

EGU presentation EGU21-7197 GI3.2/PS6 2021-04-28

COMET-BIRA-COM-HO-004_i1.0

J. De Keyser¹, S. Ranvier¹, J. Maes¹, J. Pawlak¹, E. Neefs¹, F. Dhooghe¹, U. Auster², B. Chares², N. Edberg³, J. Fredriksson³, A. Eriksson³, P. Henri⁴, O. Le Duff⁴, J. Peterson⁵

- ¹ Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
- ² Technische Universität Braunschweig, Germany
- ³ Institutet for Rymdfysik, Uppsala, Sweden
- ⁴LPC2E, Orléans, France
- ⁵Institutet for Rymdfysik, Kiruna, Sweden

Compact sensors for solar system exploration

Solar system exploration missions

- typically have the task of characterizing the in situ space plasma environment
 - the fields (magnetic field, possibly electric field)
 - the wave environment (electric field, possibly magnetic field)
 - plasma density
 - + plasma composition, velocity distributions, ...
- at the same time such missions are under heavy limitations
 - mass
 - power
 - volume
 - accommodation

We present a compact sensor that merges a magnetometer and a Langmuir probe to provide maximum science for minimal resources in the context of Comet Interceptor.

Comet Interceptor: Mission profile

Comet Interceptor is the ESA Science F1 mission and intends to study a dynamically *new* comet.

- Launches as secondary payload with Ariel in 2029
- Waits 1-3 years at L2
- Cruise 1-3 years to comet interception near 1 au
- Comet flyby at speed 10-80 km/s

Mission elements

Goal: obtain multi-point multi-instrument data on comet dust, gas, and plasma.

- Main spacecraft A (ESA) + Sub-spacecraft B1 (JAXA) + Sub-spacecraft B2 (ESA)
- Ground segment (e.g. LSST, ESA VLT, TRAPPIST, ...)

The FGM sensor

- part of the Dust-Field-Plasma sensor suite.
- a 3-axis fluxgate magnetometer.
- measurement from DC to 100s of Hz.
- adjustable range up to ±60000nT.
- drive signal at 9.6 kHz modulates the magnetic flux through a soft-magnetic core; the flux is detected by a sensecoil surrounding the core.
- vector measurement accurate to better than 1 nT
- noise < 20 pT/√Hz at 1 Hz.

FGM accommodation

- FGM is part of DFP on S/C A (there are magnetometers also on B1 and B2)
- Gradiometer configuration with an inboard and an outboard sensor
- Mounted on a high TRL deployable 1 m-boom (heritage from SOSMAG)

The COMPLIMENT sensor

- part of the Dust-Field-Plasma sensor suite.
- Langmuir probe and a mutual impedance experiment, limited E-field capability
- measures
 - monitor the cold plasma density (10²-10⁵ cm⁻³) and electron temperature,
 - S/C potential,
 - density fluctuations (dn/n) up to a few kHz
 - one component of the AC electric field, in the frequency range 1 Hz–5 MHz, covers the plasma frequency in the highly inhomogeneous cometary plasma as well as plasma waves
 - nm-sized dust impacts (characteristic electric waveforms)
- Normal data acquisition rate is 2 65 kbps.
- Peak rate is 10 Msamples/s.

Electric field component, $\delta E(f)$	1 Hz – 1.4 MHz 2 μV/m / √Hz (> 500 Hz)
Electron density, N _e	$10^2 - 10^5 \text{cm}^{-3}$ < 1 Hz
Density fluctuations, δn/n	DC – 10 kHz
Ion density, N _i	$10^2 - 10^5 \text{ cm}^{-3}$ < 1 Hz
Electron temperature, T _e	0.01 – 30 eV < 1 Hz
S/C potential, U _{sc}	< 100 Hz
Integrated solar EUV flux	< 1 Hz

COMPLIMENT accommodation

- consists of
 - 2 probes of 8 cm diameter, 1 transmitter
 - receivers LP (DC to 1 kHz) and HMI (1 kHz–5 MHz)
 - signal generator for transmission (HMI)
- accommodation
 - spherical probes placed at the tips of ~1 m long fixed booms
 - ~1 m separation between the two probes.
 - separation distance determines the sensitivity of E-field and Mutual Impedance measurements.
 - transmitter placed on a short stick

Resource limitations and choice

Limitations

- comet Interceptor has multiple space elements
- financial constraints of an F mission
- piggyback on Ariel
- need for sufficient δv to maximize chances for comet encounters

Hence there are severe resource constraints, especially on mass.

Combine a Langmuir probe and FGM sensor

- Save mass
- 2 COMPLIMENT + 1 FGM boom → 1 COMPLIMENT + 1 Merged sensor boom
- Less Field-of-View obstruction for other instruments
- Easier to accommodate
- Better control over interference between FGM and COMPLIMENT

Current accommodation plan

Sensors

The sensors are 8 cm diameter spheres.

- (a) A "merged sensor" that holds FGM inside. This requires an inner shield between the sphere and the FGM to reduce interference, which is kept in place by a scaffolding in soft material glued onto the FGM cover and inside the sphere halves.
- (b) A "standalone sensor" which is identical but without magnetometer, inner shield, scaffolding.

The spheres are made of Al with a wall thickness of 0.3 mm because of mass limitations.

Testing and Characterization

Vibration testing has been performed successfully with the merged sensor on the deployable boom.

Electric interference testing

Electric tests have been performed to determine FGM interference to the probes.

Equipment at boom root

Faraday cage and probe at boom tip

Merged sensor response

- The FGM driver at 9.4 kHz is well visible, as well as a large number of harmonics.
- The interference introduced by FGM is limited to less than 4 μ V limit (-100 dBV).
- Proper signal conditioning, shielding and grounding needed.
- The harmonics are very sharp, damped, at well-defined frequencies.
- They can be removed a posteriori.

Magnetic characterization

A characterization of the magnetic interferences has been performed in a magnetically clean environment in Chambon-la-Forêt, and using a Solar Orbiter SCM engineering model.

Driver signal and multiple harmonics are visible

- Intensity decreases with distance
- They are damped
- They are very sharp

Figure 6.3 – Measurements at 30cm +Y position (spectrum)

Transmitter configuration

Different transmitter configurations have been tried out

- Position of the transmitter close to the conducting s/c surface is a problem
- Use merged and/or companion sensor for transmission, and transmitter for reception

End-to-end tests

End-to-end tests have been carried out in the plasma chamber at LPC2E in Orléans, confirming that FGM does not negatively impact COMPLIMENT HF measurements.

Conclusion

A merged fluxgate – Langmuir probe sensor has been built and tested.

- Removes the need for one boom
- Low mass
- Interference between both can be dealt with
 - Inner shield
 - Proper grounding
 - A posteriori removal of residual FGM driver and harmonics

Merged + companion sensor provide (at high cadence)

- Magnetic field
- Electric field and waves (1 component)
- Ion and electron density, electron temperature
- S/C potential, integrated EUV flux
- nanodust impacts

This can therefore form the core of an in situ plasma characterization package

Consortium

Merged sensor development was sponsored by ESA through EXPRO contracts for rapid payload maturation.

COMPLIMENT team

- P. Henri LPC2E Orléans Lead + High-frequency electronics + transmitter
- N. Edberg IRF-U Uppsala Low-frequency electronics
- J. De Keyser BIRA-IASB Brussels Probe assemblies
- J. Peterson IRF-K Kiruna Fixed boom

FGM-A team

- U. Auster – TU Braunschweig – Magnetometer and deployable boom

www.aeronomie.be

Johan.DeKeyser@aeronomie.be