Why switchbacks may be related to solar granulation

To cite this version:
insu-03559282

HAL Id: insu-03559282
https://insu.hal.science/insu-03559282
Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Why switchbacks may be related to solar granulation

Naïs Fargette1, Benoit Lavraud1,2, Alexis Rouillard1, Victor Réville1, Tai Phan3, Stuart D. Bale3, Thierry Dudok De Wit3, Clara Froment4, Justin Kasper5, Jasper S. Halekas6, Philippe Louarn1, Anthony W. Case7, Kelly E. Korreck7, Davin E. Larson7, David Malaspina8,9, Marc Pulupa3, Michael L. Stevens7, Phyllis L. Whittlesey3, and Matthieu Berthomier10

1Institut de Recherche en Astrophysique et Planétologie, CNRS, UPS, CNES, Toulouse, France (nais.fargette@irap.omp.eu)
2Laboratoire d’Astrophysique de Bordeaux, CNRS, Bordeaux, France
3Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, USA
4LPC2E, CNRS and University of Orléans, Orléans, France
5Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, US
6Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, United States
7Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, US
8Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO, USA
9Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
10Laboratoire de Physique des Plasmas, CNRS, Sorbonne Université, Ecole Polytechnique, Observatoire de Paris, Université Paris-Saclay, Paris, France

Parker Solar Probe data below 0.3 AU have revealed a near-Sun magnetic field dominated by Alfvénic structures that display back and forth reversals of the radial magnetic field. They are called magnetic switchbacks, they display no electron strahl variation consistent with magnetic field foldings within the same magnetic sector, and are associated with velocity spikes during an otherwise calmer background. They are thought to originate either at the photosphere through magnetic reconnection processes, or higher up in the corona and solar wind through turbulent processes.

In this work, we analyze the spatial and temporal characteristic scales of these magnetic switchbacks. We define switchbacks as a deviation from the parker spiral direction and detect them automatically through perihelia encounters 1 to 6. We analyze the solid angle between the magnetic field and the parker spiral both over time and space. We perform a fast Fourier transformation to the obtained angle and find a periodical spatial variation with scales consistent with solar granulation. This suggests that switchbacks form near the photosphere and may be caused, or at least modulated, by solar convection.