%0 Conference Proceedings %T Multi-Scale Physics in Velocity Shear Driven Vortices in Space Plasmas %+ Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E) %+ Aix Marseille Université (AMU) %+ Joseph Louis LAGRANGE (LAGRANGE) %A Pucci, F. %A Henri, P. %A Califano, F. %A Servidio, S. %A Faganello, M. %A Passot, T. %A Sulem, P. L. %A Lapenta, G. %< avec comité de lecture %B American Geophysical Union %C San Francisco, United States %V 2018 %P pp. 10 %8 2018 %D 2018 %Z 2018AGUFMSM13B2837P %K Magnetic reconnection %K Magnetopause and boundary layers %K Magnetosheath %K Solar wind/magnetosphere interactions %K MAGNETOSPHERIC PHYSICS %Z Sciences of the Universe [physics]Conference papers %X Velocity shear driven vortices associated to the Kelvin-Helmholtz instability (KHI) have been detected by in-situ observations at the Earth[1], Saturn[2] and Mercury[3] magnetospheres' boundary due to the interaction with the solar wind[4]. KHI in magnetized plasmas have been widely studied numerically in the framework of a fluid and hybrid descriptions, while only very few studies have focused on the physics of electrons[5,6] because of computational constraints. In this work we present a full kinetic particle in cell study of the KHI spanning a range of scales going from fluid to electron scales. The simulation is initialized with an extended fluid equilibrium[7] including finite ion Larmor radius effects. Our large-scale configuration includes two-possible alignment of the vorticity with the background magnetic field each one corresponding to the interaction of the solar wind with the dawn and dusk side of a planet. We discuss electron heating and acceleration by the wave and turbulent activity as well as magnetic reconnection induced by vortex dynamics. Two-fluid simulations have suggested that KHI instability can lead to the formation of coherent structures resulting from the saturation of the mirror instability[8]. Our full kinetic approach confirms such hypothesis. We investigate the formation, the properties and the electron distribution functions of the mirror modes in our simulations and in complementary dedicated ones. [1] J. E. Stawarz, S. Eriksson, et al., Journal of Geophysical Research: Space Physics, 121, 2016, 11,021-11,034 [2] A. Masters, N. Achilleos, et al., Journal of Geophysical Research: Space Physics, 115, 2010, 7225 [3] T. Sundberg, S. A. Boardsen, et al., Planetary and Space Sciences, 59, 2011, 2051-2057 [4] M. Faganello, F. Califano, Journal of Plasma Physics, 83, 2017, 535830601 [5] P. Henri, S. S. Cerri, F. Califano, F. Pegorago, et al., Physics of Plasmas, 20, 2013, 102118 [6] W. Daughton, T. K. M. Nakamura, et al., Physics of Plasmas, 21, 2014, 252307. [7] S. S. Cerri, P. Henri, F. Califano, et al., Physics of Plasmas, 20, 2013, 112112 [8] S. De Camillis, S. S. Cerri, F. Califano, and F. Pegoraro, Plasma Physics and Controlled Fusion, 28, 2016, 045007 %G English %L insu-03565537 %U https://insu.hal.science/insu-03565537 %~ OBSPM %~ INSU %~ UNICE %~ CNRS %~ UNIV-AMU %~ UNIV-ORLEANS %~ CNES %~ OCA %~ OSUC %~ LAGRANGE %~ LPC2E %~ PSL %~ UNIV-COTEDAZUR %~ OBSPM-PSL