Geophysical Research Abstracts Vol. 18, EGU2016-13043, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. ## Photochemistry of $O(^1D)$ and $O(^1S)$ lines in the coma of 67P/Churyumov-Gerasimenko Gaël Cessateur (1), Johan De Keyser (1,2), Romain Maggiolo (1), Andrew Gibbons (1,3), Guillaume Gronoff (4), Herbert Gunell (1), Frederik Dhooghe (3), Jérôme Loreau (3), Nathalie Vaeck (3), Kathrin Altwegg (5,6), Andre Bieler (5,7), Christelle Briois (8), Ursina Calmonte (5), Michael Combi (7), Stephen Fuselier (9,10), Tamas Gombosi (7), Myrtha Haessig (5), Lena Le Roy (5), Eddy Neefs (11), and Martin Rubin (5) (1) BIRA-IASB, Space Physics Division, Bruxelles, Belgium (gael.cessateur@aeronomie.be), (2) Center for Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium, (3) Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB), Av. F. D. Roosevelt 50, B-1050 Brussels, Belgium, (4) Science Directorate, Chemistry and Dynamics Branch, NASA Langley Research Center, Hampton, Virginia USA; SSAI, Hampton, Virginia USA, (5) Physikalisches Institut, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland, (6) Center for Space and Habitability, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland, (7) Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA, (8) Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 CNRS Université d' Orléans, France, (9) Space Science Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas, 78228, USA, (10) Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, USA, (11) Engineering Division, Royal Belgian Institute for Space Aeronomy, Ringlaan 3, B-1180, Brussels, Belgium We present here a chemistry-emission coupled model to study the production and loss mechanisms of the $O(^1D)$ and $O(^1S)$ states, for comet 67P/Churyumov-Gerasimenko. The recent discovery of O_2 in significant abundance relative to water (3.80% +/- 0.85%, Bieler et al. 2015) within the coma of 67P has been taken into consideration for the first time in such models. We evaluate the effect of the presence of O_2 on the green to red-doublet emission intensity ratio, which is traditionally used to assess the CO_2 abundance within cometary atmospheres. Model simulations, solving the continuity equation with transport, show that not taking O_2 into account leads to an underestimation of the CO_2 abundance within 67P. This strongly suggests that the green to red-doublet emission intensity ratio alone is not a proper tool for determining the CO_2 abundance, as previously suggested. O_2 might indeed be a rather common and abundant parent species, following the re-analysis of the comet 1P/Halley data (Rubin et al. 2015). Therefore, it is likely that earlier determinations of the CO_2 abundance in cometary atmospheres have to be revisited.