficients. If Z is known, LWC
can be estimated provided the values of constants a and b are
correct for the given cloud type.

LWC calculated using any Z–LWC relationships listed
in Table 1 depends strongly on cloud microphysics, which
varies significantly with changing ambient conditions. Due
to the inherent heterogeneity of cloud droplet spectra, it is
challenging to establish a universal Z–LWC relationship as
the value of coefficient a varies from 0.012 for marine stra-
tocumulus clouds (Fox and Illingworth, 1997) to 323.59 for
drizzling clouds (Krasnov and Russchenberg, 2005), and the
exponent b varies from 1 to 2. As mentioned, the empirical
approach is also based on certain approximations in DSDs,
which widely vary within the cloud and among different
cloud systems. Thus, a small variation in larger droplet size
strongly influences both Z and LWC, which leads to high un-
certainties in estimated LWC profile (Löhnert et al., 2001).
Since the cloud droplet size changes significantly within the
cloud structure, the retrieval of LWC using only Z informa-
tion will not be accurate even if the most appropriate empir-
ical relation for the cloud type is used.

To reduce the uncertainties due to unknown droplet spec-
tra, a synergy of two or more active and passive sensors
providing additional cloud information with sophisticated re-
trieval techniques has been used in several studies in the past
few decades. Some studies demonstrated the applicability
of a dual-wavelength radar system, which uses signals from
the Ka–W-band (Hogan et al., 2005) and S–Ka-band (Ellis
and Vivekanandan, 2011) to calculate liquid water profile.
Frisch et al. (1995, 1998) used total integrated liquid water
path (LWP) measured by a microwave radiometer with cloud
radar together. LWP is defined as follows:

LWP=6(LWC)dr , (2)

where dr is the range resolution in meters if LWP is in grams
per square meter, and LWC is in grams per cubic meter.
This radar–radiometer combination constrained the retrieved
LWC exactly to the observed LWP. Further, Ovtchinnikov
and Kogan (2000) used simulated cloud data to conclude that
the combination of radar reflectivity with liquid water path
from a microwave radiometer can significantly increase the
accuracy and the robustness of the retrieval. Thereafter, Löh-
nert et al. (2001) explained a similar approach of using LWP
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Table 1. Z–LWC relation from the literature.

Reference Z–LWC relation lna Cloud type Assumption

Atlas (1954) Z = 0.048 ·LWC2.0
−3.0365 Clouds without drizzle Empirical

Sauvageot and Omar (1987) Z = 0.03 ·LWC1.31
−3.5065 Non-precipitating stratocumulus and cumulus Empirical

Fox and Illingworth (1997) Z = 0.012 ·LWC1.16
−4.4228 Non-precipitating marine stratocumulus Empirical

Baedi et al. (2000) Z = 0.015 ·LWC1.17
−4.1997 Stratocumulus clouds Empirical

Wang and Geerts (2003) Z = 0.044 ·LWC1.34
−3.1235 Non-precipitating marine stratus Empirical

Krasnov and Russchenberg (2005) Z = 323.59 ·LWC1.58 5.7794 Drizzle clouds Empirical

derived using brightness temperature (Tb) from a passive mi-
crowave radiometer, radar reflectivity profile from a 95 GHz
cloud radar, and cloud model statistics to derive LWC pro-
files. The limitation of this approach is that the accuracy
of the LWC profile is reduced in the presence of drizzle.
This is because a few drizzle droplets dominate the reflec-
tivity without contributing much to LWC. In the case of driz-
zle in the cloud profile, lidar ceilometers are used to deter-
mine the actual cloud base height because lidar ceilometers
are more sensitive to small cloud droplets than cloud radars.
O’Connor et al. (2005) calculated the drop size, liquid wa-
ter content, and liquid water flux of drizzle using the syn-
ergy of cloud radar and backscattering information from li-
dar. This technique was applied to the drizzle below the cloud
base, as the lidar beam is strongly attenuated when it pene-
trates the cloud. To improve the quality of LWC retrievals
in clouds and drizzle, Löhnert et al. (2008) implements a
target classification scheme using certain thresholds deter-
mined by radar reflectivity and ceilometer extinction profile.
Some LWC profile retrievals in the literature are applicable
to both precipitating and non-precipitating clouds, although
they may have their own set of limitations. Historically,
difficulties with fog retrievals were due to the cloud radar
blind zone, which can now be minimized with frequency-
modulated continuous-wave (FMCW) radars.

The main goal of this study is to learn from the synergis-
tic retrieval and utilize that knowledge to direct the retrieval
when synergy is not possible. The instrumentation used in
this paper is described in Sect. 2, and the retrieval methodol-
ogy to develop climatology is explained in Sect. 3. Section 4
elaborates the sensitivity analysis of the retrieval algorithm
using a synthetic profile, and the validation of retrieval with
in situ measurements is discussed in Sect. 5. After evaluating
the performance of the retrieval algorithm, Sect. 6 focuses on
the derivation of the climatology of the retrieved parameters,
and finally, the BASTA stand-alone retrieval using climatol-
ogy is discussed in Sect. 7.

2 Observation sites and instrumentation

Observations for this study are collected from a 95 GHz
cloud radar and a microwave radiometer, which are co-
located in two different locations. The longest observation

period, between November 2018 and May 2019, which cor-
responds to the meteorological conditions of interest includ-
ing a relatively higher concentration of fog and cloudy days,
is from SIRTA (Haeffelin et al., 2005, Site Instrumental de
Recherche par Télédétection Atmosphérique). SIRTA is a
multi-instrumental atmospheric research laboratory located
in Palaiseau (49◦ N, 2◦ E), 20 km south of Paris (France), in
a semi-urban environment that is 160 m above sea level. The
observatory brings together several advanced active and pas-
sive remote sensing instruments to study the dynamic and
radiative processes of the atmosphere recorded since 2002
(Haeffelin et al., 2005). The climatology of liquid cloud re-
trievals is derived using the observations from SIRTA. Sim-
ulations using the French convective-scale AROME model
(Seity et al., 2011; Brousseau et al., 2016) for SIRTA are used
for sensitivity analysis of the algorithm.

The second site is located in the southwest of France;
measurements were collected during the SOFOG-3D (SOuth
west FOGs 3D experiment for processes study) field exper-
iment between October 2019 and March 2020. This field
experiment was conducted to advance the understanding
of fog processes by exploring both horizontal and vertical
variability in fog layers. The super-site is located in the
Saint-Symphorien commune of France and is centered at
44◦24′44.5′′ N, 0◦35′51.5′′W, covering a circular surface of
5 km radius around this point. The territory is part of a farm
named Domaine de la Grande Téchoueyre, which is 69 m
above sea level, and this site was chosen due to its fog occur-
rence statistics. Additionally, various measurements of fog
properties were collected with innovative sensors including
in situ and remote sensing networks across a 300× 200 km
domain around the super-site. In situ measurements collected
during this campaign are used to validate the LWC retrieval
algorithm in fog conditions. The next part goes into detail
about the specifications of instrumentation used in this study.

2.1 BASTA cloud radar at SIRTA and SOFOG-3D

A vertically pointing 95 GHz cloud radar called BASTA
(Delanoë et al., 2016) is operating at SIRTA to record the
time–height structure of clouds, fog, and light precipita-
tion. BASTA was developed at LATMOS (Laboratoire At-
mosphères, Observations Spatiales), and it has been opera-
tional at the SIRTA observatory since 2011. This Doppler
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Table 2. BASTA range resolution modes and their applications.

Mode Range Min to max Target application
reflectivity at 1 km

12.5 m 12 km −39.5 to 22 dBZ Fog, drizzle, rain
25 m 18 km −44 to 22 dBZ All hydrometeors
100 m 18 km −50 to 22 dBZ Thin clouds
100 m 24 km −51.5 to 22 dBZ Very thin ice clouds

cloud radar uses the frequency-modulated continuous-wave
(FMCW) technique rather than pulses, making it less expen-
sive than traditional cloud radars. It measures radar reflectiv-
ity and Doppler velocity of the atmospheric targets at four
different range resolution modes depending on the specific
application.

In particular, the 12.5 m vertical resolution mode is ded-
icated to fog and low clouds and is limited to 12 km range
height with a minimum range of 40 m. This radar is cali-
brated using the approach proposed by Toledo et al. (2020)
based on corner reflectors. Another product developed by
combining three modes providing optimized radar reflectiv-
ity, velocity, and mask indicating the valid signal from noise
is also developed. This level 2 (L2 here onwards) processing
is a new vertical grid derived by combining several modes
(vertical and temporal resolution) at the same time resolu-
tion in order to make the most of each mode. Table 2 includes
information on the various BASTA radar modes, associated
vertical ranges, minimum and maximum reflectivity, and tar-
get application. The data from the highest range resolution
are gridded, while the values from the lower-resolution range
are distributed using the closest value. Due to their higher
sensitivity, the highest-range-resolution data are utilized, and
background noise is eliminated.

In this study, 39 cloud cases with the L2 product of
BASTA measurements at the SIRTA location are used. Dur-
ing the SOFOG-3D field experiment, the vertically pointing
BASTA radar was deployed in a fog-prone region to acquire
high-resolution observations of the fog’s characteristics. The
L2 product of BASTA observations is used to evaluate the
performance of the algorithm for retrieving the LWC of low-
level fog. Due to the coupling of the radar antenna, the mini-
mum detectable range was 40 m above the ground for the L2
product.

2.2 HATPRO microwave radiometer at SIRTA and
SOFOG-3D

A 14-channel HATPRO (Humidity And Temperature Pro-
filer) microwave radiometer (MWR) manufactured by Ra-
diometer Physics GmbH (RPG) is operational at the SIRTA
observatory. The HATPRO MWR is a passive instrument,
converting the naturally emitted downwelling radiative en-
ergy emitted from the atmosphere within two spectral bands
with seven channels each: the first one focuses on the wa-

ter vapor absorption band (22.24–31 GHz), while the sec-
ond one is centered on the 60 GHz oxygen complex band
(51–59 GHz). Through the use of calibration coefficients, de-
tected intensities are then directly converted into brightness
temperatures. A retrieval technique is then needed to con-
vert the brightness temperature spectra into vertical profiles
of temperature, humidity, liquid water path. MWRs are sen-
sitive to the total liquid water content in the cloud column
(Ware et al., 2002). In general, statistical methods (linear or
quadratic regressions or neural networks) trained from simu-
lated MWR observations from a database of radiosoundings
or model analyses are used (Cimini et al., 2006). Optimal-
estimation retrievals combining an a priori estimate of the
atmospheric state with observations through an iterative pro-
cess can also be used (Martinet et al., 2020). In this study,
LWP retrievals based on MWR observations have been re-
trieved through quadratic regressions trained from a database
of radiosoundings for SIRTA, while for SOFOG3D, neu-
ral networks trained from AROME short-term-forecasts have
been used. Humidity profiles can be retrieved with a limited
vertical resolution due to the smoother weighting functions
for K-band channels. Temperature profiles show a better ver-
tical resolution, which can be improved through the use of
different elevation angles (generally from 90 to 5.4◦ above
the ground). A detailed description of the SOFOG3D MWR
network and the retrieval data processing is available in Mar-
tinet et al. (2023).

For a column containing a single liquid layer, MWR pro-
vides the LWP for the cloud layer. The LWP measurements
of the column are unaffected by ice clouds above liquid
clouds. The time resolution of LWP measurements used in
this study is 1 s, with brief interruptions due to boundary
layer scans. The missing measurements during boundary
layer scans are interpolated to the BASTA observation fre-
quency, which is 0.333 s. The uncertainty in the MWR for
LWP is expected to range between 10 and 20 g m−2 (Crewell
and Löhnert, 2003; Marke et al., 2016), particularly depen-
dent on the absolute calibration errors in MWR and uncer-
tainties in retrieval algorithms. This uncertainty is also due
to uncertainty in the microwave radiative transfer model.

2.3 Cloud droplet probe (CDP) on the tethered balloon
during SOFOG-3D experiment

The tethered balloon mounted with an in situ sensor called
a cloud droplet probe (CDP) is designed to measure cloud
droplet size distribution from 2 to 50 µm. The CDP probe
housing contains the forward-scatter optical system, which
includes a laser heating circuit, photodetectors, and analog
signal conditioning, and an appropriate data system can also
calculate various other parameters, including particle con-
centrations, effective diameter (ED), median volume diam-
eter (MVD), and liquid water content (LWC) (Lance et al.,
2010). This instrument is designed and commercialized by
Droplet Measurement Technologies, and the specifications
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Table 3. Specifications of the in situ cloud droplet probe mounted
on a tethered balloon.

Laser 658 nm, up to 50 mW
Measured particle size range 2–50 µm
Typical sample area 0.24 mm−2

Number concentration range 0–2000 cm−2

are given in Table 3. The sampling rate of CDP was 10 s
and had 50 size bins each with 1 µm resolution during the
SOFOG-3D campaign.

3 Methodology of LWC retrieval

The objective of the algorithm is to retrieve LWC using radar
reflectivity measurements and LWP derived from MWR
when the latter is available. The integrated liquid water con-
tent in the cloud column constrains the vertical profile of
LWC, which is strongly related to the reflectivity profile.
There are several methodologies for modeling such algo-
rithms, including analytical methods, machine learning tech-
niques, and others. The technique proposed in this paper
is framed within the context of optimal-estimation theory
(Rodgers, 2000). This approach combines a priori informa-
tion and uncertainties in the observations and the way we
represent them and is easily expandable to accommodate
additional information from multiple instruments. This re-
trieval method must be able to combine active and passive
remote sensing instruments to derive the most possible ac-
curate climatology of liquid cloud properties and also work
when only radar observations are available (i.e., stand-alone
version). This must be achieved using a common frame-
work. Such a technique has been widely applied in previ-
ous studies (Löhnert et al., 2001; Hogan, 2007; Delanoë and
Hogan, 2008). Synergistic retrieval combining radar and a
microwave radiometer in order to estimate liquid cloud prop-
erties has already been proposed by Löhnert et al. (2001). In
their approach, they directly assimilate brightness tempera-
ture (Tb) and humidity profiles from the microwave radiome-
ter. The method presented here aims at providing more flexi-
bility when the microwave is not available. Therefore, we do
not directly assimilate brightness temperatures, but the mi-
crowave radiometer product (LWP) and the associated uncer-
tainties are taken into account. In stand-alone mode, when
only radar observations are available, our method relies on
a priori knowledge of liquid cloud properties and their link
with radar measurements. This a priori information will be
built using climatology derived when the radar and the mi-
crowave radiometer are simultaneously available.

To account for the large dynamic range of the observa-
tions within a profile, this algorithm uses the logarithm of
the state variables and measured quantities, which also pre-
vent the unrealistic retrieval of negative values. Therefore,

Figure 1. Schematic of LWC retrieval algorithm.

the linear relation between Z and LWC in log space in the
form of y =mx+ c, where lna represents the intercept, and
b is the gradient of the line, can be written as

lnZ = lna+ b× lnLWC . (3)

The logarithm of a priori coefficient a is referred to as the
scaling factor, and the logarithm also enables visualization of
the wide range of a. Figure 1 illustrates how the input param-
eters (Z and LWP) are used to retrieve the output variables
(LWC and lna). Although the observation vector y may not
incorporate LWP when it is unavailable, by adding the LWP
in the observation with Z, the forward model allows retrieval
of lna in addition to LWC.

3.1 Optimal estimation and the configuration of state
and observation vectors

The optimal estimation (Rodgers, 2000) is a retrieval ap-
proach in which the measured quantities are related to un-
known atmospheric parameters using a forward model. If “y”
is the measurement, and “x” is the unknown parameter, then
the forward model “F ” and errors “ε” can be mathematically
written as

y = F(x)+ ε , (4)

where error due to measurements and the forward model are
accounted for in ε. The forward model is a mathematical de-
scription of the atmosphere as a function of the measure-
ments and the atmospheric states. The retrieval starts with
the “first guess” (which can be a priori) of the states, and
the forward model is then applied to simulate the values of
measurements. The states are updated until the simulated and
measured quantities are close enough, and convergence is
achieved. To sum up, this technique allows the estimation
of the atmospheric state, which is physically consistent with
the specified errors.

In the optimal-estimation method, minimization of the
cost function leads to the iterative solution. Convergence is
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assessed at each iteration using the following variable to es-
timate the closeness of the observations with the model:

G= |J (i)− J (i− 1)| ,

where “i” is the iteration number, and J is called the cost
function. For every iteration, G examines the absolute gradi-
ent of the cost function and achieves convergence when the
difference between two successive cost functions is negligi-
ble. In this scenario, the retrieval converges when G is of the
order of 10−7, which indicates that the additional iteration
does not add a prominent change in the retrievals.

The state vector “X” is the vector of unknowns and must
contain all the variables to retrieve. The observation vector
“Y ” is driven by the available observations. In our case, the
radar reflectivity and LWP (when the microwave radiome-
ter is available) are the parameters in the observation vec-
tor. These two vectors are also defined in a way that we can
link them through the forward model. The forward model
accounting for radar attenuation is described in detail in
Sect. 3.2.

From the power law relation of Z–LWC in Eq. (1) the con-
stants a and b are dependent on many microphysical parame-
ters such as the particle size, number concentration, and other
ambient conditions. Through this kind of relationship, we can
associate a LWC value with a reflectivity value by constrain-
ing LWC with the observed LWP values. The pre-factor a
allows adjustment of the whole profile of LWC regardless of
the reflectivity and shows a much higher variability than b.
Note that the impact of variability in b will be assessed in
Sect. 4.1.

The state and observational vectors are defined as follows:

X =


lnLWC1
...

lnLWCn
lna

 , (5)

Y =


lnZ1
...

lnZn
lnLWP

 . (6)

The errors in measurement are tested using a synthetic pro-
file of observations and detailed in Sect. 4.1. The most suit-
able error in the observation vector is set as 25 % and 10 %,
respectively, for Z and LWP. As mentioned in Sect. 2.2,
LWP estimates from MWRs have an expected uncertainty
of ±20 g m−2. However, this uncertainty estimation also de-
pends on the MWR calibration and retrieval algorithm un-
certainties; an approximate evaluation of the LWP measure-
ments using longwave-radiation measurements demonstrates
an RMSE in LWP of around 5–10 g m−2 during fog with
LWP< 40 g m−2 (Wærsted et al., 2017). Thus, to minimize
the errors due to the measurement uncertainties, the LWP
is assimilated only when the measured LWP is greater than

10 g m−2 because the relative error for low LWP values from
HATPRO is significantly higher than for high LWP values.
Although 10 % error in LWP is very small when compared
to the expected error, the profiles with LWP values below
10 g m−2 are already excluded from retrievals, implying that
there is less error to be considered. A detailed analysis of er-
rors in measurement of Z and LWP is explained in Sect. 4.1,
covering the sensitivity analysis of the retrieval algorithm us-
ing a synthetic profile.

Prior knowledge of the state parameters enables the re-
trieval to be constrained in order to avoid unrealistic solu-
tions, especially when additional measurements are missing.
A priori information usually consists of long-term climatol-
ogy or model outputs of state parameters, i.e., LWC and lna.
For example, from various in situ measurements of LWC in
fog or liquid clouds, it is known that LWC in the cloud is not
equally distributed vertically and is strongly related to reflec-
tivity. A priori information of LWC dependent on reflectivity
should be more suitable than a constant LWC profile. In this
retrieval, a LWC profile derived from the empirical relation is
used as the a priori estimate with an a priori error of 1000 %
(or 10) for both LWC and lna. Note that the errors are pre-
sented logarithmically, and the a priori error is considered
high because LWP measurements are available to constrain
the retrievals. Even so, a priori information is vital in the case
of missing LWP measurements, which plays an important
role in the case of LWC retrieval using only radar observa-
tions and climatology. In such a case, the error in the a priori
estimate will be considered to be smaller. In the case of low-
LWP observations, retrieval depends on a priori information,
which is taken from the Atlas (1954) empirical relation, and
therefore, the scaling factor is not retrieved for such profiles.
The retrieval of LWC for the profiles with LWP< 10 g m−2

incorporates attenuation in the retrievals rather than just ap-
plying empirical relationships.

3.2 Description of the forward model and Jacobian
matrix

The forward model is an approximation of the physical phe-
nomenon represented as a function of measurement and state
variables. In order to expand the retrieval when the additional
measurement is available, it is recommended to describe the
forward model for each element of the observation vector.
The forward model for radar links radar reflectivity to LWC
using Eq. (3). Furthermore, LWP as additional information
constrains LWC using Eq. (2) and allows the retrieval of the
scaling factor lna. When additional information is unavail-
able, the retrieval constrains LWC using lna climatology,
which is elaborated in Sect. 7. The microphysical model for
attenuation consideration is discussed in Sect. 3.2.1.
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3.2.1 Forward model for attenuation correction

Water vapor and oxygen are the two primary atmospheric
gases that contribute to microwave absorption. Even though
W-band radars work in one of the water vapor transmis-
sion windows, absorption due to water vapor can exceed
1 dB km−1 depending on temperature and humidity in the
lower troposphere. Despite the fact that attenuation by at-
mospheric gases is relatively small, attenuation due to liq-
uid cloud droplets can diminish the advantages of W-band
radar observation, particularly in the liquid cloud case. Ac-
cording to Lhermitte (1990), the attenuation due to liquid
droplets is more problematic as it depends on drop size dis-
tribution, which is not known in general. Since attenuation
due to liquid clouds is dependent on temperature and den-
sity of cloud droplets, and clouds consist of randomly dis-
tributed, spherical droplets less than 50 µm in diameter, the
95 GHz microwave absorption can be adequately described
by the Rayleigh approximation. Tridon et al. (2020) com-
pared the attenuation coefficient as a function of tempera-
ture using three different models for computing the liquid
water refractive index. In this comparison, the attenuation
produced by a 1 km thick liquid cloud containing 1 g m−3

of liquid water was determined to be around 4 dB km−1

at 95 GHz. Attenuation due to liquid clouds and drizzle at
different temperatures have been studied in many theoret-
ical studies. For example, at 10 ◦C, Lhermitte (1990) cal-
culated 4.2 dB km−1 (g m−3)−1 of liquid water attenuation,
while Liebe et al. (1989) obtained 4.4 dB km−1 by using the
Rayleigh approximation. On the other hand, Vali and Haimov
(2001) assumed spherical hydrometeors and obtained the
general solution for absorption (and scattering) at the W-band
using Mie approximation. Extinction due to a liquid cloud at
95GHz using simultaneous and co-located cloud measure-
ments of drop size distribution, liquid water content, tem-
perature, and pressure for maritime stratus clouds was com-
parable with the theoretical studies mentioned above. This
study further concludes that for around 10 ◦C and pressures
close to 900 mbar, the one-way attenuation A in decibels per
kilometer was found to be linearly dependent on LWC and
expressed as

A= 0.62+ 4.6×LWC . (7)

Here 0.62 dB km−1 represents gaseous absorption.
Vivekanandan et al. (2020) calculated attenuation “A” as

a function of reflectivity Z for cloud droplets and drizzle us-
ing power law fit. Reflectivity and attenuation are simulated
using DSDs collected from the VOCALS field experiment
(Wood et al., 2011), with Z being proportional to sixth mo-
ments and attenuation being proportional to third moments
of DSDs. The attenuation as a function of simulated reflec-
tivity (Z<−17 dBZ for cloud droplets andZ>−17 dBZ for
drizzle) is given by Eqs. (8) and (9) for clouds and drizzle,

respectively.

A= 18.6×Z0.58 (8)

A= 1.68×Z0.9 (9)

However, even with the power law fit, the range of attenu-
ation calculated is 0 to 4 dB km−1, which is almost the same
order of attenuation per kilometer calculated using linear re-
lations proposed in previous studies. Equation (7) is used
to calculate attenuation due to liquid water in the forward
model. As this study focuses on the retrieval of LWC and
its climatology, attenuation as a function of LWC will adjust
with retrieved LWC for clouds and drizzle without categoriz-
ing the hydrometeor on the basis of forward-modeled reflec-
tivity. Finally, a sensitivity test for considering inconsistent
attenuation in the forward model is discussed in Sect. 4.3.

The attenuation correction is achieved within the forward
model by correcting at a particular gate to estimate the as-
sociated attenuation and then using it to correct at all subse-
quent gates. Therefore, the forward model estimates the two-
way attenuation corresponding to LWC using Eq. (7) and
then corrects the forward-modeled reflectivity to account for
the estimated attenuation. Since the radar is vertically point-
ing, it is presumed that the lowest gate (closest to the radar)
remains unattenuated due to the liquid droplets, whereas all
gates above are affected by liquid droplets present in the pre-
ceding gates. As the radar beam passes through the cloud
profile, it gets attenuated due to liquid; as a result, the top-
most cloud pixels of the profile are the most attenuated. To
summarize, each cloud pixel is corrected for the two-way at-
tenuation caused by liquid clouds along the path of the radar
beam.

3.2.2 The Jacobian formulation

The Jacobian is a matrix representing the sensitivity of the
forward model. It consists of partial derivatives of all the el-
ements of the Y vector with respect to the X vector. Since
the forward model updates the elements of the measurement
vector at each iteration, the Jacobian K is thus re-evaluated
at each iteration for a profile of “n” cloud pixels as

Ki =


∂ lnZ1

∂ lnLWC1
. . . ∂ lnZ1

∂ lnLWCn
∂ lnZ1
∂ lna

...
. . .

...
...

∂ lnZn
∂ lnLWC1

. . . ∂ lnZn
∂ lnLWCn

∂ lnZn
∂ lna

∂ lnLWP
∂ lnLWC1

. . . ∂ lnLWP
∂ lnLWCn

∂ lnLWP
∂ lna

 . (10)

K consists of (n+1)×(n+1) elements, where the top n×n
elements are partial derivatives of reflectivity with LWC, and
the last row corresponds constraint of LWC at each cloud
pixel with total LWP. The (n+1)th column corresponds to the
relation between radar reflectivity and scaling factor (lna),
and the very last element is set to zero because lna is not
related to LWP measurements. Therefore, for n cloud pixels
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in a profile, the forward model will evaluate a Jacobian of
(n+ 1)× (n+ 1) to retrieve the state vector corresponding
to radar reflectivity and LWP measurements. The attenuation
in forward-modeled reflectivity due to liquid cloud droplets
is accounted for at every iteration. The Jacobian matrix in-
corporates the two-way attenuation “A” at each cloud pixel
by calculating the partial derivatives of “A” with respect to
LWC at each cloud pixel. It is worth noting that the attenu-
ation due to gaseous absorption is not accounted for in the
Jacobian matrix because L2 reflectivity is already corrected
for it using the model proposed in Liebe (1989). The value of
attenuation corresponding to the lna parameter is assumed to
be zero.

The forward-model errors are the errors associated with
the mathematical model which relates measurements with
physical atmospheric parameters. The relationships de-
scribed in the forward model are not necessarily perfect and
incorporate errors in the retrieval. As mentioned already, Z
is closely related to the LWC of the cloud, and hence the for-
ward model for reflectivity is represented by Eq. (3). In this
equation, the errors in Z are incorporated into the measure-
ment error of Z, while lna and LWC are retrieved param-
eters. As exponent b is taken as a constant, there is a pos-
sibility of incorporating error in the forward model due to b,
which is discussed in the sensitivity analysis in Sect. 4.6. The
error incorporated because of model representation of atten-
uation due to the liquid cloud is also discussed in the sensi-
tivity analysis. The cloud liquid water is also constrained by
LWP as the summation of LWC for the given cloud column,
as shown in Eq. (2). Therefore, the forward model for LWP
is simple, and therefore, error in the estimation of LWC due
to the forward model is neglected.

3.3 Discussion of the retrieval uncertainty

Other sources of error in the retrieval algorithm are discussed
in this section. Doppler radars also detect boundary layer in-
sects, large dust particles, and pollen suspended in the air
as a result of the convective boundary layer that grows in
the morning hours and matures shortly after midday (Geerts
and Miao, 2005). These so-called airborne plankton contam-
inate the reflectivity profile as a result of the formation of
the convective boundary layer. Therefore, the unwanted sig-
nal in the radar reflectivity due to airborne plankton must be
removed before estimating LWC. In this data set, the major-
ity of liquid clouds are observed below 2500 m. We selected
the cloud cases where cloud height remained below 2500 m
as the clouds above are anticipated to be mixed-phase or ice
clouds. As we know that the height of the melting layer varies
with season and location, it would be appropriate to deter-
mine the height of the melting layer to differentiate between
liquid and mixed-phase clouds. Nevertheless, the LWP mea-
surements from MWR are unaffected by the overlying ice
cloud, whereas the liquid phase in the overlying mixed-phase
cloud adds error to the LWC retrieval. Therefore, all such

cloud profiles are removed before deriving climatology. In
the profiles with LWP less than or equal to 10 g m−2, the re-
trieved LWC is not used for climatology due to high relative
error in low LWP values.

Fog on the other hand causes droplet deposition on the
radome and hence contributes towards a substantial amount
of attenuation in the radar reflectivity which is not accounted
for in the retrieval. It is worth noting that a blower to re-
move the droplet deposition on BASTA at SIRTA has been
installed since 2019 and has substantially reduced the wet-
radome attenuation after rain. The retrieval assumes com-
pletely dry radome for all the cases, including clouds imme-
diately after rain and drizzle. The measured LWP is inter-
polated over the radar temporal resolution because the radar
and the microwave radiometer operates at distinct observa-
tion frequencies. This measurement interpolation is also an
additional source of error in the retrieval.

Due to the coupling of transmitting and receiving antennas
of radar, the vertically pointing radar misses a few of the low-
est gates close to the ground. These unavailable gates do not
impact the information about the clouds aloft, but the miss-
ing information of thin fog causes overestimation of LWC
for the first few available gates. The overestimation is due to
the fact that retrieval forces the assimilated LWP of the pro-
file by constraining it over available range gates and hence
overestimates the LWC for available gates. The most appro-
priate way to overcome this issue is to use scanning radar,
but for vertically pointing radar we assume that the properties
of fog remain the same between the first available gates and
the ground, and thus reflectivity is extrapolated (extended)
downwards for the unavailable range gates. The extension of
range gates is particularly significant for SOFOG-3D exper-
iment cases, which are specifically concerned with fog pro-
cesses. However, the extension of range gates may introduce
inaccuracy into LWC retrieval for fog, as the reflectivity of
fog at the surface is not always equal to the reflectivity of the
first available gates, particularly for dissipating fog.

3.4 Analysis of the method when the microwave
radiometer is available

This section describes the analysis of retrieval when applied
to various cloud types. As detailed in Sect. 3, the retrieval
technique is applied to reflectivity data from 95 GHz BASTA
radar with LWP estimates from a co-located RPG HATPRO
microwave radiometer for various cloud cases from SIRTA.
Between November 2018 and May 2019, 39 cloud and fog
cases at the SIRTA observatory were selected to address the
algorithm’s implementation on warm clouds. The data set
contains a relatively large number of cloudy cases, includ-
ing fog and light drizzle. A detailed discussion of retrieval
and algorithm implementation is elaborated for a typical ex-
ample of a liquid cloud in the next subsection.
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Illustration of the retrieval for the 5 February 2019 case
at SIRTA

A case study of one of the selected cloudy cases from SIRTA
on 5 February 2019 is presented in Fig. 2.

There were no overlapping clouds observed in this in-
stance, and the airborne plankton were removed manually.
A dense cloud from midnight with a cloud base close to the
ground dissipates before noon, and the formation stage of fog
is initiated after sunset. Throughout the day, the liquid wa-
ter path remains below 100 g m−2. Reflectivity values reach
0 dBZ for a few profiles, indicating drizzle in the beginning
(between 00:00 and 03:00 UTC). As indicated by radar ob-
servations, higher reflectivity values are due to drizzle, yet
LWP is nearly identical for the cloud, with reflectivity as
low as −35 dBZ, and contributes the least to LWP. This also
explains why it is critical to have LWP information to con-
strain LWC retrievals, particularly for profiles with drizzle
within the cloud and when it evaporates fully before reaching
the ground. Figure 2c indicates a general increase in LWC
towards the cloud top, and the retrieved LWC is less than
0.3 g m−3. The scaling parameter has a wide, range from −6
to +3, which supports empirical values of a in Table 1. The
value of lna changes for each profile. Therefore, this case il-
lustration shows that the retrieval of LWC and scaling factor
can be utilized to derive a climatology of the scaling factor
for different cloud types. It is worth noting that the retrieval
algorithm deals with all the variations in cloud types, and the
behavior of scaling factors must be studied. The next section
elaborates the robustness of the retrieval algorithm for vari-
ous sensitivity parameters.

4 Sensitivity analysis of retrieval algorithm using
synthetic data

The goal of this section is to verify the consistency of the re-
trieval behavior and to assess the sensitivity of the algorithm
to inputs, errors, and hypotheses. Sensitivity analysis does
not replace a proper validation of algorithm retrievals. In
Sect. 5, a comparison with in situ measurement is discussed.
Like every other algorithm, this retrieval algorithm also suf-
fers from some fundamental uncertainties which must be ad-
dressed. To do so, we use a sensitivity analysis approach. It
can also be referred to as “what-if” analysis, where the input
parameters of the model are varied one by one. As shown in
the schematic of the retrieval algorithm in Fig. 1, the retrieval
is sensitive to not only input parameters but also other set-
tings like the a priori errors, expected errors in measurement,
and a priori information. To quantify the sensitivity of the
retrieval algorithm, real observations are not used because
the true profile of LWC from an in situ sensor is not always
available. Instead, synthetic data that contain all the charac-
teristics of real observations are used to evaluate the perfor-
mance of the algorithm. Maahn et al. (2020) highlighted the

major benefits of using synthetic data to test algorithms and
models. First and foremost, systematic forward-model errors
cancel each other, and second, we know the true atmospheric
state Xtruth, which can be compared with the retrieved op-
timal result Xret. Hence, considering the mentioned advan-
tages, we are using synthetic data for the sensitivity analysis
of the retrieval algorithm.

The flowchart of the sensitivity analysis is presented in
Fig. 3, where sensitivity parameters are the parameters in
the retrieval algorithm which are perturbed, and the impact
is tested. The objective is to formulate input parameters from
the truth, and by feeding synthetic observations to the re-
trieval algorithm, the result should match the truth. In the
block diagram, synthetic observations (Z and LWP) are fab-
ricated using the forward model.

However, we are aware of the fact that the retrieval errors
might be different when observed in real observation scenar-
ios, which is already discussed in Sect. 3.2 for real observa-
tions. The error in retrieved LWC with respect to what we
consider as true LWC is calculated using Eqs. (11), (12), and
(13) for the entire sensitivity test.

1. Root mean square error is calculated as follows:

RMSE=

√
6n0 (LWCret−LWCtrue)

2

n
. (11)

2. R2 (coefficient of determination) quantifies the de-
gree of any linear correlation between observations
(LWCtrue) and retrievals (LWCret). The general defini-
tion of the R2 regression score function is

R2
= 1−

SSres

SStot
, (12)

where SSres is the residual sum of squares, and SStot is
the total sum of squares.

3. Mean absolute percentage error measures the accuracy
of the retrieval in percentage:

MAPE=
100
n

n∑
0

∣∣∣∣LWCtrue−LWCret

LWCtrue

∣∣∣∣ , (13)

where LWCret and LWCtrue are retrieved and true LWC,
respectively, and n is the number of data points. Analy-
sis of each sensitivity parameter is presented in the next
section.

4.1 Description of synthetic data

Synthetic data of LWC can be prepared from empirical re-
lations, theoretical adiabatic LWC, or model forecasts. For
this sensitivity analysis, we opted to include physical param-
eters of the 16 November 2018 fog structure simulated by
the AROME model of the retrieval algorithm. The selection
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Figure 2. (a) Time–height plot of radar reflectivity; (b) time–height plot of vertical velocity; (c) time–height plot of retrieved LWC; (d) LWP
estimated by the radiometer alone through quadratic regression, interpolated at radar time; and (e) retrieved scaling factor lna of each profile
for the 5 February 2019 case at SIRTA.

requirement for this instance is that it contains a sufficient
number of LWC profiles to evaluate the behavior of the algo-
rithm.

AROME is a French convective-scale numerical weather
prediction (NWP) model, operational since 2008, covering
France and western Europe and providing high-resolution
simulations of fog forecasts at 1.3 km horizontal resolution
and 90 vertical levels of 144 profiles. The detailed setup of

the AROME model and fog forecast is explained in Bell
et al. (2021). LWC of a fog structure from AROME short-
term forecasts at the nearest grid location of SIRTA is con-
sidered the true atmospheric state. In this case, we are con-
sidering only liquid droplets, with no overlapping of liquid
or ice clouds aloft. Profiles of true LWC are used to synthe-
size observation parameters like radar reflectivity using the
previously defined power law relation and the liquid water
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Figure 3. Flow chart for sensitivity analysis of retrieval algorithm.
The block inside the dashed line is the same as shown inside the
dashed line in Fig. 1 with all the sensitivity parameters.

path of each profile by integrating true LWC at each pixel.
The forward model (block in red) consisting of the power
law relation and attenuation correction model for deriving
the synthetic profile of Z using coefficients a and exponent
b is taken from the Atlas (1954) empirical relation. The two-
way attenuation correction applied to Z is calculated from
Eq. (7) (see Fig. 4).

One of the most obvious sources of uncertainty in the re-
trieval is the observation (calibration errors and instrumental
noise) and forward-model errors. The forward-model errors
tested in this sensitivity analysis are the variation in attenu-
ation consideration and the variation in exponent b. As the
observation vector, Y contains measurements from two inde-
pendent instruments, bringing random and uncorrelated er-
rors within the elements of Y (Maahn et al., 2020). The de-
position of liquid droplets on the radome introduces an addi-
tional bias in radar observations. This is tested by analyzing
the impact of possible biases in Z. The next sections cover
the sensitivity analysis of the retrieval algorithm for pertur-
bations in different parameters.

4.2 Sensitivity analysis of impact of error in
observation

The input for synergistic retrieval in the observation vector
Y consists of concatenated observations from the cloud radar
and the radiometer. Each instrument has different errors, and
it is worth mentioning that in the case of radar observations,
instrumental errors are considered for each gate, whereas for
the LWP measurement from the radiometer the observation
error is estimated over the entire cloud profile, i.e., an inte-
grated measurement. By varying the weight of instrumental
error from each observation (Z and LWP) and keeping the
rest constant, the impact on the retrieved LWC is compared
with the true LWC.

Observation errors are assumed to be independent, and the
synthetic observations of Z and LWP are calculated using
true LWC, as shown in Fig. 4. Equation (7) is used to calcu-
late attenuation due to liquid water in the synthetic profile as
well as in the forward model. A priori information of LWC is
calculated using synthetic reflectivity and the scaling factor
from the empirical relation proposed by Fox and Illingworth
(1997). Since we are looking at the impact of observation
error, the retrieved parameters should have the least contri-
bution from a priori information, and therefore high a priori
error (1000 % in this case) is considered. Because the a priori
estimate of LWC is derived from synthetic Z, the a priori in-
formation employed in the retrieval must differ from the true
LWC to minimize the contribution of a priori information,
which forces retrieval to be close to true LWC.

Table 4 shows the combinations of errors in measurements
of Z and LWP considered in the retrieval, and the errors are
calculated for retrieved LWC with reference to true LWC.
Cases 3 and 4 in Table 4 indicate that the retrieval is more
sensitive to errors in LWP as compared to errors in Z with
approximately the same mean absolute percentage error in
LWC of 7 %, whatever the assumed errors in Z. This is be-
cause for each profile there is only one LWP value which
impacts the whole profile for a given error, but for error in
reflectivity, only the associated pixel is impacted. With the
increase in percentage errors in LWP measurement from 1 %
to 100 %, the RMSE in LWC is also increased approximately
100 times, further demonstrating the high sensitivity of the
algorithm to the LWP.

Delanoë and Hogan (2008) likewise incorporate a 1 dBZ
uncertainty in the measurement of Z for ice cloud retrieval
using 95 GHz radar with lidar and the microwave radiometer.
However, error in LWP has a very low difference in MAPE
and RMSE when 1 % to 10 % error is considered. Therefore
case 6 in Table 4 is an optimum balance of observational er-
ror for Z and LWP. This combination of errors in measure-
ment is used in all the retrieval cases presented in Sects. 3.4
and 5.1.

4.3 Sensitivity analysis of impact of attenuation due to
liquid droplet model

In this section, the sensitivity of the attenuation model con-
sidered in the algorithm to retrieve LWC is highlighted. Wet
radome can cause up to 20 dBZ of two-way attenuation due
to rain in the reflectivity (Delanoë et al., 2016), but atten-
uation due to fog is far less than 20 dBZ. Two attenuation
relations for liquid clouds from the literature are used to test
the sensitivity of the algorithm. Equation (7) is proposed by
Vali and Haimov (2001), in which attenuation is a function
of LWC (abbreviated as Att (LWC) in Table 5), and the rela-
tionship in Eq. (8) is proposed by Vivekanandan et al. (2020),
where attenuation is the function of radar reflectivity fac-
tor (abbreviated as Att (Z) in Table 5). Both of these rela-
tionships are derived using in situ observations from 95 GHz
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Figure 4. Simulations from the AROME model for 16 November 2018 showing (a) distribution of true LWC as a function of time and height
in grams per cubic meter, (b) synthetic profile of reflectivity, and (c) LWP calculated by integrating true LWC.

Table 4. Different configurations of error in measurement and respective statistical errors in retrieved LWC with respect to true LWC.

Case Error in Z Error in LWP RMSE R2 MAPE
(LWC) (LWC) (LWC) %

1. 1 % (0.043 dB) 1 % (1.01 g m−2) 0.000209 0.99999 0.05783
2. 100 % (4.34 dB) 1 % (1.01 g m−2) 0.000245 0.99999 0.15286
3. 1 % (0.043 dB) 100 % (2.71 g m−2) 0.021870 0.98495 7.37329
4. 100 % (4.34 dB) 100 % (2.71 g m−2) 0.021832 0.98499 7.43851
5. 25 % (1.08 dB) 50 % (1.64 g m−2) 0.006013 0.99874 2.05276
6. 25 % (1.08 dB) 10 % (1.1 g m−2) 0.000454 0.99999 0.17123

radar mounted on a research aircraft. The forward model with
different attenuation relationships in the algorithm is tested
for syntheticZ and LWC. To fabricate syntheticZ, the power
law relation with a = 0.012 and b = 2 (in Eq. 1) is used. Dif-
ferent combinations of attenuation correction in the synthetic
profile and in the retrieval algorithm are tested, as shown in
Table 5. A priori information for state parameters is calcu-
lated from the Atlas (1954) empirical relation with an a priori
error of 1000 %, and the measurement errors for Z and LWP
are considered to be 25 % and 10 %, as discussed in Sect. 4.2.

The comparison of bias in LWC for the attenuation model is
shown in Fig. A1 (see Appendix).

Retrieved LWC considers the same attenuation correction
in the synthetic Z profile and in the forward model; RMSE is
0.0002, and MAPE is as low as 0.05 % as all the parameters
are identical. But when the attenuation relation is exchanged
for the synthetic profile and the forward model, MAPE in-
crease to 2.7 %. The distribution of bias in LWC over the
profile is different because attenuation due to LWC estimated
by two relations is different, and thus the estimated LWC
is also different. A similar test for attenuation with differ-
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Table 5. Variation in a priori error and different errors calculated with respect to true LWC.

Attenuation correction Forward model RMSE R2 MAPE
in synthetic profile attenuation (LWC) (LWC) (LWC) %

Z (attLWC) Att (LWC) 0.000204 0.999998 0.056426
Z (attLWC) Att (Z) 0.008286 0.997535 2.780574
Z (attZ) Att (LWC) 0.008012 0.997687 2.660039
Z (attZ) Att (Z) 0.000206 0.999998 0.057094

ent “a” in the power law relation gives the same errors when
the retrieved LWC is compared with true LWC. Bias in LWC
for considering the same attenuation relation in the synthetic
profile and the forward model is found to be close to zero.
Therefore, the sensitivity test for attenuation indicates that
attenuation correction of Z has very low impact, and it can
bring up to 2.7 % mean absolute percentage error in retrieved
LWC when the wrong attenuation model is used.

4.4 Sensitivity analysis of bias in Z and LWP

Bias in observation is the systematic error added in measure-
ment, which can be due to the error in calibration of any in-
strument or transfer function of the measurement. Therefore,
it is necessary to test the behavior of the retrieval algorithm
for such systematic biases in measurement. For the test cases
of biases, the error in the observation vector is considered
to be 25 % and 10 % for Z and LWP, with a priori informa-
tion of LWC calculated using a = 0.012, as proposed in Fox
and Illingworth (1997), and a = 0.012 is used as lna a priori.
This test is to analyze the impact of bias in measurement on
retrieval. Therefore, the a priori information should have a
minimum contribution, and hence 1000 % error in the a pri-
ori estimate of LWC and lna is considered. In this analysis,
only one of the two observations is biased at a time to see the
individual impact on retrieval. It is assumed that the bias in Z
is 2 dBZ considering that error in calibration in BASTA radar
measurements is around 1 to 2 dBZ (Toledo et al., 2020). The
bias in LWP estimation is considered to be 10 g m−2, which
is supported by Wærsted et al. (2017) for this sensitivity test.

The order of error in retrieved LWC with respect to true
LWC is much higher for 10 g m−2 bias in LWP than 2 dBZ
bias inZ. However, bias in the two measurements is not com-
parable because the parameterZ is measured over each pixel,
and LWP is a single point measurement for the whole col-
umn. Since the bias applied to Z applies to each cloud pixel,
and the bias applied in LWP is integrated for the whole pro-
file, 11 % MAPE in LWC is observed, which again indicates
the sensitivity of retrieval for LWP. Another reason for the
difference in LWC is due to the fact that Z is in the log scale,
and error in observation allows more spread in Z (25 %) than
in LWP (10 %); therefore, the impact on LWP is larger. The
bias in Z is propagated in lna, but the bias in LWP directly
impacts LWC. The simultaneous biases in Z and LWP have
also been tested, which reveals that the bias in LWP domi-

nates over the bias in Z, with 11 % MAPE when these biases
are considered in Z and LWP.

4.5 Sensitivity analysis of LWP assimilation

The impact of adding LWP information in the retrieval
is evaluated by comparing LWC retrievals in the situation
where LWP information is assimilated with those in the case
where it is not assimilated. For the case when LWP is not
assimilated, the pre-factor a is not retrieved and hence kept
constant. Different scaling factor lna values are selected
from various empirical relations listed in Table 1, and the er-
ror in retrieved LWC is calculated with respect to true LWC
for each fixed scaling factor lna value.

In this subsection, the synthetic profile of Z is fabricated
using the power law with constant a and b proposed by Atlas
(1954) and LWC provided by the AROME model. Table 7
contains the scaling factors taken from the empirical relations
used to retrieve LWC without LWP assimilation. The MAPE
is calculated for retrieved LWC for each lna value. In Table 7
the highest value of MAPE is observed when a = 0.012, and
the lowest value is for a = 0.048, which is the exact value of
lna used to fabricate Z. As the value of the scaling factor lna
differs from the scaling factor used to fabricate the synthetic
profile (here lna is from the Atlas, 1954 relation), the error
in retrieved LWC with respect to true LWC also increases.

On the other hand, when the LWP information is assimi-
lated in the retrieval, the MAPE in retrieved LWC compared
to true LWC is decreased down to 0.171 %. However, it is not
likely that the LWP is always accurate, as LWP is not a direct
measurement but obtained from a retrieval algorithm and can
have both random and systematic errors. Therefore, one must
test the retrieval algorithm when the LWP information is bi-
ased. The retrieval technique is now evaluated for different
biases in LWP information. As already mentioned, when we
assimilate LWP information, the scaling factor is allowed to
vary. We tested the retrieval with varying biases, as shown
in Table 8, where case 2 has the same error as cases 1 and
2 of Table 6. The highest value of LWP in the synthetic pro-
file is approximately 240 g m−2. We added the biases in LWP
from ±5 to ±50 g m−2, which shows 5.5 % to 56 % MAPE
in LWC.

These errors are summarized in Fig. 5, where the olive
green bars indicate the MAPE in LWC for different values
of lna obtained from the retrieval without LWP assimilation.
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Table 6. Error in retrieved LWC due to bias in Z and LWP.

Case Bias RMSE R2 MAPE
(LWC) (LWC) (LWC) %

1. LWP− 10 (g m−2) 0.029413 0.96343 11.246633
2. LWP+ 10 (g m−2) 0.030236 0.97184 11.542570
3. Z− 2 (dBZ) 0.000355 0.99999 0.131603
4. Z+ 2 (dBZ) 0.000558 0.99998 0.210887

Table 7. Error in retrieved LWC for fixed a when LWP is not as-
similated.

Empirical relation a lna MAPE
(LWC) %

Fox and Illingworth (1997) 0.012 −4.42 109.48
Sauvageot and Omar (1987) 0.03 −3.50 27.956
Krasnov and Russchenberg (2005) 323.59 5.77 98.82
Atlas (1954) 0.048 −3.05 0.0021

The blue color bars are the MAPE in LWC for various bi-
ases when the MWR LWP is assimilated. It is clear from this
comparison that the assimilated LWP, even if the product is
biased, has a lower error than the retrieval case that does not
assimilate LWP.

4.6 Sensitivity of parameter b

The exponent b from the power law equation (Eq. 1) is con-
sidered to be 2 for all the cases discussed in this paper; how-
ever, the range of parameter b in the literature is proposed
from 1 to 2. To test the impact of variation in b on the retrieval
algorithm, the value of b was used to fabricate synthetic ob-
servations Z and LWP, and b values in the forward model are
the same. Keeping all the other settings constant, the error in
retrieved LWC should be due to changing b. Table 9 shows
the range of b and the respective error in retrieved LWC with
respect to true LWC. The retrieved LWP matches with the as-
similated LWP; only the distribution of LWC is changed, ob-
served to be the lowest for b = 2. Figure A2 (see Appendix)
shows that the cost function is also the lowest for b = 2, and
MAPE in LWC is twice that when the value of b is taken as
1.

There is a negligible impact of variation in b over lna as
shown in Fig. A2, and the error in LWC is between 0.35 %
and 0.17 %. The convergence is achieved with a lower cost
function, and MAPE in LWC is also the lowest for the b = 2
case. Because lna is allowed to be variable in the forward
model, it is most likely that the change in b is compensated
by the change in lna.

4.7 Analysis of the sensitivity exercise

In conclusion, since this sensitivity test was performed on a
synthetic profile, the overall impact of uncertainty in each

Table 8. Error in retrieved LWC for various biases in assimilated
LWP.

Case Bias (g m−2) MAPE
(LWC) %

1. LWP± 5 5.5
2. LWP± 10 11.23
3. LWP± 20 22.71
4. LWP± 50 56

Figure 5. Errors in retrieved LWC when LWP is not assimilated
(green bars), as compared to those when LWP is assimilated and
affected by different values of biases (blue bars). The y axis rep-
resents the MAPE in LWC, and the x axis shows the value of lna
taken from empirical relations and assumed biases in LWP.

parameter on the retrieval can be very different when ap-
plied to a real profile. However, an estimate of errors can
be made using this exercise. The error in observation must
be chosen very carefully for retrievals. A 25 % error in Z is
also supported by realistic calibration error in BASTA radar,
which was calculated between 1 and 2 dBZ using a 20 m mast
(Toledo et al., 2020), where 25 % error in Z corresponds to
1.08 dBZ. This combination of 25 % and 10 % error in mea-
surement has only 0.17 % MAPE when tested with a syn-
thetic profile, which is why this combination is used in the al-
gorithm. The a priori information must be considered only to
stabilize the retrievals for unavailable measurements, other-
wise the a priori error can be kept high. The a priori estimate
is a constraint for the entire retrieval; hence the uncertainty
in the retrieval must be smaller than the a priori error. Oth-
erwise, the retrieval does not add any information from the
observations (Maahn et al., 2020). Retrieval is very sensitive
to the bias in LWP as LWP is point information for the whole
cloud column; therefore error in observation and biases in Z
and LWP both play a very critical role in the retrieval. Fur-
thermore, the sensitivity analysis also revealed that incorpo-
rating LWP even if it is affected by a bias is better than not
assimilating LWP information. The sensitivity of retrievals
for parameter b shows the least error when b = 2 because
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Table 9. Error in retrieved LWC for different b values.

Case b value RMSE R2 MAPE
(LWC) (LWC) (LWC)

1. b = 1 0.00069 0.99998 0.35599
2. b = 1.2 0.00064 0.99998 0.301158
3. b = 1.4 0.00059 0.99998 0.260569
4. b = 1.6 0.00054 0.99998 0.227267
5. b = 1.8 0.00050 0.99999 0.198041
6. b = 2 0.00045 0.99999 0.171237

this is the same used to fabricate Z synthetically from the
true LWC. Nevertheless, it is worth noting even with other
values of b that the MAPE does not exceed 0.35 %.

5 Comparison of LWC retrieval with in situ data

In situ measurements of cloud and fog are required to val-
idate the distribution of LWC with time and height. In gen-
eral, in situ measurements of cloud microphysical parameters
are collected using a research aircraft mounted with sensors
flying inside the cloud. During the SOFOG-3D field exper-
iment, a tethered balloon equipped with in situ sensors was
used to collect the microphysical parameters of fog. This ap-
proach is much more economical than the research aircraft
flying inside the cloud; however, the trajectory of the balloon
cannot be fully controlled, and the measurements are limited
to the lowermost 1–2 km level. Simultaneous measurements
using remote sensing instruments like BASTA cloud radar, a
microwave radiometer, and automatic weather stations were
also collected for various fog cases (Martinet et al., 2020).
Since the LWC retrieval algorithm described in previous
sections essentially works with liquid clouds including fog,
measurements collected during the SOFOG-3D experiment
are well suited to validate the algorithm. The input for the
algorithm is taken from vertically pointing cloud radar re-
flectivity and LWP estimates from MWR measurements. Re-
trieved LWCs are then compared with the measured LWC
using in situ sensors.

5.1 Presentation of the case study of 9 February 2020

One fog case study observed at the super-site (44.4◦ N,
−0.6◦ E) on 9 February 2020 is presented to compare re-
trieved LWC with in situ measurements collected from the
tethered balloon. This case is selected because fog and stra-
tus clouds were observed, allowing us to establish a compar-
ison of retrievals with in situ observations for two different
cloud types at once. The observations from vertically point-
ing radar and MWR are used to retrieve LWC with exactly
the same algorithm described in previous sections. During
this experiment, MWR was set up to collect boundary layer
scan at lower elevation angle down to 4◦ every 10 min, and

therefore the LWP is interpolated for such gaps. Relying on
the previously led sensitivity study, error in observations for
Z and LWP is taken as 25 % and 10 %, respectively, with the
a priori information calculated from the Atlas (1954) empir-
ical relation. The a priori error is considered to be 1000 %,
which is the same as that mentioned in Sect. 3.2 when MWR
information is available. As stated in Sect. 3.2, radar misses
a few low-level gates near the ground due to antenna cou-
pling, which contains critical fog information. The proper-
ties of fog are assumed to remain constant between the first
available gates and the ground, and thus reflectivity is extrap-
olated (extended) downwards for the unavailable range gates.
The fog shown in Fig. 6 sustained for 4 h and then started dis-
sipating to form a stratus cloud. The visibility observed at the
super-site is also less than 1000 m until 04:00 UTC. The dis-
continuity in radar reflectivity close to 200 m is due to the
beam overlap correction used in the L2 product of BASTA.

5.2 Comparison between in situ and radar
measurements

To compare the retrieved LWC with in situ measurement, the
co-location of tethered balloon data with BASTA reflectivity
points is accomplished by determining the closest radar gate
that corresponds to the balloon height.

In Fig. 7b and c, the dashed black line indicates that the
visibility is more than 1000 m from 04:00 UTC onwards and
therefore separates fog and stratus clouds. Since the balloon
also contaminates the radar measurement, all the co-located
points when the tethered balloon was within the radar detec-
tion range are eliminated. The maximum distance observed
between the tethered balloon and BASTA radar was 700 m.
The radar reflectivity factor from in situ measurements is cal-
culated using the 6th moment of the droplet distribution mea-
sured by CDP. Note that the radar reflectivity is still in the
Rayleigh regime as the measurements from CDP cannot ex-
ceed 50 µm. The co-located points with reflectivity less than
−40 dBZ are masked because the signal-to-noise ratio for
radar is low.

In Fig. 7b the radar reflectivity from BASTA and CDP
are compared for the co-located points and indicates a clear
bias for fog and relatively much better agreement for stra-
tus clouds with −4.44 dBZ mean bias for fog and 0.89 dBZ
for stratus clouds. The bias is calculated as the difference
between ZBASTA and Zin situ. The root mean square error
(RMSE) in Z is 5.2 dBZ for fog and 2.8 dBZ for stratus
clouds. Figure 7c shows the comparison of the retrieved
LWC values with LWC observed by CDP at the co-located
points of the balloon trajectory. The mean bias in LWC for
fog is 0.06 g m−3, and for stratus clouds it is 0.009 g m−3.
The RMSE in LWC for fog is 0.082 and 0.056 g m−3 for stra-
tus clouds. The comparison of retrieved LWC with in situ ob-
servations of LWC from CDP resulted in a root mean square
error of 0.067 g m−3 including fog and stratus clouds.
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Figure 6. (a) Radar reflectivity Z extended to the lowest gates, (b) Doppler velocity plotted only for the available gates, (c) retrieved LWC,
(d) LWP, and (e) retrieved lna for the 9 February 2020 case at the SOFOG-3D super-site. The tethered balloon trajectory over retrieved LWC
is shown by the black line.

If a well-calibrated radar samples the same cloud column
and has a similar sensitivity to DSDs, the in situ reflectiv-
ity estimate should match the radar reflectivity. However,
the sensitivity of the CDP sensor is limited to sampling the
droplet diameters from 2 to 50 µm, while radar can sample
a wider range of DSDs and is more sensitive to the largest
droplets. The variations in comparison with in situ observa-
tions are noticed when the balloon is close to the cloud edge,

where a slight difference in altitude can significantly impact
Z and LWC due to the heterogeneity of this area.

The observed differences in simulated Z and radar mea-
surements could be explained by the vertical and horizontal
heterogeneity of the fog, which strongly depends on the fog
maturity. To further investigate the fog stages, a broader per-
spective beyond the vertical profile of fog is required. Mul-
tiple remote sensing and in situ instruments were operated
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Figure 7. (a) Radar reflectivity and balloon path, (b) comparison of radar reflectivity with reflectivity calculated from CDP using DSD,
(c) comparison of retrieved LWC with in situ LWC.

simultaneously as part of the SOFOG-3D campaign to ex-
plore various fog properties. A 95 GHz scanning radar called
BASTA-mini has been centered 1 km away from the verti-
cally pointing radar, and the 360◦ scan of fog is presented
in Fig. 8a and b. Plan position indicators (PPIs) of scanning
radar shown in Fig. 8a and b are collected at 4◦ elevation an-
gle. Note that this low elevation of radar can also be contam-
inated by the ground clutter, indicating locally high reflectiv-
ity. In Fig. 8b, a larger spread of fog is observed, which is
due to the development of thicker fog.

Due to the constant evolution of fog stages and the hori-
zontal heterogeneity of fog, the sampled volume away from
the vertically pointing radar will also have distinct Z and
LWC. As shown in Fig. 8b, the distribution of reflectivity on
the left- and right-hand sides of scanning radar is different.
Therefore, the mismatch in Z and LWC can be explained by
different radar and CDP sampling volumes. As the fog lifted
into the stratus cloud around 04:00 UTC, we can observe a

better agreement in Fig. 7b and c, which could be explained
by a more homogeneous situation. Furthermore, as shown in
Fig. 7a, samples are not collected at the cloud edge for stratus
clouds and therefore have lower uncertainties in Z and LWC.

To have a better idea of the representativeness of CDP in
situ data, we compare LWC from BASTA and in situ mea-
surements with LWC from simulated reflectivities obtained
with DSD and empirical Z–LWC relationships (Fig. 9). Var-
ious Z–LWC relations for clouds are included in Table 1 but
are not proposed for fog. In Dupont et al. (2018), linear fits
for fog are proposed based on in situ observations from the
tethered balloon and BASTA cloud radar at SIRTA. As a ref-
erence for fog, Flight 1, Flight 2, and Flight 3 in Fig. 9 are
the fits for three fog instances computed by relating LWC ob-
servations from a light optical aerosol counter (LOAC) sen-
sor to BASTA measurements, as described in Dupont et al.
(2018). TheseZ–LWC fits for fog are obtained by finding the
linear fit of LWC from the LOAC sensor to the radar reflec-
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Figure 8. Scans of BASTA-mini collected for fog at 4◦ elevation angle. The vertically pointing radar shown as a blue dot was located 1 km
away from the scanning radar, and the cross represents the location of the balloon.

Figure 9. Comparison of in situ LWC and radar reflectivity relation with the (a) available literature for fog and clouds, (b) retrieved LWC
and BASTA radar reflectivity relation.

tivity Z of the closest gate from vertically pointing BASTA
radar. We compared the behavior of in situ fog measurement
during the SOFOG-3D campaign to that of other fog rela-
tionships. As illustrated in Fig. 9, no empirical relation from
the literature, including the one derived in fog, seems to be
able to represent the in situ observations of this fog situa-
tion. However, the scatter for in situ measurements of stratus
clouds represents a good correlation with other empirical re-
lations as well as with the linear fits for fog from Dupont

et al. (2018). The in situ measurements separated for fog and
stratus clouds clearly show different characteristics and also
indicate that different reflectivity values for the same LWC
can be obtained as shown in Fig. 9a. This could be because
of the diverse droplet spectra in stratus clouds and fog.

The impact of various DSD characteristics during the fog
stages in the simulation of different-radiation fogs is dis-
cussed in Maier et al. (2012). In the Raleigh regime, Z val-
ues might become larger as fog develops due to the increase
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in droplet radius, while the LWC may remain constant. This
introduces a non-linear relation between LWC and radar re-
flectivity Z. The variability within each fog stage exhibited
unique properties depending on the fog event (Maier et al.,
2012).

In Fig. 9b the retrieved LWC from the algorithm with re-
spect to BASTA reflectivity (blue scatter) matches only with
the in situ observations for stratus clouds and other empir-
ical Z–LWC relations. In situ fog indicates relatively less
LWC than stratus clouds at the same radar reflectivity. For
the sake of comparison with Dupont et al. (2018), we also
related the in situ LWC obtained during SOFOG-3D to co-
located radar reflectivity from BASTA. By correlating in situ
measurements of LWC with cloud radar reflectivity, it is as-
sumed that the radar and in situ sensor observe the same
cloud volume; however, the distance between the balloon and
the nearest gate of cloud radar can incorporate uncertain-
ties. In addition to this, the sensitivity of the in situ sensor
(CDP) and radar (BASTA) is considered to be the same, de-
spite the fact that the sensitivity varies with DSDs. Generally,
the cloud probes undersample the true DSD of the volume
due to their limited sensitivity to larger droplets. As shown
in Fig. 10, the Z–LWC fits from in situ observations are in
the neighborhood of other empirical relations for reflectivity
less than −30 dBZ. Since the power law relations are valid
only in the Rayleigh regime, the in situ observation agrees
with other empirical relations for low reflectivity. Reflectiv-
ity values greater than −30 dBZ may be attributed to larger
droplets, which may or may not include a higher LWC. How-
ever, a significantly better correlation of in situ fit for stratus
clouds with an empirical relation by Baedi et al. (2000) (pro-
posed for stratocumulus clouds) indicates representativeness
of in situ observations for stratus clouds. The fit for in situ
fog observations still indicates less LWC at the same reflec-
tivity and does not match with any empirical relation. These
observations imply that these are either collected for large
droplets beyond the CDP limit or from a different sampling
volume than the cloud radar samples.

Unfortunately, the limited in situ observations collected
for fog and stratus clouds here do not represent a validation of
the retrieval; however, this comparison highlights that there
are situations more complicated than the other. Due to the
non-uniform distribution of LWC in clouds or fog, homo-
geneity plays a key role while validating the in situ measure-
ments. It is unfair to expect LWC to match when simulated
reflectivity from in situ does not match radar measurement.
In order to validate such an algorithm, in situ measurements
at different heights for the same volume that radar samples
are needed. However, if the in situ observation platform is
positioned in proximity to the radar sampling volume, it may
also contaminate the radar observations. Therefore, the in
situ measurements must be collected from a homogeneous
cloud to compare with the retrievals. Particularly for fog,
more continuous DSD measurements, as well as the vertical

Figure 10. Scatterplot for the relation between LWC measured
from CDP with radar reflectivity from cloud radar, compared with
the available literature. In situ measurements are separated for
fog and stratus clouds where magenta denotes fog, yellow–green
(chartreuse) denotes the stratus cloud, and the respective linear fits
are also plotted.

profiles during distinct fog episodes, are required to produce
more significant results.

6 Statistical analysis of retrievals to derive climatology

The primary objective of this statistical analysis is to derive
a climatology of LWC and lna in order to allow the algo-
rithm to be able to retrieve LWC for fog and low-level liquid
clouds even when additional measurements are not available.
A comparison of retrieved LWC with in situ LWC measure-
ments for fog and stratus clouds from the SOFOG-3D exper-
iment is already presented in Sect. 5.1. Therefore, the clima-
tology is developed from the retrieval technique discussed in
Sect. 3.4 using the larger data set from SIRTA measurements
for a variety of cloud and fog incidents. Statistical analysis
to derive a climatology of LWC and the scaling factor is pre-
sented in this section.

The histogram of the retrieved scaling factor lna (Fig. 11d)
indicates that the highest values of occurrence are around−3,
which is close to the lna a priori value from (Atlas, 1954)
the empirical relation plotted as the red line, but it is not pre-
cisely the same. The variational framework allows variability
in the lna retrieval. The assimilation of LWP brings enough
information to retrieve lna, and the spread around the a pri-
ori value is directly linked to the a priori error value. Table 1
indicates the lna values for various cloud types proposed in
the literature, which agree well with the range of retrieved
lna values. Note that there is one single lna value for a given
profile, but its value can potentially be used to differentiate
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Figure 11. Histogram of (a) radar reflectivity (Z), (b) LWP from MWR, (c) retrieved LWC, and (d) retrieved lna for 39 cloudy days. The
red line in the lna histogram indicates the a priori estimate of lna from Table 1.

clouds from the drizzle. All the profiles with rain and drizzle
reaching the ground are removed for the statistics; however
light drizzle with clouds and fog is discussed.

Since the algorithm does not assimilate LWP for the pro-
files with LWP less than 10 g m−2, the LWP histogram in
Fig. 11b has no value below 10 g m−2, and maximum cloud
profiles have LWP below 120 g m−2.

The parameter LWC indicates the range up to 0.6 g m−3,
which includes light drizzle, while the highest number of
cloud pixels have a LWC value less than 0.2 g m−3. In
Fig. 12, retrieved LWC is plotted as a function of radar reflec-
tivity for the 39 cloud cases, withZ–LWC empirical relation-
ships from the literature for various cloud types. The black
line represents the a priori estimate of the retrieval algorithm,
and the higher concentration of density point overlaps with
the black line is due to the profiles with LWP< 10 g m−2

where the retrieval of LWC is based on only the Atlas (1954)
empirical relation. None of these profiles are considered in
the climatology of lna. However, the wide range of retrieval
points indicates that the algorithm allows LWC retrieval for a
variety of cloud types. The slope of the Z–LWC relationship
is dependent on the value of b in Eq. (3), and because the re-
trieval method considers b = 2, the slope of the total retrieval
in Fig. 12 is constant. However, retrieval allows variability in
lna, which could partly compensate for b as well.

Figure 12. Retrieved LWC as a function of radar reflectivity Z for
39 cloudy days, with reference plot of various empirical relations
for different cloud types.
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As already described, knowing LWP allows us to retrieve
lna and adjust the relationship between LWC and Z. How-
ever, when only BASTA measurements are available, we
need to rely on an a priori value for lna. Thanks to this cli-
matology, we could both define the optimal value for this a
priori and eventually propose to parametrize this value. For
instance, it is envisioned to relate the scaling factor to radar
reflectivity and/or Doppler velocity. AsZ and V are observed
for each cloud pixel, and only one value of lna is retrieved
for a given cloud profile, one single piece of reflectivity or
velocity information should be associated with lna. We pro-
pose to summarize the reflectivity and velocity information
in the mean or maximum value of the profile in order to have
one value per profile.

Maximum and minimum velocities of the cloud column
are associated with the updrafts and downdrafts, which may
not represent the complete profile for lna. Therefore, we
rely on the mean velocity of the profile. The density plot
of mean velocity as a function of lna is plotted in Fig. 13a,
indicating that the mean velocity of most profiles is concen-
trated between−0.5 and 0.1 m s−1, which is compatible with
liquid cloud sedimentation velocity. Mean velocity close to
0 m s−1 with lna values ranging from −4 to −2 implies pure
clouds, whereas few profiles with a mean velocity less than
−0.5 m s−1 must be impacted by the drizzle droplets in the
profile. The standard deviation plotted by the red line indi-
cates that the variability in lna is very high for the profiles
with mean velocity below −0.5 m s−1. Due to the large stan-
dard deviation, lna cannot be associated with mean velocity;
however, velocity information can be used to classify drizzle
droplets. As illustrated in Fig. 13b, a substantially stronger
association is observed between maximum radar reflectivity
and lna of the profile. For most of the cloud columns, maxi-
mum reflectivity is observed between −30 and −15 dBZ. As
maximum reflectivity also represents the drizzle in the cloud,
the maximum reflectivity above −10 dBZ is suspected to in-
dicate drizzle in the cloud. A high value of lna for reflectivity
above 0 dBZ also supports the empirical relation for drizzle
by Sauvageot and Omar (1987), as shown in Table 1, where
the lna is given as 5.77. The standard deviation of lna is also
high for profiles with maximum reflectivity above −10 dBZ.
The standard deviation of lna is lowest, between −30 and
−20 dBZ. The one-dimensional linear fit relating lna and
maximum radar reflectivity for cloud columns is shown by
the dashed black line in Fig. 13b. In this figure, the maximum
reflectivity of the profile shows a better correlation with lna,
and the mean lna (dashed red line) coincides with the linear
fit. Therefore, the one-dimensional linear relation between
lna and maximum reflectivity (Zmax) is given by

lna = 0.186 ·Zmax+ 1.829 . (14)

However, an investigation by selecting 15 fog cases out of
39 cloud cases indicated that the coefficients of linear fit are

slightly different for fog profiles.

lna = 0.149 ·Zmax+ 0.591 (15)

To utilize the above relationships, it is necessary to dif-
ferentiate between liquid clouds aloft and fog. This can be
easily done by determining the cloud base height to identify
fog, and hence specific climatology is applied to the profile.

7 BASTA stand-alone LWC retrieval using climatology

In this section, we describe the stand-alone approach and its
assessment using MWR LWP retrieval as a reference. The
climatological relation of lna as a function of maximum
radar reflectivity in the profile is used for the BASTA stand-
alone retrieval when MWR observations are unavailable.

7.1 BASTA stand-alone LWC retrieval approach

The radar is not always accompanied by an MWR, and there-
fore a solution must be proposed to improve the retrieval with
the a priori knowledge of lna. Since LWP information is not
assimilated, thanks to the lna climatology for clouds and fog
derived in Sect. 6, this information can be used as a priori
information of lna; lna for the profile can be linked to the
maximum value of reflectivity detected in the profile using
Eqs. (14) and (15) for clouds and fog, respectively.

In this case, the observation vector “y” contains only radar
reflectivity of each cloud pixel, with 25 % error in measure-
ment, whereas the state vector still contains LWC and lna
both. Therefore, the Jacobian for a cloud profile with n cloud
pixels will have n×(n+1) elements. The variational method
also allows us to control the contribution of a priori informa-
tion in the retrieval by providing the a priori error. A strong
a priori estimate of lna is required to constrain LWC re-
trieval; therefore a low priori error in lna is employed. In
these stand-alone retrieval cases, 100 % a priori error in lna
is used because the standard deviation of lna in Fig. 13 is
approximately 1, which is equivalent to 100 % a priori er-
ror. The climatology of lna for fog from Eq. (15) is applied
to the profile with a cloud base less than 80 m. Retrieval of
LWC should be constrained by the a priori information of
LWC only to avoid non-physical values; therefore the error
in the a priori values of LWC is taken to be 1000 %. In the
BASTA stand-alone retrieval setup, a priori information of
LWC is calculated using the Atlas (1954) relation exactly the
same as radar–MWR synergistic retrieval.

7.2 First assessment of BASTA stand-alone LWC
retrieval using LWP retrieved from MWR

With the details given above, the LWC retrieval algorithm
is adapted to utilize the climatology of the scaling factor
with only radar reflectivity measurements from SIRTA. The
BASTA stand-alone retrieval algorithm is applied to the 39
selected cloud and fog cases from SIRTA.
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Figure 13. Correlation of (a) mean velocity versus lna and (b) maximum reflectivity versus lna for cloud profiles, where the color bar
indicates the number of profiles.

Due to the absence of in situ sensors at SIRTA for record-
ing the distribution of the liquid water content in clouds and
fog, the integrated LWP from the HATPRO microwave ra-
diometer is utilized to assess the quality of the retrieved LWC
for BASTA stand-alone retrieval. The retrieved LWP is cal-
culated by vertically integrating the retrieved LWC; lna is
not a retrieved parameter because LWP information is not
assimilated, and the retrieval is constrained by a strong a pri-
ori estimate of lna derived from the climatology. However,
the variational framework allows lna to be adjusted around
its climatology depending on radar reflectivity. In this case,
lna values fall within the range of known values from the
literature, as shown in Table 1.

Number density of profiles with LWP ranging from 10
to 250 g m−2 are compared with LWP from BASTA stand-
alone retrieval (Fig. 14). Profiles with retrieved LWP less
than 50 g m−2 show good agreement with LWP from HAT-
PRO. For the profiles with higher LWP, an increase in bias
is clearly observed in Fig. 14, and the mean bias in LWP ob-
tained as the difference between LWP from HATPRO and
that retrieved is −21 g m−2. The mean absolute percentage
error in LWP with respect to LWP from HATPRO is 57.15 %.
The relative error in LWP shown in Fig. 15 indicates that
the majority of clouds have less than 35 % error in retrieved
LWP. Because the climatology of the scaling factor con-
strains the retrieval, effective estimation of LWC can be made
using only radar information when additional information is
unavailable. By investigating the origin of biases, we discov-
ered that the profiles with light-drizzle-droplet characteris-
tics tend to overestimate the LWP by a large margin. The
improvement in stand-alone retrieval can be made by classi-
fying clouds with and without drizzle and using specific lna
climatology for them.

Figure 14. Comparison of retrieved LWP from BASTA stand-alone
retrieval algorithm with LWP retrieved by HATPRO, where the
black line represents the exact match of LWP for the given profile.

8 Summary and conclusions

An algorithm for LWC estimation of warm clouds is pro-
posed using a vertically pointing radar and microwave ra-
diometer synergy. The algorithm also accounts for attenu-
ation due to liquid cloud droplets. This algorithm is based
on the hypothesis that LWC is related to reflectivity with a
power law fit, and one of the constants of the Z–LWC re-
lationship is allowed to vary according to LWP retrieved by
an MWR of the same cloud profile. The scaling factor lna
of the relationship is retrieved, while the exponent b is as-
sumed constant. Therefore, the technique proposed in this
study is equivalent to finding a suitable Z–LWC relation-
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Figure 15. Percentage error in retrieved LWP with respect to LWP
measured by MWR at SIRTA.

ship consistent with the measured LWP for each cloud pro-
file. This synergistic retrieval algorithm works seamlessly for
liquid clouds and fog without prescribing the cloud type. The
algorithm is implemented in a set of cloud and fog instances
observed at SIRTA, and the analysis is discussed in this pa-
per. These retrievals have been used to develop a climatol-
ogy of LWC and the scaling factor for warm clouds and fog.
The application of derived climatology to estimate LWC for
stand-alone radar observations is also presented in this pa-
per. By utilizing the climatology of the scaling factor, this
stand-alone radar method can provide continuous retrieval of
LWC for warm clouds even in the absence of radiometers and
other additional measurements. Although this climatology is
developed using measurements from the SIRTA observatory
for limited cloud scenarios, a more extensive data collection
from several measurement locations might be used to gener-
ate a more robust climatology of the scaling factor.

Furthermore, the retrievals are compared against in situ
measurements for a fog and cloud case collected during the
SOFOG-3D field campaign. The comparison of LWC values
estimated using this synergistic retrieval algorithm revealed
that the fog and clouds were clearly distinct. The retrieved
LWC was more consistent with stratus clouds than fog. A
homogeneous cloud system is required for the comparison
of retrieved LWC with in situ measurements, or else the in
situ sensors must sample the same cloud or fog volume as
radar. To assess the accuracy of the algorithm for LWC esti-
mates in various cloud types, in situ measurements of several
types of warm clouds like fog and low-level stratus clouds
with and without drizzle are required.

However, drizzle in clouds is a substantial source of er-
ror in the retrieval. Because drizzle droplets are significantly
larger than cloud droplets, the power law may not be applica-
ble in the Mie regime. As a result, the forward model exclu-
sively for drizzle must incorporate Mie scattering or even-
tually another kind of relationship to link Z and LWC. A
prospective work for such cloud columns is planned to sep-

arate drizzle and cloud pixels using Doppler velocity infor-
mation and develop a forward model for drizzle. The varia-
tional framework discussed here can be modified to incorpo-
rate additional measurements, such as Doppler velocity. An-
other current limitation of our synergistic retrieval method
is that it is applicable to profiles with LWP values greater
than 10 g m−2. A better a priori estimate of lna can be pro-
posed in the future to estimate accurate LWC for low LWPs.
Additionally, this retrieval method is not applicable when a
mixed-phase cloud overlaps the liquid cloud layer, whereas
the ice cloud above the liquid cloud does not impact the LWC
retrieval of the liquid layer.

As mentioned in Sect. 3.3, the radar reflectivity profiles
can be contaminated by particles in the boundary layer. In
the retrieval method, these airborne plankton must be catego-
rized and hence not processed as hydrometeors. Ultimately,
a sophisticated algorithm for the classification of hydrome-
teors to distinguish between fog, liquid clouds, and drizzle
is required. The retrieval algorithm could be updated with
an improved target classification scheme to apply two dif-
ferent scaling factors in one profile, especially when drizzle
and clouds co-occur. Also, for multi-layered liquid clouds,
different lna might be prescribed for each cloud layer with
proper classification of hydrometeors. Improved classifica-
tion of hydrometers for the BASTA stand-alone retrieval will
improve the LWC retrieval because the range of the scaling
factor varies for different categories. Further, the climatology
of the scaling factor for different cloud types will improve the
LWC retrieval.

We know that cloud LWC values can fluctuate both hori-
zontally and vertically. Most liquid clouds, by their very na-
ture, are unlikely to be homogeneous in the sense suggested
as suitable here. Maybe a more statistical approach is neces-
sary for some aspects of the retrieval comparisons. The re-
trieval algorithm can be validated with in situ measurements
from aircraft, balloons, and UAV flights equipped with in-
cloud sensors for diverse liquid clouds since UAVs and bal-
loons travel at a slower speed than airplanes, which would
allow them to sample the clouds more thoroughly. Note that
some sites cannot be overflown by aircraft for safety reasons.
UAVs can be more efficient in terms of controlling them re-
motely, as the path of tethered balloons cannot be controlled.
These platforms can, however, interfere with the radar signal.
In order to avoid contaminating the radar signal, the samples
must be taken from a volume that is close enough and ob-
structs the radar the least. Before comparing the estimated
values with in situ data, it is necessary to verify if the cloud
volume represented by radar and in situ samples is the same.
A well-mixed or homogeneous cloud system is ideal for val-
idating such algorithms.
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Appendix A: Figures of sensitivity analysis

Figure A1. Bias in retrieved LWC with respect to true LWC for different attenuation considerations in the retrieval algorithm.

Figure A2. (a) Cost function and (b) retrieved lna for different b values.
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